Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Symbiosis

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 15 Apr 2024 at 01:50 Created: 

Symbiosis

Symbiosis refers to an interaction between two or more different organisms living in close physical association, typically to the advantage of both. Symbiotic relationships were once thought to be exceptional situations. Recent studies, however, have shown that every multicellular eukaryote exists in a tight symbiotic relationship with billions of microbes. The associated microbial ecosystems are referred to as microbiome and the combination of a multicellular organism and its microbiota has been described as a holobiont. It seems "we are all lichens now."

Created with PubMed® Query: ( symbiosis[tiab] OR symbiotic[tiab] ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-04-12

Brockhurst MA, Cameron DD, AP Beckerman (2024)

Fitness trade-offs and the origins of endosymbiosis.

PLoS biology, 22(4):e3002580 pii:PBIOLOGY-D-23-03118.

Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.

RevDate: 2024-04-12

Cardoso PM, Hill LJ, Villela HDM, et al (2024)

Localization and symbiotic status of probiotics in the coral holobiont.

mSystems [Epub ahead of print].

UNLABELLED: Corals establish symbiotic relationships with microorganisms, especially endosymbiotic photosynthetic algae. Although other microbes have been commonly detected in coral tissues, their identity and beneficial functions for their host are unclear. Here, we confirm the beneficial outcomes of the inoculation of bacteria selected as probiotics and use fluorescence in situ hybridization (FISH) to define their localization in the coral Pocillopora damicornis. Our results show the first evidence of the inherent presence of Halomonas sp. and Cobetia sp. in native coral tissues, even before their inoculation. Furthermore, the relative enrichment of these coral tissue-associated bacteria through their inoculation in corals correlates with health improvements, such as increases in photosynthetic potential, and productivity. Our study suggests the symbiotic status of Halomonas sp. and Cobetia sp. in corals by indicating their localization within coral gastrodermis and epidermis and correlating their increased relative abundance through active inoculation with beneficial outcomes for the holobiont. This knowledge is crucial to facilitate the screening and application of probiotics that may not be transient members of the coral microbiome.

IMPORTANCE: Despite the promising results indicating the beneficial outcomes associated with the application of probiotics in corals and some scarce knowledge regarding the identity of bacterial cells found within the coral tissue, the correlation between these two aspects is still missing. This gap limits our understanding of the actual diversity of coral-associated bacteria and whether these symbionts are beneficial. Some researchers, for example, have been suggesting that probiotic screening should only focus on the very few known tissue-associated bacteria, such as Endozoicomonas sp., assuming that the currently tested probiotics are not tissue-associated. Here, we provide specific FISH probes for Halomonas sp. and Cobetia sp., expand our knowledge of the identity of coral-associated bacteria and confirm the probiotic status of the tested probiotics. The presence of these beneficial microorganisms for corals (BMCs) inside host tissues and gastric cavities also supports the notion that direct interactions with the host may underpin their probiotic role. This is a new breakthrough; these results argue against the possibility that the positive effects of BMCs are due to factors that are not related to a direct symbiotic interaction, for example, that the host simply feeds on inoculated bacteria or that the bacteria change the water quality.

RevDate: 2024-04-12

Lin Z (2024)

Progress and challenges in the symbiosis of AI with science and medicine.

RevDate: 2024-04-13

Su C, Xie T, Jiang L, et al (2024)

Host genetics and larval host plant modulate microbiome structure and evolution underlying the intimate insect-microbe-plant interactions in Parnassius species on the Qinghai-Tibet Plateau.

Ecology and evolution, 14(4):e11218.

Insects harbor a remarkable diversity of gut microbiomes critical for host survival, health, and fitness, but the mechanism of this structured symbiotic community remains poorly known, especially for the insect group consisting of many closely related species that inhabit the Qinghai-Tibet Plateau. Here, we firstly analyzed population-level 16S rRNA microbial dataset, comprising 11 Parnassius species covering 5 subgenera, from 14 populations mostly sampled in mountainous regions across northwestern-to-southeastern China, and meanwhile clarified the relative importance of multiple factors on gut microbial community structure and evolution. Our findings indicated that both host genetics and larval host plant modulated gut microbial diversity and community structure. Moreover, the effect analysis of host genetics and larval diet on gut microbiomes showed that host genetics played a critical role in governing the gut microbial beta diversity and the symbiotic community structure, while larval host plant remarkably influenced the functional evolution of gut microbiomes. These findings of the intimate insect-microbe-plant interactions jointly provide some new insights into the correlation among the host genetic background, larval host plant, the structure and evolution of gut microbiome, as well as the mechanisms of high-altitude adaptation in closely related species of this alpine butterfly group.

RevDate: 2024-04-13

Jin P, Wang L, Chen D, et al (2024)

Unveiling the complexity of early childhood caries: Candida albicans and Streptococcus mutans cooperative strategies in carbohydrate metabolism and virulence.

Journal of oral microbiology, 16(1):2339161.

OBJECTIVE: To explore the mechanisms underlying the virulence changes in early childhood caries (ECC) caused by Candida albicans (C. albicans) and Streptococcus mutans (S. mutans), with a focus on carbohydrate metabolism and environmental acidification.

METHODS: A review of literature was conducted to understand the symbiotic relationship between C. albicans and S. mutans, and their role in the pathogenesis of ECC. The review also examined how their interactions influence carbohydrate metabolism and environmental acidification in the oral cavity.

RESULTS: C. albicans and S. mutans play crucial roles in the onset and progression of ECC. C. albicans promotes the adhesion and accumulation of S. mutans, while S. mutans creates an environment favorable for the growth of C. albicans. Their interactions, especially through carbohydrate metabolism, strengthen their pathogenic potential. The review highlights the importance of understanding these mechanisms for the development of effective management and treatment protocols for ECC.

CONCLUSION: The symbiotic relationship between C. albicans and S. mutans, and their interactions through carbohydrate metabolism and environmental acidification, are key factors in the pathogenesis of ECC. A comprehensive understanding of these mechanisms is crucial for developing effective strategies to manage and treat ECC.

RevDate: 2024-04-13

Sandeep F, Kiran N, Rahaman Z, et al (2024)

Pathology in the Age of Artificial Intelligence (AI): Redefining Roles and Responsibilities for Tomorrow's Practitioners.

Cureus, 16(3):e56040.

The evolution of pathology from its rudimentary beginnings around 1700 BC to the present day has been marked by profound advancement in understanding and diagnosing diseases. This journey, from the earliest dissections to the modern era of histochemical analysis, sets the stage for the next transformative leap to the integration of artificial intelligence (AI) in pathology. Recent research highlights AI's significant potential to revolutionize healthcare within the next decade, with a particular impact on diagnostic processes. A majority of pathologists foresee AI becoming a cornerstone in diagnostic workflow, driven by the advent of image-based algorithms and computational pathology. These innovations promise to enhance the precision of disease diagnosis, particularly in complex cases, such as cancers, by offering detailed insights into the molecular and cellular mechanisms. Moreover, AI-assisted tools are improving the efficiency and accuracy of histological analysis by automating the evaluation of immunohistochemical biomarkers and tissue architecture. This shift not only accelerates diagnostic processes but also facilitates early disease management, crucial for improving patient outcomes. Furthermore, AI is reshaping educational paradigms in pathology, offering interactive learning environments that promise to enrich the training of future pathologists. Despite these advancements, the integration of AI in pathology raises ethical considerations regarding patient consent and data privacy. As pathology embarks on this AI-augmented era, it is imperative to navigate these challenges thoughtfully, ensuring that AI enhances rather than replaces the pathologist's role. This editorial discussed the historical progression of pathology, the current impact of AI on diagnostic practices, and the ethical implications of its adoption, underscoring the need for a symbiotic relationship between pathologists and AI to unlock the full potential of healthcare.

RevDate: 2024-04-12

Belahmadi MSO, A Abdessemed (2024)

Enhancement of benzo[a]pyrene mineralization: symbiotic biodegradation by Acinetobacter sp. strain HAP1 in Association with Cyanobacteriota sp. S66.

Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes [Epub ahead of print].

The ability of Acinetobacter sp. strain HAP1, isolated from petroleum refinery effluent, to eliminate different concentrations (20, 40, 60, 80 and 100 mg/L) of Benzo[a]Pyrene degradation (BaP) was studied. A test to improve this degradation capacity was carried out by culturing the bacterial strain in association with a cyanobacteria. The results show a highly significant effect of the concentration of (BaP) and a very highly significant effect of the symbiosis between the bacterial strain and the cyanobacteria. This combination was able to significantly improve the (BaP) degradation rate by up to 18%. This degradation and especially in association leads to a complete mineralization of (BaP) and there is a difference in yield that can go up to 15%. Through molecular identification based on 16S rRNA gene sequence analysis, strains HAP1 and S66 were recognized as Acinetobacter sp. strain HAP1 and Cyanobacteriota sp. S66, respectively. Comparison of the retrieved sequences with the NCBI GenBank database was done, and the closest matches were found to be Acinetobacter pittii strain JD-10 for bacteria and Pseudochroococcus couteii strain PMC 885.14 for cyanobacteria.

RevDate: 2024-04-13

Song G, Shin D, JS Kim (2024)

Microbiome changes in Akanthomyces attenuatus JEF-147-infected two-spotted spider mites.

Journal of invertebrate pathology, 204:108102 pii:S0022-2011(24)00045-4 [Epub ahead of print].

The two-spotted spider mite (Tetranychus urticae Koch) is an agriculturally serious polyphagous pest that has acquired strong resistance against acaricides because of its short life cycle and continuous exposure to acaricides. As an alternative, mite-pathogenic fungi with different modes of action could be used to control the mites. The spider mite has symbiotic microorganisms that could be involved in the physiological and ecological adaptations to biotic stresses. In this study, mite-pathogenic fungi were used to control female adults, and the microbiomes changes in the fungus-infected mites were analyzed. The acaricidal activity of 77 fungal isolates was tested, and Akanthomyces attenuatus JEF-147 exhibited the highest acaricidal activity. Subsequently a dose-response assay and morphological characterization was undertaken For microbiome analysis in female adults infected with A. attenuatus JEF-147, 16S rDNA and ITS1 were sequenced using Illumina Miseq. Infected mite showed a higher Shannon index in bacterial diversity but lower index in fungal diversity. In beta diversity using principal component analysis, JEF-147-treated mites were significantly different from non-treated controls in both bacteria and fungi. Particularly in bacterial abundance, arthropod defense-related Rickettsia increased, but arthropod reproduction-associated Wolbachia decreased. The change in major bacterial abundance in the infected mites could be explained by a trade-off between reproduction and immunity against the early stage of fungal attack. In fungal abundance, Akanthomyces showed up as expected. Foremost, this work reports microbiome changes in a fungus-infected mite and suggests a possible trade-off in mites against fungal pathogens. Future studies will focus on gene-based investigations related to this topic.

RevDate: 2024-04-11

Yin L, Zhou A, Wei Y, et al (2024)

Deep insights into the roles and microbial ecological mechanisms behind waste activated sludge digestion triggered by persulfate oxidation activated through multiple modes.

Environmental research pii:S0013-9351(24)00809-0 [Epub ahead of print].

Persulfate oxidation (PS) is widely employed as a promising alternative for waste activated sludge pretreatment due to the capability of generating free radicals. The product differences and microbiological mechanisms by which PS activation triggers WAS digestion through multiple modes need to be further investigated. This study comprehensively investigated the effects of persulfate oxidation activated through multiple modes, i.e., ferrous, zero-valent iron (ZVI), ultraviolet (UV) and heat, on the performance of sludge digestion. Results showed that PS_ZVI significantly accelerated the methane production rate to 12.02 mL/g VSS. By contrast, PS_Heat promoted the sludge acidification and gained the maximum short-chain fatty acids (SCFAs) yield (277.11 ± 7.81 mg COD/g VSS), which was 3.41-fold compared to that in PS_ZVI. Moreover, ferrous and ZVI activated PS achieved the oriented conversion of acetate, the proportions of which took 73% and 78%, respectively. MiSeq sequencing results revealed that PS_Heat and PS_UV evidently enriched anaerobic fermentation bacteria (AFB) (i.e., Macellibacteroides and Clostridium XlVa). However, PS_Ferrous and PS_ZVI facilitated the enrichment of Woesearchaeota and methanogens. Furthermore, molecular ecological network and mantel test revealed the intrinsic interactions among the multiple functional microbes and environmental variables. The homo-acetogens and sulfate-reducing bacterial had potential cooperative and symbiotic relationships with AFB, while the nitrate-reducing bacteria displayed distinguishing ecological niches. Suitable activation modes for PS pretreatments resulted in an upregulation of genes expression responsible for digestion. This study established a scientific foundation for the application of sulfate radical-based oxidation on energy or high value-added chemicals recovery from waste residues.

RevDate: 2024-04-11

Yin Z, Liang J, Zhang M, et al (2024)

Pan-genome insights into adaptive evolution of bacterial symbionts in mixed host-microbe symbioses represented by human gut microbiota Bacteroides cellulosilyticus.

The Science of the total environment pii:S0048-9697(24)02394-5 [Epub ahead of print].

Animal hosts harbor diverse assemblages of microbial symbionts that play crucial roles in the host's lifestyle. The link between microbial symbiosis and host development remains poorly understood. In particular, little is known about the adaptive evolution of gut bacteria in host-microbe symbioses. Recently, symbiotic relationships have been categorized as open, closed, or mixed, reflecting their modes of inter-host transmission and resulting in distinct genomic features. Members of the genus Bacteroides are the most abundant human gut microbiota and possess both probiotic and pathogenic potential, providing an excellent model for studying pan-genome evolution in symbiotic systems. Here, we determined the complete genome of an novel clinical strain PL2022, which was isolated from a blood sample and performed pan-genome analyses on a representative set of Bacteroides cellulosilyticus strains to quantify the influence of the symbiotic relationship on the evolutionary dynamics. B. cellulosilyticus exhibited correlated genomic features with both open and closed symbioses, suggesting a mixed symbiosis. An open pan-genome is characterized by abundant accessory gene families, potential horizontal gene transfer (HGT), and diverse mobile genetic elements (MGEs), indicating an innovative gene pool, mainly associated with genomic islands and plasmids. However, massive parallel gene loss, weak purifying selection, and accumulation of positively selected mutations were the main drivers of genome reduction in B. cellulosilyticus. Metagenomic read recruitment analyses showed that B. cellulosilyticus members are globally distributed and active in human gut habitats, in line with predominant vertical transmission in the human gut. However, existence and/or high abundance were also detected in non-intestinal tissues, other animal hosts, and non-host environments, indicating occasional horizontal transmission to new niches, thereby creating arenas for the acquisition of novel genes. This case study of adaptive evolution under a mixed host-microbe symbiosis advances our understanding of symbiotic pan-genome evolution. Our results highlight the complexity of genetic evolution in this unusual intestinal symbiont.

RevDate: 2024-04-11

Tang CC, Hu YR, Zhang M, et al (2024)

Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(24)00665-1 [Epub ahead of print].

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to Zn[2+]. The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of zinc ion (Zn[2+]). When phosphate and Zn[2+] coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn[2+], with the increasing rates of 28.3% for total nitrogen removal, 37% for chemical oxygen demand removal, 78.3% for chlorophyll a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn[2+], both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn[2+] on the MABS system was irreversible. Further analysis showed that Zn[2+] preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn[2+] through extracellular adsorption and intracellular uptake. Under Zn[2+] stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn[2+]. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn[2+] on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.

RevDate: 2024-04-11

Dingemanse NJ, A Guse (2024)

Linking cell biology and ecology to understand coral symbiosis evolution.

PLoS biology, 22(4):e3002593 pii:PBIOLOGY-D-24-00342.

Understanding the evolution of coral endosymbiosis requires a predictive framework that integrates life-history theory and ecology with cell biology. The time has come to bridge disciplines and use a model systems approach to achieve this aim.

RevDate: 2024-04-11

Coale TH, Loconte V, Turk-Kubo KA, et al (2024)

Nitrogen-fixing organelle in a marine alga.

Science (New York, N.Y.), 384(6692):217-222.

Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."

RevDate: 2024-04-11

Han Q, Shi X, Kang K, et al (2024)

Silver Nanoparticles In Situ Enhanced Electrochemiluminescence of the Porphyrin Organic Matrix for Highly Sensitive and Rapid Monitoring of Tetracycline Residues.

Journal of agricultural and food chemistry [Epub ahead of print].

Accurate monitoring of tetracycline (TC) residues in the environment is crucial for avoiding contaminant risk. Herein, a novel TC biosensor was facilely designed by integrating silver nanoparticles (Ag NPs) into the porphyrin metal-organic matrix (Ag@AgPOM) as a bifunctional electrochemiluminescence (ECL) probe. Different from the step-by-step synthesis of the co-reaction accelerator and ECL emitter, the co-reaction accelerators Ag NPs were in situ-grown on the surface of 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) via a simple one-pot approach. Symbiotic Ag NPs on Ag@AgPOM formed an intimate interface and increased the collision efficiency of the ECL reaction, achieving the ECL enhancement of TCPP. Under the optimized conditions, the ternary ECL biosensor showed a wide linear detection range toward TC with a low detection limit of 0.14 fmol L[-1]. Compared with the traditional HPLC and ELISA methods, satisfied analytical adaptability made this sensing strategy feasible to monitor TC in complex environmental samples.

RevDate: 2024-04-11

Massoud R, Jafari R, K Khosravi-Darani (2024)

Kombucha as a Health-Beneficial Drink for Human Health.

Plant foods for human nutrition (Dordrecht, Netherlands) [Epub ahead of print].

Kombucha is a unique fermented beverage made from a symbiotic culture of yeast and bacteria. Kombucha is normally based on black tea added to water, then sugar is added as a substrate for fermentation in this beverage. This unique beverage is composed of amino acids, flavonoids, vitamins, and some active enzymes. Several beneficial health effects such as antioxidant, antimicrobial effects have been reported as a result of probiotics and prebiotics presence. These health effects of kombucha are attributed to its bioactive chemical and biological agents of probiotics bacteria e.g., Gluconobacter, Acetobacter and yeasts like Saccharomyces sps., along with glucuronic acid as the main sources of the health protection. This review focuses on the beneficial effects of Kombucha including antimicrobial, antioxidant, anti-cancer antidiabetic properties, as well as liver protection, treat of gastrointestinal problems, AIDS, gastric ulcers, obesity (and energy production), detoxification, and skin health.

RevDate: 2024-04-12
CmpDate: 2024-04-12

Li T, Ye ZX, Feng KH, et al (2024)

Molecular and biological characterization of a bunyavirus infecting the brown planthopper (Nilaparvata lugens).

The Journal of general virology, 105(4):.

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.

RevDate: 2024-04-12

Pang F, Li Q, Solanki MK, et al (2024)

Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms.

Frontiers in microbiology, 15:1383813.

Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.

RevDate: 2024-04-11

Guo H, Liu W, Xie Y, et al (2024)

Soil microbiome of shiro reveals the symbiotic relationship between Tricholoma bakamatsutake and Quercus mongolica.

Frontiers in microbiology, 15:1361117.

Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.

RevDate: 2024-04-11

Jansen CA, Zanzarin DM, Março PH, et al (2024)

Metabolomic kinetics investigation of Camellia sinensis kombucha using mass spectrometry and bioinformatics approaches.

Heliyon, 10(7):e28937.

Kombucha is created through the fermentation of Camellia sinensis tea leaves, along with sucrose, utilizing a symbiotic consortium of bacteria and yeast cultures. Nonetheless, there exists a dearth of comprehensive information regarding the spectrum of metabolites that constitute this beverage. To explore this intricate system, metabolomics was used to investigate fermentation kinetics of Kombucha. For that, an experimental framework was devised to assess the impact of varying sucrose concentrations and fermentation temperatures over a ten-day period of kombucha fermentation. Following fermentation, samples were analyzed using an LC-QTOF-MS system and a distinctive metabolomic profile was observed. Principal component analysis was used to discriminate between metabolite profiles. Moreover, the identified compounds were subjected to classification using the GNPS platform. The findings underscore notable differences in compound class concentrations attributable to distinct fermentation conditions. Furthermore, distinct metabolic pathways were identified, specially some related to the biotransformation of flavonoids. This comprehensive investigation offers valuable insights into the pivotal role of SCOBY in driving metabolite production and underscores the potential bioactivity harbored within Kombucha.

RevDate: 2024-04-11

Zabalgogeazcoa I, Arellano JB, Mellado-Ortega E, et al (2024)

Symbiotic fungi from a wild grass (Celtica gigantea) increase the growth, grain yield and quality of tritordeum under field conditions.

AoB PLANTS, 16(2):plae013.

Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum × Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote the growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.

RevDate: 2024-04-11

Güngör E, Savary J, Adema K, et al (2024)

The crane fly glycosylated triketide δ-lactone cornicinine elicits akinete differentiation of the cyanobiont in aquatic Azolla fern symbioses.

Plant, cell & environment [Epub ahead of print].

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.

RevDate: 2024-04-10

Yue C, Du C, Wang X, et al (2024)

Powdery mildew-induced changes in phyllosphere microbial community dynamics of cucumber.

FEMS microbiology ecology pii:7643848 [Epub ahead of print].

As an important habitat for microorganisms, the phyllosphere has a great impact on plant growth and health, and changes in phyllosphere microorganisms are closely related to the occurrence of leaf diseases. However, there remains a limited understanding regarding alterations to the microbial community in the phyllosphere resulting from pathogen infections. Here, we analyzed and compared the differences in phyllosphere microorganisms of powdery mildew cucumber from three disease severity levels (0% < L1 < 30%, 30% ≤ L2 < 50%, L3 ≥ 50%, the number represents the lesion coverage rate of powdery mildew on leaves). There were significant differences in α diversity and community structure of phyllosphere communities under different disease levels. Disease severity altered the community structure of phyllosphere microorganisms, Rosenbergiella, Rickettsia, and Cladosporium accounted for the largest proportion in the L1 disease grade, while Bacillus, Pantoea, Kocuria, and Podosphaera had the highest relative abundance in the L3 disease grade. The co-occurrence network analysis of the phyllosphere microbial community indicated that the phyllosphere bacterial community was most affected by the severity of disease. Our results suggested that with the development of cucumber powdery mildew, the symbiotic relationship between species was broken, and the entire bacterial community tended to compete.

RevDate: 2024-04-10

de Carvalho Neta SJ, Araújo VLVP, Fracetto FJC, et al (2024)

Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress.

Microbiological research, 284:127708 pii:S0944-5013(24)00109-5 [Epub ahead of print].

Climate change intensifies soil salinization and jeopardizes the development of crops worldwide. The accumulation of salts in plant tissue activates the defense system and triggers ethylene production thus restricting cell division. We hypothesize that the inoculation of plant growth-promoting bacteria (PGPB) producing ACC (1-aminocyclopropane-1-carboxylate) deaminase favors the development of arbuscular mycorrhizal fungi (AMF), promoting the growth of maize plants under saline stress. We investigated the efficacy of individual inoculation of PGPB, which produce ACC deaminase, as well as the co-inoculation of PGPB with Rhizophagus clarus on maize plant growth subjected to saline stress. The isolates were acquired from the bulk and rhizospheric soil of Mimosa bimucronata (DC.) Kuntze in a temporary pond located in Pernambuco State, Brazil. In the first greenhouse experiment, 10 halophilic PGPB were inoculated into maize at 0, 40 and 80 mM of NaCl, and in the second experiment, the PGPB that showed the best performance were co-inoculated with R. clarus in maize under the same conditions as in the first experiment. Individual PGPB inoculation benefited the number of leaves, stem diameter, root and shoot dry mass, and the photosynthetic pigments. Inoculation with PGPB 28-10 Pseudarthrobacter enclensis, 24-1 P. enclensis and 52 P. chlorophenolicus increased the chlorophyll a content by 138%, 171%, and 324% at 0, 40 and 80 mM NaCl, respectively, comparing to the non-inoculated control. We also highlight that the inoculation of PGPB 28-10, 28-7 Arthrobacter sp. and 52 increased the content of chlorophyll b by 72%, 98%, and 280% and carotenoids by 82%, 98%, and 290% at 0, 40 and 80 mM of NaCl, respectively. Co-inoculation with PGPB 28-7, 46-1 Leclercia tamurae, 70 Artrobacter sp., and 79-1 Micrococcus endophyticus significantly increased the rate of mycorrhizal colonization by roughly 50%. Furthermore, co-inoculation promoted a decrease in the accumulation of Na and K extracted from plant tissue, with an increase in salt concentration, from 40 mM to 80 mM, also favoring the establishment and development of R. clarus. In addition, co-inoculation of these PGPB with R. clarus promoted maize growth and increased plant biomass through osmoregulation and protection of the photosynthetic apparatus. The tripartite symbiosis (plant-fungus-bacterium) is likely to reprogram metabolic pathways that improve maize growth and crop yield, suggesting that the AMF-PGPB consortium can minimize damages caused by saline stress.

RevDate: 2024-04-10

Vandana V, Dong S, Sheth T, et al (2024)

Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi.

PLoS pathogens, 20(4):e1012145 pii:PPATHOGENS-D-24-00022 [Epub ahead of print].

Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.

RevDate: 2024-04-10

Yang L, Lawhorn S, Bongrand C, et al (2024)

Bacterial growth dynamics in a rhythmic symbiosis.

Molecular biology of the cell [Epub ahead of print].

The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for about 6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].

RevDate: 2024-04-09

Wang YW, Bai DS, Zhang Y, et al (2024)

The role of afforestation with diverse woody species in enhancing and restructuring the soil microenvironment in polymetallic coal gangue dumps.

Environmental science and pollution research international [Epub ahead of print].

To elucidate the effects of long-term (20 years) afforestation with different woody plant species on the soil microenvironment in coal gangue polymetallic contaminated areas. This study analyzed the soil physicochemical properties, soil enzyme activities, soil ionophore, bacterial community structure, soil metabolite, and their interaction relationships at different vertical depths. Urease, sucrase, and acid phosphatase activities in the shallow soil layers increased by 4.70-7.45, 3.83-7.64, and 3.27-4.85 times, respectively, after the restoration by the four arboreal plant species compared to the plant-free control soil. Additionally, it reduced the content of available elements in the soil and alleviated the toxicity stress for Cd, Ni, Co, Cr, As, Fe, Cu, U, and Pb. After the long-term restoration of arboreal plants, the richness and Shannon indices of soil bacteria significantly increased by 4.77-23.81% and 2.93-7.93%, respectively, broadening the bacterial ecological niche. The bacterial community structure shaped by different arboreal plants exhibited high similarity, but the community similarity decreased with increasing vertical depth. Soils Zn, U, Sr, S, P, Mg, K, Fe, Cu, Ca, Ba, and pH were identified as important influencing factors for the community structure of Sphingomonas, Pseudarthrobacter, Nocardioides, and Thiobacillus. The metabolites such as sucrose, raffinose, L-valine, D-fructose 2, 6-bisphosphate, and oxoglutaric acid were found to have the greatest effect on the bacterial community in the rhizosphere soils for arboreal plants. The results of the study demonstrated that long-term planting for woody plants in gangue dumps could regulate microbial abundance and symbiotic patterns through the accumulation of rhizosphere metabolites in the soil, increase soil enzyme activity, reduce heavy metal levels, and improve the soil environment in coal gangue dumps.

RevDate: 2024-04-09

Li D, Wang X, Chen K, et al (2024)

IFI35 regulates non-canonical NF-κB signaling to maintain glioblastoma stem cells and recruit tumor-associated macrophages.

Cell death and differentiation [Epub ahead of print].

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.

RevDate: 2024-04-09

Mujica MI, Silva-Flores P, Bueno CG, et al (2024)

Integrating perspectives in developing mycorrhizal trait databases: a call for inclusive and collaborative continental efforts.

The New phytologist [Epub ahead of print].

Global assessments of mycorrhizal symbiosis present large sampling gaps in rich biodiversity regions. Filling these gaps is necessary to build large-scale, unbiased mycorrhizal databases to obtain reliable analyses and prevent misleading generalizations. Underrepresented regions in mycorrhizal research are mainly in Africa, Asia, and South America. Despite the high biodiversity and endemism in these regions, many groups of organisms remain understudied, especially mycorrhizal fungi. In this Viewpoint, we emphasize the importance of inclusive and collaborative continental efforts in integrating perspectives for comprehensive trait database development and propose a conceptual framework that can help build large mycorrhizal databases in underrepresented regions. Based on the four Vs of big data (volume, variety, veracity, and velocity), we identify the main challenges of constructing a large mycorrhizal dataset and propose solutions for each challenge. We share our collaborative methodology, which involves employing open calls and working groups to engage all mycorrhizal researchers in the region to build a South American Mycorrhizal Database. By fostering interdisciplinary collaborations and embracing a continental-scale approach, we can create robust mycorrhizal trait databases that provide valuable insights into the evolution, ecology, and functioning of mycorrhizal associations, reducing the geographical biases that are so common in large-scale ecological studies.

RevDate: 2024-04-11
CmpDate: 2024-04-11

Archibald JM (2024)

Symbiotic revolutions at the interface of genomics and microbiology.

PLoS biology, 22(4):e3002581.

Symbiosis is an old idea with a contentious history. New genomic technologies and research paradigms are fueling a shift in some of its central tenets; we need to be humble and open-minded about what the data are telling us.

RevDate: 2024-04-11
CmpDate: 2024-04-11

Zhong Q, Liao B, Liu J, et al (2024)

Episymbiotic Saccharibacteria TM7x modulates the susceptibility of its host bacteria to phage infection and promotes their coexistence.

Proceedings of the National Academy of Sciences of the United States of America, 121(16):e2319790121.

Bacteriophages (phages) play critical roles in modulating microbial ecology. Within the human microbiome, the factors influencing the long-term coexistence of phages and bacteria remain poorly investigated. Saccharibacteria (formerly TM7) are ubiquitous members of the human oral microbiome. These ultrasmall bacteria form episymbiotic relationships with their host bacteria and impact their physiology. Here, we showed that during surface-associated growth, a human oral Saccharibacteria isolate (named TM7x) protects its host bacterium, a Schaalia odontolytica strain (named XH001) against lytic phage LC001 predation. RNA-Sequencing analysis identified in XH001 a gene cluster with predicted functions involved in the biogenesis of cell wall polysaccharides (CWP), whose expression is significantly down-regulated when forming a symbiosis with TM7x. Through genetic work, we experimentally demonstrated the impact of the expression of this CWP gene cluster on bacterial-phage interaction by affecting phage binding. In vitro coevolution experiments further showed that the heterogeneous populations of TM7x-associated and TM7x-free XH001, which display differential susceptibility to LC001 predation, promote bacteria and phage coexistence. Our study highlights the tripartite interaction between the bacterium, episymbiont, and phage. More importantly, we present a mechanism, i.e., episymbiont-mediated modulation of gene expression in host bacteria, which impacts their susceptibility to phage predation and contributes to the formation of "source-sink" dynamics between phage and bacteria in biofilm, promoting their long-term coexistence within the human microbiome.

RevDate: 2024-04-11

Azri R, Lamine M, Bensalem-Fnayou A, et al (2024)

Genotype-Dependent Response of Root Microbiota and Leaf Metabolism in Olive Seedlings Subjected to Drought Stress.

Plants (Basel, Switzerland), 13(6):.

Under stress or in optimum conditions, plants foster a specific guild of symbiotic microbes to strengthen pivotal functions including metabolic regulation. Despite that the role of the plant genotype in microbial selection is well documented, the potential of this genotype-specific microbial assembly in maintaining the host homeostasis remains insufficiently investigated. In this study, we aimed to assess the specificity of the foliar metabolic response of contrasting olive genotypes to microbial inoculation with wet-adapted consortia of plant-growth-promoting rhizobacteria (PGPR), to see if previously inoculated plants with indigenous or exogenous microbes would display any change in their leaf metabolome once being subjected to drought stress. Two Tunisian elite varieties, Chetoui (drought-sensitive) and Chemleli (drought-tolerant), were tested under controlled and stressed conditions. Leaf samples were analyzed by gas chromatography-mass spectrometry (GC-TOFMS) to identify untargeted metabolites. Root and soil samples were used to extract microbial genomic DNA destined for bacterial community profiling using 16S rRNA amplicon sequencing. Respectively, the score plot analysis, cluster analysis, heat map, Venn diagrams, and Krona charts were applied to metabolic and microbial data. Results demonstrated dynamic changes in the leaf metabolome of the Chetoui variety in both stress and inoculation conditions. Under the optimum state, the PGPR consortia induced noteworthy alterations in metabolic patterns of the sensitive variety, aligning with the phytochemistry observed in drought-tolerant cultivars. These variations involved fatty acids, tocopherols, phenols, methoxyphenols, stilbenoids, triterpenes, and sugars. On the other hand, the Chemleli variety displaying comparable metabolic profiles appeared unaffected by stress and inoculation probably owing to its tolerance capacity. The distribution of microbial species among treatments was distinctly uneven. The tested seedlings followed variety-specific strategies in selecting beneficial soil bacteria to alleviate stress. A highly abundant species of the wet-adapted inoculum was detected only under optimum conditions for both cultivars, which makes the moisture history of the plant genotype a selective driver shaping microbial community and thereby a useful tool to predict microbial activity in large ecosystems.

RevDate: 2024-04-09

Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, et al (2024)

Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses.

Plants (Basel, Switzerland), 13(6):.

In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.

RevDate: 2024-04-09

Guo L, Liu S, Zhang P, et al (2024)

Effects of Different Mulching Practices on Soil Environment and Fruit Quality in Peach Orchards.

Plants (Basel, Switzerland), 13(6):.

Mulching practices have been used to improve peach growth and production across the globe. However, the impact of mulching on the physiochemical properties and soil characteristics of orchards remains largely unknown. This study aimed to decipher the impacts of various mulching patterns on the soil environment and the quality of Prunus persica fruit in "Zijinhuangcui". Three treatments were set up, which included black ground fabric mulch (BF) and two living grass mulch treatments (HV: hairy vetch and RG: ryegrass). The results showed that different mulching treatments have different effects on soil, plant growth, and fruit quality. Living grass mulch treatments, especially the HV treatment, significantly improved soil nutrients by enhancing nitrogen-related indicators. Of note, the BF treatment had higher total phosphorus and available phosphorus contents than the HV and RG treatments. The HV treatment had the highest relative abundance of Proteobacteria (33.49%), which is associated with symbiotic nitrogen fixation, followed by RG (25.62%), and BF (22.38%) at the young fruit stage. Similarly, the abundance of Terrimonas, which has a unique nitrogen fixation system at the genus level, was significantly higher in the living grass mulch (HV, 1.30-3.13% and RG, 2.27-4.24%) than in the BF treatment. Living grass mulch also promoted tree growth, increased fruit sugar content, sugar-related components, and sugar-acid ratio, and reduced the acid content. Collectively, the findings of this study show that living grass mulch can promote tree growth and improve fruit quality by improving soil fertility, bacterial diversity, and richness.

RevDate: 2024-04-09

Zhang DJ, Tong CL, Wang QS, et al (2024)

Mycorrhizas Affect Physiological Performance, Antioxidant System, Photosynthesis, Endogenous Hormones, and Water Content in Cotton under Salt Stress.

Plants (Basel, Switzerland), 13(6):.

Saline-alkali stress seriously endangers the normal growth of cotton (Gossypium hirsutum). Arbuscular mycorrhizal fungi (AMF) could enhance salt tolerance by establishing symbiotic relationships with plants. Based on it, a pot experiment was conducted to simulate a salt environment in which cotton was inoculated with Paraglomus occultum to explore its effects on the saline-alkali tolerance of cotton. Our results showed that salt stress noticeably decreased cotton seedling growth parameters (such as plant height, number of leaves, dry weight, root system architecture, etc.), while AMF exhibited a remarkable effect on promoting growth. It was noteworthy that AMF significantly mitigated the inhibitory effect of salt on cotton seedlings. However, AMF colonization in root and soil hyphal length were collectively descended via salt stress. With regard to osmotic regulating substances, Pro and MDA values in roots were significantly increased when seedlings were exposed to salt stress, while AMF only partially mitigated these reactions. Salt stress increased ROS levels in the roots of cotton seedlings and enhanced antioxidant enzyme activity (SOD, POD, and CAT), while AMF mitigated the increases in ROS levels but further strengthened antioxidant enzyme activity. AMF inoculation increased the photosynthesis parameters of cotton seedling leaves to varying degrees, while salt stress decreased them dramatically. When inoculated with AMF under a salt stress environment, only partial mitigation of these photosynthesis values was observed. Under saline-alkali stress, AMF improved the leaf fluorescence parameters (φPSII, Fv'/Fm', and qP) of cotton seedlings, leaf chlorophyll levels, and root endogenous hormones (IAA and BR); promoted the absorption of water; and maintained nitrogen balance, thus alleviating the damage from salt stress on the growth of cotton plants to some extent. In summary, mycorrhizal cotton seedlings may exhibit mechanisms involving root system architecture, the antioxidant system, photosynthesis, leaf fluorescence, endogenous hormones, water content, and nitrogen balance that increase their resistance to saline-alkali environments. This study provide a theoretical basis for further exploring the application of AMF to enhance the salt tolerance of cotton.

RevDate: 2024-04-10

Gong M, Bai N, Su J, et al (2024)

Transcriptome analysis of Gossypium reveals the molecular mechanisms of Ca[2+] signaling pathway on arsenic tolerance induced by arbuscular mycorrhizal fungi.

Frontiers in microbiology, 15:1362296.

INTRODUCTION: Arbuscular mycorrhizal fungi (AMF) have been demonstrated their ability to enhance the arsenic (As) tolerance of host plants, and making the utilization of mycorrhizal plants a promising and practical approach for remediating As-contaminated soils. However, comprehensive transcriptome analysis to reveal the molecular mechanism of As tolerance in the symbiotic process between AMF and host plants is still limited.

METHODS: In this study, transcriptomic analysis of Gossypium seedlings was conducted with four treatments: non-inoculated Gossypium under non-As stress (CK0), non-inoculated Gossypium under As stress (CK100), F. mosseae-inoculated Gossypium under non-As stress (FM0), and F. mosseae-inoculated Gossypium under As stress (FM100).

RESULTS: Our results showed that inoculation with F. mosseae led to a reduction in net fluxes of Ca[2+], while increasing Ca[2+] contents in the roots and leaves of Gossypium under the same As level in soil. Notably, 199 and 3129 differentially expressed genes (DEGs) were specially regulated by F. mosseae inoculation under As stress and non-As stress, respectively. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation and enrichment analyses, we found that under As stress, F. mosseae inoculation up-regulated a significant number of genes related to the Ca[2+] signaling pathway genes, involved in cellular process, membrane part, and signal transduction. This suggests a potential role in mitigating As tolerance in Gossypium seedlings. Furthermore, our analysis identified specific DEGs in transcription factor families, including ERF, MYB, NAC, and WRKY, that were upregulated by F. mosseae inoculation. Conversely, MYB and HB-other were down-regulated. The ERF and MYB families exhibited the highest number of up- and down-regulated DEGs, respectively, which were speculated to play an important role in alleviating the As toxicity of Gossypium.

DISCUSSION: Our findings provided valuable insights into the molecular theoretical basis of the Ca[2+] signaling pathway in improving As tolerance of mycorrhizal plants in the future.

RevDate: 2024-04-09

Wang X, Chi Y, S Song (2024)

Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review.

Frontiers in microbiology, 15:1347745.

Clarifying the relationship between soil microorganisms and the plant-soil system is crucial for encouraging the sustainable development of ecosystems, as soil microorganisms serve a variety of functional roles in the plant-soil system. In this work, the influence mechanisms of significant soil microbial groups on the plant-soil system and their applications in environmental remediation over the previous 30 years were reviewed using a systematic literature review (SLR) methodology. The findings demonstrated that: (1) There has been a general upward trend in the number of publications on significant microorganisms, including bacteria, fungi, and archaea. (2) Bacteria and fungi influence soil development and plant growth through organic matter decomposition, nitrogen, phosphorus, and potassium element dissolution, symbiotic relationships, plant growth hormone production, pathogen inhibition, and plant resistance induction. Archaea aid in the growth of plants by breaking down low-molecular-weight organic matter, participating in element cycles, producing plant growth hormones, and suppressing infections. (3) Microorganism principles are utilized in soil remediation, biofertilizer production, denitrification, and phosphorus removal, effectively reducing environmental pollution, preventing soil pathogen invasion, protecting vegetation health, and promoting plant growth. The three important microbial groups collectively regulate the plant-soil ecosystem and help maintain its relative stability. This work systematically summarizes the principles of important microbial groups influence plant-soil systems, providing a theoretical reference for how to control soil microbes in order to restore damaged ecosystems and enhance ecosystem resilience in the future.

RevDate: 2024-04-09

Huang J, Wang X, Li Q, et al (2024)

Effect of Mixed Probiotics on Ovalbumin-Induced Atopic Dermatitis in Juvenile Mice.

International journal of microbiology, 2024:7172386.

Atopic dermatitis is one of the most common dermatologic problems, especially in children. Given the ability of symbiotic microorganisms in modulating the immune system, probiotics administration has been studied in previous research in the management of atopic dermatitis. However, there are conflicting results between studies. In this study, we aimed to assess the effectiveness of mixed probiotics as a treatment option for atopic dermatitis induced by ovalbumin. BALB/c juvenile mice were classified and divided into the ovalbumin group, mixed probiotic group (ovalbumin + LK), and control group. Except for the control group, all mice were sensitized with ovalbumin to establish a model of atopic dermatitis. The mixed probiotics were given by gavage for 14 days. Mice body weight, skin lesions, skin inflammation, ovalbumin-specific Ig, the number of Treg and CD103[+]DC, and the expression level of PD-1/PD-L1 were examined. The results showed that mixed probiotics can improve body weight and alleviate skin symptoms. Mixed probiotics reduced serum Th2 inflammatory factors, eosinophils, mast cell degranulation, mast cell count, and the expression of ovalbumin-specific immunoglobulin E/G1 and increased the anti-inflammatory cytokine interleukin-10, Treg cells, CD103[+]DC cells, and the expression level of PD-1/PD-L1. These findings suggest that mixed probiotics could be a viable treatment option for atopic dermatitis and provide insight into the underlying mechanisms involved.

RevDate: 2024-04-09

Ye A, Shen JN, Li Y, et al (2024)

Reconstruction of the genome-scale metabolic network model of Sinorhizobium fredii CCBAU45436 for free-living and symbiotic states.

Frontiers in bioengineering and biotechnology, 12:1377334.

Sinorhizobium fredii CCBAU45436 is an excellent rhizobium that plays an important role in agricultural production. However, there still needs more comprehensive understanding of the metabolic system of S. fredii CCBAU45436, which hinders its application in agriculture. Therefore, based on the first-generation metabolic model iCC541 we developed a new genome-scale metabolic model iAQY970, which contains 970 genes, 1,052 reactions, 942 metabolites and is scored 89% in the MEMOTE test. Cell growth phenotype predicted by iAQY970 is 81.7% consistent with the experimental data. The results of mapping the proteome data under free-living and symbiosis conditions to the model showed that the biomass production rate in the logarithmic phase was faster than that in the stable phase, and the nitrogen fixation efficiency of rhizobia parasitized in cultivated soybean was higher than that in wild-type soybean, which was consistent with the actual situation. In the symbiotic condition, there are 184 genes that would affect growth, of which 94 are essential; In the free-living condition, there are 143 genes that influence growth, of which 78 are essential. Among them, 86 of the 94 essential genes in the symbiotic condition were consistent with the prediction of iCC541, and 44 essential genes were confirmed by literature information; meanwhile, 30 genes were identified by DEG and 33 genes were identified by Geptop. In addition, we extracted four key nitrogen fixation modules from the model and predicted that sulfite reductase (EC 1.8.7.1) and nitrogenase (EC 1.18.6.1) as the target enzymes to enhance nitrogen fixation by MOMA, which provided a potential focus for strain optimization. Through the comprehensive metabolic model, we can better understand the metabolic capabilities of S. fredii CCBAU45436 and make full use of it in the future.

RevDate: 2024-04-08

Liu F, Ryu T, Ravasi T, et al (2024)

Niche-dependent sponge hologenome expression profiles and the host-microbes interplay: a case of the hawaiian demosponge Mycale Grandis.

Environmental microbiome, 19(1):22.

BACKGROUND: Most researches on sponge holobionts focus primarily on symbiotic microbes, yet data at the level of the sponge hologenome are still relatively scarce. Understanding of the sponge host and its microbial gene expression profiles and the host-microbes interplay in different niches represents a key aspect of sponge hologenome. Using the Hawaiian demosponge Mycale grandis in different niches as a model, i.e. on rocks, on the surface of coral Porites compressa, under alga Gracilaria salicornia, we compared the bacterial and fungal community structure, functional gene diversity, expression pattern and the host transcriptome by integrating open-format (deep sequencing) and closed-format (GeoChip microarray) high-throughput techniques.

RESULTS: Little inter-niche variation in bacterial and fungal phylogenetic diversity was detected for M. grandis in different niches, but a clear niche-dependent variability in the functional gene diversity and expression pattern of M. grandis host and its symbiotic microbiota was uncovered by GeoChip microarray and transcriptome analyses. Particularly, sponge host genes related to innate immunity and microbial recognition showed a strong correlation with the microbial symbionts' functional gene diversity and transcriptional richness in different niches. The cross-niche variability with respect to the symbiont functional gene diversity and the transcriptional richness of M. grandis holobiont putatively reflects the interplay of niche-specific selective pressure and the symbiont functional diversity.

CONCLUSIONS: Niche-dependent gene expression profiles of M. grandis hologenome and the host-microbes interplay were suggested though little inter-niche variation in bacterial and fungal diversity was detected, particularly the sponge innate immunity was found to be closely related to the symbiotic microbes. Altogether, these findings provide novel insights into the black box of one sponge holobiont in different niches at the hologenome level.

RevDate: 2024-04-08

Serrano K, Bezrutczyk M, Goudeau D, et al (2024)

Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis.

Nature plants [Epub ahead of print].

The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore both Medicago truncatula and Rhizophagus irregularis transcriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions.

RevDate: 2024-04-08

Nascimento da Silva J, Conceição CC, Ramos de Brito GC, et al (2024)

Immunometabolic crosstalk in Aedes fluviatilis Wolbachia pipientis symbiosis.

The Journal of biological chemistry pii:S0021-9258(24)01773-3 [Epub ahead of print].

Wolbachia pipientis is a maternally transmitted symbiotic bacterium that mainly colonizes arthropods, potentially affecting different aspects of the host's physiology, e.g. reproduction, immunity, and metabolism. It has been shown that Wolbachia modulates glycogen metabolism in mosquito Aedes fluviatilis (Ae. fluviatilis). Glycogen synthesis is controlled by the enzyme GSK3, which is also involved in immune responses in both vertebrate and invertebrate organisms. Here we investigated the mechanisms behind immune changes mediated by GSK3β in the symbiosis between Ae. fluviatilis and Wolbachia pipientis using a GSK3β inhibitor or RNAi-mediated gene silencing. GSK3β inhibition or knockdown increased glycogen content and Wolbachia population, together with a reduction in Relish2 (REL2) and gambicin transcripts. Furthermore, knockdown of REL2 or Caspar revealed that the Imd pathway acts to control Wolbachia numbers in the host. In conclusion, we describe for the first time the involvement of GSK3β in Ae. fluviatillis immune response, acting to control the Wolbachia endosymbiotic population.

RevDate: 2024-04-08

Dolatabad HK, VAJ Mahjenabadi (2024)

Geographical and climatic distribution of lentil-nodulating rhizobia in Iran.

FEMS microbiology ecology pii:7642260 [Epub ahead of print].

Lentil is one of the most important legumes cultivated in various provinces of Iran. However, there is limited information about the symbiotic rhizobia of lentils in this country. In this study, molecular identification of lentil-nodulating rhizobia was performed based on 16S-23S rRNA intergenic spacer (IGS) and recA, atpD, glnII, and nodC gene sequencing. Using PCR-RFLP analysis of 16S-23S rRNA IGS, a total of 116 rhizobia isolates were classified into 20 groups, leaving seven strains unclustered. Phylogenetic analysis of representative isolates revealed that the rhizobia strains belonged to Rhizobium leguminosarum and Rhizobium laguerreae, and the distribution of the species is partially related to geographical location. R. leguminosarum was the dominant species in North Khorasan and Zanjan, while R. laguerreae prevailed in Ardabil and East Azarbaijan. The distribution of the species was also influenced by agroecological climates; R. leguminosarum thrived in cold semi-arid climates, whereas R. laguerreae adapted to humid continental climates. Both species exhibited equal dominance in the Mediterranean climate, characterized by warm, dry summers and mild, wet winters, in Lorestan and Kohgiluyeh-Boyer Ahmad provinces.

RevDate: 2024-04-08

Adams TL (2024)

Politics, ecologies and professional regulation: The case of British Columbia's Professional Governance Act.

The British journal of sociology [Epub ahead of print].

A variety of theories have been proposed to explain why states pass legislation to regulate professional groups, and why, more recently, they have acted to curtail professional privileges. While these theories have drawn attention to the importance of power dynamics and public protection, among other factors, the role of political interests has been downplayed. This article builds on ecological theory to argue that, with some modifications, the theory illuminates the centrality of state-profession relations and politics to regulatory change. The theory is applied to a case study of regulatory change in British Columbia, Canada impacting resources-sector professions, with particular attention to the controversies and political considerations that shaped reform. The case study suggests that when the political and professions ecologies are overlapping and symbiotic, as they were in BC, a challenge in the political ecology can implicate professions, prompting a solution that brings change within both ecologies.

RevDate: 2024-04-09

Chen H, Liu H, Sun Y, et al (2024)

Analysis of fecal microbiota and related clinical indicators in ICU patients with sepsis.

Heliyon, 10(7):e28480.

BACKGROUND: To analyze the characteristics of fecal microbiota disturbance in the intensive care unit (ICU) patients with sepsis and the correlation with related clinical indicators.

METHODS: This study included 31 patients with sepsis admitted to the emergency ICU ward between September 2019 and December 2021. They were divided into Group without septic shock (ND_NS group, 7 cases) and Group with septic shock (ND_S group, 24 cases) according to the presence or absence of septic shock. Furthermore, we divided these 31 sepsis patients into Clinical Improvement group (21 cases) and Death or DAMA group (10 cases) based on clinical outcome, 15 cases of Physical Examiner recruited in the same period were included as control group: ND_HC group (15 cases). The fecal samples of the patients with sepsis within 24 h of admission and random fecal samples of the control group were collected and analyzed by 16S rDNA gene sequencing used for the analysis of fecal microbiota. At the same time, the relevant clinical data of these patients with sepsis were also collected for analysis.

RESULTS: There were 15 cases with drug-resistant bacteria in the ND_S group and only 2 cases in the ND_NS group (P = 0.015). There were significant differences in APACHE II score, length of ICU stay, lactate level, and oxygenation index of patients between the Death or DAMA group and Clinical Improvement group (all P < 0.05). For phylum level, the abundance of Firmicutes, Actinobacteria, and Bacteroidetes decreased in the ND group compared with the ND_HC group, while the abundance of Proteobacteria increased (P < 0.05). For genus level, the relative abundance of Escherichia-Shigella and Klebsiella were significantly increased in the ND group compared with the ND_HC group (P < 0.05). The top six genera in relative abundance in the ND_S group were Escherichia-Shigella, Enterococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Klebsiella. Compared with the Clinical Improvement group, the relative abundance of Escherichia-Shigella and Klebsiella in the Death or DAMA group showed an increasing trend with no significant significance, while the relative abundance of Enterococcus and Faecalibacterium decreased in the Death or DAMA group (P < 0.05). Alpha diversity analysis showed that compared with the ND_HC group, the alpha diversity of the fecal microbiota in the ND group decreased. There were significant differences in the Observed_species index, Chao1 index, and ACE index of patients between the ND_HC group and ND group (all P < 0.05). Moreover, compared with the ND_NS group, the Alpha diversity of the ND_S group was more abundant. PCoA analysis showed significant differences in microbial community structure between the ND group and ND_HC group (P = 0.001). There also were significant differences in microbial community structure between the ND_S group and ND_NS group (P = 0.008). LEfSe analysis showed that compared with the ND_HC group, there were significant differences in the species of the ND group, including Enterobacteriaceae, Escherichia-Shigella, Enterococcus, Elizabethkingia, and Family_XIII_AD3011_group.

CONCLUSIONS: ICU patients with sepsis suffered intestinal microecological disturbances with significantly decreased abundance of fecal microbiota, diversity, and beneficial symbiotic bacteria. For these patients, the ratio of pathogenic bacteria, including Escherichia-Shigella and Klebsiella increased and became the main bacterial genus in some samples. Moreover, the increasing trend of these two pathogenic bacteria may be correlated with the development of septic shock and the risk of death in patients with sepsis.

RevDate: 2024-04-09

Zhu H, Zhu J, Wang Y, et al (2024)

Osteomyelitis of the femur caused by Metamycoplasma orale in an immunocompromised patient using metagenomic next-generation sequencing: A case report.

Heliyon, 10(7):e28730.

BACKGROUND: Metamycoplasma orale (M.orale), a symbiotic bacterium observed in the human oral cavity, is generally regarded as non-pathogenic to humans. Although infrequent, symptomatic infections caused by M.orale may occur in individuals with compromised humoral immunity. Accurate identification and early diagnosis of M.orale still present significant challenges due the limitations associated with conventional detection methods. Although metagenomic next-generation sequencing (mNGS) is currently widely utilized in clinical practices and exhibits a remarkable specificity and sensitivity for detecting various pathogens, its application in the diagnosis of M.orale-induced osteomyelitis remains largely unexplored.

CASE DESCRIPTION: In this report, we present a case study of osteonecrosis caused by M.orale in a 20-year-old female patient with nephrotic syndrome and other comorbidities. She was administered long-term hormone therapy and immunosuppressants, leading to her admission to the hospital due to recurrent fever, hip abscess and left thigh pain. Imaging examination revealed bilateral mid-femoral lesions, with the extensive nature of the left femoral lesion suggesting a potential secondary infection. Although no pathogen was detected in pus culture, mNGS analysis identified M.orale in the sample. Following treatment with doxycycline and levofloxacin, the patient's symotoms improved and she was discharged with favorable outcomes.

CONCLUSION: mNGS enables rapid identification of etiology in patients with osteomyelitis caused by the rare pathogen M.orale. This case accentuate the strength of mNGS for early detection and targeted clinical treatment of infectious diseases caused by uncommon pathogens.

RevDate: 2024-04-08

Nishino T, Mukai H, Moriyama M, et al (2024)

Defensive fungal symbiosis on insect hindlegs.

bioRxiv : the preprint server for biology pii:2024.03.25.586038.

Tympanal organs as "insect ears" have evolved repeatedly. Dinidorid stinkbugs were reported to possess a conspicuous tympanal organ on female's hindlegs. Here we report an unexpected discovery that the stinkbug's "tympanal organ" is actually a novel symbiotic organ. The stinkbug's "tympanum" is not membranous but a porous cuticle, where each pore connects to glandular secretory cells. In reproductive females, the hindleg organ is covered with fungal hyphae growing out of the pores. Upon oviposition, the females skillfully transfer the fungi from the organ to the eggs. The eggs are quickly covered with hyphae and physically protected against wasp parasitism. The fungi are mostly benign Cordycipitaceae entomopathogens and show considerable diversity among insect individuals and populations, indicating environmental acquisition of specific fungal associates. These results uncover a novel external fungal symbiosis in which host's elaborate morphological, physiological and behavioral specializations underpin the selective recruitment of benign entomopathogens for a defensive purpose.

RevDate: 2024-04-08

Gasser MT, Liu A, Altamia M, et al (2024)

Outer membrane vesicles can contribute to cellulose degradation in Teredinibacter turnerae, a cultivable intracellular endosymbiont of shipworms.

bioRxiv : the preprint server for biology pii:2024.03.27.587001.

Teredinibacter turnerae is a cultivable cellulolytic Gammaproeteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to lignocellulose digestion in the shipworm gut. However, the mechanism by which symbiont-made enzymes are secreted by T. turnerae and subsequently transported to the site of lignocellulose digestion in the shipworm gut is incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce outer membrane vesicles (OMVs) that contain a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these OMVs retain cellulolytic activity, as evidenced by hydrolysis of CMC. Additionally, these OMVs were enriched with TonB -dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations suggest potential roles for OMVs in lignocellulose utilization by T. turnerae in the free-living state, in enzyme transport and host interaction during symbiotic association, and in commercial applications such as lignocellulosic biomass conversion.

RevDate: 2024-04-09

Hill LJ, Messias CSMA, Vilela CLS, et al (2024)

Bacteria associated with the in hospite Symbiodiniaceae's phycosphere.

iScience, 27(4):109531.

Symbiotic interactions between Symbiodiniaceae and bacteria are still poorly explored, especially those in hospite. Here, we adapted a technique that allows for the enrichment of intact and metabolically active in hospite Symbiodiniaceae cells (ihSC) and their associated bacteria from the tissue of the model coral Pocillopora damicornis, using a discontinuous gradient of solution of isotonic Percoll (SIP). The ihSC were concentrated in the 50% SIP fraction, as determined by microscopy. The presence of bacteria associated with ihSC was confirmed by fluorescence in situ hybridization, while microbiome analysis indicated that bacteria of the families Halieaceae, Flavobacteriaceae, and Alcanivoraceae are significantly associated with ihSC. Extracellular vesicles that could be exuding molecules were detected on the symbiosome membranes. Our technique and data contribute to elucidate ihSC-bacteria interactions.

RevDate: 2024-04-09

Valente EEL, Klotz JL, Markmann RC, et al (2024)

Levodopa attenuates the feed intake reduction caused by ergot alkaloids in cattle.

Journal of animal science, 102:.

Consumption of ergot alkaloids from endophyte-infected tall fescue results in losses to the livestock industry in many countries and a means to mitigate these losses is needed. The objective of this study was to evaluate intra-abomasal infusion of the dopamine precursor, levodopa (L-DOPA), on dopamine metabolism, feed intake, and serum metabolites of steers exposed to ergot alkaloids. Twelve Holstein steers (344.9 ± 9.48 kg) fitted with ruminal cannula were housed with a cycle of heat challenge during the daytime (32 °C) and thermoneutral at night (25 °C). The steers received a basal diet of alfalfa cubes containing equal amounts of tall fescue seed composed of a mixture of endophyte-free (E-) or endophyte-infected tall fescue seeds (E+) equivalent to 15 µg ergovaline/kg body weight (BW) for 9 d followed by intra-abomasal infusion of water (L-DOPA-) or levodopa (L-DOPA+; 2 mg/kg BW) for an additional 9 d. Afterward, the steers were pair-fed for 5 d to conduct a glucose tolerance test. The E+ treatment decreased (P = 0.005) prolactin by approximately 50%. However, prolactin increased (P = 0.050) with L-DOPA+. Steers receiving E+ decreased (P < 0.001) dry matter intake (DMI); however, when supplemented with L-DOPA+ the decrease in DMI was less severe (L-DOPA × E, P = 0.003). Also, L-DOPA+ infusion increased eating duration (L-DOPA × E, P = 0.012) when steers were receiving E+. The number of meals, meal duration, and intake rate were not affected (P > 0.05) by E+ or L-DOPA+. The L-DOPA+ infusion increased (P < 0.05) free L-DOPA, free dopamine, total L-DOPA, and total dopamine. Conversely, free epinephrine and free norepinephrine decreased (P < 0.05) with L-DOPA+. Total epinephrine and total norepinephrine were not affected (P > 0.05) by L-DOPA+. Ergot alkaloids did not affect (P > 0.05) circulating free or total L-DOPA, dopamine, or epinephrine. However, free and total norepinephrine decreased (P = 0.046) with E+. Glucose clearance rates at 15 to 30 min after glucose infusion increased with L-DOPA+ (P < 0.001), but not with E+ (P = 0.280). Administration of L-DOPA as an agonist therapy to treat fescue toxicosis provided a moderate increase in DMI and eating time and increased plasma glucose clearance for cattle dosed with E+ seed.

RevDate: 2024-04-08

Asomadu RO, Ezeorba TPC, Ezike TC, et al (2024)

Exploring the antioxidant potential of endophytic fungi: a review on methods for extraction and quantification of total antioxidant capacity (TAC).

3 Biotech, 14(5):127.

Endophytic fungi have emerged as a significant source of natural products with remarkable bioactivities. Recent research has identified numerous antioxidant molecules among the secondary metabolites of endophytic fungi. These organisms, whether unicellular or micro-multicellular, offer the potential for genetic manipulation to enhance the production of these valuable antioxidant compounds, which hold promise for promoting health, vitality, and various biotechnological applications. In this study, we provide a critical review of methods for extracting, purifying, characterizing, and estimating the total antioxidant capacity (TAC) of endophytic fungi metabolites. While many endophytes produce metabolites similar to those found in plants with established symbiotic associations, we also highlight the existence of novel metabolites with potential scientific interest. Additionally, we discuss how advancements in nanotechnology have opened new avenues for exploring nanoformulations of endophytic metabolites in future studies, offering opportunities for diverse biological and industrial applications.

RevDate: 2024-04-08

Marzonie MR, Nitschke MR, Bay LK, et al (2024)

Symbiodiniaceae diversity varies by host and environment across thermally distinct reefs.

Molecular ecology [Epub ahead of print].

Endosymbiotic dinoflagellates (Symbiodiniaceae) influence coral thermal tolerance at both local and regional scales. In isolation, the effects of host genetics, environment, and thermal disturbances on symbiont communities are well understood, yet their combined effects remain poorly resolved. Here, we investigate Symbiodiniaceae across 1300 km in Australia's Coral Sea Marine Park to disentangle these interactive effects. We identified Symbiodiniaceae to species-level resolution for three coral species (Acropora cf humilis, Pocillopora verrucosa, and Pocillopora meandrina) by sequencing two genetic markers of the symbiont (ITS2 and psbA[ncr]), paired with genotype-by-sequencing of the coral host (DArT-seq). Our samples predominantly returned sequences from the genus Cladocopium, where Acropora cf humilis affiliated with C3k, Pocillopora verrucosa with C. pacificum, and Pocillopora meandrina with C. latusorum. Multivariate analyses revealed that Acropora symbionts were driven strongly by local environment and thermal disturbances. In contrast, Pocillopora symbiont communities were both partitioned 2.5-fold more by host genetic structure than by environmental structure. Among the two Pocillopora species, the effects of environment and host genetics explained four times more variation in symbionts for P. meandrina than P. verrucosa. The concurrent bleaching event in 2020 had variable impacts on symbiont communities, consistent with patterns in P. verrucosa and A. cf humilis, but not P. meandrina. Our findings demonstrate how symbiont macroscale community structure responses to environmental gradients depend on host species and their respective population structure. Integrating host, symbiont, and environmental data will help forecast the adaptive potential of corals and their symbionts amidst a rapidly changing environment.

RevDate: 2024-04-07

Hassler V, Brand N, D Wefers (2024)

Isolation and characterization of exopolysaccharides from kombucha samples of different origins.

International journal of biological macromolecules pii:S0141-8130(24)02182-2 [Epub ahead of print].

Kombucha is prepared by fermenting sugared green or black tea with a symbiotic culture of bacteria and yeast (SCOBY). Some of the bacteria within the SCOBY are known to form exopolysaccharides (EPS) from sucrose. However, it is yet unknown whether EPS are formed in kombucha, and if so, which specific EPS are present. Therefore, different kombucha samples were prepared by fermentation of green and black tea with SCOBYs from different manufacturers. Subsequently, the EPS were isolated and characterized by using various chromatographic methods, partial enzymatic hydrolyses and NMR spectroscopy. It was demonstrated that levans with a varying degree of branching at position O1 (4.3-7.9 %) are present, while only trace amounts of glucans were detected. Furthermore, levans isolated from kombucha had a comparably low molecular weight and the content of levan within the kombucha samples varied from 33 to 562 mg levan/L kombucha. Therefore, our study demonstrated that levans are the main EPS type in kombucha and that levan amounts and structures varied when different starter cultures and ingredients were used. Furthermore, we provide a comprehensive data set on the structural variability of levans from kombucha.

RevDate: 2024-04-07

Guo G, Wang Z, Lu C, et al (2024)

Removal of antibiotics by four microalgae-based systems for swine wastewater treatment under different phytohormone treatment.

Bioresource technology pii:S0960-8524(24)00371-7 [Epub ahead of print].

This study examined the removal of typical antibiotics from simulated swine wastewater. Microalgae-bacteria/fungi symbioses were constructed using Chlorella ellipsoidea, endophytic bacteria (S395-2), and Clonostachys rosea as biomaterials. The growth, photosynthetic performance, and removal of three types of antibiotics (tetracyclines, sulfonamides, and quinolones) induced by four phytohormones were analyzed in each system. The results showed that all four phytohormones effectively improved the tolerance of symbiotic strains against antibiotic stress; strigolactones (GR24) achieved the best performance. At 10[-9] M, GR24 achieved the best removal of antibiotics by C. elliptica + S395-2 + C. rosea symbiosis. The average removals of tetracycline, sulfonamide, and quinolone by this system reached 96.2-99.4 %, 75.2-81.1 %, and 66.8-69.9 %, respectively. The results of this study help to develop appropriate bio enhancement strategies as well as design and operate algal-bacterial-fungal symbiotic processes for the treatment of antibiotics-containing wastewater.

RevDate: 2024-04-06

Zeng H, Chen H, Zhang M, et al (2024)

Plasma membrane H[+]-ATPases in mineral nutrition and crop improvement.

Trends in plant science pii:S1360-1385(24)00052-9 [Epub ahead of print].

Plasma membrane H[+]-ATPases (PMAs) pump H[+] out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H[+] and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.

RevDate: 2024-04-06

Ding Y, Wang T, Gasciolli V, et al (2024)

The LysM receptor-like kinase SlLYK10 controls lipochitooligosaccharide signaling in inner cell layers of tomato roots.

Plant & cell physiology pii:7641819 [Epub ahead of print].

Establishment of arbuscular mycorrhiza (AM) relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short chain chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase (LysM RLK) SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF), however its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization, and carry mutations in LysM1 and 2 respectively, have similar LCO binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter (Genetically Encoded Ca2+ indicators, GECO), showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short chain COs also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.

RevDate: 2024-04-06

Lofgren L, Nguyen NH, Kennedy P, et al (2024)

Suillus: an emerging model for the study of ectomycorrhizal ecology and evolution.

The New phytologist [Epub ahead of print].

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.

RevDate: 2024-04-05

Han Z, X Deng (2024)

The impact of cross-regional social and ecological interactions on ecosystem service synergies.

Journal of environmental management, 357:120671 pii:S0301-4797(24)00657-1 [Epub ahead of print].

Increasing socioecological systems (SESs) sustainability requires establishing a reasonable cross-regional social and ecological interaction. In this study, we examine how cross-regional ecological and social interactions affect synergistic effects. Using InVEST and correlation analysis with data from 2010 through 2020, we assessed ESs (i.e., water retention-WR, nutrient retention-NR, and carbon storage-CS) in the Beijing-Tianjin-Hebei (BTH) region. A small watershed, a river network, and settlement development capacity are used to delineate ecological and social interactions units. Based on a Bayesian network model that considers population, economy, and spatial agglomeration patterns between social units, we assessed the potential for achieving a synergistic improvement of ESs and the driving forces behind them. The results show that ESs in the BTH region compete, only a small percentage (6.38%) shows synergetic improvement across CS, WR, and NR. It is beneficial for upstream watersheds to retain water and nutrients, but to maintain carbon storage they may sacrifice water retention. Upstream areas with less development and higher vegetation density have better ecosystem integrity of up- and down-stream watersheds, and can be enhanced with minimal human impact, as social interactions and settlement spatial structures influence ES synergies. There is a higher risk for ecological issues in downstream areas, but greater awareness and collaboration can lead to better ES synergies.

RevDate: 2024-04-08
CmpDate: 2024-04-08

McFall-Ngai M (2024)

Symbiosis takes a front and center role in biology.

PLoS biology, 22(4):e3002571.

All animals and plants likely require interactions with microbes, often in strong, persistent symbiotic associations. While the recognition of this phenomenon has been slow in coming, it will impact most, if not all, subdisciplines of biology.

RevDate: 2024-04-05

Xie Z, Kim C, Miller MJ, et al (2024)

Effects of 2'-fucosyllactose on the viability of starter cultures and Bifidobacterium strains of human origin in yogurt during refrigerated storage.

Journal of food science [Epub ahead of print].

2'-Fucosyllactose (2'-FL) is postulated to provide health benefits and promote the growth of probiotics. This work was undertaken to study the effects of 2'-FL on the viability of starter cultures and Bifidobacterium strains of human origin in yogurt during refrigerated storage. Yogurts were produced containing 2'-FL (0 or 2 g/L) and Bifidobacterium strains of human origin (Bifidobacterium longum subsp. longum BB536 or Bifidobacterium longum subsp. infantis ATCC 15697) at a concentration of at least 10[9] CFU/mL. All yogurts were stored at 4°C for 5 weeks. Results showed that 2'-FL was stable in yogurts for at least 5 weeks of cold storage, and the addition of 2'-FL did not significantly alter yogurt fermentation parameters, associated metabolites, and the viability of mixed yogurt starter cultures and Bifidobacterium strains (p > 0.05). The addition of bifidobacteria had a negative impact (p < 0.05) on the survival rate of starter cultures, Streptococcus thermophilus and Lactobacillus delbureckii subsp. bulgaricus. Meanwhile, it is difficult to maintain a high survival rate of bifidobacteria in final yogurt products, and the addition of 2'-FL could not enhance the viability of bifidobacteria. B. longum BB536 survived at a level higher than 10[6] CFU/g for 28 days, while B. infantis ATCC15697 maintained this level for only 7 days. In summary, this study has shown the impact of 2'-FL and bifidobacterial species on yogurt properties, and results suggest that it is promising to use 2'-FL in yogurt products as a prebiotic. PRACTICAL APPLICATION: Yogurt is known for its beneficial effects on human health and nutrition. This study reported the production of symbiotic yogurt containing bifidobacteria and 2'-fucosyllactose (2'-FL) as a functional food for specified health uses. The viability of yogurt starter cultures and probiotic bifidobacterial strains was analyzed in this study. Moreover, this research demonstrated that 2'-FL could be added to yogurt without affecting the characteristics of yogurt significantly.

RevDate: 2024-04-05

Garber AI, Garcia de la Filia Molina A, Vea I, et al (2024)

Retention of an endosymbiont for the production of a single molecule.

Genome biology and evolution pii:7641101 [Epub ahead of print].

Sap-feeding insects often maintain two or more nutritional endosymbionts which act in concert to produce compounds essential for insect survival. Many mealybugs have endosymbionts in a nested configuration: one or two bacterial species reside within the cytoplasm of another bacterium, and together these bacteria have genomes which encode interdependent sets of genes needed to produce key nutritional molecules. Here we show that the mealybug Pseudococcus viburni has three endosymbionts, one of which contributes only two unique genes that produce the host nutrition-related molecule chorismate. All three bacterial endosymbionts have tiny genomes, suggesting that they have been co-evolving inside their insect host for millions of years.

RevDate: 2024-04-06

Veselovsky VA, Boldyreva DI, Olekhnovich EI, et al (2024)

Effect of the consumption of brazzein and monellin, two recombinant sweet-tasting proteins, on rat gut microbiota.

Frontiers in nutrition, 11:1362529.

Sweet-tasting proteins (SPs) are proteins of plant origin initially isolated from tropical fruits. They are thousands of times sweeter than sucrose and most artificial sweeteners. SPs are a class of proteins capable of causing a sweet taste sensation in humans when interacting with the T1R2/T1R3 receptor. SP thaumatin has already been introduced in the food industry in some countries. Other SPs, such as monellin and brazzein, are promising products. An important stage in researching SPs, in addition to confirming the absence of toxicity, mutagenicity, oncogenicity, and allergenic effects, is studying their influence on gut microbiota. In this paper we describe changes in the composition of rat gut microbiota after six months of consuming one of two recombinant SPs-brazzein or monellin. A full length 16S gene sequencing method was used for DNA library barcoding. The MaAsLin2 analysis results showed noticeable fluctuations in the relative abundances of Anaerocella delicata in brazzein-fed rat microbiota, and of Anaerutruncus rubiinfantis in monellin-fed rat microbiota, which, however, did not exceed the standard deviation. The sucrose-fed group was associated with an increase in the relative abundance of Faecalibaculum rodentium, which may contribute to obesity. Overall, prolonged consumption of the sweet proteins brazzein and monellin did not significantly change rat microbiota and did not result in the appearance of opportunistic microbiota. This provides additional evidence for the safety of these potential sweeteners.

RevDate: 2024-04-06

Chen B, Shi Y, Sun Y, et al (2024)

Innovations in functional genomics and molecular breeding of pea: exploring advances and opportunities.

aBIOTECH, 5(1):71-93.

The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.

RevDate: 2024-04-06

Qiao L, Lin J, Suzaki T, et al (2024)

Staying hungry: a roadmap to harnessing central regulators of symbiotic nitrogen fixation under fluctuating nitrogen availability.

aBIOTECH, 5(1):107-113.

Legumes have evolved specific inventions to enhance nitrogen (N) acquisition by establishing symbiotic interactions with N-fixing rhizobial bacteria. Because symbiotic N fixation is energetically costly, legumes have developed sophisticated mechanisms to ensure carbon-nitrogen balance, in a variable environment, both locally and at the whole plant level, by monitoring nodule number, nodule development, and nodular nitrogenase activity, as well as controlling nodule senescence. Studies of the autoregulation of nodulation and regulation of nodulation by nodule inception (NIN) and NIN-LIKE PROTEINs (NLPs) have provided great insights into the genetic mechanisms underlying the nitrate-induced regulation of root nodulation for adapting to N availability in the rhizosphere. However, many aspects of N-induced pleiotropic regulation remain to be fully explained, such as N-triggered senescence in mature nodules. Wang et al. determined that this process is governed by a transcriptional network regulated by NAC-type transcription factors. Characterization and dissection of these soybean nitrogen-associated NAPs (SNAPs) transcription factor-mastered networks have yielded a roadmap for exploring how legumes rewire nodule functions across a range of N levels, laying the foundation for enhancing the growth of N-deprived crops in agricultural settings.

RevDate: 2024-04-06

Messer LF, Bourne DG, Robbins SJ, et al (2024)

A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience.

Nature communications, 15(1):2902.

Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.

RevDate: 2024-04-06

Qiao M, Sun R, Wang Z, et al (2024)

Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification.

Nature communications, 15(1):2924.

Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.

RevDate: 2024-04-04

Zhang J, Sun J, Chiu CH, et al (2024)

A receptor required for chitin perception facilitates arbuscular mycorrhizal associations and distinguishes root symbiosis from immunity.

Current biology : CB pii:S0960-9822(24)00312-9 [Epub ahead of print].

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.

RevDate: 2024-04-04

Cunha ICMD, Silva AVRD, Boleta EHM, et al (2024)

The interplay between the inoculation of plant growth-promoting rhizobacteria and the rhizosphere microbiome and their impact on plant phenotype.

Microbiological research, 283:127706 pii:S0944-5013(24)00107-1 [Epub ahead of print].

Microbial inoculation stands as a pivotal strategy, fostering symbiotic relationships between beneficial microorganisms and plants, thereby enhancing nutrient uptake, bolstering resilience against environmental stressors, and ultimately promoting healthier and more productive plant growth. However, while the advantageous roles of inoculants are widely acknowledged, the precise and nuanced impacts of inoculation on the intricate interactions of the rhizosphere microbiome remain significantly underexplored. This study explores the impact of bacterial inoculation on soil properties, plant growth, and the rhizosphere microbiome. By employing various bacterial strains and a synthetic community (SynCom) as inoculants in common bean plants, the bacterial and fungal communities in the rhizosphere were assessed through 16 S rRNA and ITS gene sequencing. Concurrently, soil chemical parameters, plant traits, and gene expression were evaluated. The findings revealed that bacterial inoculation generally decreased pH and V%, while increasing H+Al and m% in the rhizosphere. It also decreased gene expression in plants related to detoxification, photosynthesis, and defense mechanisms, while enhancing bacterial diversity in the rhizosphere, potentially benefiting plant health. Specific bacterial strains showed varied impacts on rhizosphere microbiome assembly, predominantly affecting rhizospheric bacteria more than fungi, indirectly influencing soil conditions and plants. Notably, Paenibacillus polymyxa inoculation improved plant nitrogen (by 5.2%) and iron levels (by 28.1%), whereas Bacillus cereus boosted mycorrhization rates (by 70%). Additionally, inoculation led to increased complexity in network interactions within the rhizosphere (∼15%), potentially impacting plant health. Overall, the findings highlight the significant impact of introducing bacteria to the rhizosphere, enhancing nutrient availability, microbial diversity, and fostering beneficial plant-microbe interactions.

RevDate: 2024-04-04

Li Y, L Wu (2024)

Multi-group symbiotic evolutionary mechanisms of a digital innovation ecosystem: Numerical simulation and case study.

PloS one, 19(4):e0300218.

In the digital innovation ecosystem, the symbiosis mode formed between ecosystem members not only relates to their survival and development but also affects the ecosystem's symbiosis evolution mechanism. Based on symbiosis theory, this study first explores the evolutionary equilibrium strategy and its stability for three types of populations-core enterprises, digital platforms, and university research institutes-and then uses numerical simulation and a case study to explore the symbiotic evolution mechanism of the digital innovation ecosystem. The results show that: First, the digital innovation ecosystem is a complex adaptive system in which the three types of populations form different symbiotic relationships under different symbiotic modes and conduct symbiotic activities, such as value co-creation, to characterize the unique symbiotic evolutionary structure. Second, in this ecosystem, the symbiotic relationship formed by the combined values of different symbiotic coefficients between populations determines the outcome of symbiotic evolution. Third, the ideal direction of the evolution of the digital innovation ecosystem is a mutually beneficial symbiotic relationship. Thus, the symbiotic relationship between populations should be transformed into a mutually beneficial symbiotic relationships as much as possible. This study makes theoretical contributions by shedding light on the symbiotic evolution mechanism of the digital innovation ecosystem. It also offers countermeasures for the digital innovation cooperation of various stakeholders in China's digital innovation ecosystem.

RevDate: 2024-04-04

Jenkins BH (2024)

Mutualism on the edge: Understanding the Paramecium-Chlorella symbiosis.

PLoS biology, 22(4):e3002563.

Exploring the mechanisms that underpin symbiosis requires an understanding of how these complex interactions are maintained in diverse model systems. The ciliate protist, Paramecium bursaria, offers a valuable insight into how emergent endosymbiotic interactions have evolved.

RevDate: 2024-04-05
CmpDate: 2024-04-05

Ben Gaied R, Sbissi I, Tarhouni M, et al (2024)

Enhancing Pisum sativum growth and symbiosis under heat stress: the synergistic impact of co-inoculated bacterial consortia and ACC deaminase-lacking Rhizobium.

Archives of microbiology, 206(5):203.

The 1-aminocyclopropane-1-carboxylate (ACC) deaminase is a crucial bacterial trait, yet it is not widely distributed among rhizobia. Hence, employing a co-inoculation approach that combines selected plant growth-promoting bacteria with compatible rhizobial strains, especially those lacking ACC deaminase, presents a practical solution to alleviate the negative effects of diverse abiotic stresses on legume nodulation. Our objective was to explore the efficacy of three non-rhizobial endophytes, Phyllobacterium salinisoli (PH), Starkeya sp. (ST) and Pseudomonas turukhanskensis (PS), isolated from native legumes grown in Tunisian arid regions, in improving the growth of cool-season legume and fostering symbiosis with an ACC deaminase-lacking rhizobial strain under heat stress. Various combinations of these endophytes (ST + PS, ST + PH, PS + PH, and ST + PS + PH) were co-inoculated with Rhizobium leguminosarum 128C53 or its ΔacdS mutant derivative on Pisum sativum plants exposed to a two-week heat stress period.Our findings revealed that the absence of ACC deaminase activity negatively impacted both pea growth and symbiosis under heat stress. Nevertheless, these detrimental effects were successfully mitigated in plants co-inoculated with ΔacdS mutant strain and specific non-rhizobial endophytes consortia. Our results indicated that heat stress significantly altered the phenolic content of pea root exudates. Despite this, there was no impact on IAA production. Interestingly, these changes positively influenced biofilm formation in consortia containing the mutant strain, indicating synergistic bacteria-bacteria interactions. Additionally, no positive effects were observed when these endophytic consortia were combined with the wild-type strain. This study highlights the potential of non-rhizobial endophytes to improve symbiotic performance of rhizobial strains lacking genetic mechanisms to mitigate stress effects on their legume host, holding promising potential to enhance the growth and yield of targeted legumes by boosting symbiosis.

RevDate: 2024-04-05

Wei L, Pan Y, Guo Y, et al (2024)

Symbiotic combination of Akkermansia muciniphila and inosine alleviates alcohol-induced liver injury by modulating gut dysbiosis and immune responses.

Frontiers in microbiology, 15:1355225.

BACKGROUND: Alcoholic liver disease (ALD) is exacerbated by disruptions in intestinal microecology and immune imbalances within the gut-liver axis. The present study assesses the therapeutic potential of combining Akkermansia muciniphila (A. muciniphila) with inosine in alleviating alcohol-induced liver injury.

METHODS: Male C57BL/6 mice, subjected to a Lieber-DeCarli diet with 5% alcohol for 4 weeks, served as the alcoholic liver injury model. Various analyzes, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), ELISA, immunochemistry, 16S rRNA gene sequencing, and flow cytometry, were employed to evaluate liver injury parameters, intestinal barrier function, microbiota composition, and immune responses.

RESULTS: Compared to the model group, the A. muciniphila and inosine groups exhibited significantly decreased alanine aminotransferase, aspartate aminotransferase, and lipopolysaccharide (LPS) levels, reduced hepatic fat deposition and neutrophil infiltration, alleviated oxidative stress and inflammation, and increased expression of intestinal tight junction proteins (Claudin-1, Occludin, and ZO-1). These effects were further pronounced in the A. muciniphila and inosine combination group compared to individual treatments. While alcohol feeding induced intestinal dysbiosis and gut barrier disruption, the combined treatment reduced the abundance of harmful bacteria (Oscillibacter, Escherichia/Shigella, and Alistipes) induced by alcohol consumption, promoting the growth of butyrate-producing bacteria (Akkermansia, Lactobacillus, and Clostridium IV). Flow cytometry revealed that alcohol consumption reduced T regulatory (Treg) populations while increasing those of T-helper (Th) 1 and Th17, which were restored by A. muciniphila combined with inosine treatment. Moreover, A. muciniphila and inosine combination increased the expression levels of intestinal CD39, CD73, and adenosine A2A receptor (A2AR) along with enhanced proportions of CD4[+]CD39[+]Treg and CD4[+]CD73[+]Treg cells in the liver and spleen. The A2AR antagonist KW6002, blocked the beneficial effects of the A. muciniphila and inosine combination on liver injury in ALD mice.

CONCLUSION: This study reveals that the combination of A. muciniphila and inosine holds promise for ameliorating ALD by enhancing the gut ecosystem, improving intestinal barrier function, upregulating A2AR, CD73, and CD39 expression, modulating Treg cells functionality, and regulating the imbalance of Treg/Th17/Th1 cells, and these beneficial effects are partly A2AR-dependent.

RevDate: 2024-04-05

Shi B, Wang X, Yang S, et al (2024)

Changes and driving factors of microbial community composition and functional groups during the decomposition of Pinus massoniana deadwood.

Ecology and evolution, 14(4):e11210.

Clarifying changes in the microbial community in deadwood at different stages of decomposition is crucial for comprehending the role of deadwood in the biogeochemical processes and the sustainability of forest development. However, there have been no reports on the dynamics of microbial community during the decomposition of Pinus massoniana. We used the "space-for-time" substitution to analyze the characteristics of microbial community changes and the key influencing factors in the P. massoniana deadwood during different decomposition stages by 16S and ITS rRNA gene sequencing. The results suggest that the microbial community structure of the early decomposition (decay class I) was significantly different from the other decay classes, while the diversity and richness of the microbial community were the highest in the late decomposition (decay class V). The Linear Discriminant Analysis Effect Size analysis revealed that most bacterial and fungal taxa were significantly enriched in decay classes I and V deadwood. During the initial stages of decomposition, the relative abundance of the bacterial functional group responsible for carbohydrate metabolism was greater than the later stages. As decomposition progressed, the relative abundance of saprophytic fungi gradually decreased, and there was a shift in the comparative abundance of mixed saprophytic-symbiotic fungi from low to high before eventually decreasing. Total organic carbon, total nitrogen, carbon-to-nitrogen ratio, total potassium, total phenol, condensed tannin, lignin, and cellulose were significantly correlated with microbial community structure, with the carbon-to-nitrogen ratio having the greatest effect. Our results indicate that the physicochemical properties of deadwood, microbial community structural composition and functional group changes were related to the decay class, among which the carbon-to-nitrogen ratio may be an important factor affecting the composition and diversity of microbial communities.

RevDate: 2024-04-05
CmpDate: 2024-04-05

Jia H, Lin J, Lin Z, et al (2024)

Haplotype-resolved genome of Mimosa bimucronata revealed insights into leaf movement and nitrogen fixation.

BMC genomics, 25(1):334.

BACKGROUND: Mimosa bimucronata originates from tropical America and exhibits distinctive leaf movement characterized by a relative slow speed. Additionally, this species possesses the ability to fix nitrogen. Despite these intriguing traits, comprehensive studies have been hindered by the lack of genomic resources for M. bimucronata.

RESULTS: To unravel the intricacies of leaf movement and nitrogen fixation, we successfully assembled a high-quality, haplotype-resolved, reference genome at the chromosome level, spanning 648 Mb and anchored in 13 pseudochromosomes. A total of 32,146 protein-coding genes were annotated. In particular, haplotype A was annotated with 31,035 protein-coding genes, and haplotype B with 31,440 protein-coding genes. Structural variations (SVs) and allele specific expression (ASE) analyses uncovered the potential role of structural variants in leaf movement and nitrogen fixation in M. bimucronata. Two whole-genome duplication (WGD) events were detected, that occurred ~ 2.9 and ~ 73.5 million years ago. Transcriptome and co-expression network analyses revealed the involvement of aquaporins (AQPs) and Ca[2+]-related ion channel genes in leaf movement. Moreover, we also identified nodulation-related genes and analyzed the structure and evolution of the key gene NIN in the process of symbiotic nitrogen fixation (SNF).

CONCLUSION: The detailed comparative genomic and transcriptomic analyses provided insights into the mechanisms governing leaf movement and nitrogen fixation in M. bimucronata. This research yielded genomic resources and provided an important reference for functional genomic studies of M. bimucronata and other legume species.

RevDate: 2024-04-03

Golaz D, Papenfuhs CK, Bellés-Sancho P, et al (2024)

RNA-seq analysis in simulated microgravity unveils down-regulation of the beta-rhizobial siderophore phymabactin.

NPJ microgravity, 10(1):44.

Exploiting the symbiotic interaction between crops and nitrogen-fixing bacteria is a simple and ecological method to promote plant growth in prospective extraterrestrial human outposts. In this study, we performed an RNA-seq analysis to investigate the adaptation of the legume symbiont Paraburkholderia phymatum STM815[T] to simulated microgravity (s0-g) at the transcriptome level. The results revealed a drastic effect on gene expression, with roughly 23% of P. phymatum genes being differentially regulated in s0-g. Among those, 951 genes were upregulated and 858 downregulated in the cells grown in s0-g compared to terrestrial gravity (1 g). Several genes involved in posttranslational modification, protein turnover or chaperones encoding were upregulated in s0-g, while those involved in translation, ribosomal structure and biosynthesis, motility or inorganic ions transport were downregulated. Specifically, the whole phm gene cluster, previously bioinformatically predicted to be involved in the production of a hypothetical malleobactin-like siderophore, phymabactin, was 20-fold downregulated in microgravity. By constructing a mutant strain (ΔphmJK) we confirmed that the phm gene cluster codes for the only siderophore secreted by P. phymatum as assessed by the complete lack of iron chelating activity of the P. phymatum ΔphmJK mutant on chrome azurol S (CAS) agar plates. These results not only provide a deeper understanding of the physiology of symbiotic organisms exposed to space-like conditions, but also increase our knowledge of iron acquisition mechanisms in rhizobia.

RevDate: 2024-04-03

Zou Y, Suo X, Y Zhang (2024)

Transcriptomic responses of rabbits to infections by precocious line and wild-type Eimeria media: revealing molecular signatures and pathway differences in liver and duodenum during the peak and terminal phases of oocyst production.

Parasitology research, 123(4):175.

Eimeria media is a principal pathogen responsible for rabbit coccidiosis, targeting the rabbit's intestinal epithelial cells. This parasitism damages the intestinal mucosal barrier, initiating a systemic immune and inflammatory response that jeopardizes the sustainable growth of rabbit farming. To understand the implications of infection on the host's immune and metabolic responses, we employed RNA-Seq to analyze RNA from the liver and duodenum tissues of post-infected rabbits infected with both the precocious line and wild-type strain of E.media. Comprehensive transcriptomic analysis revealed that the two parasites exhibit divergent transcriptomic imprints on host tissues. While the precocious line predominantly modulates immune-centric pathways with significant differential gene enrichment, wild-type strain favors pathways that affect metabolism. In addition, our study pinpointed a set of genes that undergo significant modifications in response to these effects. These revelations grant a fresh avenue to probe deeper into the symbiotic intricacies of the E.media and its rabbit host.

RevDate: 2024-04-03

Cardoso PIFDC, Grisi CVB, Vieira ÉA, et al (2024)

Cereal flours with Bacillus coagulans and beta-glucan: Technological properties and sensory acceptability.

Food chemistry, 448:139146 pii:S0308-8146(24)00795-7 [Epub ahead of print].

This study aimed to develop three formulations of cereal flours: control cereal flour (CCF), probiotic cereal flour (PCF), and symbiotic cereal flour (SCF), and porridges from the flours were manufactured as a functional food. No significant differences were observed in the microbiological quality and the color of the flours for 150 days. The technological and functional potential of the flours were variously improved with the addition of Bacillus coagulans as a probiotic and beta-glucan as a prebiotic. The addition of beta-glucan fiber did not change the viability of the probiotic, which was higher than 7.45 log CFU/g for SCF and 7.13 log CFU/g for PCF until the end of the storage period. All porridge samples showed non-Newtonian fluid behavior with pseudoplastic characteristics; and the PCF and SCF porridges differed regarding the parameters of hardness (1.10 to 1.38 N), adhesiveness (5.88 to 8.86 mJ), cohesiveness (0.78 to 0.95) and gumminess (0.93 to 1.52 N) over time. The addition of the beta-glucan prebiotic interfered with these attributes due to its gelling capacity in the presence of water. The PCF obtained the best sensory acceptance scores when compared to the other formulations. The addition of Bacillus coagulans and beta-glucan did not interfere with thermographic behavior. The SCF differed in the observed crystallinity parameters from CCF and PCF, with the presence of larger solids and agglomerates.

RevDate: 2024-04-03

Woznica A (2024)

What choanoflagellates can teach us about symbiosis.

PLoS biology, 22(4):e3002561 pii:PBIOLOGY-D-23-03102.

Environmental bacteria influence many facets of choanoflagellate biology, yet surprisingly few examples of symbioses exist. We need to find out why, as choanoflagellates can help us to understand how symbiosis may have shaped the early evolution of animals.

RevDate: 2024-04-04
CmpDate: 2024-04-04

Fu S, Iqbal B, Li G, et al (2024)

The role of microbial partners in heavy metal metabolism in plants: a review.

Plant cell reports, 43(4):111.

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.

RevDate: 2024-04-02

Xiao Y, Ma J, Chen R, et al (2024)

Two microbes assisting Miscanthus floridulus in remediating multi-metal(loid)s-contaminated soil.

Environmental science and pollution research international [Epub ahead of print].

Miscanthus has good tolerance to multi-metal(loid)s and has received increasing attention in remediated studies of metal(loid)s-contaminated soil. In this study, we conducted phytoextraction techniques to investigate the synergic effects of remediation of multi-metal(loid)s-contaminated soil by Miscanthus floridulus (Lab.) and two plant growth-promoting bacteria (PGPB), TS8 and MR2, affiliated to Enterobacteriaceae. The results exhibited a decrease of arsenic (15.27-21.50%), cadmium (8.64-15.52%), plumbum (5.92-12.76%), and zinc (12.84-24.20%) except for copper contents in the soil in bacterial inoculation groups, indicating that MR2 and TS8 could enhance the remediation of metal(loid)s. Moreover, increased fresh/dry weight and height indicated that inoculated bacteria could promote Miscanthus growth. Although the activities of antioxidant enzymes and the content of chlorophyll in the overground tissues showed no significant increase or even decrease, the activities of antioxidant enzymes in the underground tissues and soil were elevated by 48.95-354.17%, available P by 19.07-23.02%, and available K by 15.34-17.79% (p < 0.05). Bacterial inoculants could also decrease the soil pH. High-throughput sequencing analysis showed that the bacterial inoculant affected the rhizosphere bacterial community and reduced community diversity, but the relative abundance of some PGPB was found to increase. Phylogenetic molecular ecological networks indicated that bacterial inoculants reduced interactions between rhizosphere bacteria and thereby led to a simpler network structure but increased the proportion of positive-correlation links and enhanced the metabiosis and symbiosis of those bacteria. Spearman's test showed that OTUs affiliated with Enterobacteriaceae and soil nutrients were critical for metal(loid) remediation and Miscanthus growth. The results of this study provide a basis for the synergic remediation of multi-metal(loid)s-contaminated soils by Miscanthus and PGPB and provide a reference for the subsequent regulation of Miscanthus remediation efficiency by the other PGPB or critical bacteria.

RevDate: 2024-04-04
CmpDate: 2024-04-04

Želježić D, Kovačević G, Matijević A, et al (2024)

Does the Symbiotic Relationship Between Hydra Viridissima and Photoautotrophic Alga Provide an Evolutionary Advantage in Protecting DNA against Damage by the Cytotoxic or Genotoxic Mode of Action of Environmental Stressors?.

Bulletin of environmental contamination and toxicology, 112(4):56.

The aim of this paper was to evaluate whether symbiotic cooperation between green hydra (Hydra viridissima) and photoautotrophic alga gives higher resistance of the preservation of DNA integrity compared to brown hydra (Hydra oligactis). Norflurazon concentrations were 0.061 or 0.61 mg/L and UV-B light 254 nm, 0.023mWcm[- 2] applied separately or simultaneously. By alkaline comet assay primary DNA damage was assessed and cytotoxicity by fluorescent staining. Norflurazon at 0.61 mg L[- 1] significantly increased DNA damage in brown hydras compared to the control (6.17 ± 0.6 μm, 5.2 ± 1.7% vs. 2.9 ± 0.2 μm, 1.2 ± 0.2%). Cytotoxicity was significantly elevated, being higher in brown hydras (25.7 ± 3.5% vs. 8.2 ± 0.2%). UV-B irradiation induced significant DNA damage in brown hydras (13.5 ± 1.0 μm, 4.1 ± 1.0%). Simultaneous exposure to UV-B and norflurazon led to a synergistic DNA damaging. The frequency of cytotoxicity and hedgehog nucleoids was more pronounced in brown (78.3 ± 9.4%; 56.4 ± 6.0%) than in green hydras (34.7 ± 2.5%; 24.2 ± 0.6%). Evolutionary established symbiotic cooperation proved to provide resistance against cyto/genotoxicity.

RevDate: 2024-04-04
CmpDate: 2024-04-04

Silva GR, de Pina Cavalcanti F, Melo RM, et al (2024)

Extracellular vesicles from the mycoparasitic fungus Trichoderma harzianum.

Antonie van Leeuwenhoek, 117(1):64.

Trichoderma harzianum is a filamentous fungus that can act as a mycoparasite, saprophyte, or a plant symbiotic. It is widely used as a biological control agent against phytopathogenic fungi and can also be used for plant growth promotion and biofortification. Interaction between T. harzianum and phytopathogenic fungi involves mycoparasitism, competition, and antibiosis. Extracellular vesicles (EVs) have been described as presenting a central role in mechanisms of communication and interaction among fungus and their hosts. In this study, we characterized extracellular vesicles of T. harzianum produced during growth in the presence of glucose or S. sclerotiorum mycelia. A set of vesicular proteins was identified using proteomic approach, mainly presenting predicted signal peptides.

RevDate: 2024-04-02

Deng M, Xiao T, Xu X, et al (2024)

Nicotinamide deficiency promotes imidacloprid resistance via activation of ROS/CncC signaling pathway-mediated UGT detoxification in Nilaparvata lugens.

The Science of the total environment pii:S0048-9697(24)02178-8 [Epub ahead of print].

Metabolic alternation is a typical characteristic of insecticide resistance in insects. However, mechanisms underlying metabolic alternation and how altered metabolism in turn affects insecticide resistance are largely unknown. Here, we report that nicotinamide levels are decreased in the imidacloprid-resistant strain of Nilaparvata lugens, may due to reduced abundance of the symbiotic bacteria Arsenophonus. Importantly, the low levels of nicotinamide promote imidacloprid resistance via metabolic detoxification alternation, including elevations in UDP-glycosyltransferase enzymatic activity and enhancements in UGT386B2-mediated metabolism capability. Mechanistically, nicotinamide suppresses transcriptional regulatory activities of cap 'n' collar isoform C (CncC) and its partner small muscle aponeurosis fibromatosis isoform K (MafK) by scavenging the reactive oxygen species (ROS) and blocking the DNA binding domain of MafK. In imidacloprid-resistant N. lugens, nicotinamide deficiency re-activates the ROS/CncC signaling pathway to provoke UGT386B2 overexpression, thereby promoting imidacloprid detoxification. Thus, nicotinamide metabolism represents a promising target to counteract imidacloprid resistance in N. lugens.

RevDate: 2024-04-02

Gao B, Ruiz D, Case H, et al (2024)

Engineering bacterial warriors: harnessing microbes to modulate animal physiology.

Current opinion in biotechnology, 87:103113 pii:S0958-1669(24)00049-1 [Epub ahead of print].

A central goal of synthetic biology is the reprogramming of living systems for predetermined biological functions. While many engineering efforts have been made in living systems, these innovations have been mainly employed with microorganisms or cell lines. The engineering of multicellular organisms including animals remains challenging owing to the complexity of these systems. In this context, microbes, with their intricate impact on animals, have opened new opportunities. Through the utilization of the symbiotic relationships between microbes and animals, researchers have effectively manipulated animals in various ways using engineered microbes. This focused approach has demonstrated its significance in scientific exploration and engineering with model animals, coral preservation and restoration, and advancements in human health.

RevDate: 2024-04-02

Chatterjee S, Leach ST, Lui K, et al (2024)

Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context.

Seminars in cell & developmental biology, 161-162:22-30 pii:S1084-9521(24)00030-2 [Epub ahead of print].

Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.

RevDate: 2024-04-02

Meaney JS, Panchal AK, Wilcox AJ, et al (2024)

Identifying functional multi-host shuttle plasmids to advance synthetic biology applications in Mesorhizobium and Bradyrhizobium.

Canadian journal of microbiology [Epub ahead of print].

Ammonia availability has a crucial role in agriculture as it ensures healthy plant growth and increased crop yields. Since diazotrophs are the only organisms capable of reducing dinitrogen to ammonia, they have a great ecological importance and potential to mitigate the environmental and economic costs of synthetic fertilizer use. Rhizobia are especially valuable being that they can engage in nitrogen-fixing symbiotic relationships with legumes, and they demonstrate great diversity and plasticity in genomic and phenotypic traits. However, few rhizobial species have improved genetic tractability for synthetic biology applications. This study established a basic genetic toolbox with antibiotic resistance markers, multi-host shuttle plasmids and a streamlined protocol for biparental conjugation with Mesorhizobium and Bradyrhizobium species. We identified two repABC origins of replication from Sinorhizobium meliloti (pSymB) and Rhizobium etli (p42d) that were stable across all three strains of interest. Furthermore, the NZP2235 genome was sequenced and phylogenetic analysis determined its reclassification to Mesorhizobium huakuii. These tools will enable the use of plasmid-based strategies for more advanced genetic engineering projects and ultimately contribute towards the development of more sustainable agriculture practices by means of novel nitrogen-fixing organelles, elite bioinoculants or symbiotic association with non-legumes.

RevDate: 2024-04-02

Crehan O, Davy SK, Grover R, et al (2024)

Nutrient depletion and heat stress impair the assimilation of nitrogen compounds in a scleractinian coral.

The Journal of experimental biology pii:346441 [Epub ahead of print].

Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may be observed due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C, and 34°C), before being placed in nutrient-replete or depleted seawater for 24 hours. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea, and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over threefold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing over threefold at 34°C, potentially exacerbating the impacts of coral bleaching.

RevDate: 2024-04-03

Yahagi K (2024)

Fucosylated human milk oligosaccharide-utilizing bifidobacteria regulate the gut organic acid profile of infants.

Bioscience of microbiota, food and health, 43(2):92-99.

Bifidobacteria are the predominant bacteria in the infant gut and have beneficial effects on host physiology. Infant cohort studies have demonstrated that a higher abundance of bifidobacteria in the gut is associated with a reduced risk of disease. Recently, bifidobacteria-derived metabolites, such as organic acid, have been suggested to play crucial roles in host physiology. This review focuses on an investigation of longitudinal changes in the gut microbiota and organic acid concentrations over 2 years of life in 12 Japanese infants and aims to identify bifidobacteria that contribute to the production of organic acid in healthy infants. Acetate, lactate, and formate, which are rarely observed in adults, are characteristically observed during breast-fed infancy. Bifidobacterium longum subspecies infantis and the symbiosis of Bifidobacterium bifidum and Bifidobacterium breve efficiently produce these organic acids through metabolization of human milk oligosaccharide (HMO) with different strategies. These findings confirmed that HMO-utilizing bifidobacteria play an important role in regulating the gut organic acid profiles of infants.

RevDate: 2024-04-03

Tian F, Wang J, Ding F, et al (2024)

Comparative transcriptomics and proteomics analysis of the symbiotic germination of Paphiopedilum barbigerum with Epulorhiza sp. FQXY019.

Frontiers in microbiology, 15:1358137.

INTRODUCTION: Paphiopedilum barbigerum is currently the rarest and most endangered species of orchids in China and has significant ornamental value. The mature seeds of P. barbigerum are difficult to germinate owing to the absence of an endosperm and are highly dependent on mycorrhizal fungi for germination and subsequent development. However, little is known about the regulation mechanisms of symbiosis and symbiotic germination of P. barbigerum seeds.

METHODS: Herein, transcriptomics and proteomics were used to explore the changes in the P. barbigerum seeds after inoculation with (FQXY019 treatment group) or without (control group) Epulorhiza sp. FQXY019 at 90 days after germination.

RESULTS: Transcriptome sequencing revealed that a total of 10,961 differentially expressed genes (DEGs; 2,599 upregulated and 8,402 downregulated) were identified in the control and FQXY019 treatment groups. These DEGs were mainly involved in carbohydrate, fatty acid, and amino acid metabolism. Furthermore, the expression levels of candidate DEGs related to nodulin, Ca[2+] signaling, and plant lectins were significantly affected in P. barbigerum in the FQXY019 treatment groups. Subsequently, tandem mass tag-based quantitative proteomics was performed to recognize the differentially expressed proteins (DEPs), and a total of 537 DEPs (220 upregulated and 317 downregulated) were identified that were enriched in processes including photosynthesis, photosynthesis-antenna proteins, and fatty acid biosynthesis and metabolism.

DISCUSSION: This study provides novel insight on the mechanisms underlying the in vitro seed germination and protocorm development of P. barbigerum by using a compatible fungal symbiont and will benefit the reintroduction and mycorrhizal symbiotic germination of endangered orchids.

RevDate: 2024-04-02

Rill A, Zhao L, HB Bode (2024)

Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling.

Microbial cell factories, 23(1):98.

BACKGROUND: Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work.

RESULTS: In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743.

CONCLUSIONS: The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.

RevDate: 2024-04-01

Hemali NA, De Alwis AAP, Wijesundara M, et al (2024)

A method for determining the recycling value of unprocessed municipal solid waste in one cubic meter waste composition analysis technique.

MethodsX, 12:102626.

The transition from conventional landfill-centric waste management to resource-centric methodologies necessitates an enhanced comprehension of municipal solid waste (MSW) composition and its inherent value. Existing methodologies documented in the literature exhibit a lack of standardization, impending the formulation of a systematic engineering approach for MSW characterization and valuation. This study introduces a methodology specifically tailored to discern the composition of waste origination from urban households and evaluate its recyclability within the confines of a circular economy framework, Employing a volume-based measurement approach, aims to estimate the recycling value of waste materials. The study's outcomes contribute significantly to quantifying the potential recycling value that accrues to society. Furthermore, the validation of the proposed protocol elucidates the dynamic nature of recyclable value as it traverses the intricate pathways of the waste supply chain. This insight facilitates the formulation of commercial models grounded in circular economy principles for the effective management of household solid waste. Empirical findings reveal that the total recycling value fluctuates within the range of USD 3.39 and USD 5.76 per cubic meter of waste volume, contingent upon the specific waste composition at the experiment site. Additionally, the proposed methodology uncovers the nuanced variability in MSW composition and recycling value across diverse household collection patterns, identifying mixed plastic, paper, cardboard, mixed MSW, and clothing as primary constituents. The application of this methodology extends beyond mere quantification, providing a foundational framework for simulating the latent recycling value embedded within MSW samples. This, in turn, offers invaluable support to strategy developers, policymakers, and entrepreneurial ventures engaged in the sustainable management of household solid waste. In essence, this study establishes the groundwork for a comprehensive understanding of MSW composition and its recyclability, facilitating informed decision-making in the pursuit of a circular economy.•Novel methodology based on one cubic meter (1m3) composition analysis of Municipal Solid Waste (MSW).•A new method to evaluate the recycling value of Municipal Solid Waste.•A basis for business model development for the waste-to-resource conversion model.

RevDate: 2024-04-01

Chen M, Ding Z, Zhou M, et al (2024)

The diversity of endophytic fungi in Tartary buckwheat (Fagopyrum tataricum) and its correlation with flavonoids and phenotypic traits.

Frontiers in microbiology, 15:1360988.

Tartary buckwheat (Fagopyrum tataricum) is a significant medicinal crop, with flavonoids serving as a crucial measure of its quality. Presently, the artificial cultivation of Tartary buckwheat yields low results, and the quality varies across different origins. Therefore, it is imperative to identify an effective method to enhance the yield and quality of buckwheat. Endophytic fungi reside within plants and form a mutually beneficial symbiotic relationship, aiding plants in nutrient absorption, promoting host growth, and improving secondary metabolites akin to the host. In this study, high-throughput sequencing technology was employed to assess the diversity of endophytic fungi in Tartary buckwheat. Subsequently, a correlation analysis was performed between fungi and metabolites, revealing potential increases in flavonoid content due to endophytic fungi such as Bipolaris, Hymenula, and Colletotrichum. Additionally, a correlation analysis between fungi and phenotypic traits unveiled the potential influence of endophytic fungi such as Bipolaris, Buckleyzyma, and Trichosporon on the phenotypic traits of Tartary buckwheat. Notably, the endophytic fungi of the Bipolaris genus exhibited the potential to elevate the content of Tartary buckwheat metabolites and enhance crop growth. Consequently, this study successfully identified the resources of endophytic fungi in Tartary buckwheat, explored potential functional endophytic fungi, and laid a scientific foundation for future implementation of biological fertilizers in improving the quality and growth of Tartary buckwheat.

RevDate: 2024-04-01

Sikdar R, Beauclaire MV, Lima BP, et al (2024)

N -acyl homoserine lactone signaling modulates bacterial community associated with human dental plaque.

bioRxiv : the preprint server for biology pii:2024.03.15.585217.

N -acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO 2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases.

RevDate: 2024-04-01

Song X, Lao J, Wang L, et al (2024)

Research advances on short-chain fatty acids in gastrointestinal acute graft-versus-host disease.

Therapeutic advances in hematology, 15:20406207241237602.

Gastrointestinal acute graft-versus-host disease (GI-aGVHD) is a severe early complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has been shown that the intestinal microbiota plays a critical role in this process. As metabolites of the intestinal microbiota, short-chain fatty acids (SCFAs) are vital for maintaining the host-microbiota symbiotic equilibrium. This article provides an overview of the protective effect of SCFAs in the gastrointestinal tract, emphasizes their association with GI-aGVHD, and explores relevant research progress in prevention and treatment research.

RevDate: 2024-04-01

Ye S, Lu Y, Li G, et al (2024)

Stenotrophomonas maltophilia Isolated from the Gut Symbiotic Community of the Plastic-Eating Tenebrio molitor.

Applied biochemistry and biotechnology [Epub ahead of print].

Polyvinyl chloride (PVC) waste is a major environmental challenge. In this study, we found that a PVC-eating insect, Tenebrio molitor, could survive by consuming PVC as a dietary supplement. To understand the gut symbiotic community, metagenomic analysis was performed to reveal the biodiversity of a symbiotic community in the midgut of Tenebrio molitor. Among them, seven genera were enriched from the midgut of the insect under culture conditions with PVC as carbon source. A strain of Stenotrophomonas maltophilia was isolated from the midgut symbiotic community of the plastic-eating Tenebrio molitor. To unravel the functional gene for the biodegradation enzyme, we sequenced the whole genome of Stenotrophomonas maltophilia and found that orf00390, annotated as a hydrolase, was highly expressed in the PVC culture niche.

RevDate: 2024-04-01

Kendlbacher V, Winter TMR, M Bright (2024)

Zoothamnium mariella sp. nov., a marine, colonial ciliate with an atypcial growth pattern, and its ectosymbiont Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov.

PloS one, 19(4):e0300758.

Ciliates are unicellular eukaryotes, regularly involved in symbiotic associations. Symbionts may colonize the inside of their cells as well as their surface as ectosymbionts. Here, we report on a new ciliate species, designated as Zoothamnium mariella sp. nov. (Peritrichia, Sessilida), discovered in the northern Adriatic Sea (Mediterranean Sea) in 2021. We found this ciliate species to be monospecifically associated with a new genus of ectosymbiotic bacteria, here proposed as Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov. To formally describe the new ciliate species, we investigated its morphology and sequenced its 18S rRNA gene. To demonstrate its association with a single species of bacterial ectosymbiont, we performed 16S rRNA gene sequencing, fluorescence in situ hybridization, and scanning electron microscopy. Additionally, we explored the two partners' cultivation requirements and ecology. Z. mariella sp. nov. was characterized by a colony length of up to 1 mm. A consistent number of either seven or eight long branches alternated on the stalk in close distance to each other. The colony developed three different types of zooids: microzooids ("trophic stage"), macrozooids ("telotroch stage"), and terminal zooids ("dividing stage"). Viewed from inside the cell, the microzooids' oral ciliature ran in 1 ¼ turns in a clockwise direction around the peristomial disc before entering the infundibulum, where it performed another ¾ turn. Phylogenetic analyses assigned Z. mariella sp. nov. to clade II of the family Zoothamnidae. The ectosymbiont formed a monophyletic clade within the Gammaproteobacteria along with two other ectosymbionts of peritrichous ciliates and a free-living vent bacterium. It colonized the entire surface of its ciliate host, except for the most basal stalk of large colonies, and exhibited a single, spindle-shaped morphotype. Furthermore, the two partners together appear to be generalists of temperate, oxic, marine shallow-water environments and were collectively cultivable in steady flow-through systems.

RevDate: 2024-04-01

Damani A, Ghoshal A, Thota R, et al (2024)

Initial Experiences With Integration of Palliative Medicine and Specialist Pain Services in a Tertiary Cancer Care Center in India.

Journal of pain & palliative care pharmacotherapy [Epub ahead of print].

Pain management constitutes a pivotal aspect of palliative care. Certain instances of distressing pain are significantly relieved through interventional pain methodologies, demanding the expertise of pain specialists. Our perspective revolves around the integration of these 2 facets, envisaging a symbiotic relationship that could enhance patient outcomes. A prospective assessment was carried out within a collaborative clinic, uniting the realms of pain management and palliative medicine. Anonymized patient information was scrutinized to grasp the advantages of this amalgamation and identify strategies to address any inherent deficiencies. Furthermore, an illustrative case study was delineated, spotlighting the collaborative dynamics at a systemic level. During the period spanning from November 2020 to June 2021, a total of 43 patients received consultations at this collaborative clinic. Each patient was exposed to a comprehensive pain management regimen, with the most frequently conducted procedure being an intercostal nerve block, which was administered in 9.30% of cases. For the provision of effective pain relief within the palliative care context, the confluence of joint consultations from cancer pain specialists emerges as a requisite measure. This approach carries the promise of optimizing pain control and augmenting the quality of palliative care.

RevDate: 2024-04-02
CmpDate: 2024-04-01

Han CJ, Cheng CH, Yeh TF, et al (2024)

Coconut rhinoceros beetle digestive symbiosis with potential plant cell wall degrading microbes.

NPJ biofilms and microbiomes, 10(1):34.

Coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is an invasive palm pest whose larvae eat wood, yet lack the necessary digestive enzymes. This study confirmed endogenous CRB cellulase is inactive, suggesting microbial fermentation. The inner lining of the CRB hindgut has tree-like structures covered with a conspicuous biofilm. To identify possible symbionts, 16 S rRNA amplicon sequencing was used on individuals from across Taiwan. Several taxa of Clostridia, an anaerobic class including many cellulolytic bacteria, were highly abundant in most individuals from all locations. Whole metagenome sequencing further confirmed many lignocellulose degrading enzymes are derived from these taxa. Analyses of eggs, larvae, adults, and soil found these cellulolytic microbes are not transmitted vertically or transstadially. The core microbiomes of the larval CRB are likely acquired and enriched from the environment with each molt, and enable efficient digestion of wood.

RevDate: 2024-03-30

Sahu S, Kaur A, Singh G, et al (2024)

Integrating biosorption and machine learning for efficient remazol red removal by algae-bacteria Co-culture and comparative analysis of predicted models.

Chemosphere pii:S0045-6535(24)00684-2 [Epub ahead of print].

This research investigates into the efficacy of algae and algae-bacteria symbiosis (ABS) in efficiently decolorizing Remazol Red 5B, a prevalent dye pollutant. The investigation encompasses an exploration of the biosorption isotherm and kinetics governing the dye removal process. Additionally, various machine learning models are employed to predict the efficiency of dye removal within a co-culture system. The results demonstrate that both Desmodesmus abundans and a composite of Desmodesmus abundans and Rhodococcus pyridinivorans exhibit significant dye removal percentages of 75 ± 1% and 78 ± 1%, respectively, after 40 min. The biosorption isotherm analysis reveals a significant interaction between the adsorbate and the biosorbent, and it indicates that the Temkin model best matches the experimental data. Moreover, the Langmuir model indicates a relatively high biosorption capacity, further highlighting the potential of the algae-bacteria composite as an efficient adsorbent. Decision Trees, Random Forest, Support Vector Regression, and Artificial Neural Networks are evaluated for predicting dye removal efficiency. The Random Forest model emerges as the most accurate, exhibiting an R[2] value of 0.98, while Support Vector Regression and Artificial Neural Networks also demonstrate robust predictive capabilities. This study contributes to the advancement of sustainable dye removal strategies and encourages future exploration of hybrid approaches to further enhance predictive accuracy and efficiency in wastewater treatment processes.

RevDate: 2024-04-02
CmpDate: 2024-04-01

Konecka E, P Szymkowiak (2024)

Wolbachia supergroup A in Enoplognatha latimana (Araneae: Theridiidae) in Poland as an example of possible horizontal transfer of bacteria.

Scientific reports, 14(1):7486.

Wolbachia (phylum Pseudomonadota, class Alfaproteobacteria, order Rickettsiales, family Ehrlichiaceae) is a maternally inherited bacterial symbiont infecting more than half of arthropod species worldwide and constituting an important force in the evolution, biology, and ecology of invertebrate hosts. Our study contributes to the limited knowledge regarding the presence of intracellular symbiotic bacteria in spiders. Specifically, we investigated the occurrence of Wolbachia infection in the spider species Enoplognatha latimana Hippa and Oksala, 1982 (Araneae: Theridiidae) using a sample collected in north-western Poland. To the best of our knowledge, this is the first report of Wolbachia infection in E. latimana. A phylogeny based on the sequence analysis of multiple genes, including 16S rRNA, coxA, fbpA, ftsZ, gatB, gltA, groEL, hcpA, and wsp revealed that Wolbachia from the spider represented supergroup A and was related to bacterial endosymbionts discovered in other spider hosts, as well as insects of the orders Diptera and Hymenoptera. A sequence unique for Wolbachia supergroup A was detected for the ftsZ gene. The sequences of Wolbachia housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies. The etiology of Wolbachia infection in E. latimana is discussed.

RevDate: 2024-03-29

Cai JA, GK Christophides (2024)

Immune interactions between mosquitoes and microbes during midgut colonization.

Current opinion in insect science pii:S2214-5745(24)00037-3 [Epub ahead of print].

Mosquitoes encounter diverse microbes during their lifetime, including symbiotic bacteria, shaping their midgut ecosystem. The organization of the midgut supports microbiota persistence while defending against potential pathogens. The influx of nutrients during blood feeding triggers bacterial proliferation, challenging host homeostasis. Immune responses, aimed at controlling bacterial overgrowth, impact blood-borne pathogens like malaria parasites. However, parasites deploy evasion strategies against mosquito immunity. Leveraging these mechanisms could help engineer malaria-resistant mosquitoes, offering a transformative tool for malaria elimination.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )