Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Topologically Associating Domains

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 29 Mar 2023 at 01:56 Created: 

Topologically Associating Domains

"Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization." QUOTE FROM: Dekker Job and Heard Edith (2015), Structural and functional diversity of Topologically Associating Domains, FEBS Letters, 589, doi: 10.1016/j.febslet.2015.08.044

Created with PubMed® Query: ( "Topologically Associating Domains" OR "Topologically Associating Domain" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2023-03-21

Li X, Wang J, Yu Y, et al (2023)

Genomic rearrangements and evolutionary changes in 3D chromatin topologies in the cotton tribe (Gossypieae).

BMC biology, 21(1):56.

BACKGROUND: Analysis of the relationship between chromosomal structural variation (synteny breaks) and 3D-chromatin architectural changes among closely related species has the potential to reveal causes and correlates between chromosomal change and chromatin remodeling. Of note, contrary to extensive studies in animal species, the pace and pattern of chromatin architectural changes following the speciation of plants remain unexplored; moreover, there is little exploration of the occurrence of synteny breaks in the context of multiple genome topological hierarchies within the same model species.

RESULTS: Here we used Hi-C and epigenomic analyses to characterize and compare the profiles of hierarchical chromatin architectural features in representative species of the cotton tribe (Gossypieae), including Gossypium arboreum, Gossypium raimondii, and Gossypioides kirkii, which differ with respect to chromosome rearrangements. We found that (i) overall chromatin architectural territories were preserved in Gossypioides and Gossypium, which was reflected in their similar intra-chromosomal contact patterns and spatial chromosomal distributions; (ii) the non-random preferential occurrence of synteny breaks in A compartment significantly associate with the B-to-A compartment switch in syntenic blocks flanking synteny breaks; (iii) synteny changes co-localize with open-chromatin boundaries of topologically associating domains, while TAD stabilization has a greater influence on regulating orthologous expression divergence than do rearrangements; and (iv) rearranged chromosome segments largely maintain ancestral in-cis interactions.

CONCLUSIONS: Our findings provide insights into the non-random occurrence of epigenomic remodeling relative to the genomic landscape and its evolutionary and functional connections to alterations of hierarchical chromatin architecture, on a known evolutionary timescale.

RevDate: 2023-03-14

Li D, Wu F, Zhou S, et al (2023)

Heterochromatin rewiring and domain disruption-mediated chromatin compaction during erythropoiesis.

Nature structural & molecular biology [Epub ahead of print].

Mammalian erythropoiesis involves progressive chromatin compaction and subsequent enucleation in terminal differentiation, but the mechanisms underlying the three-dimensional chromatin reorganization remain obscure. Here, we systematically analyze the higher-order chromatin in purified populations of primary human erythroblasts. Our results reveal that heterochromatin regions undergo substantial compression, with H3K9me3 markers relocalizing to the nuclear periphery and forming a significant number of long-range interactions, and that ~58% of the topologically associating domain (TAD) boundaries are disrupted, while certain TADs enriched for markers of the active transcription state and erythroid master regulators, GATA1 and KLF1, are selectively maintained during terminal erythropoiesis. Finally, we demonstrate that GATA1 is involved in safeguarding selected essential chromatin domains during terminal erythropoiesis. Our study therefore delineates the molecular characteristics of a development-driven chromatin compaction process, which reveals transcription competence as a key indicator of the selected domain maintenance to ensure appropriate gene expression during the extreme compaction of chromatin.

RevDate: 2023-03-09

Dang D, Zhang SW, Duan R, et al (2023)

Defining the separation landscape of topological domains for decoding consensus domain organization of 3D genome.

Genome research pii:gr.277187.122 [Epub ahead of print].

Topologically associating domains (TADs) have emerged as basic structural and functional units of genome organization, and have been determined by many computational methods from Hi-C contact maps. However, the TADs obtained by different methods vary greatly, which makes the accurate determination of TADs a challenging issue and hinders subsequent biological analyses about their organization and functions. Obvious inconsistencies among the TADs identified by different methods indeed make the statistical and biological properties of TADs overly depend on the method we chose rather than on the data. To this end, we employ the consensus structural information captured by these methods to define the TAD separation landscape for decoding the consensus domain organization of the 3D genome. We demonstrate that the TAD separation landscape could be used to compare domain boundaries across multiple cell types for discovering conserved and divergent topological structures, decipher three types of boundary regions with diverse biological features, and identify Consensus TADs (ConsTADs). We illustrate that these analyses could deepen our understanding of the relationships between the topological domains and chromatin states, gene expression, and DNA replication timing.

RevDate: 2023-03-03

Richer S, Tian Y, Schoenfelder S, et al (2023)

Widespread allele-specific topological domains in the human genome are not confined to imprinted gene clusters.

Genome biology, 24(1):40.

BACKGROUND: There is widespread interest in the three-dimensional chromatin conformation of the genome and its impact on gene expression. However, these studies frequently do not consider parent-of-origin differences, such as genomic imprinting, which result in monoallelic expression. In addition, genome-wide allele-specific chromatin conformation associations have not been extensively explored. There are few accessible bioinformatic workflows for investigating allelic conformation differences and these require pre-phased haplotypes which are not widely available.

RESULTS: We developed a bioinformatic pipeline, "HiCFlow," that performs haplotype assembly and visualization of parental chromatin architecture. We benchmarked the pipeline using prototype haplotype phased Hi-C data from GM12878 cells at three disease-associated imprinted gene clusters. Using Region Capture Hi-C and Hi-C data from human cell lines (1-7HB2, IMR-90, and H1-hESCs), we can robustly identify the known stable allele-specific interactions at the IGF2-H19 locus. Other imprinted loci (DLK1 and SNRPN) are more variable and there is no "canonical imprinted 3D structure," but we could detect allele-specific differences in A/B compartmentalization. Genome-wide, when topologically associating domains (TADs) are unbiasedly ranked according to their allele-specific contact frequencies, a set of allele-specific TADs could be defined. These occur in genomic regions of high sequence variation. In addition to imprinted genes, allele-specific TADs are also enriched for allele-specific expressed genes. We find loci that have not previously been identified as allele-specific expressed genes such as the bitter taste receptors (TAS2Rs).

CONCLUSIONS: This study highlights the widespread differences in chromatin conformation between heterozygous loci and provides a new framework for understanding allele-specific expressed genes.

RevDate: 2023-02-26

Karpinska MA, AM Oudelaar (2023)

The role of loop extrusion in enhancer-mediated gene activation.

Current opinion in genetics & development, 79:102022 pii:S0959-437X(23)00002-3 [Epub ahead of print].

Gene expression patterns in complex multicellular organisms are regulated by enhancers, which communicate with their target gene promoters in three-dimensional (3D) chromatin structures. Despite advances in our understanding of the mechanisms that organize mammalian genomes into compartments and topologically associating domains (TADs), it is not well understood how specific interactions between enhancers and promoters are controlled in this 3D context. In this review, we give an overview of recent evidence that shows that a process of loop extrusion plays an important role in the regulation of enhancer-promoter communication and discuss recent insights into the molecular mechanism by which loop extrusion contributes to enhancer-mediated gene activation.

RevDate: 2023-02-25

Sabaté T, Lelandais B, Bertrand E, et al (2023)

Polymer simulations guide the detection and quantification of chromatin loop extrusion by imaging.

Nucleic acids research pii:7058223 [Epub ahead of print].

Genome-wide chromosome conformation capture (Hi-C) has revealed the organization of chromatin into topologically associating domains (TADs) and loops, which are thought to help regulate genome functions. TADs and loops are understood as the result of DNA extrusion mediated by the cohesin complex. However, despite recent efforts, direct visualization and quantification of this process in single cells remains an open challenge. Here, we use polymer simulations and dedicated analysis methods to explore if, and under which conditions, DNA loop extrusion can be detected and quantitatively characterized by imaging pairs of fluorescently labeled loci located near loop or TAD anchors in fixed or living cells. We find that under realistic conditions, extrusion can be detected and the frequency of loop formation can be quantified from fixed cell images alone, while the lifetime of loops and the speed of extrusion can be estimated from dynamic live-cell data. Our delineation of appropriate imaging conditions and the proposed analytical methods lay the groundwork for a systematic quantitative characterization of loop extrusion in fixed or living cells.

RevDate: 2023-02-17

Zhao Y, Ding Y, He L, et al (2023)

Multiscale 3D genome reorganization during skeletal muscle stem cell lineage progression and aging.

Science advances, 9(7):eabo1360.

Little is known about three-dimensional (3D) genome organization in skeletal muscle stem cells [also called satellite cells (SCs)]. Here, we comprehensively map the 3D genome topology reorganization during mouse SC lineage progression. Specifically, rewiring at the compartment level is most pronounced when SCs become activated. Marked loss in topologically associating domain (TAD) border insulation and chromatin looping also occurs during early activation process. Meanwhile, TADs can form TAD clusters and super-enhancer-containing TAD clusters orchestrate stage-specific gene expression. Furthermore, we uncover that transcription factor PAX7 is pivotal in enhancer-promoter (E-P) loop formation. We also identify cis-regulatory elements that are crucial for local chromatin organization at Pax7 locus and Pax7 expression. Lastly, we unveil that geriatric SC displays a prominent gain in long-range contacts and loss of TAD border insulation. Together, our results uncover that 3D chromatin extensively reorganizes at multiple architectural levels and underpins the transcriptome remodeling during SC lineage development and SC aging.

RevDate: 2023-02-09

Kobets VA, Ulianov SV, Galitsyna AA, et al (2023)

HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases.

Briefings in bioinformatics pii:7033301 [Epub ahead of print].

The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data remain challenging due to technical biases, limiting direct comparisons of datasets obtained in different experiments and laboratories. As a result, removing biases from Hi-C-generated chromatin contact matrices is a critical data analysis step. Our novel approach, HiConfidence, eliminates biases from the Hi-C data by weighing chromatin contacts according to their consistency between replicates so that low-quality replicates do not substantially influence the result. The algorithm is effective for the analysis of global changes in chromatin structures such as compartments and topologically associating domains. We apply the HiConfidence approach to several Hi-C datasets with significant technical biases, that could not be analyzed effectively using existing methods, and obtain meaningful biological conclusions. In particular, HiConfidence aids in the study of how changes in histone acetylation pattern affect chromatin organization in Drosophila melanogaster S2 cells. The method is freely available at GitHub:

RevDate: 2023-02-09
CmpDate: 2023-02-09

Maslova A, Plotnikov V, Nuriddinov M, et al (2023)

Hi-C analysis of genomic contacts revealed karyotype abnormalities in chicken HD3 cell line.

BMC genomics, 24(1):66.

BACKGROUND: Karyotype abnormalities are frequent in immortalized continuous cell lines either transformed or derived from primary tumors. Chromosomal rearrangements can cause dramatic changes in gene expression and affect cellular phenotype and behavior during in vitro culture. Structural variations of chromosomes in many continuous mammalian cell lines are well documented, but chromosome aberrations in cell lines from other vertebrate models often remain understudied. The chicken LSCC-HD3 cell line (HD3), generated from erythroid precursors, was used as an avian model for erythroid differentiation and lineage-specific gene expression. However, karyotype abnormalities in the HD3 cell line were not assessed. In the present study, we applied high-throughput chromosome conformation capture to analyze 3D genome organization and to detect chromosome rearrangements in the HD3 cell line.

RESULTS: We obtained Hi-C maps of genomic interactions for the HD3 cell line and compared A/B compartments and topologically associating domains between HD3 and several other cell types. By analysis of contact patterns in the Hi-C maps of HD3 cells, we identified more than 25 interchromosomal translocations of regions ≥ 200 kb on both micro- and macrochromosomes. We classified most of the observed translocations as unbalanced, leading to the formation of heteromorphic chromosomes. In many cases of microchromosome rearrangements, an entire microchromosome together with other macro- and microchromosomes participated in the emergence of a derivative chromosome, resembling "chromosomal fusions'' between acrocentric microchromosomes. Intrachromosomal inversions, deletions and duplications were also detected in HD3 cells. Several of the identified simple and complex chromosomal rearrangements, such as between GGA2 and GGA1qter; GGA5, GGA4p and GGA7p; GGA4q, GGA6 and GGA19; and duplication of the sex chromosome GGAW, were confirmed by FISH.

CONCLUSIONS: In the erythroid progenitor HD3 cell line, in contrast to mature and immature erythrocytes, the genome is organized into distinct topologically associating domains. The HD3 cell line has a severely rearranged karyotype with most of the chromosomes engaged in translocations and can be used in studies of genome structure-function relationships. Hi-C proved to be a reliable tool for simultaneous assessment of the spatial genome organization and chromosomal aberrations in karyotypes of birds with a large number of microchromosomes.

RevDate: 2023-02-07
CmpDate: 2023-02-07

Yang L, Akgol Oksuz B, Dekker J, et al (2023)

Capturing Chromosome Conformation Across Length Scales.

Journal of visualized experiments : JoVE.

Chromosome conformation capture (3C) is used to detect three-dimensional chromatin interactions. Typically, chemical crosslinking with formaldehyde (FA) is used to fix chromatin interactions. Then, chromatin digestion with a restriction enzyme and subsequent religation of fragment ends converts three-dimensional (3D) proximity into unique ligation products. Finally, after reversal of crosslinks, protein removal, and DNA isolation, DNA is sheared and prepared for high-throughput sequencing. The frequency of proximity ligation of pairs of loci is a measure of the frequency of their colocalization in three-dimensional space in a cell population. A sequenced Hi-C library provides genome-wide information on interaction frequencies between all pairs of loci. The resolution and precision of Hi-C relies on efficient crosslinking that maintains chromatin contacts and frequent and uniform fragmentation of the chromatin. This paper describes an improved in situ Hi-C protocol, Hi-C 3.0, that increases the efficiency of crosslinking by combining two crosslinkers (formaldehyde [FA] and disuccinimidyl glutarate [DSG]), followed by finer digestion using two restriction enzymes (DpnII and DdeI). Hi-C 3.0 is a single protocol for the accurate quantification of genome folding features at smaller scales such as loops and topologically associating domains (TADs), as well as features at larger nucleus-wide scales such as compartments.

RevDate: 2023-02-05

Selcen I, Prentice E, P Casaccia (2023)

The epigenetic landscape of oligodendrocyte lineage cells.

Annals of the New York Academy of Sciences [Epub ahead of print].

The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate into myelin-forming cells and respond to the local environment. First, modifications of DNA, RNA, nucleosomal histones, key principles of chromatin organization, topologically associating domains, and local remodeling will be reviewed. Then, the relationship between epigenetic modulators and RNA processing will be explored. Finally, the reciprocal relationship between the epigenome as a determinant of the mechanical properties of cell nuclei and the target of mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in this lineage.

RevDate: 2023-02-03

Costea J, Schoeberl UE, Malzl D, et al (2023)

A de novo transcription-dependent TAD boundary underpins critical multiway interactions during antibody class switch recombination.

Molecular cell pii:S1097-2765(23)00037-0 [Epub ahead of print].

Interactions between transcription and cohesin-mediated loop extrusion can influence 3D chromatin architecture. However, their relevance in biology is unclear. Here, we report a direct role for such interactions in the mechanism of antibody class switch recombination (CSR) at the murine immunoglobulin heavy chain locus (Igh). Using Tri-C to measure higher-order multiway interactions on single alleles, we find that the juxtaposition (synapsis) of transcriptionally active donor and acceptor Igh switch (S) sequences, an essential step in CSR, occurs via the interaction of loop extrusion complexes with a de novo topologically associating domain (TAD) boundary formed via transcriptional activity across S regions. Surprisingly, synapsis occurs predominantly in proximity to the 3' CTCF-binding element (3'CBE) rather than the Igh super-enhancer, suggesting a two-step mechanism whereby transcription of S regions is not topologically coupled to synapsis, as has been previously proposed. Altogether, these insights advance our understanding of how 3D chromatin architecture regulates CSR.

RevDate: 2023-02-09
CmpDate: 2023-02-07

Cavalheiro GR, Girardot C, Viales RR, et al (2023)

CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles.

Science advances, 9(5):eade1085.

The boundaries of topologically associating domains (TADs) are delimited by insulators and/or active promoters; however, how they are initially established during embryogenesis remains unclear. Here, we examined this during the first hours of Drosophila embryogenesis. DNA-FISH confirms that intra-TAD pairwise proximity is established during zygotic genome activation (ZGA) but with extensive cell-to-cell heterogeneity. Most newly formed boundaries are occupied by combinations of CTCF, BEAF-32, and/or CP190. Depleting each insulator individually from chromatin revealed that TADs can still establish, although with lower insulation, with a subset of boundaries (~10%) being more dependent on specific insulators. Some weakened boundaries have aberrant gene expression due to unconstrained enhancer activity. However, the majority of misexpressed genes have no obvious direct relationship to changes in domain-boundary insulation. Deletion of an active promoter (thereby blocking transcription) at one boundary had a greater impact than deleting the insulator-bound region itself. This suggests that cross-talk between insulators and active promoters and/or transcription might reinforce domain boundary insulation during embryogenesis.

RevDate: 2023-02-02
CmpDate: 2023-02-02

Landshammer A, Bolondi A, Kretzmer H, et al (2023)

T-REX17 is a transiently expressed non-coding RNA essential for human endoderm formation.

eLife, 12:.

Long non-coding RNAs (lncRNAs) have emerged as fundamental regulators in various biological processes, including embryonic development and cellular differentiation. Despite much progress over the past decade, the genome-wide annotation of lncRNAs remains incomplete and many known non-coding loci are still poorly characterized. Here, we report the discovery of a previously unannotated lncRNA that is transcribed 230 kb upstream of the SOX17 gene and located within the same topologically associating domain. We termed it T-REX17 (Transcript Regulating Endoderm and activated by soX17) and show that it is induced following SOX17 activation but its expression is more tightly restricted to early definitive endoderm. Loss of T-REX17 affects crucial functions independent of SOX17 and leads to an aberrant endodermal transcriptome, signaling pathway deregulation and epithelial to mesenchymal transition defects. Consequently, cells lacking the lncRNA cannot further differentiate into more mature endodermal cell types. Taken together, our study identified and characterized T-REX17 as a transiently expressed and essential non-coding regulator in early human endoderm differentiation.

RevDate: 2023-02-03
CmpDate: 2023-02-03

Barajas-Mora EM, Lee L, Lu H, et al (2023)

Enhancer-instructed epigenetic landscape and chromatin compartmentalization dictate a primary antibody repertoire protective against specific bacterial pathogens.

Nature immunology, 24(2):320-336.

Antigen receptor loci are organized into variable (V), diversity (D) and joining (J) gene segments that rearrange to generate antigen receptor repertoires. Here, we identified an enhancer (E34) in the murine immunoglobulin kappa (Igk) locus that instructed rearrangement of Vκ genes located in a sub-topologically associating domain, including a Vκ gene encoding for antibodies targeting bacterial phosphorylcholine. We show that E34 instructs the nuclear repositioning of the E34 sub-topologically associating domain from a recombination-repressive compartment to a recombination-permissive compartment that is marked by equivalent activating histone modifications. Finally, we found that E34-instructed Vκ-Jκ rearrangement was essential to combat Streptococcus pneumoniae but not methicillin-resistant Staphylococcus aureus or influenza infections. We propose that the merging of Vκ genes with Jκ elements is instructed by one-dimensional epigenetic information imposed by enhancers across Vκ and Jκ genomic regions. The data also reveal how enhancers generate distinct antibody repertoires that provide protection against lethal bacterial infection.

RevDate: 2023-01-28

Nayak S, Jiang K, Hope E, et al (2023)

Chromatin landscape governing murine epidermal differentiation.

The Journal of investigative dermatology pii:S0022-202X(23)00017-9 [Epub ahead of print].

Chromatin landscape and regulatory networks are determinant in lineage specification and differentiation. To define the temporospatial differentiation axis in murine epidermal cells in vivo, we generated datasets profiling expression dynamics (RNA-Seq), chromatin accessibility (ATAC-Seq), architecture (Hi-C), and histone modifications (ChIP-Seq) in the epidermis. We show that many differentially regulated genes are suppressed during the differentiation process, with super-enhancers (SEs) controlling differentiation-specific epigenomic changes. Our data shows the relevance of the Dlx/Klf/Grhl combinatorial regulatory network in maintaining correct temporospatial gene expression during epidermal differentiation. We determined differential open compartments, topologically associating domain (TAD) score and looping in the Basal cell (B) and Suprabasal cell (SB) epidermal fractions, with the evolutionarily conserved Epidermal Differentiation Complex (EDC) region showing distinct SB-specific TAD and loop formation that coincided with SE sites. Overall, our study provides a global genome-wide resource of chromatin dynamics that define unrecognized regulatory networks and the epigenetic control of Dlx3-bound SE elements during epidermal differentiation.

RevDate: 2023-01-28

Fan S, Dang D, Ye Y, et al (2023)

scHi-CSim: a flexible simulator that generates high-fidelity single-cell Hi-C data for benchmarking.

Journal of molecular cell biology pii:7008500 [Epub ahead of print].

Single-cell Hi-C technology provides an unprecedented opportunity to reveal chromatin structure in individual cells. However, high sequencing cost impedes the generation of biological Hi-C data with high sequencing depths and multiple replicates for downstream analysis. Here we developed a single-cell Hi-C simulator (scHi-CSim) that generates high-fidelity data for benchmarking. scHi-CSim merges neighboring cells to overcome the sparseness of data, samples interactions in distance-stratified chromosomes to maintain the heterogeneity of single cells, and estimates the empirical distribution of restriction fragments to generate simulated data. We demonstrated that scHi-CSim can generate high-fidelity data by comparing the performance of single-cell clustering and detection of chromosomal high-order structures with raw data. Furthermore, scHi-CSim is flexible to change sequencing depths and the number of simulated replicates. We showed that increasing sequencing depths could improve the accuracy of detecting topologically associating domains. We also used scHi-CSim to generate a series of simulated datasets with different sequencing depths to benchmark single-cell Hi-C clustering methods.

RevDate: 2023-02-07
CmpDate: 2023-02-07

Kim S, J Wysocka (2023)

Deciphering the multi-scale, quantitative cis-regulatory code.

Molecular cell, 83(3):373-392.

Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.

RevDate: 2023-02-06
CmpDate: 2023-01-23

Ni L, Liu Y, Ma X, et al (2023)

Pan-3D genome analysis reveals structural and functional differentiation of soybean genomes.

Genome biology, 24(1):12.

BACKGROUND: High-order chromatin structure plays important roles in gene regulation. However, the diversity of the three-dimensional (3D) genome across plant accessions are seldom reported.

RESULTS: Here, we perform the pan-3D genome analysis using Hi-C sequencing data from 27 soybean accessions and comprehensively investigate the relationships between 3D genomic variations and structural variations (SVs) as well as gene expression. We find that intersection regions between A/B compartments largely contribute to compartment divergence. Topologically associating domain (TAD) boundaries in A compartments exhibit significantly higher density compared to those in B compartments. Pan-3D genome analysis shows that core TAD boundaries have the highest transcription start site (TSS) density and lowest GC content and repeat percentage. Further investigation shows that non-long terminal repeat (non-LTR) retrotransposons play important roles in maintaining TAD boundaries, while Gypsy elements and satellite repeats are associated with private TAD boundaries. Moreover, presence and absence variation (PAV) is found to be the major contributor to 3D genome variations. Nevertheless, approximately 55% of 3D genome variations are not associated with obvious genetic variations, and half of them affect the flanking gene expression. In addition, we find that the 3D genome may also undergo selection during soybean domestication.

CONCLUSION: Our study sheds light on the role of 3D genomes in plant genetic diversity and provides a valuable resource for studying gene regulation and genome evolution.

RevDate: 2023-02-08
CmpDate: 2023-02-03

Islam Z, Saravanan B, Walavalkar K, et al (2023)

Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries.

Genome research, 33(1):1-17.

Vertebrate genomes are partitioned into chromatin domains or topologically associating domains (TADs), which are typically bound by head-to-head pairs of CTCF binding sites. Transcription at domain boundaries correlates with better insulation; however, it is not known whether the boundary transcripts themselves contribute to boundary function. Here we characterize boundary-associated RNAs genome-wide, focusing on the disease-relevant INK4a/ARF and MYC TAD. Using CTCF site deletions and boundary-associated RNA knockdowns, we observe that boundary-associated RNAs facilitate recruitment and clustering of CTCF at TAD borders. The resulting CTCF enrichment enhances TAD insulation, enhancer-promoter interactions, and TAD gene expression. Importantly, knockdown of boundary-associated RNAs results in loss of boundary insulation function. Using enhancer deletions and CRISPRi of promoters, we show that active TAD enhancers, but not promoters, induce boundary-associated RNA transcription, thus defining a novel class of regulatory enhancer RNAs.

RevDate: 2023-01-15

Yeo SJ, Ying C, Fullwood MJ, et al (2023)

Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains.

Trends in genetics : TIG pii:S0168-9525(22)00312-2 [Epub ahead of print].

Topologically associating domains (TADs) are integral to spatial genome organization, instructing gene expression, and cell fate. Recently, several advances have uncovered roles for noncoding RNAs (ncRNAs) in the regulation of the form and function of mammalian TADs. Phase separation has also emerged as a potential arbiter of ncRNAs in the regulation of TADs. In this review we discuss the implications of these novel findings in relation to how ncRNAs might structurally and functionally regulate TADs from two perspectives: moderating loop extrusion through interactions with architectural proteins, and facilitating TAD phase separation. Additionally, we propose future studies and directions to investigate these phenomena.

RevDate: 2023-02-08
CmpDate: 2023-02-03

Mulhair PO, Crowley L, Boyes DH, et al (2023)

Diversity, duplication, and genomic organization of homeobox genes in Lepidoptera.

Genome research, 33(1):32-44.

Homeobox genes encode transcription factors with essential roles in patterning and cell fate in developing animal embryos. Many homeobox genes, including Hox and NK genes, are arranged in gene clusters, a feature likely related to transcriptional control. Sparse taxon sampling and fragmentary genome assemblies mean that little is known about the dynamics of homeobox gene evolution across Lepidoptera or about how changes in homeobox gene number and organization relate to diversity in this large order of insects. Here we analyze an extensive data set of high-quality genomes to characterize the number and organization of all homeobox genes in 123 species of Lepidoptera from 23 taxonomic families. We find most Lepidoptera have around 100 homeobox loci, including an unusual Hox gene cluster in which the lab gene is repositioned and the ro gene is next to pb A topologically associating domain spans much of the gene cluster, suggesting deep regulatory conservation of the Hox cluster arrangement in this insect order. Most Lepidoptera have four Shx genes, divergent zen-derived loci, but these loci underwent dramatic duplication in several lineages, with some moths having over 165 homeobox loci in the Hox gene cluster; this expansion is associated with local LINE element density. In contrast, the NK gene cluster content is more stable, although there are differences in organization compared with other insects, as well as major rearrangements within butterflies. Our analysis represents the first description of homeobox gene content across the order Lepidoptera, exemplifying the potential of newly generated genome assemblies for understanding genome and gene family evolution.

RevDate: 2023-01-17
CmpDate: 2023-01-17

Zhang L, Xu M, Zhang W, et al (2023)

Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: a study using representative cell lines for each cancer type.

Cellular & molecular biology letters, 28(1):1.

BACKGROUND: Spatial chromatin structure is intricately linked with somatic aberrations, and somatic mutations of various cancer-related genes, termed co-mutations (CoMuts), occur in certain patterns during cancer initiation and progression. The functional mechanisms underlying these genetic events remain largely unclear in thyroid cancer (TC). With discrepant differentiation, papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC) differ greatly in characteristics and prognosis. We aimed to reveal the spatial gene alterations and regulations between the two TC subtypes.

METHODS: We systematically investigated and compared the spatial co-mutations between ATC (8305C), PTC (BCPAP and TPC-1), and normal thyroid cells (Nthy-ori-3-1). We constructed a framework integrating whole-genome sequencing (WGS), high-throughput chromosome conformation capture (Hi-C), and transcriptome sequencing, to systematically detect the associations between the somatic co-mutations of cancer-related genes, structural variations (SVs), copy number variations (CNVs), and high-order chromatin conformation.

RESULTS: Spatial co-mutation hotspots were enriched around topologically associating domains (TADs) in TC. A common set of 227 boundaries were identified in both ATC and PTC, with significant overlaps between them. The spatial proximities of the co-mutated gene pairs in the two TC types were significantly greater than in the gene-level and overall backgrounds, and ATC cells had higher TAD contact frequency with CoMuts > 10 compared with PTC cells. Compared with normal thyroid cells, in ATC the number of the created novel three-dimensional chromatin structural domains increased by 10%, and the number of shifted TADs decreased by 7%. We found five TAD blocks with CoMut genes/events specific to ATC with certain mutations in genes including MAST-NSUN4, AM129B/TRUB2, COL5A1/PPP1R26, PPP1R26/GPSM1/CCDC183, and PRAC2/DLX4. For the majority of ATC and PTC cells, the HOXA10 and HIF2α signals close to the transcription start sites of CoMut genes within TADs were significantly stronger than those at the background. CNV breakpoints significantly overlapped with TAD boundaries in both TC subtypes. ATCs had more CNV losses overlapping with TAD boundaries, and noncoding SVs involved in intrachromosomal SVs, amplified inversions, and tandem duplication differed between ATC and PTC. TADs with short range were more abundant in ATC than PTC. More switches of A/B compartment types existed in ATC cells compared with PTC. Gene expression was significantly synchronized, and orchestrated by complex epigenetics and regulatory elements.

CONCLUSION: Chromatin interactions and gene alterations and regulations are largely heterogeneous in TC. CNVs and complex SVs may function in the TC genome by interplaying with TADs, and are largely different between ATC and PTC. Complexity of TC genomes, which are highly organized by 3D genome-wide interactions mediating mutational and structural variations and gene activation, may have been largely underappreciated. Our comprehensive analysis may provide key evidence and targets for more customized diagnosis and treatment of TC.

RevDate: 2023-02-02
CmpDate: 2023-01-26

van Mierlo G, Pushkarev O, Kribelbauer JF, et al (2023)

Chromatin modules and their implication in genomic organization and gene regulation.

Trends in genetics : TIG, 39(2):140-153.

Regulation of gene expression is a complex but highly guided process. While genomic technologies and computational approaches have allowed high-throughput mapping of cis-regulatory elements (CREs) and their interactions in 3D, their precise role in regulating gene expression remains obscure. Recent complementary observations revealed that interactions between CREs frequently result in the formation of small-scale functional modules within topologically associating domains. Such chromatin modules likely emerge from a complex interplay between regulatory machineries assembled at CREs, including site-specific binding of transcription factors. Here, we review the methods that allow identifying chromatin modules, summarize possible mechanisms that steer CRE interactions within these modules, and discuss outstanding challenges to uncover how chromatin modules fit in our current understanding of the functional 3D genome.

RevDate: 2022-12-26

Kato H, Tateishi K, Iwadate D, et al (2022)

HNF1B-driven three-dimensional chromatin structure for molecular classification in pancreatic cancers.

Cancer science [Epub ahead of print].

The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.

RevDate: 2023-02-10
CmpDate: 2023-01-13

Alavattam KG, Mitzelfelt KA, Bonora G, et al (2023)

Dynamic chromatin organization and regulatory interactions in human endothelial cell differentiation.

Stem cell reports, 18(1):159-174.

Vascular endothelial cells are a mesoderm-derived lineage with many essential functions, including angiogenesis and coagulation. The gene-regulatory mechanisms underpinning endothelial specialization are largely unknown, as are the roles of chromatin organization in regulating endothelial cell transcription. To investigate the relationships between chromatin organization and gene expression, we induced endothelial cell differentiation from human pluripotent stem cells and performed Hi-C and RNA-sequencing assays at specific time points. Long-range intrachromosomal contacts increase over the course of differentiation, accompanied by widespread heteroeuchromatic compartment transitions that are tightly associated with transcription. Dynamic topologically associating domain boundaries strengthen and converge on an endothelial cell state, and function to regulate gene expression. Chromatin pairwise point interactions (DNA loops) increase in frequency during differentiation and are linked to the expression of genes essential to vascular biology. Chromatin dynamics guide transcription in endothelial cell development and promote the divergence of endothelial cells from cardiomyocytes.

RevDate: 2022-12-15
CmpDate: 2022-12-15

Yang JY, JM Chang (2022)

Pattern recognition of topologically associating domains using deep learning.

BMC bioinformatics, 22(Suppl 10):634.

BACKGROUND: Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines?

RESULTS: To address the above question, we propose a novel task-TAD recognition-as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation.

CONCLUSIONS: TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.

RevDate: 2023-01-12
CmpDate: 2022-12-15

Mach P, Kos PI, Zhan Y, et al (2022)

Cohesin and CTCF control the dynamics of chromosome folding.

Nature genetics, 54(12):1907-1918.

In mammals, interactions between sequences within topologically associating domains enable control of gene expression across large genomic distances. Yet it is unknown how frequently such contacts occur, how long they last and how they depend on the dynamics of chromosome folding and loop extrusion activity of cohesin. By imaging chromosomal locations at high spatial and temporal resolution in living cells, we show that interactions within topologically associating domains are transient and occur frequently during the course of a cell cycle. Interactions become more frequent and longer in the presence of convergent CTCF sites, resulting in suppression of variability in chromosome folding across time. Supported by physical models of chromosome dynamics, our data suggest that CTCF-anchored loops last around 10 min. Our results show that long-range transcriptional regulation might rely on transient physical proximity, and that cohesin and CTCF stabilize highly dynamic chromosome structures, facilitating selected subsets of chromosomal interactions.

RevDate: 2023-01-13
CmpDate: 2022-12-07

Zhao X, Zhu S, Peng W, et al (2022)

The Interplay of Transcription and Genome Topology Programs T Cell Development and Differentiation.

Journal of immunology (Baltimore, Md. : 1950), 209(12):2269-2278.

T cells are essential for mounting defense against various pathogens and malignantly transformed cells. Thymic development and peripheral T cell differentiation are highly orchestrated biological processes that require precise gene regulation. Higher-order genome organization on multiple scales, in the form of chromatin loops, topologically associating domains and compartments, provides pivotal control of T cell gene expression. CTCF and the cohesin machinery are ubiquitously expressed architectural proteins responsible for establishing chromatin structures. Recent studies indicate that transcription factors, such as T lineage-defining Tcf1 and TCR-induced Batf, may have intrinsic ability and/or engage CTCF to shape chromatin architecture. In this article, we summarize current knowledge on the dynamic changes in genome topology that underlie normal or leukemic T cell development, CD4+ helper T cell differentiation, and CD8+ cytotoxic T cell functions. The knowledge lays a solid foundation for elucidating the causative link of spatial chromatin configuration to transcriptional and functional output in T cells.

RevDate: 2022-12-06

Wang X, Yang B, Zhao W, et al (2022)

Capture Hi-C reveals the influence on dynamic three-dimensional chromosome organization perturbed by genetic variation or vanillin stress in Saccharomyces cerevisiae.

Frontiers in microbiology, 13:1012377.

Studying the mechanisms of resistance to vanillin in microorganisms, which is derived from lignin and blocks a major pathway of DNA double-strand break repair in yeast, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. A high vanillin-tolerant Saccharomyces cerevisiae strain EMV-8 carrying site mutations compared to its parent strain NAN-27 was selected for the analyses. The dynamics of the chromatin structure of eukaryotic cells play a critical role in transcription and the regulation of gene expression and thus the phenotype. Consequently, Hi-C and transcriptome analyses were conducted in EMV-8 and NAN-27 in the log phase with or without vanillin stress to determine the effects of mutations and vanillin disturbance on the dynamics of three-dimensional chromosome organization and the influence of the organization on the transcriptome. The outcomes indicated that the chromosome interaction pattern disturbed by vanillin stress or genetic mutations in the log phase was similar to that in mouse cells. The short chromosomes contact the short chromosomes, and the long chromosomes contact the long chromosomes. In response to vanillin stress, the boundaries of the topologically associating domain (TAD) in the vanillin-tolerant strain EMV-8 were more stable than those in its parent strain NAN-27. The motifs of SFL1, STB3, and NHP6A/B were enriched at TAD boundaries in both EMV-8 and NAN-27 with or without vanillin, indicating that these four genes were probably related to TAD formation. The Indel mutation of YRR1, whose absence was confirmed to benefit vanillin tolerance in EMV-8, caused two new interaction sites that contained three genes, WTM2, PUP1, and ALE1, whose overexpression did not affect vanillin resistance in yeast. Overall, our results revealed that in the log phase, genetic mutations and vanillin disturbance have a negligible effect on three-dimensional chromosome organization, and the reformation or disappearance of TAD boundaries did not show an association with gene expression, which provides an example for studying yeast chromatin structure during stress tolerance using Hi-C technology.

RevDate: 2022-12-06

Bi H, Hou Y, Wang J, et al (2022)

Chromatin reconstruction during mouse terminal erythropoiesis.

iScience, 25(12):105554.

Mammalian terminal erythropoiesis involves chromatin and nuclear condensation followed by enucleation. Late-stage erythroblasts undergo caspase-mediated nuclear opening that is important for nuclear condensation through partial histone release. It remains unknown the dynamic changes of three-dimensional (3D) genomic organization during terminal erythropoiesis. Here, we used Hi-C to determine the chromatin structural change during primary mouse erythroblast terminal differentiation. We also performed RNA-sequencing and ATAC-sequencing under the same experimental setting to further reveal the genome accessibility and gene expression changes during this process. We found that late-stage terminal erythropoiesis involves global loss of topologically associating domains and establishment of inter-chromosomal interactions of the heterochromatin regions, which are associated with globally increased chromatin accessibility and upregulation of erythroid-related genes.

RevDate: 2022-12-13
CmpDate: 2022-12-06

Zhang Y, M Blanchette (2022)

Reference panel guided topological structure annotation of Hi-C data.

Nature communications, 13(1):7426.

Accurately annotating topological structures (e.g., loops and topologically associating domains) from Hi-C data is critical for understanding the role of 3D genome organization in gene regulation. This is a challenging task, especially at high resolution, in part due to the limited sequencing coverage of Hi-C data. Current approaches focus on the analysis of individual Hi-C data sets of interest, without taking advantage of the facts that (i) several hundred Hi-C contact maps are publicly available, and (ii) the vast majority of topological structures are conserved across multiple cell types. Here, we present RefHiC, an attention-based deep learning framework that uses a reference panel of Hi-C datasets to facilitate topological structure annotation from a given study sample. We compare RefHiC against tools that do not use reference samples and find that RefHiC outperforms other programs at both topological associating domain and loop annotation across different cell types, species, and sequencing depths.

RevDate: 2023-01-21
CmpDate: 2023-01-20

Miyata M, Yoshida J, Takagishi I, et al (2023)

Comparison of CRISPR-Cas9-mediated megabase-scale genome deletion methods in mouse embryonic stem cells.

DNA research : an international journal for rapid publication of reports on genes and genomes, 30(1):.

The genome contains large functional units ranging in size from hundreds of kilobases to megabases, such as gene clusters and topologically associating domains. To analyse these large functional units, the technique of deleting the entire functional unit is effective. However, deletion of such large regions is less efficient than conventional genome editing, especially in cultured cells, and a method that can ensure success is anticipated. Here, we compared methods to delete the 2.5-Mb Krüppel-associated box zinc finger protein (KRAB-ZFP) gene cluster in mouse embryonic stem cells using CRISPR-Cas9. Three methods were used: first, deletion by non-homologous end joining (NHEJ); second, homology-directed repair (HDR) using a single-stranded oligodeoxynucleotide (ssODN); and third, HDR employing targeting vectors with a selectable marker and 1-kb homology arms. NHEJ-mediated deletion was achieved in 9% of the transfected cells. Inversion was also detected at similar efficiency. The deletion frequency of NHEJ and HDR was found to be comparable when the ssODN was transfected. Deletion frequency was highest when targeting vectors were introduced, with deletions occurring in 31-63% of the drug-resistant clones. Biallelic deletion was observed when targeting vectors were used. This study will serve as a benchmark for the introduction of large deletions into the genome.

RevDate: 2023-01-13
CmpDate: 2022-11-30

Wang Y, Mak TSH, Dattani S, et al (2022)

Whole genome sequencing reveals epistasis effects within RET for Hirschsprung disease.

Scientific reports, 12(1):20423.

Common variants in RET and NRG1 have been associated with Hirschsprung disease (HSCR), a congenital disorder characterised by incomplete innervation of distal gut, in East Asian (EA) populations. However, the allelic effects so far identified do not fully explain its heritability, suggesting the presence of epistasis, where effect of one genetic variant differs depending on other (modifier) variants. Few instances of epistasis have been documented in complex diseases due to modelling complexity and data challenges. We proposed four epistasis models to comprehensively capture epistasis for HSCR between and within RET and NRG1 loci using whole genome sequencing (WGS) data in EA samples. 65 variants within the Topologically Associating Domain (TAD) of RET demonstrated significant epistasis with the lead enhancer variant (RET+3; rs2435357). These epistatic variants formed two linkage disequilibrium (LD) clusters represented by rs2506026 and rs2506028 that differed in minor allele frequency and the best-supported epistatic model. Intriguingly, rs2506028 is in high LD with one cis-regulatory variant (rs2506030) highlighted previously, suggesting that detected epistasis might be mediated through synergistic effects on transcription regulation of RET. Our findings demonstrated the advantages of WGS data for detecting epistasis, and support the presence of interactive effects of regulatory variants in RET for HSCR.

RevDate: 2023-02-02
CmpDate: 2022-11-23

Zhao H, Yang M, Bishop J, et al (2022)

Identification and functional validation of super-enhancers in Arabidopsis thaliana.

Proceedings of the National Academy of Sciences of the United States of America, 119(48):e2215328119.

Super-enhancers (SEs) are exceptionally large enhancers and are recognized to play prominent roles in cell identity in mammalian species. We surveyed the genomic regions containing large clusters of accessible chromatin regions (ACRs) marked by deoxyribonuclease (DNase) I hypersensitivity in Arabidopsis thaliana. We identified a set of 749 putative SEs, which have a minimum length of 1.5 kilobases and represent the top 2.5% of the largest ACR clusters. We demonstrate that the genomic regions associating with these SEs were more sensitive to DNase I than other nonpromoter ACRs. The SEs were preferentially associated with topologically associating domains. Furthermore, the SEs and their predicted cognate genes were frequently associated with organ development and tissue identity in A. thaliana. Therefore, the A. thaliana SEs and their cognate genes mirror the functional characteristics of those reported in mammalian species. We developed CRISPR/Cas-mediated deletion lines of a 3,578-bp SE associated with the thalianol biosynthetic gene cluster (BGC). Small deletions (131-157 bp) within the SE resulted in distinct phenotypic changes and transcriptional repression of all five thalianol genes. In addition, T-DNA insertions in the SE region resulted in transcriptional alteration of all five thalianol genes. Thus, this SE appears to play a central role in coordinating the operon-like expression pattern of the thalianol BGC.

RevDate: 2022-11-10

Yancoskie MN, Maritz C, van Eijk P, et al (2022)

To incise or not and where: SET-domain methyltransferases know.

Trends in biochemical sciences pii:S0968-0004(22)00274-2 [Epub ahead of print].

The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability.

RevDate: 2022-12-22
CmpDate: 2022-11-08

Kim J, Jimenez DS, Ragipani B, et al (2022)

Condensin DC loads and spreads from recruitment sites to create loop-anchored TADs in C. elegans.

eLife, 11:.

Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.

RevDate: 2023-01-06
CmpDate: 2022-12-23

Attou A, Zülske T, G Wedemann (2022)

Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.

Biophysical journal, 121(24):4788-4799.

The spatial organization of the eukaryotic genome plays an important role in regulating transcriptional activity. In the nucleus, chromatin forms loops that assemble into fundamental units called topologically associating domains that facilitate or inhibit long-range contacts. These loops are formed and held together by the ring-shaped cohesin protein complex, and this can involve binding of CCCTC-binding factor (CTCF). High-resolution conformation capture experiments provide the frequency at which two DNA fragments physically associate in three-dimensional space. However, technical limitations of this approach, such as low throughput, low resolution, or noise in contact maps, make data interpretation and identification of chromatin intraloop contacts, e.g., between distal regulatory elements and their target genes, challenging. Herein, an existing coarse-grained model of chromatin at single-nucleosome resolution was extended by integrating potentials describing CTCF and cohesin. We performed replica-exchange Monte Carlo simulations with regularly spaced nucleosomes and experimentally determined nucleosome positions in the presence of cohesin-CTCF, as well as depleted systems as controls. In fully extruded loops caused by the presence of cohesin and CTCF, the number of contacts within the formed loops was increased. The number and types of these contacts were impacted by the nucleosome distribution and loop size. Microloops were observed within cohesin-mediated loops due to thermal fluctuations without additional influence of other factors, and the number, size, and shape of microloops were determined by nucleosome distribution and loop size. Nucleosome positions directly affect the spatial structure and contact probability within a loop, with presumed consequences for transcriptional activity.

RevDate: 2022-12-13
CmpDate: 2022-11-04

Zhu X, Qi C, Wang R, et al (2022)

Acute depletion of human core nucleoporin reveals direct roles in transcription control but dispensability for 3D genome organization.

Cell reports, 41(5):111576.

The nuclear pore complex (NPC) comprises more than 30 nucleoporins (NUPs) and is a hallmark of eukaryotes. NUPs have been suggested to be important in regulating gene transcription and 3D genome organization. However, evidence in support of their direct roles remains limited. Here, by Cut&Run, we find that core NUPs display broad but also cell-type-specific association with active promoters and enhancers in human cells. Auxin-mediated rapid depletion of two NUPs demonstrates that NUP93, but not NUP35, directly and specifically controls gene transcription. NUP93 directly activates genes with high levels of RNA polymerase II loading and transcriptional elongation by facilitating full BRD4 recruitment to their active enhancers. dCas9-based tethering confirms a direct and causal role of NUP93 in gene transcriptional activation. Unexpectedly, in situ Hi-C and H3K27ac or H3K4me1 HiChIP results upon acute NUP93 depletion show negligible changesS2211-1247(22)01437-1 of 3D genome organization ranging from A/B compartments and topologically associating domains (TADs) to enhancer-promoter contacts.

RevDate: 2023-01-28
CmpDate: 2023-01-18

Wang Y, Song C, Zhao J, et al (2023)

SEdb 2.0: a comprehensive super-enhancer database of human and mouse.

Nucleic acids research, 51(D1):D280-D290.

Super-enhancers (SEs) are cell-specific DNA cis-regulatory elements that can supervise the transcriptional regulation processes of downstream genes. SEdb 2.0 ( aims to provide a comprehensive SE resource and annotate their potential roles in gene transcriptions. Compared with SEdb 1.0, we have made the following improvements: (i) Newly added the mouse SEs and expanded the scale of human SEs. SEdb 2.0 contained 1 167 518 SEs from 1739 human H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) samples and 550 226 SEs from 931 mouse H3K27ac ChIP-seq samples, which was five times that of SEdb 1.0. (ii) Newly added transcription factor binding sites (TFBSs) in SEs identified by TF motifs and TF ChIP-seq data. (iii) Added comprehensive (epi)genetic annotations of SEs, including chromatin accessibility regions, methylation sites, chromatin interaction regions and topologically associating domains (TADs). (iv) Newly embedded and updated search and analysis tools, including 'Search SE by TF-based', 'Differential-Overlapping-SE analysis' and 'SE-based TF-Gene analysis'. (v) Newly provided quality control (QC) metrics for ChIP-seq processing. In summary, SEdb 2.0 is a comprehensive update of SEdb 1.0, which curates more SEs and annotation information than SEdb 1.0. SEdb 2.0 provides a friendly platform for researchers to more comprehensively clarify the important role of SEs in the biological process.

RevDate: 2022-12-24
CmpDate: 2022-11-02

Telonis AG, Yang Q, Huang HT, et al (2022)

MIR retrotransposons link the epigenome and the transcriptome of coding genes in acute myeloid leukemia.

Nature communications, 13(1):6524.

DNMT3A and IDH1/2 mutations combinatorically regulate the transcriptome and the epigenome in acute myeloid leukemia; yet the mechanisms of this interplay are unknown. Using a systems approach within topologically associating domains, we find that genes with significant expression-methylation correlations are enriched in signaling and metabolic pathways. The common denominator across these methylation-regulated genes is the density in MIR retrotransposons of their introns. Moreover, a discrete number of CpGs overlapping enhancers are responsible for regulating most of these genes. Established mouse models recapitulate the dependency of MIR-rich genes on the balanced expression of epigenetic modifiers, while projection of leukemic profiles onto normal hematopoiesis ones further consolidates the dependencies of methylation-regulated genes on MIRs. Collectively, MIR elements on genes and enhancers are susceptible to changes in DNA methylation activity and explain the cooperativity of proteins in this pathway in normal and malignant hematopoiesis.

RevDate: 2022-12-24
CmpDate: 2022-11-01

Schöpflin R, Melo US, Moeinzadeh H, et al (2022)

Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes.

Nature communications, 13(1):6470.

Structural variants are a common cause of disease and contribute to a large extent to inter-individual variability, but their detection and interpretation remain a challenge. Here, we investigate 11 individuals with complex genomic rearrangements including germline chromothripsis by combining short- and long-read genome sequencing (GS) with Hi-C. Large-scale genomic rearrangements are identified in Hi-C interaction maps, allowing for an independent assessment of breakpoint calls derived from the GS methods, resulting in >300 genomic junctions. Based on a comprehensive breakpoint detection and Hi-C, we achieve a reconstruction of whole rearranged chromosomes. Integrating information on the three-dimensional organization of chromatin, we observe that breakpoints occur more frequently than expected in lamina-associated domains (LADs) and that a majority reshuffle topologically associating domains (TADs). By applying phased RNA-seq, we observe an enrichment of genes showing allelic imbalanced expression (AIG) within 100 kb around the breakpoints. Interestingly, the AIGs hit by a breakpoint (19/22) display both up- and downregulation, thereby suggesting different mechanisms at play, such as gene disruption and rearrangements of regulatory information. However, the majority of interpretable genes located 200 kb around a breakpoint do not show significant expression changes. Thus, there is an overall robustness in the genome towards large-scale chromosome rearrangements.

RevDate: 2022-12-22
CmpDate: 2022-11-18

Xu J, Song F, Lyu H, et al (2022)

Subtype-specific 3D genome alteration in acute myeloid leukaemia.

Nature, 611(7935):387-398.

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases[1-5]. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.

RevDate: 2023-01-24
CmpDate: 2022-11-10

Mohajeri K, Yadav R, D'haene E, et al (2022)

Transcriptional and functional consequences of alterations to MEF2C and its topological organization in neuronal models.

American journal of human genetics, 109(11):2049-2067.

Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.

RevDate: 2023-01-07
CmpDate: 2022-11-09

Torosin NS, Golla TR, Lawlor MA, et al (2022)

Mode and Tempo of 3D Genome Evolution in Drosophila.

Molecular biology and evolution, 39(11):.

Topologically associating domains (TADs) are thought to play an important role in preventing gene misexpression by spatially constraining enhancer-promoter contacts. The deleterious nature of gene misexpression implies that TADs should, therefore, be conserved among related species. Several early studies comparing chromosome conformation between species reported high levels of TAD conservation; however, more recent studies have questioned these results. Furthermore, recent work suggests that TAD reorganization is not associated with extensive changes in gene expression. Here, we investigate the evolutionary conservation of TADs among 11 species of Drosophila. We use Hi-C data to identify TADs in each species and employ a comparative phylogenetic approach to derive empirical estimates of the rate of TAD evolution. Surprisingly, we find that TADs evolve rapidly. However, we also find that the rate of evolution depends on the chromatin state of the TAD, with TADs enriched for developmentally regulated chromatin evolving significantly slower than TADs enriched for broadly expressed, active chromatin. We also find that, after controlling for differences in chromatin state, highly conserved TADs do not exhibit higher levels of gene expression constraint. These results suggest that, in general, most TADs evolve rapidly and their divergence is not associated with widespread changes in gene expression. However, higher levels of evolutionary conservation and gene expression constraints in TADs enriched for developmentally regulated chromatin suggest that these TAD subtypes may be more important for regulating gene expression, likely due to the larger number of long-distance enhancer-promoter contacts associated with developmental genes.

RevDate: 2022-10-24
CmpDate: 2022-10-19

Simmons JR, An R, Amankwaa B, et al (2022)

Phosphorylated histone variant γH2Av is associated with chromatin insulators in Drosophila.

PLoS genetics, 18(10):e1010396.

Chromatin insulators are responsible for orchestrating long-range interactions between enhancers and promoters throughout the genome and align with the boundaries of Topologically Associating Domains (TADs). Here, we demonstrate an association between gypsy insulator proteins and the phosphorylated histone variant H2Av (γH2Av), normally a marker of DNA double strand breaks. Gypsy insulator components colocalize with γH2Av throughout the genome, in polytene chromosomes and in diploid cells in which Chromatin IP data shows it is enriched at TAD boundaries. Mutation of insulator components su(Hw) and Cp190 results in a significant reduction in γH2Av levels in chromatin and phosphatase inhibition strengthens the association between insulator components and γH2Av and rescues γH2Av localization in insulator mutants. We also show that γH2Av, but not H2Av, is a component of insulator bodies, which are protein condensates that form during osmotic stress. Phosphatase activity is required for insulator body dissolution after stress recovery. Together, our results implicate the H2A variant with a novel mechanism of insulator function and boundary formation.

RevDate: 2022-12-21
CmpDate: 2022-12-16

Jouret G, Egloff M, Landais E, et al (2023)

Clinical and genomic delineation of the new proximal 19p13.3 microduplication syndrome.

American journal of medical genetics. Part A, 191(1):52-63.

A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.

RevDate: 2023-01-25
CmpDate: 2022-10-04

Ringel AR, Szabo Q, Chiariello AM, et al (2022)

Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes.

Cell, 185(20):3689-3704.e21.

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.

RevDate: 2022-11-28
CmpDate: 2022-09-28

Martinez-Fundichely A, Dixon A, E Khurana (2022)

Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers.

Nature communications, 13(1):5640.

Structural variations (SVs) in cancer cells often impact large genomic regions with functional consequences. However, identification of SVs under positive selection is a challenging task because little is known about the genomic features related to the background breakpoint distribution in different cancers. We report a method that uses a generalized additive model to investigate the breakpoint proximity curves from 2,382 whole-genomes of 32 cancer types. We find that a multivariate model, which includes linear and nonlinear partial contributions of various tissue-specific features and their interaction terms, can explain up to 57% of the observed deviance of breakpoint proximity. In particular, three-dimensional genomic features such as topologically associating domains (TADs), TAD-boundaries and their interaction with other features show significant contributions. The model is validated by identification of known cancer genes and revealed putative drivers in cancers different than those with previous evidence of positive selection.

RevDate: 2022-10-25
CmpDate: 2022-09-28

Damas J, Corbo M, Kim J, et al (2022)

Evolution of the ancestral mammalian karyotype and syntenic regions.

Proceedings of the National Academy of Sciences of the United States of America, 119(40):e2209139119.

Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.

RevDate: 2022-09-24

Chow CN, Tseng KC, Hou PF, et al (2022)

Mysteries of gene regulation: Promoters are not the sole triggers of gene expression.

Computational and structural biotechnology journal, 20:4910-4920.

Cis-regulatory elements of promoters are essential for gene regulation by transcription factors (TFs). However, the regulatory roles of nonpromoter regions, TFs, and epigenetic marks remain poorly understood in plants. In this study, we characterized the cis-regulatory regions of 53 TFs and 19 histone marks in 328 chromatin immunoprecipitation (ChIP-seq) datasets from Arabidopsis. The genome-wide maps indicated that both promoters and regions around the transcription termination sites of protein-coding genes recruit the most TFs. The maps also revealed a diverse of histone combinations. The analysis suggested that exons play critical roles in the regulation of non-coding genes. Additionally, comparative analysis between heat-stress-responsive and nonresponsive genes indicated that the genes with distinct functions also exhibited substantial differences in cis-regulatory regions, histone regulation, and topologically associating domain (TAD) boundary organization. By integrating multiple high-throughput sequencing datasets, this study generated regulatory models for protein-coding genes, non-coding genes, and TAD boundaries to explain the complexity of transcriptional regulation.

RevDate: 2022-10-25

Doyle EJ, Morey L, E Conway (2022)

Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation.

Frontiers in cell and developmental biology, 10:986319.

Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.

RevDate: 2022-11-19
CmpDate: 2022-09-16

Götz M, Messina O, Espinola S, et al (2022)

Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila.

Nature communications, 13(1):5375.

The spatial organization of chromatin at the scale of topologically associating domains (TADs) and below displays large cell-to-cell variations. Up until now, how this heterogeneity in chromatin conformation is shaped by chromatin condensation, TAD insulation, and transcription has remained mostly elusive. Here, we used Hi-M, a multiplexed DNA-FISH imaging technique providing developmental timing and transcriptional status, to show that the emergence of TADs at the ensemble level partially segregates the conformational space explored by single nuclei during the early development of Drosophila embryos. Surprisingly, a substantial fraction of nuclei display strong insulation even before TADs emerge. Moreover, active transcription within a TAD leads to minor changes to the local inter- and intra-TAD chromatin conformation in single nuclei and only weakly affects insulation to the neighboring TAD. Overall, our results indicate that multiple parameters contribute to shaping the chromatin architecture of single nuclei at the TAD scale.

RevDate: 2022-11-19
CmpDate: 2022-09-28

Kane L, Williamson I, Flyamer IM, et al (2022)

Cohesin is required for long-range enhancer action at the Shh locus.

Nature structural & molecular biology, 29(9):891-897.

The regulatory landscapes of developmental genes in mammals can be complex, with enhancers spread over many hundreds of kilobases. It has been suggested that three-dimensional genome organization, particularly topologically associating domains formed by cohesin-mediated loop extrusion, is important for enhancers to act over such large genomic distances. By coupling acute protein degradation with synthetic activation by targeted transcription factor recruitment, here we show that cohesin, but not CTCF, is required for activation of the target gene Shh by distant enhancers in mouse embryonic stem cells. Cohesin is not required for activation directly at the promoter or by an enhancer located closer to the Shh gene. Our findings support the hypothesis that chromatin compaction via cohesin-mediated loop extrusion allows for genes to be activated by enhancers that are located many hundreds of kilobases away in the linear genome and suggests that cohesin is dispensable for enhancers located more proximally.

RevDate: 2022-11-01
CmpDate: 2022-09-13

Zheng L, W Wang (2022)

Regulation associated modules reflect 3D genome modularity associated with chromatin activity.

Nature communications, 13(1):5281.

The 3D genome has been shown to be organized into modules including topologically associating domains (TADs) and compartments that are primarily defined by spatial contacts from Hi-C. There exists a gap to investigate whether and how the spatial modularity of the chromatin is related to the functional modularity resulting from chromatin activity. Despite histone modifications reflecting chromatin activity, inferring spatial modularity of the genome directly from the histone modification patterns has not been well explored. Here, we report that histone modifications show a modular pattern (referred to as regulation associated modules, RAMs) that reflects spatial chromatin modularity. Enhancer-promoter interactions, loop anchors, super-enhancer clusters and extrachromosomal DNAs (ecDNAs) are found to occur more often within the same RAMs than within the same TADs. Consistently, compared to the TAD boundaries, deletions of RAM boundaries perturb the chromatin structure more severely (may even cause cell death) and somatic variants in cancer samples are more enriched in RAM boundaries. These observations suggest that RAMs reflect a modular organization of the 3D genome at a scale better aligned with chromatin activity, providing a bridge connecting the structural and functional modularity of the genome.

RevDate: 2022-09-06

Sun Y, Dotson GA, Muir LA, et al (2022)

Rearrangement of T Cell genome architecture regulates GVHD.

iScience, 25(9):104846.

WAPL, cohesin's DNA release factor, regulates three-dimensional (3D) chromatin architecture. The 3D chromatin structure and its relevance to mature T cell functions is not well understood. We show that in vivo lymphopenic expansion, and alloantigen-driven proliferation, alters the 3D structure and function of the genome in mature T cells. Conditional deletion of WAPL, cohesin's DNA release factor, in T cells reduced long-range genomic interactions and altered chromatin A/B compartments and interactions within topologically associating domains (TADs) of the chromatin in T cells at baseline. WAPL deficiency in T cells reduced loop extensions, changed expression of cell cycling genes and reduced proliferation following in vitro and in vivo stimulation, and reduced severity of graft-versus-host disease (GVHD) following experimental allogeneic hematopoietic stem cell transplantation. These data collectively characterize 3D genomic architecture of T cells in vivo and demonstrate biological and clinical implications for its disruption by cohesin release factor WAPL.

RevDate: 2022-12-22
CmpDate: 2022-10-27

Che Y, Yang X, Jia P, et al (2022)

D[2] Plot, a Matrix of DNA Density and Distance to Periphery, Reveals Functional Genome Regions.

Advanced science (Weinheim, Baden-Wurttemberg, Germany), 9(30):e2202149.

The execution of biological activities inside space-limited cell nuclei requires sophisticated organization. Current studies on the 3D genome focus on chromatin interactions and local structures, e.g., topologically associating domains (TADs). In this study, two global physical properties: DNA density and distance to nuclear periphery (DisTP), are introduced and a 2D matrix, D[2] plot, is constructed for mapping genetic and epigenetic markers. Distinct patterns of functional markers on the D[2] plot, indicating its ability to compartmentalize functional genome regions, are observed. Furthermore, enrichments of transcription-related markers are concatenated into a cross-species transcriptional activation model, where the nucleus is divided into four areas: active, intermediate, repress and histone, and repress and repeat. Based on the trajectories of the genomic regions on D[2] plot, the constantly active and newly activated genes are successfully identified during olfactory sensory neuron maturation. The analysis reveals that the D[2] plot effectively categorizes functional regions and provides a universal and transcription-related measurement for the 3D genome.

RevDate: 2022-11-03
CmpDate: 2022-10-06

Schwartz M (2022)

Can abnormal chromatin folding cause high-penetrance cancer predisposition?.

Physiological genomics, 54(10):380-388.

Sequencing cancer predisposing genes (CPGs) in evocative patients (i.e., patients with personal and family history of multiple/early-onset/unusual cancers) allows follow-up in their relatives to be adapted when a causative pathogenic variant is identified. Unfortunately, many evocative families remain unexplained. Part of this "missing heritability" could be due to CPG dysregulations caused by remote noncoding genomic alterations. Transcription levels are regulated through the ability of promoters to physically interact with their distant cis-regulatory elements. Three-dimensional chromatin contacts, mediated by a dynamic loop extrusion process, are uncovered by chromosome conformation capture (3C) and 3C-derived techniques, which have enabled the discovery of new pathological mechanisms in developmental diseases and cancers. High-penetrance cancer predisposition is caused by germline hereditary alterations otherwise found at the somatic level in sporadic cancers. Thus, data from both developmental diseases and cancers provide information about possible unknown cancer predisposition mechanisms. This mini-review aims to deduce from these data whether abnormal chromatin folding can cause high-penetrance cancer predisposition.

RevDate: 2022-11-22
CmpDate: 2022-11-22

Kulikova T, Maslova A, Starshova P, et al (2022)

Comparison of the somatic TADs and lampbrush chromomere-loop complexes in transcriptionally active prophase I oocytes.

Chromosoma, 131(4):207-223.

In diplotene oocyte nuclei of all vertebrate species, except mammals, chromosomes lack interchromosomal contacts and chromatin is linearly compartmentalized into distinct chromomere-loop complexes forming lampbrush chromosomes. However, the mechanisms underlying the formation of chromomere-loop complexes remain unexplored. Here we aimed to compare somatic topologically associating domains (TADs), recently identified in chicken embryonic fibroblasts, with chromomere-loop complexes in lampbrush meiotic chromosomes. By measuring 3D-distances and colocalization between linear equidistantly located genomic loci, positioned within one TAD or separated by a TAD border, we confirmed the presence of predicted TADs in chicken embryonic fibroblast nuclei. Using three-colored FISH with BAC probes, we mapped equidistant genomic regions included in several sequential somatic TADs on isolated chicken lampbrush chromosomes. Eight genomic regions, each comprising two or three somatic TADs, were mapped to non-overlapping neighboring lampbrush chromatin domains - lateral loops, chromomeres, or chromomere-loop complexes. Genomic loci from the neighboring somatic TADs could localize in one lampbrush chromomere-loop complex, while genomic loci belonging to the same somatic TAD could be localized in neighboring lampbrush chromomere-loop domains. In addition, FISH-mapping of BAC probes to the nascent transcripts on the lateral loops indicates transcription of at least 17 protein-coding genes and 2 non-coding RNA genes during the lampbrush stage of chicken oogenesis, including genes involved in oocyte maturation and early embryo development.

RevDate: 2022-08-26

Wang X, Yan J, Ye Z, et al (2022)

Reorganization of 3D chromatin architecture in doxorubicin-resistant breast cancer cells.

Frontiers in cell and developmental biology, 10:974750.

Background: Doxorubicin resistance remains a major therapeutic challenge leading to poor survival prognosis and treatment failure in breast cancer. Although doxorubicin induces massive changes in the transcriptional landscape are well known, potential diagnostic or therapeutic targets associated with the reorganization of three-dimensional (3D) chromatin architecture have not yet been systematically investigated. Methods: Here we performed in situ high-throughput chromosome conformation capture (Hi-C) on parental and doxorubicin-resistant MCF7 (MCF7-DR) human breast cancer cells, followed by integrative analysis of HiC, ATAC-seq, RNA-seq and TCGA data. Results: It revealed that A/B compartment switching was positively correlated to genome-wide differential gene expression. The genome of MCF7-DR cells was spatially reorganized into smaller topologically associating domains (TADs) and chromatin loops. We also revealed the contribution of increased chromatin accessibility and potential transcription factor families, including CTCF, AP-1 and bHLH, to gained TADs or loops. Intriguingly, we observed two condensed genomic regions (∼20 kb) with decreased chromatin accessibility flanking TAD boundaries, which might play a critical role in the formation or maintenance of TADs. Finally, combining data from TCGA, we identified a number of gained and lost enhancer-promoter interactions and their corresponding differentially expressed genes involved in chromatin organization and breast cancer signaling pathways, including FA2H, FOXA1 and JRKL, which might serve as potential treatment targets for breast cancer. Conclusion: These data uncovered a close connection between 3D genome reorganization, chromatin accessibility as well as gene transcription and provide novel insights into the epigenomic mechanisms involving doxorubicin resistance in breast cancer.

RevDate: 2022-11-08
CmpDate: 2022-10-05

Chen M, Jia L, Zheng X, et al (2022)

Ancient Human Endogenous Retroviruses Contribute to Genetic Evolution and Regulate Cancer Cell Type-Specific Gene Expression.

Cancer research, 82(19):3457-3473.

UNLABELLED: Human endogenous retroviruses (HERV), a type of transposable elements (TE), play crucial roles in human placental morphogenesis, immune response, and cancer progression. Emerging evidence suggests that TEs have been a rich source of regulatory elements in the human genome, but little is known about the global impact of HERVs on transcriptional networks in cancer. Using genome-wide approaches, we show that HERVs are composed primarily of three ancient superfamilies: ERVL-MaLR, ERVL, and ERV1. This analysis suggests that the integration of exonic, intronic, and intergenic HERVs, as well as human or Hominidae gene-specific HERVs, contributes to human genomic innovation. HERVs exonized in genes are located mainly in the 3' untranslated region (UTR) or 3' end and participate in basic biological processes. Active HERVs are located mainly in intronic and intergenic regions and tend to function as enhancers and contribute to cancer cell type-specific gene expression. More importantly, HERVs may also define chromatin topologically associating domain (TAD) and loop boundaries in a cell type-specific manner. Taken together, these findings reveal that ancient HERV elements are a source of diverse regulatory sequences, including 3' UTRs, 5' UTRs, promoters, and enhancers, and they contribute to genetic innovation and cancer cell type-specific gene expression, highlighting the previously underestimated importance of these elements.

SIGNIFICANCE: Genome-wide analyses show that human endogenous retroviruses mediate cancer cell type-specific gene expression, epigenetic modification, and 3D chromatin architecture, elucidating the relationship between HERVs and diverse cancers.

RevDate: 2022-10-05
CmpDate: 2022-08-17

Kurotaki D, Kikuchi K, Cui K, et al (2022)

Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation.

Proceedings of the National Academy of Sciences of the United States of America, 119(34):e2207009119.

Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.

RevDate: 2022-08-16

Zhou T, Q Feng (2022)

Androgen receptor signaling and spatial chromatin organization in castration-resistant prostate cancer.

Frontiers in medicine, 9:924087.

Prostate cancer is one of the leading causes of cancer death and affects millions of men in the world. The American Cancer Society estimated about 34,500 deaths from prostate cancer in the United States in year 2022. The Androgen receptor (AR) signaling is a major pathway that sustains local and metastatic prostate tumor growth. Androgen-deprivation therapy (ADT) is the standard of care for metastatic prostate cancer patient and can suppress the tumor growth for a median of 2-3 years. Unfortunately, the malignancy inevitably progresses to castration-resistant prostate cancer (CRPC) which is more aggressive and no longer responsive to ADT. Surprisingly, for most of the CPRC patients, cancer growth still depends on androgen receptor signaling. Accumulating evidence suggests that CRPC cells have rewired their transcriptional program to retain AR signaling in the absence of androgens. Besides AR, other transcription factors also contribute to the resistance mechanism through multiple pathways including enhancing AR signaling pathway and activating other complementary signaling pathways for the favor of AR downstream genes expression. More recent studies have shown the role of transcription factors in reconfiguring chromatin 3D structure and regulating topologically associating domains (TADs). Pioneer factors, transcription factors and coactivators form liquid-liquid phase separation compartment that can modulate transcriptional events along with configuring TADs. The role of AR and other transcription factors on chromatin structure change and formation of condensate compartment in prostate cancer cells has only been recently investigated and appreciated. This review intends to provide an overview of transcription factors that contribute to AR signaling through activation of gene expression, governing 3D chromatin structure and establishing phase to phase separation. A more detailed understanding of the spatial role of transcription factors in CRPC might provide novel therapeutic targets for the treatment of CRPC.

RevDate: 2022-08-31
CmpDate: 2022-08-16

Giaimo BD, T Borggrefe (2022)

Enhancer-promoter communication: unraveling enhancer strength and positioning within a given topologically associating domain (TAD).

Signal transduction and targeted therapy, 7(1):281.

RevDate: 2022-10-15

Fang K, Wang J, Liu L, et al (2022)

Mapping nucleosome and chromatin architectures: A survey of computational methods.

Computational and structural biotechnology journal, 20:3955-3962.

With ever-growing genomic sequencing data, the data variabilities and the underlying biases of the sequencing technologies pose significant computational challenges ranging from the need for accurately detecting the nucleosome positioning or chromatin interaction to the need for developing normalization methods to eliminate systematic biases. This review mainly surveys the computational methods for mapping the higher-resolution nucleosome and higher-order chromatin architectures. While a detailed discussion of the underlying algorithms is beyond the scope of our survey, we have discussed the methods and tools that can detect the nucleosomes in the genome, then demonstrated the computational methods for identifying 3D chromatin domains and interactions. We further illustrated computational approaches for integrating multi-omics data with Hi-C data and the advance of single-cell (sc)Hi-C data analysis. Our survey provides a comprehensive and valuable resource for biomedical scientists interested in studying nucleosome organization and chromatin structures as well as for computational scientists who are interested in improving upon them.

RevDate: 2022-08-09

Ahn J, Lee J, Kim DH, et al (2022)

Loss of Monoallelic Expression of IGF2 in the Adult Liver Via Alternative Promoter Usage and Chromatin Reorganization.

Frontiers in genetics, 13:920641.

In mammals, genomic imprinting operates via gene silencing mechanisms. Although conservation of the imprinting mechanism at the H19/IGF2 locus has been generally described in pigs, tissue-specific imprinting at the transcript level, monoallelic-to-biallelic conversion, and spatio-temporal chromatin reorganization remain largely uninvestigated. Here, we delineate spatially regulated imprinting of IGF2 transcripts, age-dependent hepatic mono- to biallelic conversion, and reorganization of topologically associating domains at the porcine H19/IGF2 locus for better translation to human and animal research. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of normal and parthenogenetic porcine embryos revealed the paternally hypermethylated H19 differentially methylated region and paternal expression of IGF2. Using a polymorphism-based approach and omics datasets from chromatin immunoprecipitation sequencing (ChIP-seq), whole-genome sequencing (WGS), RNA-seq, and Hi-C, regulation of IGF2 during development was analyzed. Regulatory elements in the liver were distinguished from those in the muscle where the porcine IGF2 transcript was monoallelically expressed. The IGF2 transcript from the liver was biallelically expressed at later developmental stages in both pigs and humans. Chromatin interaction was less frequent in the adult liver compared to the fetal liver and skeletal muscle. The duration of genomic imprinting effects within the H19/IGF2 locus might be reduced in the liver with biallelic conversion through alternative promoter usage and chromatin remodeling. Our integrative omics analyses of genome, epigenome, and transcriptome provided a comprehensive view of imprinting status at the H19/IGF2 cluster.

RevDate: 2022-12-27
CmpDate: 2022-12-15

Sun Z, Wang Y, Song Z, et al (2022)

DNA methylation in transposable elements buffers the connection between three-dimensional chromatin organization and gene transcription upon rice genome duplication.

Journal of advanced research, 42:41-53.

INTRODUCTION: Polyploidy is a major force in plant evolution and the domestication of cultivated crops.

OBJECTIVES: The study aimed to explore the relationship and underlying mechanism between three-dimensional (3D) chromatin organization and gene transcription upon rice genome duplication.

METHODS: The 3D chromatin structures between diploid (2C) and autotetraploid (4C) rice were compared using high-throughput chromosome conformation capture (Hi-C) analysis. The study combined genetics, transcriptomics, whole-genome bisulfite sequencing (WGBS-seq) and 3D genomics approaches to uncover the mechanism for DNA methylation in modulating gene transcription through 3D chromatin architectures upon rice genome duplication.

RESULTS: We found that 4C rice presents weakened intra-chromosomal interactions compared to its 2C progenitor in some chromosomes. In addition, we found that changes of 3D chromatin organizations including chromatin compartments, topologically associating domains (TADs), and loops, are uncorrelated with gene transcription. Moreover, DNA methylations in the regulatory sequences of genes in compartment A/B switched regions and TAD boundaries are unrelated to their expression. Importantly, although there was no significant difference in the methylation levels in transposable elements (TEs) in differentially expressed gene (DEG) and non-DEG promoters between 2C and 4C rice, we found that the hypermethylated TEs across genes in compartment A/B switched regions and TAD boundaries may suppress the expression of these genes.

CONCLUSION: The study proposed that the rice genome doubling might modulate TE methylation to buffer the effects of chromatin architecture on gene transcription in compartment A/B switched regions and TAD boundaries, resulting in the disconnection between 3D chromatin structure alteration and gene transcription upon rice genome duplication.

RevDate: 2022-08-09

Li D, Strong A, Hou C, et al (2022)

Interstitial deletion 4p15.32p16.1 and complex chromoplexy in a female proband with severe neurodevelopmental delay, growth failure and dysmorphism.

Molecular cytogenetics, 15(1):33.

Complex chromosomal rearrangements involve the restructuring of genetic material within a single chromosome or across multiple chromosomes. These events can cause serious human disease by disrupting coding DNA and gene regulatory elements via deletions, duplications, and structural rearrangements. Here we describe a 5-year-old female with severe developmental delay, dysmorphic features, multi-suture craniosynostosis, and growth failure found to have a complex series of balanced intra- and inter-chromosomal rearrangements involving chromosomes 4, 11, 13, and X. Initial clinical studies were performed by karyotype, chromosomal microarray, and FISH with research-based short-read genome sequencing coupled with sanger sequencing to precisely map her breakpoints to the base pair resolution to understand the molecular basis of her phenotype. Genome analysis revealed two pathogenic deletions at 4p16.1-p15.32 and 4q31.1, accounting for her developmental delay and dysmorphism. We identified over 60 breakpoints, many with blunt ends and limited homology, supporting a role for non-homologous end joining in restructuring and resolution of the seminal chromoplexy event. We propose that the complexity of our patient's genomic rearrangements with a high number of breakpoints causes dysregulation of gene expression by three-dimensional chromatin interactions or topologically associating domains leading to growth failure and craniosynostosis. Our work supports an important role for genome sequencing in understanding the molecular basis of complex chromosomal rearrangements in human disease.

RevDate: 2023-01-25
CmpDate: 2022-07-29

Campbell M, Chantarasrivong C, Yanagihashi Y, et al (2022)

KSHV Topologically Associating Domains in Latent and Reactivated Viral Chromatin.

Journal of virology, 96(14):e0056522.

Eukaryotic genomes are structurally organized via the formation of multiple loops that create gene expression regulatory units called topologically associating domains (TADs). Here we revealed the KSHV TAD structure at 500 bp resolution and constructed a 3D KSHV genomic structural model with 2 kb binning. The latent KSHV genome formed very similar genomic architectures in three different naturally infected PEL cell lines and in an experimentally infected epithelial cell line. The majority of the TAD boundaries were occupied by structural maintenance of chromosomes (SMC1) cohesin complex and CCCTC-binding factor (CTCF), and the KSHV transactivator was recruited to those sites during reactivation. Triggering KSHV gene expression decreased prewired genomic loops within the regulatory unit, while contacts extending outside of regulatory borders increased, leading to formation of a larger regulatory unit with a shift from repressive to active compartments (B to A). The 3D genomic structural model proposes that the immediate early promoter region is localized on the periphery of the 3D viral genome during latency, while highly inducible noncoding RNA regions moved toward the inner space of the structure, resembling the configuration of a "bird cage" during reactivation. The compartment-like properties of viral episomal chromatin structure and its reorganization during the transition from latency may help facilitate viral gene transcription. IMPORTANCE The 3D architecture of chromatin allows for efficient arrangement, expression, and replication of genetic material. The genomes of all organisms studied to date have been found to be organized through some form of tiered domain structures. However, the architectural framework of the genomes of large double-stranded DNA viruses such as the herpesvirus family has not been reported. Prior studies with Kaposi's sarcoma-associated herpesvirus (KSHV) have indicated that the viral chromatin shares many biological properties exhibited by the host cell genome, essentially behaving as a mini human chromosome. Thus, we hypothesized that the KSHV genome may be organized in a similar manner. In this report, we describe the domain structure of the latent and lytic KSHV genome at 500 bp resolution and present a 3D genomic structural model for KSHV under each condition. These results add new insights into the complex regulation of the viral life cycle.

RevDate: 2022-09-13
CmpDate: 2022-07-26

Sabaté T, Zimmer C, E Bertrand (2022)

Versatile CRISPR-Based Method for Site-Specific Insertion of Repeat Arrays to Visualize Chromatin Loci in Living Cells.

Methods in molecular biology (Clifton, N.J.), 2532:275-290.

Hi-C and related sequencing-based techniques have brought a detailed understanding of the 3D genome architecture and the discovery of novel structures such as topologically associating domains (TADs) and chromatin loops, which emerge from cohesin-mediated DNA extrusion. However, these techniques require cell fixation, which precludes assessment of chromatin structure dynamics, and are generally restricted to population averages, thus masking cell-to-cell heterogeneity. By contrast, live-cell imaging allows to characterize and quantify the temporal dynamics of chromatin, potentially including TADs and loops in single cells. Specific chromatin loci can be visualized at high temporal and spatial resolution by inserting a repeat array from bacterial operator sequences bound by fluorescent tags. Using two different types of repeats allows to tag both anchors of a loop in different colors, thus enabling to track them separately even when they are in close vicinity. Here, we describe a versatile cloning method for generating many repeat array repair cassettes in parallel and inserting them by CRISPR-Cas9 into the human genome. This method should be instrumental to studying chromatin loop dynamics in single human cells.

RevDate: 2022-09-07
CmpDate: 2022-07-26

Miranda M, Noordermeer D, B Moindrot (2022)

Detection of Allele-Specific 3D Chromatin Interactions Using High-Resolution In-Nucleus 4C-seq.

Methods in molecular biology (Clifton, N.J.), 2532:15-33.

Chromosome conformation capture techniques are a set of methods used to determine 3D genome organization through the capture and identification of physical contacts between pairs of genomic loci. Among them, 4C-seq (circular chromosome conformation capture coupled to high-throughput sequencing) allows for the identification and quantification of the sequences interacting with a preselected locus of interest. 4C-seq has been widely used in the literature, mainly to study chromatin loops between enhancers and promoters or between CTCF binding sites and to identify chromatin domain boundaries. As 3D-contacts may be established in an allele-specific manner, we describe an up-to-date allele-specific 4C-seq protocol, starting from the selection of allele-specific viewpoints to Illumina sequencing. This protocol has mainly been optimized for cultured mammalian cells, but can be adapted for other cell types with relatively minor changes in initial steps.

RevDate: 2022-07-22

Sengupta K, Denkiewicz M, Chiliński M, et al (2022)

Multi-scale phase separation by explosive percolation with single-chromatin loop resolution.

Computational and structural biotechnology journal, 20:3591-3603.

The 2 m-long human DNA is tightly intertwined into the cell nucleus of the size of 10 μm. The DNA packing is explained by folding of chromatin fiber. This folding leads to the formation of such hierarchical structures as: chromosomal territories, compartments; densely-packed genomic regions known as Topologically Associating Domains (TADs), or Chromatin Contact Domains (CCDs), and loops. We propose models of dynamical human genome folding into hierarchical components in human lymphoblastoid, stem cell, and fibroblast cell lines. Our models are based on explosive percolation theory. The chromosomes are modeled as graphs where CTCF chromatin loops are represented as edges. The folding trajectory is simulated by gradually introducing loops to the graph following various edge addition strategies that are based on topological network properties, chromatin loop frequencies, compartmentalization, or epigenomic features. Finally, we propose the genome folding model - a biophysical pseudo-time process guided by a single scalar order parameter. The parameter is calculated by Linear Discriminant Analysis of chromatin features. We also include dynamics of loop formation by using Loop Extrusion Model (LEM) while adding them to the system. The chromatin phase separation, where fiber folds in 3D space into topological domains and compartments, is observed when the critical number of contacts is reached. We also observe that at least 80% of the loops are needed for chromatin fiber to condense in 3D space, and this is constant through various cell lines. Overall, our in-silico model integrates the high-throughput 3D genome interaction experimental data with the novel theoretical concept of phase separation, which allows us to model event-based time dynamics of chromatin loop formation and folding trajectories.

RevDate: 2022-07-16

Lamberti WF, C Zang (2022)

Extracting physical characteristics of higher-order chromatin structures from 3D image data.

Computational and structural biotechnology journal, 20:3387-3398.

Higher-order chromatin structures have functional impacts on gene regulation and cell identity determination. Using high-throughput sequencing (HTS)-based methods like Hi-C, active or inactive compartments and open or closed topologically associating domain (TAD) structures can be identified on a cell population level. Recently developed high-resolution three-dimensional (3D) molecular imaging techniques such as 3D electron microscopy with in situ hybridization (3D-EMSIH) and 3D structured illumination microscopy (3D-SIM) enable direct detection of physical representations of chromatin structures in a single cell. However, computational analysis of 3D image data with explainability and interpretability on functional characteristics of chromatin structures is still challenging. We developed Extracting Physical-Characteristics from Images of Chromatin Structures (EPICS), a machine-learning based computational method for processing high-resolution chromatin 3D image data. Using EPICS on images produced by 3D-EMISH or 3D-SIM techniques, we generated more direct 3D representations of higher-order chromatin structures, identified major chromatin domains, and determined the open or closed status of each domain. We identified several high-contributing features from the model as the major physical characteristics that define the open or closed chromatin domains, demonstrating the explainability and interpretability of EPICS. EPICS can be applied to the analysis of other high-resolution 3D molecular imaging data for spatial genomics studies. The R and Python codes of EPICS are available at

RevDate: 2022-07-25
CmpDate: 2022-07-14

Ballarino R, Bouwman BAM, Agostini F, et al (2022)

An atlas of endogenous DNA double-strand breaks arising during human neural cell fate determination.

Scientific data, 9(1):400.

Endogenous DNA double-strand breaks (DSBs) occurring in neural cells have been implicated in the pathogenesis of neurodevelopmental disorders (NDDs). Currently, a genomic map of endogenous DSBs arising during human neurogenesis is missing. Here, we applied in-suspension Breaks Labeling In Situ and Sequencing (sBLISS), RNA-Seq, and Hi-C to chart the genomic landscape of DSBs and relate it to gene expression and genome architecture in 2D cultures of human neuroepithelial stem cells (NES), neural progenitor cells (NPC), and post-mitotic neural cells (NEU). Endogenous DSBs were enriched at the promoter and along the gene body of transcriptionally active genes, at the borders of topologically associating domains (TADs), and around chromatin loop anchors. NDD risk genes harbored significantly more DSBs in comparison to other protein-coding genes, especially in NEU cells. We provide sBLISS, RNA-Seq, and Hi-C datasets for each differentiation stage, and all the scripts needed to reproduce our analyses. Our datasets and tools represent a unique resource that can be harnessed to investigate the role of genome fragility in the pathogenesis of NDDs.

RevDate: 2022-10-21
CmpDate: 2022-07-15

Anania C, Acemel RD, Jedamzick J, et al (2022)

In vivo dissection of a clustered-CTCF domain boundary reveals developmental principles of regulatory insulation.

Nature genetics, 54(7):1026-1036.

Vertebrate genomes organize into topologically associating domains, delimited by boundaries that insulate regulatory elements from nontarget genes. However, how boundary function is established is not well understood. Here, we combine genome-wide analyses and transgenic mouse assays to dissect the regulatory logic of clustered-CCCTC-binding factor (CTCF) boundaries in vivo, interrogating their function at multiple levels: chromatin interactions, transcription and phenotypes. Individual CTCF binding site (CBS) deletions revealed that the characteristics of specific sites can outweigh other factors such as CBS number and orientation. Combined deletions demonstrated that CBSs cooperate redundantly and provide boundary robustness. We show that divergent CBS signatures are not strictly required for effective insulation and that chromatin loops formed by nonconvergently oriented sites could be mediated by a loop interference mechanism. Further, we observe that insulation strength constitutes a quantitative modulator of gene expression and phenotypes. Our results highlight the modular nature of boundaries and their control over developmental processes.

RevDate: 2022-07-16

Wu H, Song X, Lyu S, et al (2022)

Integrated Analysis of Hi-C and RNA-Seq Reveals the Molecular Mechanism of Autopolyploid Growth Advantages in Pak Choi (Brassica rapa ssp. chinensis).

Frontiers in plant science, 13:905202.

Polyploids generated by the replication of a single genome (autopolyploid) or synthesis of two or more distinct genomes (allopolyploid) usually show significant advantages over their diploid progenitors in biological characteristics, including growth and development, nutrient accumulation, and plant resistance. Whereas, the impacts of genomic replication on transcription regulation and chromatin structure in pak choi have not been explored fully. In this study, we observed the transcriptional and genomic structural alterations between diploid B. rapa (AA) and artificial autotetraploid B. rapa (AAAA) using RNA-seq and Hi-C. RNA-seq revealed 1,786 differentially expressed genes (DEGs) between the diploids and autotetraploids, including 717 down-regulated and 1,069 up-regulated genes in autotetraploids. Of all the 1,786 DEGs, 23 DEGs (10 down-regulated DEGs in autotetraploids) were involved in Compartment A-B shifts, while 28 DEGs (20 up-regulated DEGs in autotetraploids) participated in Compartment B-A shifts. Moreover, there were 15 DEGs in activated topologically associating domains (TADs) (9 up-regulated DEGs in diploids) and 80 DEGs in repressed TADs (49 down-regulated DEGs in diploids). Subsequently, eight DEGs with genomic structural variants were selected as potential candidate genes, including four DEGs involved in photosynthesis (BraA01003143, BraA09002798, BraA04002224, and BraA08000594), three DEGs related to chloroplast (BraA05002974, BraA05001662, and BraA04001148), and one DEG associated with disease resistance (BraA09004451), which all showed high expression in autotetraploids. Overall, our results demonstrated that integrative RNA-seq and Hi-C analysis can identify related genes to phenotypic traits and also provided new insights into the molecular mechanism of the growth advantage of polyploids.

RevDate: 2023-01-02
CmpDate: 2022-09-26

Fujita Y, Pather SR, Ming GL, et al (2022)

3D spatial genome organization in the nervous system: From development and plasticity to disease.

Neuron, 110(18):2902-2915.

Chromatin is organized into multiscale three-dimensional structures, including chromosome territories, A/B compartments, topologically associating domains, and chromatin loops. This hierarchically organized genomic architecture regulates gene transcription, which, in turn, is essential for various biological processes during brain development and adult plasticity. Here, we review different aspects of spatial genome organization and their functions in regulating gene expression in the nervous system, as well as their dysregulation in brain disorders. We also highlight new technologies to probe and manipulate chromatin architecture and discuss how investigating spatial genome organization can lead to a better understanding of the nervous system and associated disorders.

RevDate: 2022-09-25
CmpDate: 2022-08-03

Wei C, Jia L, Huang X, et al (2022)

CTCF organizes inter-A compartment interactions through RYBP-dependent phase separation.

Cell research, 32(8):744-760.

Chromatin is spatially organized into three-dimensional structures at different levels including A/B compartments, topologically associating domains and loops. The canonical CTCF-mediated loop extrusion model can explain the formation of loops. However, the organization mechanisms underlying long-range chromatin interactions such as interactions between A-A compartments are still poorly understood. Here we show that different from the canonical loop extrusion model, RYBP-mediated phase separation of CTCF organizes inter-A compartment interactions. Based on this model, we designed and verified an induced CTCF phase separation system in embryonic stem cells (ESCs), which facilitated inter-A compartment interactions, improved self-renewal of ESCs and inhibited their differentiation toward neural progenitor cells. These findings support a novel and non-canonical role of CTCF in organizing long-range chromatin interactions via phase separation.

RevDate: 2022-09-30
CmpDate: 2022-08-16

Sawh AN, SE Mango (2022)

Chromosome organization in 4D: insights from C. elegans development.

Current opinion in genetics & development, 75:101939.

Eukaryotic genome organization is ordered and multilayered, from the nucleosome to chromosomal scales. These layers are not static during development, but are remodeled over time and between tissues. Thus, animal model studies with high spatiotemporal resolution are necessary to understand the various forms and functions of genome organization in vivo. In C. elegans, sequencing- and imaging-based advances have provided insight on how histone modifications, regulatory elements, and large-scale chromosome conformations are established and changed. Recent observations include unexpected physiological roles for topologically associating domains, different roles for the nuclear lamina at different chromatin scales, cell-type-specific enhancer and promoter regulatory grammars, and prevalent compartment variability in early development. Here, we summarize these and other recent findings in C. elegans, and suggest future avenues of research to enrich our in vivo knowledge of the forms and functions of nuclear organization.

RevDate: 2022-09-24
CmpDate: 2022-06-27

Liu T, Z Wang (2022)

scHiCEmbed: Bin-Specific Embeddings of Single-Cell Hi-C Data Using Graph Auto-Encoders.

Genes, 13(6):.

Most publicly accessible single-cell Hi-C data are sparse and cannot reach a higher resolution. Therefore, learning latent representations (bin-specific embeddings) of sparse single-cell Hi-C matrices would provide us with a novel way of mining valuable information hidden in the limited number of single-cell Hi-C contacts. We present scHiCEmbed, an unsupervised computational method for learning bin-specific embeddings of single-cell Hi-C data, and the computational system is applied to the tasks of 3D structure reconstruction of whole genomes and detection of topologically associating domains (TAD). The only input of scHiCEmbed is a raw or scHiCluster-imputed single-cell Hi-C matrix. The main process of scHiCEmbed is to embed each node/bin in a higher dimensional space using graph auto-encoders. The learned n-by-3 bin-specific embedding/latent matrix is considered the final reconstructed 3D genome structure. For TAD detection, we use constrained hierarchical clustering on the latent matrix to classify bins: S_Dbw is used to determine the optimal number of clusters, and each cluster is considered as one potential TAD. Our reconstructed 3D structures for individual chromatins at different cell stages reveal the expanding process of chromatins during the cell cycle. We observe that the TADs called from single-cell Hi-C data are not shared across individual cells and that the TAD boundaries called from raw or imputed single-cell Hi-C are significantly different from those called from bulk Hi-C, confirming the cell-to-cell variability in terms of TAD definitions. The source code for scHiCEmbed is publicly available, and the URL can be found in the conclusion section.

RevDate: 2022-08-18
CmpDate: 2022-06-23

Tian GG, Hou C, Li J, et al (2022)

Three-dimensional genome structure shapes the recombination landscape of chromatin features during female germline stem cell development.

Clinical and translational medicine, 12(6):e927.

BACKGROUND: During meiosis of mammalian cells, chromatin undergoes drastic reorganization. However, the dynamics of the three-dimensional (3D) chromatin structure during the development of female germline stem cells (FGSCs) are poorly understood.

METHODS: The high-throughput chromosome conformation capture technique was used to probe the 3D structure of chromatin in mouse germ cells at each stage of FGSC development.

RESULTS: The global 3D genome was dramatically reorganized during FGSC development. In topologically associating domains, the chromatin structure was weakened in germinal vesicle stage oocytes and still present in meiosis I stage oocytes but had vanished in meiosis II oocytes. This switch between topologically associating domains was related to the biological process of FGSC development. Moreover, we constructed a landscape of chromosome X organization, which showed that the X chromosome occupied a smaller proportion of the active (A) compartment than the autosome during FGSC development. By comparing the high-order chromatin structure between female and male germline development, we found that 3D genome organization was remodelled by two different potential mechanisms during gamete development, in which interchromosomal interactions, compartments, and topologically associating domain were decreased during FGSC development but reorganized and recovered during spermatogenesis. Finally, we identified conserved chromatin structures between FGSC development and early embryonic development.

CONCLUSIONS: These results provide a valuable resource to characterize chromatin organization and for further studies of FGSC development.

RevDate: 2022-12-08
CmpDate: 2022-07-14

Wang W, Chandra A, Goldman N, et al (2022)

TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors.

Nature immunology, 23(7):1052-1062.

The high mobility group (HMG) transcription factor TCF-1 is essential for early T cell development. Although in vitro biochemical assays suggest that HMG proteins can serve as architectural elements in the assembly of higher-order nuclear organization, the contribution of TCF-1 on the control of three-dimensional (3D) genome structures during T cell development remains unknown. Here, we investigated the role of TCF-1 in 3D genome reconfiguration. Using gain- and loss-of-function experiments, we discovered that the co-occupancy of TCF-1 and the architectural protein CTCF altered the structure of topologically associating domains in T cell progenitors, leading to interactions between previously insulated regulatory elements and target genes at late stages of T cell development. The TCF-1-dependent gain in long-range interactions was linked to deposition of active enhancer mark H3K27ac and recruitment of the cohesin-loading factor NIPBL at active enhancers. These data indicate that TCF-1 has a role in controlling global genome organization during T cell development.

RevDate: 2022-11-13
CmpDate: 2022-06-22

Liu E, Lyu H, Peng Q, et al (2022)

TADfit is a multivariate linear regression model for profiling hierarchical chromatin domains on replicate Hi-C data.

Communications biology, 5(1):608.

Topologically associating domains (TADs) are fundamental building blocks of three dimensional genome, and organized into complex hierarchies. Identifying hierarchical TADs on Hi-C data helps to understand the relationship between genome architectures and gene regulation. Herein we propose TADfit, a multivariate linear regression model for profiling hierarchical chromatin domains, which tries to fit the interaction frequencies in Hi-C contact matrix with and without replicates using all-possible hierarchical TADs, and the significant ones can be determined by the regression coefficients obtained with the help of an online learning solver called Follow-The-Regularized-Leader (FTRL). Beyond the existing methods, TADfit has an ability to handle multiple contact matrix replicates and find partially overlapping TADs on them, which helps to find the comprehensive underlying TADs across replicates from different experiments. The comparative results tell that TADfit has better accuracy and reproducibility, and the hierarchical TADs called by it exhibit a reasonable biological relevance.

RevDate: 2022-07-29
CmpDate: 2022-06-21

Bolt CC, Lopez-Delisle L, Hintermann A, et al (2022)

Context-dependent enhancer function revealed by targeted inter-TAD relocation.

Nature communications, 13(1):3488.

The expression of some genes depends on large, adjacent regions of the genome that contain multiple enhancers. These regulatory landscapes frequently align with Topologically Associating Domains (TADs), where they integrate the function of multiple similar enhancers to produce a global, TAD-specific regulation. We asked if an individual enhancer could overcome the influence of one of these landscapes, to drive gene transcription. To test this, we transferred an enhancer from its native location, into a nearby TAD with a related yet different functional specificity. We used the biphasic regulation of Hoxd genes during limb development as a paradigm. These genes are first activated in proximal limb cells by enhancers located in one TAD, which is then silenced when the neighboring TAD activates its enhancers in distal limb cells. We transferred a distal limb enhancer into the proximal limb TAD and found that its new context suppresses its normal distal specificity, even though it is bound by HOX13 transcription factors, which are responsible for the distal activity. This activity can be rescued only when a large portion of the surrounding environment is removed. These results indicate that, at least in some cases, the functioning of enhancer elements is subordinated to the host chromatin context, which can exert a dominant control over its activity.

RevDate: 2022-09-02
CmpDate: 2022-06-21

Michieletto D, WA Bickmore (2022)

TADs do not stay in the loop.

Molecular cell, 82(12):2188-2189.

In a recent issue of Science, Gabriele et al. have, for the first time, quantified the dynamics of a topologically associating domain (TAD) in live cells by coupling super-resolution imaging and computational modelling, concluding that a TAD spends most of its life in a "partially extruded state" and that CTCF-CTCF loops are rare.

RevDate: 2022-12-02
CmpDate: 2022-07-18

Sudarshan D, Avvakumov N, Lalonde ME, et al (2022)

Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci.

Genes & development, 36(11-12):664-683.

Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.

RevDate: 2022-09-01
CmpDate: 2022-07-18

Taylor T, Sikorska N, Shchuka VM, et al (2022)

Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the Sox2 locus.

Genes & development, 36(11-12):699-717.

How distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the Sox2 locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all Sox2 transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization. Local chromatin architecture maintenance, including at the topologically associating domain (TAD) boundary downstream from the Sox2 enhancer, is widely distributed over multiple transcription factor-bound regions and maintained in a CTCF-independent manner. Furthermore, partial disruption of promoter-enhancer interactions by ectopic chromatin loop formation has no effect on Sox2 transcription. These findings indicate that many transcription factors are involved in modulating chromatin architecture independently of CTCF.

RevDate: 2022-11-02
CmpDate: 2022-09-15

Shukla V, Cetnarowska A, Hyldahl M, et al (2022)

Interplay between regulatory elements and chromatin topology in cellular lineage determination.

Trends in genetics : TIG, 38(10):1048-1061.

Cellular lineage determination is controlled by combinations of lineage-selective transcription factors (TFs) and associated coregulators that bind to cis-regulatory elements in DNA and regulate gene expression. The ability of these factors to regulate transcription is determined not only by their cooperativity, but also by biochemical and structural properties of the chromatin, sculpting higher-order genome organization. Here, we review recent advances in the understanding of the interplay between chromatin topology and transcription. Studies from many different fields, including adipocyte lineage determination, indicate that lineage determination and differentiation are dependent on elaborate crosstalk between cis-regulatory elements, leading to the formation of transcriptional hubs. Chromatin topology appears to provide a dynamic and supportive, rather than a deterministic, scaffold for this crosstalk.

RevDate: 2022-06-22
CmpDate: 2022-06-22

Tsujikawa LM, Kharenko OA, Stotz SC, et al (2022)

Breaking boundaries: Pan BETi disrupt 3D chromatin structure, BD2-selective BETi are strictly epigenetic transcriptional regulators.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 152:113230.

BACKGROUND: Bromodomain and extraterminal proteins (BETs) are more than just epigenetic regulators of transcription. Here we highlight a new role for the BET protein BRD4 in the maintenance of higher order chromatin structure at Topologically Associating Domain Boundaries (TADBs). BD2-selective and pan (non-selective) BET inhibitors (BETi) differentially support chromatin structure, selectively affecting transcription and cell viability.

METHODS: Using RNA-seq and BRD4 ChIP-seq, the differential effect of BETi treatment on the transcriptome and BRD4 chromatin occupancy of human aortic endothelial cells from diabetic patients (dHAECs) stimulated with TNFα was evaluated. Chromatin decondensation and DNA fragmentation was assessed by immunofluorescence imaging and quantification. Key dHAEC findings were verified in proliferating monocyte-like THP-1 cells using real time-PCR, BRD4 co-immunoprecipitation studies, western blots, proliferation and apoptosis assays.

FINDINGS: We discovered that 1) BRD4 co-localizes with Ying-Yang 1 (YY1) at TADBs, critical chromatin structure complexes proximal to many DNA repair genes. 2) BD2-selective BETi enrich BRD4/YY1 associations, while pan-BETi do not. 3) Failure to support chromatin structures through BRD4/YY1 enrichment inhibits DNA repair gene transcription, which induces DNA damage responses, and causes widespread chromatin decondensation, DNA fragmentation, and apoptosis. 4) BD2-selective BETi maintain high order chromatin structure and cell viability, while reducing deleterious pro-inflammatory transcription.

INTERPRETATION: BRD4 plays a previously unrecognized role at TADBs. BETi differentially impact TADB stability. Our results provide translational insight for the development of BETi as therapeutics for a range of diseases including CVD, chronic kidney disease, cancer, and COVID-19.

RevDate: 2022-07-16

Segueni J, D Noordermeer (2022)

CTCF: A misguided jack-of-all-trades in cancer cells.

Computational and structural biotechnology journal, 20:2685-2698.

The emergence and progression of cancers is accompanied by a dysregulation of transcriptional programs. The three-dimensional (3D) organization of the human genome has emerged as an important multi-level mediator of gene transcription and regulation. In cancer cells, this organization can be restructured, providing a framework for the deregulation of gene activity. The CTCF protein, initially identified as the product from a tumor suppressor gene, is a jack-of-all-trades for the formation of 3D genome organization in normal cells. Here, we summarize how CTCF is involved in the multi-level organization of the human genome and we discuss emerging insights into how perturbed CTCF function and DNA binding causes the activation of oncogenes in cancer cells, mostly through a process of enhancer hijacking. Moreover, we highlight non-canonical functions of CTCF that can be relevant for the emergence of cancers as well. Finally, we provide guidelines for the computational identification of perturbed CTCF binding and reorganized 3D genome structure in cancer cells.

RevDate: 2022-07-16
CmpDate: 2022-06-24

Emerson DJ, Zhao PA, Cook AL, et al (2022)

Cohesin-mediated loop anchors confine the locations of human replication origins.

Nature, 606(7915):812-819.

DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability[1,2]. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)[3-6], subTADs[7] and loops[8] in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.

RevDate: 2022-07-16

Zhang S, Tao W, JJ Han (2022)

3D chromatin structure changes during spermatogenesis and oogenesis.

Computational and structural biotechnology journal, 20:2434-2441.

Gametogenesis, including spermatogenesis and oogenesis, are unique differentiation processes involving extraordinarily complex and precise regulatory mechanisms that require the interactions of multiple cell types, hormones, paracrine factors, genes and epigenetic regulators, and extensive chromatin 3D structure re-organization. In recent years, the development of 3D genome technology represented by Hi-C, enabled mapping of the 3D re-organization of chromosomes during zygogenesis at an unprecedented resolution. The 3D remodeling is achieved by folding chromatin into loops, topologically associating domains (TADs), and compartments (A and B), which ultimately affect transcriptional activity. In this review, we summarize the research progresses and findings on chromatin 3D structure changes during spermatogenesis and oogenesis.

RevDate: 2022-07-16
CmpDate: 2022-07-06

Zhang Y, Tian GG, Wang X, et al (2022)

Retinoic acid induced meiosis initiation in female germline stem cells by remodelling three-dimensional chromatin structure.

Cell proliferation, 55(7):e13242.

OBJECTIVES: This study aimed to clarify the regulation and mechanism of meiotic initiation in FGSC development.

MATERIALS AND METHODS: FGSCs were induced to differentiate into meiosis in differentiation medium. RNA sequencing was performed to analysis the difference of transcription level. High-through chromosome conformation capture sequencing (Hi-C) was performed to analysis changes of three-dimensional chromatin structure. Chromosome conformation capture further confirmed a spatial chromatin loop. ChIP-qPCR and dual luciferase reporter were used to test the interaction between Stimulated by retinoic acid gene 8 (STRA8) protein and Trip13 promoter.

RESULTS: Compared with FGSCs, the average diameter of STRA8-positive germ cells increased from 13 μm to 16.8 μm. Furthermore, there were 4788 differentially expressed genes between the two cell stages; Meiosis and chromatin structure-associated terms were significantly enriched. Additionally, Hi-C results showed that FGSCs underwent A/B compartment switching (switch rate was 29.81%), the number of topologically associating domains (TADs) increasing, the average size of TADs decreasing, and chromatin loop changes at genome region of Trip13 from undifferentiated stage to meiosis-initiation stage. Furthermore, we validated that Trip13 promoter contacted distal enhancer to form spatial chromatin loop and STRA8 could bind Trip13 promoter to promote gene expression.

CONCLUSION: FGSCs underwent chromatin structure remodelling from undifferentiated stage to meiosis-initiation stage, which facilitated STRA8 binding to Trip13 promoter and promoting its expression.

RevDate: 2022-08-09
CmpDate: 2022-08-09

Bin Akhtar G, Buist M, M Rastegar (2022)

MeCP2 and transcriptional control of eukaryotic gene expression.

European journal of cell biology, 101(3):151237.

Eukaryotic gene expression is controlled at multiple steps that work in harmony to ensure proper maintenance of cellular morphology and function. Such regulatory mechanisms would include transcriptional gene regulation, which is in turn controlled by chromatin remodeling, distinct topologically associating domains of the chromatin structure, cis-regulatory elements such as enhancers and promoters, action of trans-acting factors, DNA methylation, RNA modifications, and post-translational modification of histones. These guiding mechanisms of gene expression play critical roles in the epigenetic setting of individual cells within the eukaryotic systems. Some epigenetic factors may play multiple functional roles in guarding the accurate gene expression program of the eukaryotic cells, especially within the central nervous system. A well-studied example of such multi-functional factors is the methyl-CpG-binding protein 2 (MeCP2), a nuclear protein that is encoded by the X-linked MECP2 gene. Here, we aim to provide an overview of eukaryotic gene regulation, the three-dimensional chromatin organization, standard techniques to study newly synthesized RNA transcripts, and the role of MeCP2 as an important transcriptional regulator in eukaryotes.

RevDate: 2022-10-25
CmpDate: 2022-06-03

Dequeker BJH, Scherr MJ, Brandão HB, et al (2022)

MCM complexes are barriers that restrict cohesin-mediated loop extrusion.

Nature, 606(7912):197-203.

Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)[1-3], which contribute to transcription, recombination and genomic stability[4,5]. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered[6-12]. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.

RevDate: 2022-06-30
CmpDate: 2022-06-24

Lei Z, Meng H, Liu L, et al (2022)

Mitochondrial base editor induces substantial nuclear off-target mutations.

Nature, 606(7915):804-811.

DddA-derived cytosine base editors (DdCBEs)-which are fusions of split DddA halves and transcription activator-like effector (TALE) array proteins from bacteria-enable targeted C•G-to-T•A conversions in mitochondrial DNA[1]. However, their genome-wide specificity is poorly understood. Here we show that the mitochondrial base editor induces extensive off-target editing in the nuclear genome. Genome-wide, unbiased analysis of its editome reveals hundreds of off-target sites that are TALE array sequence (TAS)-dependent or TAS-independent. TAS-dependent off-target sites in the nuclear DNA are often specified by only one of the two TALE repeats, challenging the principle that DdCBEs are guided by paired TALE proteins positioned in close proximity. TAS-independent off-target sites on nuclear DNA are frequently shared among DdCBEs with distinct TALE arrays. Notably, they co-localize strongly with binding sites for the transcription factor CTCF and are enriched in topologically associating domain boundaries. We engineered DdCBE to alleviate such off-target effects. Collectively, our results have implications for the use of DdCBEs in basic research and therapeutic applications, and suggest the need to thoroughly define and evaluate the off-target effects of base-editing tools.

RevDate: 2022-11-16
CmpDate: 2022-05-19

Zhou J (2022)

Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale.

Nature genetics, 54(5):725-734.

To learn how genomic sequence influences multiscale three-dimensional (3D) genome architecture, this manuscript presents a sequence-based deep-learning approach, Orca, that predicts directly from sequence the 3D genome architecture from kilobase to whole-chromosome scale. Orca captures the sequence dependencies of structures including chromatin compartments and topologically associating domains, as well as diverse types of interactions from CTCF-mediated to enhancer-promoter interactions and Polycomb-mediated interactions with cell-type specificity. Orca enables various applications including predicting structural variant effects on multiscale genome organization and it recapitulated effects of experimentally studied variants at varying sizes (300 bp to 90 Mb). Moreover, Orca enables in silico virtual screens to probe the sequence basis of 3D genome organization at different scales. At the submegabase scale, it predicted specific transcription factor motifs underlying cell-type-specific genome interactions. At the compartment scale, virtual screens of sequence activities suggest a model for the sequence basis of chromatin compartments with a prominent role of transcription start sites.

RevDate: 2022-07-16

Fan Z, Wu C, Chen M, et al (2022)

The generation of PD-L1 and PD-L2 in cancer cells: From nuclear chromatin reorganization to extracellular presentation.

Acta pharmaceutica Sinica. B, 12(3):1041-1053.

The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.

RevDate: 2022-07-16

Poszewiecka B, Pienkowski VM, Nowosad K, et al (2022)

TADeus2: a web server facilitating the clinical diagnosis by pathogenicity assessment of structural variations disarranging 3D chromatin structure.

Nucleic acids research, 50(W1):W744-52 [Epub ahead of print].

In recent years great progress has been made in identification of structural variants (SV) in the human genome. However, the interpretation of SVs, especially located in non-coding DNA, remains challenging. One of the reasons stems in the lack of tools exclusively designed for clinical SVs evaluation acknowledging the 3D chromatin architecture. Therefore, we present TADeus2 a web server dedicated for a quick investigation of chromatin conformation changes, providing a visual framework for the interpretation of SVs affecting topologically associating domains (TADs). This tool provides a convenient visual inspection of SVs, both in a continuous genome view as well as from a rearrangement's breakpoint perspective. Additionally, TADeus2 allows the user to assess the influence of analyzed SVs within flaking coding/non-coding regions based on the Hi-C matrix. Importantly, the SVs pathogenicity is quantified and ranked using TADA, ClassifyCNV tools and sampling-based P-value. TADeus2 is publicly available at

RevDate: 2022-07-16
CmpDate: 2022-05-10

Li D, He M, Tang Q, et al (2022)

Comparative 3D genome architecture in vertebrates.

BMC biology, 20(1):99.

BACKGROUND: The three-dimensional (3D) architecture of the genome has a highly ordered and hierarchical nature, which influences the regulation of essential nuclear processes at the basis of gene expression, such as gene transcription. While the hierarchical organization of heterochromatin and euchromatin can underlie differences in gene expression that determine evolutionary differences among species, the way 3D genome architecture is affected by evolutionary forces within major lineages remains unclear. Here, we report a comprehensive comparison of 3D genomes, using high resolution Hi-C data in fibroblast cells of fish, chickens, and 10 mammalian species.

RESULTS: This analysis shows a correlation between genome size and chromosome length that affects chromosome territory (CT) organization in the upper hierarchy of genome architecture, whereas lower hierarchical features, including local transcriptional availability of DNA, are selected through the evolution of vertebrates. Furthermore, conservation of topologically associating domains (TADs) appears strongly associated with the modularity of expression profiles across species. Additionally, LINE and SINE transposable elements likely contribute to heterochromatin and euchromatin organization, respectively, during the evolution of genome architecture.

CONCLUSIONS: Our analysis uncovers organizational features that appear to determine the conservation and transcriptional regulation of functional genes across species. These findings can guide ongoing investigations of genome evolution by extending our understanding of the mechanisms shaping genome architecture.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )