Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Topologically Associating Domains

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 06 Aug 2020 at 01:51 Created: 

Topologically Associating Domains

"Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization." QUOTE FROM: Dekker Job and Heard Edith (2015), Structural and functional diversity of Topologically Associating Domains, FEBS Letters, 589, doi: 10.1016/j.febslet.2015.08.044

Created with PubMed® Query: "Topologically Associating Domains" OR "Topologically Associating Domain" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2020-08-04

Heurteau A, Perrois C, Depierre D, et al (2020)

Insulator-based loops mediate the spreading of H3K27me3 over distant micro-domains repressing euchromatin genes.

Genome biology, 21(1):193 pii:10.1186/s13059-020-02106-z.

RevDate: 2020-07-18

Matthews BJ, DJ Waxman (2020)

Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver.

Epigenetics & chromatin, 13(1):30 pii:10.1186/s13072-020-00350-y.

Several thousand sex-differential distal enhancers have been identified in mouse liver; however, their links to sex-biased genes and the impact of any sex-differences in nuclear organization and chromatin interactions are unknown. To address these issues, we first characterized 1847 mouse liver genomic regions showing significant sex differential occupancy by cohesin and CTCF, two key 3D nuclear organizing factors. These sex-differential binding sites were primarily distal to sex-biased genes but rarely generated sex-differential TAD (topologically associating domain) or intra-TAD loop anchors, and were sometimes found in TADs without sex-biased genes. A substantial subset of sex-biased cohesin-non-CTCF binding sites, but not sex-biased cohesin-and-CTCF binding sites, overlapped sex-biased enhancers. Cohesin depletion reduced the expression of male-biased genes with distal, but not proximal, sex-biased enhancers by >10-fold, implicating cohesin in long-range enhancer interactions regulating sex-biased genes. Using circularized chromosome conformation capture-based sequencing (4C-seq), we showed that sex differences in distal sex-biased enhancer-promoter interactions are common. Intra-TAD loops with sex-independent cohesin-and-CTCF anchors conferred sex specificity to chromatin interactions indirectly, by insulating sex-biased enhancer-promoter contacts and by bringing sex-biased genes into closer proximity to sex-biased enhancers. Furthermore, sex-differential chromatin interactions involving sex-biased gene promoters, enhancers, and lncRNAs were associated with sex-biased binding of cohesin and/or CTCF. These studies elucidate how 3D genome organization impacts sex-biased gene expression in a non-reproductive tissue through both direct and indirect effects of cohesin and CTCF looping on distal enhancer interactions with sex-differentially expressed genes.

RevDate: 2020-07-14

Liang M, Soomro AU, Tasneem S, et al (2020)

Enhancer-gene rewiring in the pathogenesis of Quebec Platelet Disorder.

Blood pii:461326 [Epub ahead of print].

Quebec Platelet Disorder (QPD) is an autosomal dominant bleeding disorder with a unique, platelet-dependent gain-of-function defect in fibrinolysis, without systemic fibrinolysis. The hallmark feature of QPD is a >100-fold overexpression of PLAU specifically in megakaryocytes. This overexpression leads to >100-fold increased platelet stores of urokinase plasminogen activator (PLAU/uPA), subsequent plasmin-mediated degradation of diverse a-granule proteins, and platelet-dependent, accelerated fibrinolysis. The causative mutation is a 78kb tandem duplication of PLAU. How this duplication causes megakaryocyte-specific PLAU overexpression is unknown. To investigate the mechanism that causes QPD, we used epigenomic profiling, comparative genomics, and chromatin conformation capture approaches to study PLAU regulation in cultured megakaryocytes from QPD participants and unaffected controls. We show that the QPD duplication leads to ectopic interactions between PLAU and a conserved megakaryocyte enhancer found within the same topologically associating domain (TAD). Our results support a unique disease mechanism whereby the reorganization of subTAD genome architecture results in a dramatic, cell-type specific blood disorder phenotype.

RevDate: 2020-07-03

Danieli A, A Papantonis (2020)

Spatial genome architecture and the emergence of malignancy.

Human molecular genetics pii:5867002 [Epub ahead of print].

Human chromosomes are large spatially- and hierarchically-structured entities, the integrity of which needs to be preserved throughout the lifespan of the cell and in conjunction with cell cycle progression. Preservation of chromosomal structure is important for proper deployment of cell type-specific gene expression programs. Thus, aberrations in the integrity and structure of chromosomes will predictably lead to disease, including cancer. Here, we provide an updated standpoint with respect to chromatin misfolding and the emergence of various cancer types. We discuss recent studies implicating disruption of topologically-associating domains (TADs), switching between active and inactive compartments, rewiring of promoter-enhancer interactions in malignancy, as well as the effects of single nucleotide polymorphisms (SNPs) in non-coding regions involved in long-range regulatory interactions. In light of these findings, we argue that chromosome conformation studies may now also be useful for patient diagnosis and drug target discovery.

RevDate: 2020-06-24

Zhang K, Wu DY, Zheng H, et al (2020)

Analysis of Genome Architecture during SCNT Reveals a Role of Cohesin in Impeding Minor ZGA.

Molecular cell pii:S1097-2765(20)30386-5 [Epub ahead of print].

Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.

RevDate: 2020-06-23

Luppino JM, Park DS, Nguyen SC, et al (2020)

Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes.

Nature genetics pii:10.1038/s41588-020-0647-9 [Epub ahead of print].

The human genome can be segmented into topologically associating domains (TADs), which have been proposed to spatially sequester genes and regulatory elements through chromatin looping. Interactions between TADs have also been suggested, presumably because of variable boundary positions across individual cells. However, the nature, extent and consequence of these dynamic boundaries remain unclear. Here, we combine high-resolution imaging with Oligopaint technology to quantify the interaction frequencies across both weak and strong boundaries. We find that chromatin intermingling across population-defined boundaries is widespread but that the extent of permissibility is locus-specific. Cohesin depletion, which abolishes domain formation at the population level, does not induce ectopic interactions but instead reduces interactions across all boundaries tested. In contrast, WAPL or CTCF depletion increases inter-domain contacts in a cohesin-dependent manner. Reduced chromatin intermingling due to cohesin loss affects the topology and transcriptional bursting frequencies of genes near boundaries. We propose that cohesin occasionally bypasses boundaries to promote incorporation of boundary-proximal genes into neighboring domains.

RevDate: 2020-06-22

Chen SL, Hu F, Wang DW, et al (2020)

Prognosis and regulation of an adenylyl cyclase network in acute myeloid leukemia.

Aging, 12: pii:103357 [Epub ahead of print].

We explored the roles of adenylyl cyclases (ADCYs) in acute myeloid leukemia (AML). Expression ADCYs in AML and their effect on prognosis was analyzed using data from Oncomine, GEPIA and cBioPortal databases. Frequently altered neighbor genes (FANGs) of ADCYs were detected using the 3D Genome Browser, after which the functions of these FANGs were predicted using Metascape tools. Cell viability and apoptosis were assessed using CCK-8 and Annexin V-FITC/PI kits. Expression levels of ADCYs were higher in AML cells lines and in bone marrow-derived mononuclear cells from AML patients than in control cells, and were predictive of a poor prognosis. A total of 58 ADCY FANGs were identified from the topologically associating domains on the basis of the Hi-C data. Functional analysis of these FANGs revealed abnormal activation of the MAPK signaling pathway. Drug sensitivity tests showed that fasudil plus trametinib or sapanisertib had a synergistic effect suppressing AML cell viability and increasing apoptosis. These findings suggest that dysregulation of ADCY expression leads to altered signaling in the MAPK pathway in AML and that the ADCY expression profile may be predictive of prognosis in AML patients.

RevDate: 2020-06-19

Maharjan M, McKowen JK, CM Hart (2020)

Overlapping but Distinct Sequences Play Roles in the Insulator and Promoter Activities of the Drosophila BEAF-dependent scs' Insulator.

Genetics pii:genetics.120.303344 [Epub ahead of print].

Chromatin domain insulators are thought to help partition the genome into genetic units called topologically associating domains (TADs). In Drosophila, TADs are often separated by inter-TAD regions containing active housekeeping genes and associated insulator binding proteins. This raises the question of whether insulator binding proteins are primarily involved in chromosomal TAD architecture or gene activation, or if these two activities are linked. The Boundary Element-Associated Factor of 32 kDa (BEAF-32, or BEAF for short) is usually found in inter-TADs. BEAF was discovered based on binding to the scs' insulator, and is important for the insulator activity of scs' and other BEAF binding sites. There are divergent promoters in scs' with a BEAF binding site by each. Here we dissect the scs' insulator to identify DNA sequences important for insulator and promoter activity, focusing on the half of scs' with a high affinity BEAF binding site. We find that the BEAF binding site is important for both insulator and promoter activity, as is another sequence we refer to as LS4. Aside from that, different sequences play roles in insulator and promoter activity. So while there is overlap and BEAF is important for both, insulator and promoter activity can be separated.

RevDate: 2020-06-09

Stik G, Vidal E, Barrero M, et al (2020)

CTCF is dispensable for immune cell transdifferentiation but facilitates an acute inflammatory response.

Nature genetics pii:10.1038/s41588-020-0643-0 [Epub ahead of print].

Three-dimensional organization of the genome is important for transcriptional regulation1-7. In mammals, CTCF and the cohesin complex create submegabase structures with elevated internal chromatin contact frequencies, called topologically associating domains (TADs)8-12. Although TADs can contribute to transcriptional regulation, ablation of TAD organization by disrupting CTCF or the cohesin complex causes modest gene expression changes13-16. In contrast, CTCF is required for cell cycle regulation17, embryonic development and formation of various adult cell types18. To uncouple the role of CTCF in cell-state transitions and cell proliferation, we studied the effect of CTCF depletion during the conversion of human leukemic B cells into macrophages with minimal cell division. CTCF depletion disrupts TAD organization but not cell transdifferentiation. In contrast, CTCF depletion in induced macrophages impairs the full-blown upregulation of inflammatory genes after exposure to endotoxin. Our results demonstrate that CTCF-dependent genome topology is not strictly required for a functional cell-fate conversion but facilitates a rapid and efficient response to an external stimulus.

RevDate: 2020-06-05

Kang H, Shokhirev MN, Xu Z, et al (2020)

Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation.

Genes & development pii:gad.335794.119 [Epub ahead of print].

During mitosis, transcription of genomic DNA is dramatically reduced, before it is reactivated during nuclear reformation in anaphase/telophase. Many aspects of the underlying principles that mediate transcriptional memory and reactivation in the daughter cells remain unclear. Here, we used ChIP-seq on synchronized cells at different stages after mitosis to generate genome-wide maps of histone modifications. Combined with EU-RNA-seq and Hi-C analyses, we found that during prometaphase, promoters, enhancers, and insulators retain H3K4me3 and H3K4me1, while losing H3K27ac. Enhancers globally retaining mitotic H3K4me1 or locally retaining mitotic H3K27ac are associated with cell type-specific genes and their transcription factors for rapid transcriptional activation. As cells exit mitosis, promoters regain H3K27ac, which correlates with transcriptional reactivation. Insulators also gain H3K27ac and CCCTC-binding factor (CTCF) in anaphase/telophase. This increase of H3K27ac in anaphase/telophase is required for posttranscriptional activation and may play a role in the establishment of topologically associating domains (TADs). Together, our results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1. We thus provide insights into the histone modification landscape that allows faithful reestablishment of the transcriptional program and TADs during cell division.

RevDate: 2020-06-03

Papanicolaou N, A Bonetti (2020)

The New Frontier of Functional Genomics: From Chromatin Architecture and Noncoding RNAs to Therapeutic Targets.

SLAS discovery : advancing life sciences R & D [Epub ahead of print].

Common diseases are complex, multifactorial disorders whose pathogenesis is influenced by the interplay of genetic predisposition and environmental factors. Genome-wide association studies have interrogated genetic polymorphisms across genomes of individuals to test associations between genotype and susceptibility to specific disorders, providing insights into the genetic architecture of several complex disorders. However, genetic variants associated with the susceptibility to common diseases are often located in noncoding regions of the genome, such as tissue-specific enhancers or long noncoding RNAs, suggesting that regulatory elements might play a relevant role in human diseases. Enhancers are cis-regulatory genomic sequences that act in concert with promoters to regulate gene expression in a precise spatiotemporal manner. They can be located at a considerable distance from their cognate target promoters, increasing the difficulty of their identification. Genomes are organized in domains of chromatin folding, namely topologically associating domains (TADs). Identification of enhancer-promoter interactions within TADs has revealed principles of cell-type specificity across several organisms and tissues. The vast majority of mammalian genomes are pervasively transcribed, accounting for a previously unappreciated complexity of the noncoding RNA fraction. Particularly, long noncoding RNAs have emerged as key players for the establishment of chromatin architecture and regulation of gene expression. In this perspective, we describe the new advances in the fields of transcriptomics and genome organization, focusing on the role of noncoding genomic variants in the predisposition of common diseases. Finally, we propose a new framework for the identification of the next generation of pharmacological targets for common human diseases.

RevDate: 2020-06-02

Oudelaar AM, Beagrie RA, Gosden M, et al (2020)

Dynamics of the 4D genome during in vivo lineage specification and differentiation.

Nature communications, 11(1):2722 pii:10.1038/s41467-020-16598-7.

Mammalian gene expression patterns are controlled by regulatory elements, which interact within topologically associating domains (TADs). The relationship between activation of regulatory elements, formation of structural chromatin interactions and gene expression during development is unclear. Here, we present Tiled-C, a low-input chromosome conformation capture (3C) technique. We use this approach to study chromatin architecture at high spatial and temporal resolution through in vivo mouse erythroid differentiation. Integrated analysis of chromatin accessibility and single-cell expression data shows that regulatory elements gradually become accessible within pre-existing TADs during early differentiation. This is followed by structural re-organization within the TAD and formation of specific contacts between enhancers and promoters. Our high-resolution data show that these enhancer-promoter interactions are not established prior to gene expression, but formed gradually during differentiation, concomitant with progressive upregulation of gene activity. Together, these results provide new insight into the close, interdependent relationship between chromatin architecture and gene regulation during development.

RevDate: 2020-05-30

Sparks TM, Harabula I, A Pombo (2020)

Evolving methodologies and concepts in 4D nucleome research.

Current opinion in cell biology, 64:105-111 pii:S0955-0674(20)30051-X [Epub ahead of print].

The genome requires tight regulation in space and time to maintain viable cell functions. Advances in our understanding of the 3D genome show a complex hierarchical network of structures, involving compartments, membraneless bodies, topologically associating domains, lamina associated domains, protein- or RNA-mediated loops, enhancer-promoter contacts, and accessible chromatin regions, with chromatin state regulation through epigenetic and transcriptional mechanisms. Further technology developments are poised to increase genomic resolution, dissect single-cell behaviors, including in vivo dynamics of genome folding, and provide mechanistic perspectives that identify further 3D genome players by integrating multiomics information. We highlight recent key developments in 4D nucleome methodologies and give a perspective on their future directions.

RevDate: 2020-05-29

Melo US, Schöpflin R, Acuna-Hidalgo R, et al (2020)

Hi-C Identifies Complex Genomic Rearrangements and TAD-Shuffling in Developmental Diseases.

American journal of human genetics pii:S0002-9297(20)30125-7 [Epub ahead of print].

Genome-wide analysis methods, such as array comparative genomic hybridization (CGH) and whole-genome sequencing (WGS), have greatly advanced the identification of structural variants (SVs) in the human genome. However, even with standard high-throughput sequencing techniques, complex rearrangements with multiple breakpoints are often difficult to resolve, and predicting their effects on gene expression and phenotype remains a challenge. Here, we address these problems by using high-throughput chromosome conformation capture (Hi-C) generated from cultured cells of nine individuals with developmental disorders (DDs). Three individuals had previously been identified as harboring duplications at the SOX9 locus and six had been identified with translocations. Hi-C resolved the positions of the duplications and was instructive in interpreting their distinct pathogenic effects, including the formation of new topologically associating domains (neo-TADs). Hi-C was very sensitive in detecting translocations, and it revealed previously unrecognized complex rearrangements at the breakpoints. In several cases, we observed the formation of fused-TADs promoting ectopic enhancer-promoter interactions that were likely to be involved in the disease pathology. In summary, we show that Hi-C is a sensible method for the detection of complex SVs in a clinical setting. The results help interpret the possible pathogenic effects of the SVs in individuals with DDs.

RevDate: 2020-05-27

Lazar JE, Stehling-Sun S, Nandakumar V, et al (2020)

Global Regulatory DNA Potentiation by SMARCA4 Propagates to Selective Gene Expression Programs via Domain-Level Remodeling.

Cell reports, 31(8):107676.

The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells. Here, we combine DNase I hypersensitivity, histone modification, and transcriptional profiling to show that SMARCA4 dramatically increases both the number and magnitude of accessible chromatin sites genome-wide, chiefly by unmasking sites of low regulatory factor occupancy. By contrast, transcriptional changes are concentrated within well-demarcated remodeling domains wherein expression of specific genes is gated by both distal element activation and promoter chromatin configuration. Our results provide a perspective on how global chromatin remodeling activity is translated to gene expression via regulatory DNA.

RevDate: 2020-05-22

Boyle S, Flyamer IM, Williamson I, et al (2020)

A central role for canonical PRC1 in shaping the 3D nuclear landscape.

Genes & development pii:gad.336487.120 [Epub ahead of print].

Polycomb group (PcG) proteins silence gene expression by chemically and physically modifying chromatin. A subset of PcG target loci are compacted and cluster in the nucleus; a conformation that is thought to contribute to gene silencing. However, how these interactions influence gross nuclear organization and their relationship with transcription remains poorly understood. Here we examine the role of Polycomb-repressive complex 1 (PRC1) in shaping 3D genome organization in mouse embryonic stem cells (mESCs). Using a combination of imaging and Hi-C analyses, we show that PRC1-mediated long-range interactions are independent of CTCF and can bridge sites at a megabase scale. Impairment of PRC1 enzymatic activity does not directly disrupt these interactions. We demonstrate that PcG targets coalesce in vivo, and that developmentally induced expression of one of the target loci disrupts this spatial arrangement. Finally, we show that transcriptional activation and the loss of PRC1-mediated interactions are separable events. These findings provide important insights into the function of PRC1, while highlighting the complexity of this regulatory system.

RevDate: 2020-05-19

Chen CH, Zheng R, Tokheim C, et al (2020)

Determinants of transcription factor regulatory range.

Nature communications, 11(1):2472 pii:10.1038/s41467-020-16106-x.

Characterization of the genomic distances over which transcription factor (TF) binding influences gene expression is important for inferring target genes from TF chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. Here we systematically examine the relationship between thousands of TF and histone modification ChIP-seq data sets with thousands of gene expression profiles. We develop a model for integrating these data, which reveals two classes of TFs with distinct ranges of regulatory influence, chromatin-binding preferences, and auto-regulatory properties. We find that the regulatory range of the same TF bound within different topologically associating domains (TADs) depend on intrinsic TAD properties such as local gene density and G/C content, but also on the TAD chromatin states. Our results suggest that considering TF type, binding distance to gene locus, as well as chromatin context is important in identifying implicated TFs from GWAS SNPs.

RevDate: 2020-05-13

Sumiyama K, A Tanave (2020)

The regulatory landscape of the Dlx gene system in branchial arches: shared characteristics among Dlx bigene clusters and evolution.

Development, growth & differentiation [Epub ahead of print].

The mammalian Dlx genes encode homeobox-type transcription factors and are physically organized as convergent bigene clusters. The paired Dlx genes share tissue specificity in the expression profile. Genetic regulatory mechanisms, such as intergenic enhancer sharing between paired Dlx genes has been proposed to explain this conservation of bigene structure. All mammalian Dlx genes have expression and function in developing craniofacial structures, especially in the first and second pharyngeal arches (branchial arches). Each Dlx cluster (Dlx1/2, Dlx3/4, and Dlx5/6) has overlapping, nested expression in the branchial arches which is called the "Dlx code" and plays a key role in organizing craniofacial structure and evolution. Here we summarize cis-regulatory studies on branchial arch expression of the three Dlx bigene clusters and show some shared characteristics among the clusters, including cis-regulatory motifs, TAD (Topologically Associating Domain) boundaries, CTCF loops, and distal enhancer landscapes, together with a molecular condensate model for activation of the Dlx bigene cluster.

RevDate: 2020-05-09

Bian Q, Anderson EC, Yang Q, et al (2020)

Histone H3K9 methylation promotes formation of genome compartments in Caenorhabditis elegans via chromosome compaction and perinuclear anchoring.

Proceedings of the National Academy of Sciences of the United States of America pii:2002068117 [Epub ahead of print].

Genomic regions preferentially associate with regions of similar transcriptional activity, partitioning genomes into active and inactive compartments within the nucleus. Here we explore mechanisms controlling genome compartment organization in Caenorhabditis elegans and investigate roles for compartments in regulating gene expression. Distal arms of C. elegans chromosomes, which are enriched for heterochromatic histone modifications H3K9me1/me2/me3, interact with each other both in cis and in trans, while interacting less frequently with central regions, leading to genome compartmentalization. Arms are anchored to the nuclear periphery via the nuclear envelope protein CEC-4, which binds to H3K9me. By performing genome-wide chromosome conformation capture experiments (Hi-C), we showed that eliminating H3K9me1/me2/me3 through mutations in the methyltransferase genes met-2 and set-25 significantly impaired formation of inactive Arm and active Center compartments. cec-4 mutations also impaired compartmentalization, but to a lesser extent. We found that H3K9me promotes compartmentalization through two distinct mechanisms: Perinuclear anchoring of chromosome arms via CEC-4 to promote their cis association, and an anchoring-independent mechanism that compacts individual chromosome arms. In both met-2 set-25 and cec-4 mutants, no dramatic changes in gene expression were found for genes that switched compartments or for genes that remained in their original compartment, suggesting that compartment strength does not dictate gene-expression levels. Furthermore, H3K9me, but not perinuclear anchoring, also contributes to formation of another prominent feature of chromosome organization, megabase-scale topologically associating domains on X established by the dosage compensation condensin complex. Our results demonstrate that H3K9me plays crucial roles in regulating genome organization at multiple levels.

RevDate: 2020-05-08

Yang M, Safavi S, Woodward EL, et al (2020)

13q12.2 deletions in acute lymphoblastic leukemia lead to upregulation of FLT3 through enhancer hijacking.

Blood pii:454973 [Epub ahead of print].

Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene in 13q12.2 are among the most common driver events in acute leukemia, leading to increased cell proliferation and survival through activation of the PI3K/AKT, RAS/MAPK and STAT5 signaling pathways. In this study, we examine the pathogenetic impact of somatic hemizygous 13q12.2 microdeletions in B-cell precursor acute lymphoblastic leukemia (BCP ALL) using five different patient cohorts, in total including 1,418 cases. The 13q12.2 deletions occur immediately 5' of FLT3 and involve the PAN3 locus. By detailed analysis of the 13q12.2 segment, we show that the deletions lead to loss of a topologically associating domain border and an enhancer of FLT3. This results in increased cis-interactions between the FLT3 promoter and another enhancer located distally to the deletion breakpoints, with subsequent allele-specific upregulation of FLT3 expression, expected to lead to ligand-independent activation of the receptor and downstream signaling. The 13q12.2 deletions are highly enriched in the high hyperdiploid BCP ALL subtype (frequency 3.9% vs. 0.5% in other BCP ALL) and in cases that subsequently relapsed. Taken together, our study describes a novel mechanism of FLT3 involvement in leukemogenesis by upregulation via chromatin remodeling and enhancer hijacking. These data further emphasize the role of FLT3 as a driver gene in BCP ALL.

RevDate: 2020-04-25

Pérez-Rico YA, Barillot E, A Shkumatava (2020)

Demarcation of Topologically Associating Domains Is Uncoupled from Enriched CTCF Binding in Developing Zebrafish.

iScience, 23(5):101046 pii:S2589-0042(20)30231-5 [Epub ahead of print].

CCCTC-binding factor (CTCF) is a conserved architectural protein that plays crucial roles in gene regulation and three-dimensional (3D) chromatin organization. To better understand mechanisms and evolution of vertebrate genome organization, we analyzed genome occupancy of CTCF in zebrafish utilizing an endogenously epitope-tagged CTCF knock-in allele. Zebrafish CTCF shares similar facets with its mammalian counterparts, including binding to enhancers, active promoters and repeat elements, and bipartite sequence motifs of its binding sites. However, we found that in vivo CTCF binding is not enriched at boundaries of topologically associating domains (TADs) in developing zebrafish, whereas TAD demarcation by chromatin marks did not differ from mammals. Our data suggest that general mechanisms underlying 3D chromatin organization, and in particular the involvement of CTCF in this process, differ between distant vertebrate species.

RevDate: 2020-04-23

Zhang Z, Wang Q, Liu Y, et al (2020)

Massive reorganization of the genome during primary monocyte differentiation into macrophage.

Acta biochimica et biophysica Sinica pii:5822761 [Epub ahead of print].

Monocyte-to-macrophage trans-differentiation has long been studied to better understand this immunological response and aspects of developmental processes more generally. A key question is the nature of the corresponding changes in chromatin conformation and its relationship to the transcriptome during this process. This question is especially intriguing since this trans-differentiation is not associated with progression through mitosis, often considered a necessary step for gross changes in chromosomal structure. Here, we characterized the transcriptional and genomic structural changes during macrophage development of primary human monocytes using RNA-seq and in situ Hi-C. We found that, during this transition, the genome architecture undergoes a massive remodeling to a degree not observed before between structured genomes, with changes in ~90% of the topologically associating domains (TADs). These changes in the TADs are associated with changed expression of immunological genes. These structural changes, however, differ extensively from those described recently in a study of the leukemia cell line, THP-1. Furthermore, up-regulation of the AP-1 family of genes that effected functionally important changes in the genomic structure during the differentiation of the THP-1 cells was not corroborated with the primary cells. Taken together, our results provide a comprehensive characterization of the changes in genomic structure during the monocyte-to-macrophage transition, establish a framework for the elucidation of processes underlying differentiation without proliferation, and demonstrate the importance of verifying with primary cells the mechanisms discovered with cultured cells.

RevDate: 2020-04-21

Luo Z, Wang X, Jiang H, et al (2020)

Reorganized 3D Genome Structures Support Transcriptional Regulation in Mouse Spermatogenesis.

iScience, 23(4):101034 pii:S2589-0042(20)30218-2 [Epub ahead of print].

Three-dimensional chromatin structures undergo dynamic reorganization during mammalian spermatogenesis; however, their impacts on gene regulation remain unclear. Here, we focused on understanding the structure-function regulation of meiotic chromosomes by Hi-C and other omics techniques in mouse spermatogenesis across five stages. Beyond confirming recent reports regarding changes in compartmentalization and reorganization of topologically associating domains (TADs), we further demonstrated that chromatin loops are present prior to and after, but not at, the pachytene stage. By integrating Hi-C and RNA-seq data, we showed that the switching of A/B compartments between spermatogenic stages is tightly associated with meiosis-specific mRNAs and piRNAs expression. Moreover, our ATAC-seq data indicated that chromatin accessibility per se is not responsible for the TAD and loop diminishment at pachytene. Additionally, our ChIP-seq data demonstrated that CTCF and cohesin remain bound at TAD boundary regions throughout meiosis, suggesting that dynamic reorganization of TADs does not require CTCF and cohesin clearance.

RevDate: 2020-04-21

Kantidze OL, SV Razin (2020)

Weak interactions in higher-order chromatin organization.

Nucleic acids research pii:5822964 [Epub ahead of print].

The detailed principles of the hierarchical folding of eukaryotic chromosomes have been revealed during the last two decades. Along with structures composing three-dimensional (3D) genome organization (chromatin compartments, topologically associating domains, chromatin loops, etc.), the molecular mechanisms that are involved in their establishment and maintenance have been characterized. Generally, protein-protein and protein-DNA interactions underlie the spatial genome organization in eukaryotes. However, it is becoming increasingly evident that weak interactions, which exist in biological systems, also contribute to the 3D genome. Here, we provide a snapshot of our current understanding of the role of the weak interactions in the establishment and maintenance of the 3D genome organization. We discuss how weak biological forces, such as entropic forces operating in crowded solutions, electrostatic interactions of the biomolecules, liquid-liquid phase separation, DNA supercoiling, and RNA environment participate in chromosome segregation into structural and functional units and drive intranuclear functional compartmentalization.

RevDate: 2020-04-17

Amândio AR, Lopez-Delisle L, Bolt CC, et al (2020)

A complex regulatory landscape involved in the development of mammalian external genitals.

eLife, 9: pii:52962 [Epub ahead of print].

Developmental genes are often controlled by large regulatory landscapes matching topologically associating domains (TADs). In various contexts, the associated chromatin backbone is modified by specific enhancer-enhancer and enhancer-promoter interactions. We used a TAD flanking the mouse HoxD cluster to study how these regulatory architectures are formed and deconstructed once their function achieved. We describe this TAD as a functional unit, with several regulatory sequences acting together to elicit a transcriptional response. With one exception, deletion of these sequences didn't modify the transcriptional outcome, a result at odds with a conventional view of enhancer function. The deletion and inversion of a CTCF site located near these regulatory sequences did not affect transcription of the target gene. Slight modifications were nevertheless observed, in agreement with the loop extrusion model. We discuss these unexpected results considering both conventional and alternative explanations relying on the accumulation of poorly specific factors within the TAD backbone.

RevDate: 2020-04-14

Chen M, Zhu Q, Li C, et al (2020)

Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos.

Nature communications, 11(1):1813 pii:10.1038/s41467-020-15607-z.

The oocyte cytoplasm can reprogram the somatic cell nucleus into a totipotent state, but with low efficiency. The spatiotemporal chromatin organization of somatic cell nuclear transfer (SCNT) embryos remains elusive. Here, we examine higher order chromatin structures of mouse SCNT embryos using a low-input Hi-C method. We find that donor cell chromatin transforms to the metaphase state rapidly after SCNT along with the dissolution of typical 3D chromatin structure. Intriguingly, the genome undergoes a mitotic metaphase-like to meiosis metaphase II-like transition following activation. Subsequently, weak chromatin compartments and topologically associating domains (TADs) emerge following metaphase exit. TADs are further removed until the 2-cell stage before being progressively reestablished. Obvious defects including stronger TAD boundaries, aberrant super-enhancer and promoter interactions are found in SCNT embryos. These defects are partially caused by inherited H3K9me3, and can be rescued by Kdm4d overexpression. These observations provide insight into chromatin architecture reorganization during SCNT embryo development.

RevDate: 2020-04-03

Wang G, Meng Q, Xia B, et al (2020)

TADsplimer reveals splits and mergers of topologically associating domains for epigenetic regulation of transcription.

Genome biology, 21(1):84 pii:10.1186/s13059-020-01992-7.

We present TADsplimer, the first computational tool to systematically detect topologically associating domain (TAD) splits and mergers across the genome between Hi-C samples. TADsplimer recaptures splits and mergers of TADs with high accuracy in simulation analyses and defines hundreds of TAD splits and mergers between pairs of different cell types, such as endothelial cells and fibroblasts. Our work reveals a key role for TAD remodeling in epigenetic regulation of transcription and delivers the first tool for the community to perform dynamic analysis of TAD splits and mergers in numerous biological and disease models.

RevDate: 2020-04-02

Pontvianne F, S Grob (2020)

Three-dimensional nuclear organization in Arabidopsis thaliana.

Journal of plant research pii:10.1007/s10265-020-01185-0 [Epub ahead of print].

In recent years, the study of plant three-dimensional nuclear architecture received increasing attention. Enabled by technological advances, our knowledge on nuclear architecture has greatly increased and we can now access large data sets describing its manifold aspects. The principles of nuclear organization in plants do not significantly differ from those in animals. Plant nuclear organization comprises various scales, ranging from gene loops to topologically associating domains to nuclear compartmentalization. However, whether plant three-dimensional chromosomal features also exert similar functions as in animals is less clear. This review discusses recent advances in the fields of three-dimensional chromosome folding and nuclear compartmentalization and describes a novel silencing mechanism, which is closely linked to nuclear architecture.

RevDate: 2020-03-27

Krietenstein N, Abraham S, Venev SV, et al (2020)

Ultrastructural Details of Mammalian Chromosome Architecture.

Molecular cell pii:S1097-2765(20)30151-9 [Epub ahead of print].

Over the past decade, 3C-related methods have provided remarkable insights into chromosome folding in vivo. To overcome the limited resolution of prior studies, we extend a recently developed Hi-C variant, Micro-C, to map chromosome architecture at nucleosome resolution in human ESCs and fibroblasts. Micro-C robustly captures known features of chromosome folding including compartment organization, topologically associating domains, and interactions between CTCF binding sites. In addition, Micro-C provides a detailed map of nucleosome positions and localizes contact domain boundaries with nucleosomal precision. Compared to Hi-C, Micro-C exhibits an order of magnitude greater dynamic range, allowing the identification of ∼20,000 additional loops in each cell type. Many newly identified peaks are localized along extrusion stripes and form transitive grids, consistent with their anchors being pause sites impeding cohesin-dependent loop extrusion. Our analyses comprise the highest-resolution maps of chromosome folding in human cells to date, providing a valuable resource for studies of chromosome organization.

RevDate: 2020-03-27

Hsieh TS, Cattoglio C, Slobodyanyuk E, et al (2020)

Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding.

Molecular cell pii:S1097-2765(20)30150-7 [Epub ahead of print].

Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.

RevDate: 2020-03-23

Kloetgen A, Thandapani P, Ntziachristos P, et al (2020)

Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia.

Nature genetics pii:10.1038/s41588-020-0602-9 [Epub ahead of print].

Differences in three-dimensional (3D) chromatin architecture can influence the integrity of topologically associating domains (TADs) and rewire specific enhancer-promoter interactions, impacting gene expression and leading to human disease. Here we investigate the 3D chromatin architecture in T cell acute lymphoblastic leukemia (T-ALL) by using primary human leukemia specimens and examine the dynamic responses of this architecture to pharmacological agents. Systematic integration of matched in situ Hi-C, RNA-seq and CTCF ChIP-seq datasets revealed widespread differences in intra-TAD chromatin interactions and TAD boundary insulation in T-ALL. Our studies identify and focus on a TAD 'fusion' event associated with absence of CTCF-mediated insulation, enabling direct interactions between the MYC promoter and a distal super-enhancer. Moreover, our data also demonstrate that small-molecule inhibitors targeting either oncogenic signal transduction or epigenetic regulation can alter specific 3D interactions found in leukemia. Overall, our study highlights the impact, complexity and dynamic nature of 3D chromatin architecture in human acute leukemia.

RevDate: 2020-03-21

Ibrahim DM, S Mundlos (2020)

The role of 3D chromatin domains in gene regulation: a multi-facetted view on genome organization.

Current opinion in genetics & development, 61:1-8 pii:S0959-437X(20)30020-4 [Epub ahead of print].

The causal relationship between 3D chromatin domains and gene regulation has been of considerable debate in recent years. Initial Hi-C studies profiling the 3D chromatin structure of the genome described evolutionarily conserved Topologically Associating Domains (TADs) that correlated with gene expression. Subsequent evidence from mouse models and human disease directly linked TADs to gene regulation. However, a number of focused genetic and genome-wide studies questioned the relevance of 3D chromatin domains for orchestrating gene expression, ultimately yielding a more multi-layered view of 3D chromatin structure and gene regulation. We review the evidence for and against the importance of 3D chromatin structure for gene regulation and argue for a more comprehensive classification of regulatory chromatin domains that integrates 3D chromatin structure with genomic, functional, and evolutionary conservation.

RevDate: 2020-03-20

Carstens S, Nilges M, M Habeck (2020)

Bayesian inference of chromatin structure ensembles from population-averaged contact data.

Proceedings of the National Academy of Sciences of the United States of America pii:1910364117 [Epub ahead of print].

Mounting experimental evidence suggests a role for the spatial organization of chromatin in crucial processes of the cell nucleus such as transcription regulation. Chromosome conformation capture techniques allow us to characterize chromatin structure by mapping contacts between chromosomal loci on a genome-wide scale. The most widespread modality is to measure contact frequencies averaged over a population of cells. Single-cell variants exist, but suffer from low contact numbers and have not yet gained the same resolution as population methods. While intriguing biological insights have already been garnered from ensemble-averaged data, information about three-dimensional (3D) genome organization in the underlying individual cells remains largely obscured because the contact maps show only an average over a huge population of cells. Moreover, computational methods for structure modeling of chromatin have mostly focused on fitting a single consensus structure, thereby ignoring any cell-to-cell variability in the model itself. Here, we propose a fully Bayesian method to infer ensembles of chromatin structures and to determine the optimal number of states in a principled, objective way. We illustrate our approach on simulated data and compute multistate models of chromatin from chromosome conformation capture carbon copy (5C) data. Comparison with independent data suggests that the inferred ensembles represent the underlying sample population faithfully. Harnessing the rich information contained in multistate models, we investigate cell-to-cell variability of chromatin organization into topologically associating domains, thus highlighting the ability of our approach to deliver insights into chromatin organization of great biological relevance.

RevDate: 2020-03-19

Shinkai S, Sugawara T, Miura H, et al (2020)

Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization.

Biophysical journal pii:S0006-3495(20)30185-5 [Epub ahead of print].

The one-dimensional information of genomic DNA is hierarchically packed inside the eukaryotic cell nucleus and organized in a three-dimensional (3D) space. Genome-wide chromosome conformation capture (Hi-C) methods have uncovered the 3D genome organization and revealed multiscale chromatin domains of compartments and topologically associating domains (TADs). Moreover, single-nucleosome live-cell imaging experiments have revealed the dynamic organization of chromatin domains caused by stochastic thermal fluctuations. However, the mechanism underlying the dynamic regulation of such hierarchical and structural chromatin units within the microscale thermal medium remains unclear. Microrheology is a way to measure dynamic viscoelastic properties coupling between thermal microenvironment and mechanical response. Here, we propose a new, to our knowledge, microrheology for Hi-C data to analyze the dynamic compliance property as a measure of rigidness and flexibility of genomic regions along with the time evolution. Our method allows the conversion of an Hi-C matrix into the spectrum of the dynamic rheological property along the genomic coordinate of a single chromosome. To demonstrate the power of the technique, we analyzed Hi-C data during the neural differentiation of mouse embryonic stem cells. We found that TAD boundaries behave as more rigid nodes than the intra-TAD regions. The spectrum clearly shows the dynamic viscoelasticity of chromatin domain formation at different timescales. Furthermore, we characterized the appearance of synchronous and liquid-like intercompartment interactions in differentiated cells. Together, our microrheology data derived from Hi-C data provide physical insights into the dynamics of the 3D genome organization.

RevDate: 2020-03-13

Luo Z, Hu T, Jiang H, et al (2020)

Rearrangement of macronucleus chromosomes correspond to TAD-like structures of micronucleus chromosomes in Tetrahymena thermophila.

Genome research pii:gr.241687.118 [Epub ahead of print].

The somatic macronucleus (MAC) and germline micronucleus (MIC) of Tetrahymena thermophila differ in chromosome numbers, sizes, functions, transcriptional activities, and cohesin complex location. However, the higher-order chromatin organization in T. thermophila is still largely unknown. Here, we explored the higher-order chromatin organization in the two distinct nuclei of T. thermophila using the Hi-C and HiChIP methods. We found that the meiotic crescent MIC has specific chromosome interaction pattern, with all the telomeres or centromeres on the five MIC chromosomes clustering together, respectively, which is also helpful to identify the midpoints of centromeres in the MIC. We revealed that the MAC chromosomes lack A/B compartments, topologically associating domains (TADs) and chromatin loops. The MIC chromosomes have TAD-like structures, but not A/B compartments and chromatin loops. The boundaries of the TAD-like structures in the MIC are highly consistent with the chromatin breakage sequence (CBS) sites, suggesting that each TAD-like structure of the MIC chromosomes develops into one MAC chromosome during MAC development, which provides a mechanism of the formation of MAC chromosomes during conjugation. Overall, we demonstrated the distinct higher-order chromatin organization in the two nuclei of the T. thermophila and suggest that the higher-order chromatin structures may play important roles during the development of the MAC chromosomes.

RevDate: 2020-03-11

Santana JF, Parida M, Long A, et al (2020)

The Dm-Myb Oncoprotein Contributes to Insulator Function and Stabilizes Repressive H3K27me3 PcG Domains.

Cell reports, 30(10):3218-3228.e5.

Drosophila Myb (Dm-Myb) encodes a protein that plays a key role in regulation of mitotic phase genes. Here, we further refine its role in the context of a developing tissue as a potentiator of gene expression required for proper RNA polymerase II (RNA Pol II) function and efficient H3K4 methylation at promoters. In contrast to its role in gene activation, Myb is also required for repression of many genes, although no specific mechanism for this role has been proposed. We now reveal a critical role for Myb in contributing to insulator function, in part by promoting binding of insulator proteins BEAF-32 and CP190 and stabilizing H3K27me3 Polycomb-group (PcG) domains. In the absence of Myb, H3K27me3 is markedly reduced throughout the genome, leading to H3K4me3 spreading and gene derepression. Finally, Myb is enriched at boundaries that demarcate chromatin environments, including chromatin loop anchors. These results reveal functions of Myb that extend beyond transcriptional regulation.

RevDate: 2020-03-06

Mourad R (2020)

Studying 3D genome evolution using genomic sequence.

Bioinformatics (Oxford, England), 36(5):1367-1373.

MOTIVATION: The three dimensions (3D) genome is essential to numerous key processes such as the regulation of gene expression and the replication-timing program. In vertebrates, chromatin looping is often mediated by CTCF, and marked by CTCF motif pairs in convergent orientation. Comparative high-throughput sequencing technique (Hi-C) recently revealed that chromatin looping evolves across species. However, Hi-C experiments are complex and costly, which currently limits their use for evolutionary studies over a large number of species.

RESULTS: Here, we propose a novel approach to study the 3D genome evolution in vertebrates using the genomic sequence only, e.g. without the need for Hi-C data. The approach is simple and relies on comparing the distances between convergent and divergent CTCF motifs by computing a ratio we named the 3D ratio or '3DR'. We show that 3DR is a powerful statistic to detect CTCF looping encoded in the human genome sequence, thus reflecting strong evolutionary constraints encoded in DNA and associated with the 3D genome. When comparing vertebrate genomes, our results reveal that 3DR which underlies CTCF looping and topologically associating domain organization evolves over time and suggest that ancestral character reconstruction can be used to infer 3DR in ancestral genomes.

The R code is available at https://github.com/morphos30/PhyloCTCFLooping.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

RevDate: 2020-03-02

Van der Veen DR, Laing EE, Bae SE, et al (2020)

A Topological Cluster of Differentially Regulated Genes in Mice Lacking PER3.

Frontiers in molecular neuroscience, 13:15.

Polymorphisms in the human circadian clock gene PERIOD3 (PER3) are associated with a wide variety of phenotypes such as diurnal preference, delayed sleep phase disorder, sleep homeostasis, cognitive performance, bipolar disorder, type 2 diabetes, cardiac regulation, cancer, light sensitivity, hormone and cytokine secretion, and addiction. However, the molecular mechanisms underlying these phenotypic associations remain unknown. Per3 knockout mice (Per3-/-) have phenotypes related to activity, sleep homeostasis, anhedonia, metabolism, and behavioral responses to light. Using a protocol that induces behavioral differences in response to light in wild type and Per3-/- mice, we compared genome-wide expression in the eye and hypothalamus in the two genotypes. Differentially expressed transcripts were related to inflammation, taste, olfactory and melatonin receptors, lipid metabolism, cell cycle, ubiquitination, and hormones, as well as receptors and channels related to sleep regulation. Differentially expressed transcripts in both tissues co-localized with Per3 on an ∼8Mbp region of distal chromosome 4. The most down-regulated transcript is Prdm16, which is involved in adipocyte differentiation and may mediate altered body mass accumulation in Per3-/- mice. eQTL analysis with BXD mouse strains showed that the expression of some of these transcripts and also others co-localized at distal chromosome 4, is correlated with brain tissue expression levels of Per3 with a highly significant linkage to genetic variation in that region. These data identify a cluster of transcripts on mouse distal chromosome 4 that are co-regulated with Per3 and whose expression levels correlate with those of Per3. This locus lies within a topologically associating domain island that contains many genes with functional links to several of the diverse non-circadian phenotypes associated with polymorphisms in human PER3.

RevDate: 2020-03-01

Ji L, Huo X, Zhang Y, et al (2020)

TOPORS, a tumor suppressor protein, contributes to the maintenance of higher-order chromatin architecture.

Biochimica et biophysica acta. Gene regulatory mechanisms pii:S1874-9399(19)30411-0 [Epub ahead of print].

In the nucleus, chromosomes are hierarchically folded into active (A) and inactive (B) compartments composed of topologically associating domains (TADs). Genomic regions interact with nuclear lamina, termed lamina-associated domains (LADs). However, the molecular mechanisms underlying these 3D chromatin architectures remain incompletely understood. Here, we investigated the role of a potential tumor suppressor, TOP1 Binding Arginine/Serine Rich Protein (TOPORS), in genome organization. In mouse hepatocytes, chromatin interactions between A and B compartments increase and compartmentalization strength is reduced significantly upon Topors knockdown. Correspondingly, strength of TAD boundaries located at A/B borders is weakened. In the absence of TOPORS, chromatin-lamina interactions decrease and the coverage of LADs reduces from 53.31% to 46.52%. Interestingly, these changes in 3D genome are associated with PML nuclear bodies and PML-associated domains (PADs). Moreover, chromatin accessibility is altered predominantly at intergenic regions upon Topors knockdown, including a subset of enhancers. These alterations of chromatin are concordant with transcriptome changes, which are associated with carcinogenesis. Collectively, our findings demonstrate that TOPORS functions as a regulator in chromatin structure, providing novel insight into the architectural roles of tumor suppressors in higher-order genome organization.

RevDate: 2020-02-28

Sjakste T, Leonova E, Petrovs R, et al (2020)

Tight DNA-protein complexes isolated from barley seedlings are rich in potential guanine quadruplex sequences.

PeerJ, 8:e8569 pii:8569.

Background: The concept of chromatin domains attached to the nuclear matrix is being revisited, with nucleus described as a set of topologically associating domains. The significance of the tightly bound to DNA proteins (TBP), a protein group that remains attached to DNA after its deproteinization should be also revisited, as the existence of these interactions is in good agreement with the concept of the topologically associating domain. The work aimed to characterize the DNA component of TBP isolated from barley seedlings.

Methods: The tight DNA-protein complexes from the first leaves, coleoptiles, and roots of barley seedlings were isolated by purification with chromatography on nitrocellulose or exhaustive digestion of DNA with DNase I. Cloning and transformation were performed using pMOSBBlue Blunt Ended Cloning Kit. Inserts were amplified by PCR, and sequencing was performed on the MegaBace 1000 Sequencing System. The BLAST search was performed using sequence databases at NCBI, CR-EST, and TREP and Ensembl Plants databases. Comparison to MAR/SAR sequences was performed using http://smartdb.bioinf.med.uni-goettingen.de/cgi-bin/SMARtDB/smar.cgi database. The prediction of G quadruplexes (GQ) was performed with the aid of R-studio library pqsfinder. CD spectra were recorded on a Chirascan CS/3D spectrometer.

Results: Although the barley genome is AT-rich (43% of GC pairs), most DNA fragments associated with TBP were GC-rich (up to 70% in some fractions). Both fractionation procedures yielded a high proportion of CT-motif sequences presented predominantly by the 16-bp CC(TCTCCC)2 TC fragment present in clones derived from the TBP-bound DNA and absent in free DNA. BLAST analysis revealed alignment with different barley repeats. Some clones, however, aligned with both nuclear and chloroplast structural genes. Alignments with MAR/SAR motifs were very few. The analysis produced by the pqsfinder program revealed numerous potential quadruplex-forming sites in the TBP-bound sequences. A set of oligonucleotides containing sites of possible GQs were designed and ordered. Three of them represented the minus strand of the CT-repeat. Two were derived from sequences of two clones of nitrocellulose retained fraction from leaves and contained GC-rich motifs different from the CT motif. Circular dichroism spectroscopy revealed profound changes in spectra when oligonucleotides were incubated with 100 mM KCl. There was either an increase of positive band in the area of 260 nm or the formation of a positive band at 290 nm. In the former case, changes are typical for parallel G-quadruplexes and, in the latter, 3 + 1 structures.

Discussion: The G-quadruplexes anchor proteins are probably involved in the maintenance of the topologically associated domain structure.

RevDate: 2020-02-28

Yokoshi M, Segawa K, T Fukaya (2020)

Visualizing the Role of Boundary Elements in Enhancer-Promoter Communication.

Molecular cell pii:S1097-2765(20)30077-0 [Epub ahead of print].

Formation of self-associating loop domains is a fundamental organizational feature of metazoan genomes. Here, we employed quantitative live-imaging methods to visualize impacts of higher-order chromosome topology on enhancer-promoter communication in developing Drosophila embryos. Evidence is provided that distal enhancers effectively produce transcriptional bursting from target promoters over distances when they are flanked with boundary elements. Importantly, neither inversion nor deletion of a boundary element abrogates this "enhancer-assisting activity," suggesting that they can facilitate intra-domain enhancer-promoter interaction and production of transcriptional bursting independently of topologically associating domain (TAD) formation. In contrast, domain-skipping activity of distal enhancers was lost after disruption of topological domains. This observation raises a possibility that intra-domain and inter-domain enhancer-promoter interactions are differentially regulated by chromosome topology.

RevDate: 2020-02-26

Lazaris C, Aifantis I, A Tsirigos (2020)

On Epigenetic Plasticity and Genome Topology.

Trends in cancer, 6(3):177-180.

Mounting evidence links genetic lesions with genome topology alterations and aberrant gene activation. However, the role of epigenetic plasticity remains elusive. Emerging studies implicate DNA methylation, transcriptional elongation, long noncoding RNAs (lncRNAs), and CCCTC-binding factor (CTCF)-RNA interactions, but systematic approaches are needed to fully decipher the role of epigenetic plasticity in genome integrity and function.

RevDate: 2020-02-22

Li Y, Liao Z, Luo H, et al (2020)

Alteration of CTCF-associated chromatin neighborhood inhibits TAL1-driven oncogenic transcription program and leukemogenesis.

Nucleic acids research pii:5747515 [Epub ahead of print].

Aberrant activation of the TAL1 is associated with up to 60% of T-ALL cases and is involved in CTCF-mediated genome organization within the TAL1 locus, suggesting that CTCF boundary plays a pathogenic role in T-ALL. Here, we show that -31-Kb CTCF binding site (-31CBS) serves as chromatin boundary that defines topologically associating domain (TAD) and enhancer/promoter interaction required for TAL1 activation. Deleted or inverted -31CBS impairs TAL1 expression in a context-dependent manner. Deletion of -31CBS reduces chromatin accessibility and blocks long-range interaction between the +51 erythroid enhancer and TAL1 promoter-1 leading to inhibition of TAL1 expression in erythroid cells, but not T-ALL cells. However, in TAL1-expressing T-ALL cells, the leukemia-prone TAL1 promoter-IV specifically interacts with the +19 stem cell enhancer located 19 Kb downstream of TAL1 and this interaction is disrupted by the -31CBS inversion in T-ALL cells. Inversion of -31CBS in Jurkat cells alters chromatin accessibility, histone modifications and CTCF-mediated TAD leading to inhibition of TAL1 expression and TAL1-driven leukemogenesis. Thus, our data reveal that -31CBS acts as critical regulator to define +19-enhancer and the leukemic prone promoter IV interaction for TAL1 activation in T-ALL. Manipulation of CTCF boundary can alter TAL1 TAD and oncogenic transcription networks in leukemogenesis.

RevDate: 2020-02-21

Soler-Vila P, Cuscó P, Farabella I, et al (2020)

Hierarchical chromatin organization detected by TADpole.

Nucleic acids research pii:5742820 [Epub ahead of print].

The rapid development of Chromosome Conformation Capture (3C-based techniques), as well as imaging together with bioinformatics analyses, has been fundamental for unveiling that chromosomes are organized into the so-called topologically associating domains or TADs. While TADs appear as nested patterns in the 3C-based interaction matrices, the vast majority of available TAD callers are based on the hypothesis that TADs are individual and unrelated chromatin structures. Here we introduce TADpole, a computational tool designed to identify and analyze the entire hierarchy of TADs in intra-chromosomal interaction matrices. TADpole combines principal component analysis and constrained hierarchical clustering to provide a set of significant hierarchical chromatin levels in a genomic region of interest. TADpole is robust to data resolution, normalization strategy and sequencing depth. Domain borders defined by TADpole are enriched in main architectural proteins (CTCF and cohesin complex subunits) and in the histone mark H3K4me3, while their domain bodies, depending on their activation-state, are enriched in either H3K36me3 or H3K27me3, highlighting that TADpole is able to distinguish functional TAD units. Additionally, we demonstrate that TADpole's hierarchical annotation, together with the new DiffT score, allows for detecting significant topological differences on Capture Hi-C maps between wild-type and genetically engineered mouse.

RevDate: 2020-02-15

Arzate-Mejía RG, Josué Cerecedo-Castillo A, Guerrero G, et al (2020)

In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila.

Nature communications, 11(1):894 pii:10.1038/s41467-020-14651-z.

Chromosomes are organized into high-frequency chromatin interaction domains called topologically associating domains (TADs), which are separated from each other by domain boundaries. The molecular mechanisms responsible for TAD formation are not yet fully understood. In Drosophila, it has been proposed that transcription is fundamental for TAD organization while the participation of genetic sequences bound by architectural proteins (APs) remains controversial. Here, we investigate the contribution of domain boundaries to TAD organization and the regulation of gene expression at the Notch gene locus in Drosophila. We find that deletion of domain boundaries results in TAD fusion and long-range topological defects that are accompanied by loss of APs and RNA Pol II chromatin binding as well as defects in transcription. Together, our results provide compelling evidence of the contribution of discrete genetic sequences bound by APs and RNA Pol II in the partition of the genome into TADs and in the regulation of gene expression in Drosophila.

RevDate: 2020-02-09

Ibrahim DM, S Mundlos (2020)

Three-dimensional chromatin in disease: What holds us together and what drives us apart?.

Current opinion in cell biology, 64:1-9 pii:S0955-0674(20)30004-1 [Epub ahead of print].

Recent advances in understanding spatial genome organization inside the nucleus have shown that chromatin is compartmentalized into megabase-scale units known as topologically associating domains (TADs). In further studies, TADs were linked to differing transcriptional activity, suggesting that they might provide a scaffold for gene regulation by promoting enhancer-promoter interaction and by insulating regulatory activities. One strong argument for this hypothesis was provided by the effects of disease-causing structural variations in congenital disease and cancer. By rearranging TADs, these mutations result in a rewiring of enhancer-promoter contacts, consecutive gene misexpression, and ultimately disease. However, not all rearrangements are equally effective in creating these effects. Here, we review several recent studies aiming to understand the mechanisms by which disease-causing mutations achieve gene misregulation. We will discuss which regulatory effects are to be expected by different disease mutations and how this new knowledge can be used for diagnostics in the clinic.

RevDate: 2020-02-06

Akdemir KC, Le VT, Chandran S, et al (2020)

Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer.

Nature genetics pii:10.1038/s41588-019-0564-y [Epub ahead of print].

Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.

RevDate: 2020-02-04

Bolt CC, D Duboule (2020)

The regulatory landscapes of developmental genes.

Development (Cambridge, England), 147(3): pii:147/3/dev171736.

Regulatory landscapes have been defined in vertebrates as large DNA segments containing diverse enhancer sequences that produce coherent gene transcription. These genomic platforms integrate multiple cellular signals and hence can trigger pleiotropic expression of developmental genes. Identifying and evaluating how these chromatin regions operate may be difficult as the underlying regulatory mechanisms can be as unique as the genes they control. In this brief article and accompanying poster, we discuss some of the ways in which regulatory landscapes operate, illustrating these mechanisms using genes important for vertebrate development as examples. We also highlight some of the techniques available to researchers for analysing regulatory landscapes.

RevDate: 2020-02-03

Kumar V, Leclerc S, Y Taniguchi (2020)

BHi-Cect: a top-down algorithm for identifying the multi-scale hierarchical structure of chromosomes.

Nucleic acids research pii:5713458 [Epub ahead of print].

High-throughput chromosome conformation capture (Hi-C) technology enables the investigation of genome-wide interactions among chromosome loci. Current algorithms focus on topologically associating domains (TADs), that are contiguous clusters along the genome coordinate, to describe the hierarchical structure of chromosomes. However, high resolution Hi-C displays a variety of interaction patterns beyond what current TAD detection methods can capture. Here, we present BHi-Cect, a novel top-down algorithm that finds clusters by considering every locus with no assumption of genomic contiguity using spectral clustering. Our results reveal that the hierarchical structure of chromosome is organized as 'enclaves', which are complex interwoven clusters at both local and global scales. We show that the nesting of local clusters within global clusters characterizing enclaves, is associated with the epigenomic activity found on the underlying DNA. Furthermore, we show that the hierarchical nesting that links different enclaves integrates their respective function. BHi-Cect provides means to uncover the general principles guiding chromatin architecture.

RevDate: 2020-01-23

Brackley CA, D Marenduzzo (2020)

Bridging-induced microphase separation: photobleaching experiments, chromatin domains and the need for active reactions.

Briefings in functional genomics pii:5710983 [Epub ahead of print].

We review the mechanism and consequences of the 'bridging-induced attraction', a generic biophysical principle that underpins some existing models for chromosome organization in 3D. This attraction, which was revealed in polymer physics-inspired computer simulations, is a generic clustering tendency arising in multivalent chromatin-binding proteins, and it provides an explanation for the biogenesis of nuclear bodies and transcription factories via microphase separation. Including post-translational modification reactions involving these multivalent proteins can account for the fast dynamics of the ensuing clusters, as is observed via microscopy and photobleaching experiments. The clusters found in simulations also give rise to chromatin domains that conform well with the observation of A/B compartments in HiC experiments.

RevDate: 2020-01-22

Rhodes JDP, Feldmann A, Hernández-Rodríguez B, et al (2020)

Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells.

Cell reports, 30(3):820-835.e10.

How chromosome organization is related to genome function remains poorly understood. Cohesin, loop extrusion, and CCCTC-binding factor (CTCF) have been proposed to create topologically associating domains (TADs) to regulate gene expression. Here, we examine chromosome conformation in embryonic stem cells lacking cohesin and find, as in other cell types, that cohesin is required to create TADs and regulate A/B compartmentalization. However, in the absence of cohesin, we identify a series of long-range chromosomal interactions that persist. These correspond to regions of the genome occupied by the polycomb repressive system and are dependent on PRC1. Importantly, we discover that cohesin counteracts these polycomb-dependent interactions, but not interactions between super-enhancers. This disruptive activity is independent of CTCF and insulation and appears to modulate gene repression by the polycomb system. Therefore, we discover that cohesin disrupts polycomb-dependent chromosome interactions to modulate gene expression in embryonic stem cells.

RevDate: 2020-01-21

Hu G (2020)

Evaluation of 3D Chromatin Interactions Using Hi-C.

Methods in molecular biology (Clifton, N.J.), 2117:65-78.

The invention of Hi-C has greatly facilitated 3D genome research through an unbiased probing of 3D chromatin interactions. It produces enormous amount of sequencing data that capture multiscale chromatin conformation structures. In the last decade, numerous computational methods have been developed to analyze Hi-C data and predict A/B compartments, topologically associating domains (TADs), and significant chromatin contacts. This chapter introduced the iHiC package that provides several utilities to facilitate Hi-C data analysis with public software and demonstrated its application to a Hi-C dataset generated for mouse embryonic stem (ES) cells.

RevDate: 2020-01-20

Yang K, Xue Z, X Lv (2020)

Molecular mechanism of the 3D genome structure and function regulation during cell terminal differentiation.

Yi chuan = Hereditas, 42(1):32-44.

The eukaryotic chromatin is folded into highly complex three-dimensional (3D) structures, which plays an important role in the precise regulation of gene expression and normal physiological function. During differentiation and terminal maturation, cells usually undergo dramatic morphology and gene expression changes, accompanied by significant changes in the 3D structure of the genome. In this review, we provide a comprehensive view of the spatial hierarchical organization of the genome, including chromosome territories, A/B compartment, topologically associating domains (TADs) and looping, focusing on recent progresses in the dynamic 3D genomic structural changes and functional regulation during cell differentiation and terminal maturation. In the end, we summarize the unsolved issues as well as prospects of the 3D genome research in cell differentiation and maturation.

RevDate: 2020-01-17

Achinger-Kawecka J, Valdes-Mora F, Luu PL, et al (2020)

Epigenetic reprogramming at estrogen-receptor binding sites alters 3D chromatin landscape in endocrine-resistant breast cancer.

Nature communications, 11(1):320 pii:10.1038/s41467-019-14098-x.

Endocrine therapy resistance frequently develops in estrogen receptor positive (ER+) breast cancer, but the underlying molecular mechanisms are largely unknown. Here, we show that 3-dimensional (3D) chromatin interactions both within and between topologically associating domains (TADs) frequently change in ER+ endocrine-resistant breast cancer cells and that the differential interactions are enriched for resistance-associated genetic variants at CTCF-bound anchors. Ectopic chromatin interactions are preferentially enriched at active enhancers and promoters and ER binding sites, and are associated with altered expression of ER-regulated genes, consistent with dynamic remodelling of ER pathways accompanying the development of endocrine resistance. We observe that loss of 3D chromatin interactions often occurs coincidently with hypermethylation and loss of ER binding. Alterations in active A and inactive B chromosomal compartments are also associated with decreased ER binding and atypical interactions and gene expression. Together, our results suggest that 3D epigenome remodelling is a key mechanism underlying endocrine resistance in ER+ breast cancer.

RevDate: 2020-01-15

Cameron CJ, Dostie J, M Blanchette (2020)

HIFI: estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution.

Genome biology, 21(1):11 pii:10.1186/s13059-019-1913-y.

Hi-C is a popular technique to map three-dimensional chromosome conformation. In principle, Hi-C's resolution is only limited by the size of restriction fragments. However, insufficient sequencing depth forces researchers to artificially reduce the resolution of Hi-C matrices at a loss of biological interpretability. We present the Hi-C Interaction Frequency Inference (HIFI) algorithms that accurately estimate restriction-fragment resolution Hi-C matrices by exploiting dependencies between neighboring fragments. Cross-validation experiments and comparisons to 5C data and known regulatory interactions demonstrate HIFI's superiority to existing approaches. In addition, HIFI's restriction-fragment resolution reveals a new role for active regulatory regions in structuring topologically associating domains.

RevDate: 2020-01-11

Beagan JA, JE Phillips-Cremins (2020)

On the existence and functionality of topologically associating domains.

Nature genetics pii:10.1038/s41588-019-0561-1 [Epub ahead of print].

Genomes across a wide range of eukaryotic organisms fold into higher-order chromatin domains. Topologically associating domains (TADs) were originally discovered empirically in low-resolution Hi-C heat maps representing ensemble average interaction frequencies from millions of cells. Here, we discuss recent advances in high-resolution Hi-C, single-cell imaging experiments, and functional genetic studies, which provide an increasingly complex view of the genome's hierarchical structure-function relationship. On the basis of these new findings, we update the definitions of distinct classes of chromatin domains according to emerging knowledge of their structural, mechanistic and functional properties.

RevDate: 2020-01-11

Khoury A, Achinger-Kawecka J, Bert SA, et al (2020)

Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains.

Nature communications, 11(1):54.

The architectural protein CTCF is a mediator of chromatin conformation, but how CTCF binding to DNA is orchestrated to maintain long-range gene expression is poorly understood. Here we perform RNAi knockdown to reduce CTCF levels and reveal a shared subset of CTCF-bound sites are robustly resistant to protein depletion. The 'persistent' CTCF sites are enriched at domain boundaries and chromatin loops constitutive to all cell types. CRISPR-Cas9 deletion of 2 persistent CTCF sites at the boundary between a long-range epigenetically active (LREA) and silenced (LRES) region, within the Kallikrein (KLK) locus, results in concordant activation of all 8 KLK genes within the LRES region. CTCF genome-wide depletion results in alteration in Topologically Associating Domain (TAD) structure, including the merging of TADs, whereas TAD boundaries are not altered where persistent sites are maintained. We propose that the subset of essential CTCF sites are involved in cell-type constitutive, higher order chromatin architecture.

RevDate: 2020-01-11

Kentepozidou E, Aitken SJ, Feig C, et al (2020)

Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains.

Genome biology, 21(1):5.

BACKGROUND: CTCF binding contributes to the establishment of a higher-order genome structure by demarcating the boundaries of large-scale topologically associating domains (TADs). However, despite the importance and conservation of TADs, the role of CTCF binding in their evolution and stability remains elusive.

RESULTS: We carry out an experimental and computational study that exploits the natural genetic variation across five closely related species to assess how CTCF binding patterns stably fixed by evolution in each species contribute to the establishment and evolutionary dynamics of TAD boundaries. We perform CTCF ChIP-seq in multiple mouse species to create genome-wide binding profiles and associate them with TAD boundaries. Our analyses reveal that CTCF binding is maintained at TAD boundaries by a balance of selective constraints and dynamic evolutionary processes. Regardless of their conservation across species, CTCF binding sites at TAD boundaries are subject to stronger sequence and functional constraints compared to other CTCF sites. TAD boundaries frequently harbor dynamically evolving clusters containing both evolutionarily old and young CTCF sites as a result of the repeated acquisition of new species-specific sites close to conserved ones. The overwhelming majority of clustered CTCF sites colocalize with cohesin and are significantly closer to gene transcription start sites than nonclustered CTCF sites, suggesting that CTCF clusters particularly contribute to cohesin stabilization and transcriptional regulation.

CONCLUSIONS: Dynamic conservation of CTCF site clusters is an apparently important feature of CTCF binding evolution that is critical to the functional stability of a higher-order chromatin structure.

RevDate: 2020-01-11

Liu CF, WHW Tang (2019)

Epigenetics in Cardiac Hypertrophy and Heart Failure.

JACC. Basic to translational science, 4(8):976-993.

Heart failure (HF) is a complex syndrome affecting millions of people around the world. Over the past decade, the therapeutic potential of targeting epigenetic regulators in HF has been discussed extensively. Recent advances in next-generation sequencing techniques have contributed substantial progress in our understanding of the role of DNA methylation, post-translational modifications of histones, adenosine triphosphate (ATP)-dependent chromatin conformation and remodeling, and non-coding RNAs in HF pathophysiology. In this review, we summarize epigenomic studies on human and animal models in HF.

RevDate: 2020-01-09

Chang LH, Ghosh S, D Noordermeer (2019)

TADs and Their Borders: Free Movement or Building a Wall?.

Journal of molecular biology pii:S0022-2836(19)30742-9 [Epub ahead of print].

The tridimensional (3D) organization of mammalian genomes combines structures from different length scales. Within this organization, Topologically Associating Domains (TADs) are visible in Hi-C heat maps at the sub-megabase scale. The integrity of TADs is important for correct gene expression, but in a context-dependent and variable manner. The correct structure and function of TADs require the binding of the CTCF protein at both borders, which appears to block an active and dynamic mechanism of "Cohesin-mediated loop extrusion." As a result, mammalian TADs appear as so-called "loop domains" in Hi-C data, which are the focus of this review. Here, we present a reanalysis of TADs from three "golden-standard" mammalian Hi-C data sets. Despite the prominent presence of TADs in Hi-C heat maps from all studies, we find consistently that regions within these domains are only moderately insulated from their surroundings. Moreover, single-cell Hi-C and superresolution microscopy have revealed that the structure of TADs and the position of their borders can vary from cell to cell. The function of TADs as units of gene regulation may thus require additional aspects, potentially incorporating the mechanism of loop extrusion as well. Recent developments in single-cell and multi-contact genomics and superresolution microscopy assays will be instrumental to link TAD formation and structure to their function in transcriptional regulation.

RevDate: 2020-01-08

Foissac S, Djebali S, Munyard K, et al (2019)

Multi-species annotation of transcriptome and chromatin structure in domesticated animals.

BMC biology, 17(1):108.

BACKGROUND: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells).

RESULTS: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species.

CONCLUSIONS: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.

RevDate: 2020-01-08

Gan W, Luo J, Li YZ, et al (2019)

A computational method to predict topologically associating domain boundaries combining histone Marks and sequence information.

BMC genomics, 20(Suppl 13):980.

BACKGROUND: The three-dimensional (3D) structure of chromatins plays significant roles during cell differentiation and development. Hi-C and other 3C-based technologies allow us to look deep into the chromatin architectures. Many studies have suggested that topologically associating domains (TAD), as the structure and functional unit, are conserved across different organs. However, our understanding about the underlying mechanism of the TAD boundary formation is still limited.

RESULTS: We developed a computational method, TAD-Lactuca, to infer this structure by taking the contextual information of the epigenetic modification signals and the primary DNA sequence information on the genome. TAD-Lactuca is found stable in the case of multi-resolutions and different datasets. It could achieve high accuracy and even outperforms the state-of-art methods when the sequence patterns were incorporated. Moreover, several transcript factor binding motifs, besides the well-known CCCTC-binding factor (CTCF) motif, were found significantly enriched on the boundaries.

CONCLUSIONS: We provided a low cost, effective method to predict TAD boundaries. Above results suggested the incorporation of sequence features could significantly improve the performance. The sequence motif enrichment analysis indicates several gene regulation motifs around the boundaries, which is consistent with TADs may serve as the functional units of gene regulation and implies the sequence patterns would be important in chromatin folding.

RevDate: 2020-01-09

Daban JR (2019)

Supramolecular multilayer organization of chromosomes: possible functional roles of planar chromatin in gene expression and DNA replication and repair.

FEBS letters [Epub ahead of print].

Experimental evidence indicates that the chromatin filament is self-organized into a multilayer planar structure that is densely stacked in metaphase and unstacked in interphase. This chromatin organization is unexpected, but it is shown that diverse supramolecular assemblies, including dinoflagellate chromosomes, are multilayered. The mechanical strength of planar chromatin protects the genome integrity, even when double-strand breaks are produced. Here, it is hypothesized that the chromatin filament in the loops and topologically associating domains is folded within the thin layers of the multilaminar chromosomes. It is also proposed that multilayer chromatin has two states: inactive when layers are stacked and active when layers are unstacked. Importantly, the well-defined topology of planar chromatin may facilitate DNA replication without entanglements and DNA repair by homologous recombination.

RevDate: 2020-01-05

Schilit SLP, Menon S, Friedrich C, et al (2020)

SYCP2 Translocation-Mediated Dysregulation and Frameshift Variants Cause Human Male Infertility.

American journal of human genetics, 106(1):41-57.

Unexplained infertility affects 2%-3% of reproductive-aged couples. One approach to identifying genes involved in infertility is to study subjects with this clinical phenotype and a de novo balanced chromosomal aberration (BCA). While BCAs may reduce fertility by production of unbalanced gametes, a chromosomal rearrangement may also disrupt or dysregulate genes important in fertility. One such subject, DGAP230, has severe oligozoospermia and 46,XY,t(20;22)(q13.3;q11.2). We identified exclusive overexpression of SYCP2 from the der(20) allele that is hypothesized to result from enhancer adoption. Modeling the dysregulation in budding yeast resulted in disrupted structural integrity of the synaptonemal complex, a common cause of defective spermatogenesis in mammals. Exome sequencing of infertile males revealed three heterozygous SYCP2 frameshift variants in additional subjects with cryptozoospermia and azoospermia. In sum, this investigation illustrates the power of precision cytogenetics for annotation of the infertile genome, suggests that these mechanisms should be considered as an alternative etiology to that of segregation of unbalanced gametes in infertile men harboring a BCA, and provides evidence of SYCP2-mediated male infertility in humans.

RevDate: 2020-01-08

Lesne A, Baudement MO, Rebouissou C, et al (2019)

Exploring Mammalian Genome within Phase-Separated Nuclear Bodies: Experimental Methods and Implications for Gene Expression.

Genes, 10(12): pii:genes10121049.

The importance of genome organization at the supranucleosomal scale in the control of gene expression is increasingly recognized today. In mammals, Topologically Associating Domains (TADs) and the active/inactive chromosomal compartments are two of the main nuclear structures that contribute to this organization level. However, recent works reviewed here indicate that, at specific loci, chromatin interactions with nuclear bodies could also be crucial to regulate genome functions, in particular transcription. They moreover suggest that these nuclear bodies are membrane-less organelles dynamically self-assembled and disassembled through mechanisms of phase separation. We have recently developed a novel genome-wide experimental method, High-salt Recovered Sequences sequencing (HRS-seq), which allows the identification of chromatin regions associated with large ribonucleoprotein (RNP) complexes and nuclear bodies. We argue that the physical nature of such RNP complexes and nuclear bodies appears to be central in their ability to promote efficient interactions between distant genomic regions. The development of novel experimental approaches, including our HRS-seq method, is opening new avenues to understand how self-assembly of phase-separated nuclear bodies possibly contributes to mammalian genome organization and gene expression.

RevDate: 2020-01-08

Chen C, Yu W, Tober J, et al (2019)

Spatial Genome Re-organization between Fetal and Adult Hematopoietic Stem Cells.

Cell reports, 29(12):4200-4211.e7.

Fetal hematopoietic stem cells (HSCs) undergo a developmental switch to become adult HSCs with distinct functional properties. To better understand the molecular mechanisms underlying the developmental switch, we have conducted deep sequencing of the 3D genome, epigenome, and transcriptome of fetal and adult HSCs in mouse. We find that chromosomal compartments and topologically associating domains (TADs) are largely conserved between fetal and adult HSCs. However, there is a global trend of increased compartmentalization and TAD boundary strength in adult HSCs. In contrast, intra-TAD chromatin interactions are much more dynamic and widespread, involving over a thousand gene promoters and distal enhancers. These developmental-stage-specific enhancer-promoter interactions are mediated by different sets of transcription factors, such as TCF3 and MAFB in fetal HSCs, versus NR4A1 and GATA3 in adult HSCs. Loss-of-function studies of TCF3 confirm the role of TCF3 in mediating condition-specific enhancer-promoter interactions and gene regulation in fetal HSCs.

RevDate: 2019-12-18

Kempfer R, A Pombo (2019)

Methods for mapping 3D chromosome architecture.

Nature reviews. Genetics pii:10.1038/s41576-019-0195-2 [Epub ahead of print].

Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.

RevDate: 2020-01-08

An L, Yang T, Yang J, et al (2019)

OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries.

Genome biology, 20(1):282.

The spatial organization of chromatin in the nucleus has been implicated in regulating gene expression. Maps of high-frequency interactions between different segments of chromatin have revealed topologically associating domains (TADs), within which most of the regulatory interactions are thought to occur. TADs are not homogeneous structural units but appear to be organized into a hierarchy. We present OnTAD, an optimized nested TAD caller from Hi-C data, to identify hierarchical TADs. OnTAD reveals new biological insights into the role of different TAD levels, boundary usage in gene regulation, the loop extrusion model, and compartmental domains. OnTAD is available at https://github.com/anlin00007/OnTAD.

RevDate: 2020-01-08

Llères D, Moindrot B, Pathak R, et al (2019)

CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains.

Genome biology, 20(1):272.

BACKGROUND: Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints-the Igf2-H19 and Dlk1-Dio3 domains-and assessed the involvement of the insulator protein CTCF in mouse cells.

RESULTS: Both imprinted domains are located within overarching topologically associating domains (TADs) that are similar on both parental chromosomes. At each domain, a single differentially methylated region is bound by CTCF on the maternal chromosome only, in addition to multiple instances of bi-allelic CTCF binding. Combinations of allelic 4C-seq and DNA-FISH revealed that bi-allelic CTCF binding alone, on the paternal chromosome, correlates with a first level of sub-TAD structure. On the maternal chromosome, additional CTCF binding at the differentially methylated region adds a further layer of sub-TAD organization, which essentially hijacks the existing paternal-specific sub-TAD organization. Perturbation of maternal-specific CTCF binding site at the Dlk1-Dio3 locus, using genome editing, results in perturbed sub-TAD organization and bi-allelic Dlk1 activation during differentiation.

CONCLUSIONS: Maternal allele-specific CTCF binding at the imprinted Igf2-H19 and the Dlk1-Dio3 domains adds an additional layer of sub-TAD organization, on top of an existing three-dimensional configuration and prior to imprinted activation of protein-coding genes. We speculate that this allele-specific sub-TAD organization provides an instructive or permissive context for imprinted gene activation during development.

RevDate: 2019-12-12

Barajas-Mora EM, AJ Feeney (2019)

Enhancers as regulators of antigen receptor loci three-dimensional chromatin structure.

Transcription [Epub ahead of print].

Enhancers are defined as regulatory elements that control transcription in a cell-type and developmental stage-specific manner. They achieve this by physically interacting with their cognate gene promoters. Significantly, these interactions can occur through long genomic distances since enhancers may not be near their cognate promoters. The optimal coordination of enhancer-regulated transcription is essential for the function and identity of the cell. Although great efforts to fully understand the principles of this type of regulation are ongoing, other potential functions of the long-range chromatin interactions (LRCIs) involving enhancers are largely unexplored. We recently uncovered a new role for enhancer elements in determining the three-dimensional (3D) structure of the immunoglobulin kappa (Igκ) light chain receptor locus suggesting a structural function for these DNA elements. This enhancer-mediated locus configuration shapes the resulting Igκ repertoire. We also propose a role for enhancers as critical components of sub-topologically associating domain (subTAD) formation and nuclear spatial localization.

RevDate: 2019-12-10

van Schoonhoven A, Huylebroeck D, Hendriks RW, et al (2019)

3D genome organization during lymphocyte development and activation.

Briefings in functional genomics pii:5670376 [Epub ahead of print].

Chromosomes have a complex three-dimensional (3D) architecture comprising A/B compartments, topologically associating domains and promoter-enhancer interactions. At all these levels, the 3D genome has functional consequences for gene transcription and therefore for cellular identity. The development and activation of lymphocytes involves strict control of gene expression by transcription factors (TFs) operating in a three-dimensionally organized chromatin landscape. As lymphocytes are indispensable for tissue homeostasis and pathogen defense, and aberrant lymphocyte activity is involved in a wide range of human morbidities, acquiring an in-depth understanding of the molecular mechanisms that control lymphocyte identity is highly relevant. Here we review current knowledge of the interplay between 3D genome organization and transcriptional control during B and T lymphocyte development and antigen-dependent activation, placing special emphasis on the role of TFs.

RevDate: 2020-01-08

Zhang S, Chasman D, Knaack S, et al (2019)

In silico prediction of high-resolution Hi-C interaction matrices.

Nature communications, 10(1):5449 pii:10.1038/s41467-019-13423-8.

The three-dimensional (3D) organization of the genome plays an important role in gene regulation bringing distal sequence elements in 3D proximity to genes hundreds of kilobases away. Hi-C is a powerful genome-wide technique to study 3D genome organization. Owing to experimental costs, high resolution Hi-C datasets are limited to a few cell lines. Computational prediction of Hi-C counts can offer a scalable and inexpensive approach to examine 3D genome organization across multiple cellular contexts. Here we present HiC-Reg, an approach to predict contact counts from one-dimensional regulatory signals. HiC-Reg predictions identify topologically associating domains and significant interactions that are enriched for CCCTC-binding factor (CTCF) bidirectional motifs and interactions identified from complementary sources. CTCF and chromatin marks, especially repressive and elongation marks, are most important for HiC-Reg's predictive performance. Taken together, HiC-Reg provides a powerful framework to generate high-resolution profiles of contact counts that can be used to study individual locus level interactions and higher-order organizational units of the genome.

RevDate: 2020-01-08

Muro EM, Ibn-Salem J, MA Andrade-Navarro (2019)

The distributions of protein coding genes within chromatin domains in relation to human disease.

Epigenetics & chromatin, 12(1):72.

BACKGROUND: Our understanding of the nuclear chromatin structure has increased hugely during the last years mainly as a consequence of the advances in chromatin conformation capture methods like Hi-C. The unprecedented resolution of genome-wide interaction maps shows functional consequences that extend the initial thought of an efficient DNA packaging mechanism: gene regulation, DNA repair, chromosomal translocations and evolutionary rearrangements seem to be only the peak of the iceberg. One key concept emerging from this research is the topologically associating domains (TADs) whose functional role in gene regulation and their association with disease is not fully untangled.

RESULTS: We report that the lower the number of protein coding genes inside TADs, the higher the tendency of those genes to be associated with disease (p-value = 4 × [Formula: see text]). Moreover, housekeeping genes are less associated with disease than other genes. Accordingly, they are depleted in TADs containing less than three protein coding genes (p-value = 3.9 × [Formula: see text]). We observed that TADs with higher ratios of enhancers versus genes contained higher numbers of disease-associated genes. We interpret these results as an indication that sharing enhancers among genes reduces their involvement in disease. Larger TADs would have more chances to accommodate many genes and select for enhancer sharing along evolution.

CONCLUSIONS: Genes associated with human disease do not distribute randomly over the TADs. Our observations suggest general rules that confer functional stability to TADs, adding more evidence to the role of TADs as regulatory units.

RevDate: 2019-12-16

Chen X, Ke Y, Wu K, et al (2019)

Key role for CTCF in establishing chromatin structure in human embryos.

Nature, 576(7786):306-310.

In the interphase of the cell cycle, chromatin is arranged in a hierarchical structure within the nucleus1,2, which has an important role in regulating gene expression3-6. However, the dynamics of 3D chromatin structure during human embryogenesis remains unknown. Here we report that, unlike mouse sperm, human sperm cells do not express the chromatin regulator CTCF and their chromatin does not contain topologically associating domains (TADs). Following human fertilization, TAD structure is gradually established during embryonic development. In addition, A/B compartmentalization is lost in human embryos at the 2-cell stage and is re-established during embryogenesis. Notably, blocking zygotic genome activation (ZGA) can inhibit TAD establishment in human embryos but not in mouse or Drosophila. Of note, CTCF is expressed at very low levels before ZGA, and is then highly expressed at the ZGA stage when TADs are observed. TAD organization is significantly reduced in CTCF knockdown embryos, suggesting that TAD establishment during ZGA in human embryos requires CTCF expression. Our results indicate that CTCF has a key role in the establishment of 3D chromatin structure during human embryogenesis.

RevDate: 2020-01-08

Middelkamp S, Vlaar JM, Giltay J, et al (2019)

Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants.

Genome medicine, 11(1):79.

BACKGROUND: Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown.

METHODS: We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing.

RESULTS: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants.

CONCLUSIONS: These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.

RevDate: 2019-12-04

Moretti C, Stévant I, Y Ghavi-Helm (2019)

3D genome organisation in Drosophila.

Briefings in functional genomics pii:5641099 [Epub ahead of print].

Ever since Thomas Hunt Morgan's discovery of the chromosomal basis of inheritance by using Drosophila melanogaster as a model organism, the fruit fly has remained an essential model system in studies of genome biology, including chromatin organisation. Very much as in vertebrates, in Drosophila, the genome is organised in territories, compartments and topologically associating domains (TADs). However, these domains might be formed through a slightly different mechanism than in vertebrates due to the presence of a large and potentially redundant set of insulator proteins and the minor role of dCTCF in TAD boundary formation. Here, we review the different levels of chromatin organisation in Drosophila and discuss mechanisms and factors that might be involved in TAD formation. The dynamics of TADs and enhancer-promoter interactions in the context of transcription are covered in the light of currently conflicting results. Finally, we illustrate the value of polymer modelling approaches to infer the principles governing the three-dimensional organisation of the Drosophila genome.

RevDate: 2020-01-08

Liu T, Z Wang (2019)

Exploring the 2D and 3D structural properties of topologically associating domains.

BMC bioinformatics, 20(Suppl 16):592.

BACKGROUND: Topologically associating domains (TADs) are genomic regions with varying lengths. The interactions within TADs are more frequent than those between different TADs. TADs or sub-TADs are considered the structural and functional units of the mammalian genomes. Although TADs are important for understanding how genomes function, we have limited knowledge about their 3D structural properties.

RESULTS: In this study, we designed and benchmarked three metrics for capturing the three-dimensional and two-dimensional structural signatures of TADs, which can help better understand TADs' structural properties and the relationships between structural properties and genetic and epigenetic features. The first metric for capturing 3D structural properties is radius of gyration, which in this study is used to measure the spatial compactness of TADs. The mass value of each DNA bead in a 3D structure is novelly defined as one or more genetic or epigenetic feature(s). The second metric is folding degree. The last metric is exponent parameter, which is used to capture the 2D structural properties based on TADs' Hi-C contact matrices. In general, we observed significant correlations between the three metrics and the genetic and epigenetic features. We made the same observations when using H3K4me3, transcription start sites, and RNA polymerase II to represent the mass value in the modified radius-of-gyration metric. Moreover, we have found that the TADs in the clusters of depleted chromatin states apparently correspond to smaller exponent parameters and larger radius of gyrations. In addition, a new objective function of multidimensional scaling for modelling chromatin or TADs 3D structures was designed and benchmarked, which can handle the DNA bead-pairs with zero Hi-C contact values.

CONCLUSIONS: The web server for reconstructing chromatin 3D structures using multiple different objective functions and the related source code are publicly available at http://dna.cs.miami.edu/3DChrom/.

RevDate: 2019-11-30

Clemens AW, Wu DY, Moore JR, et al (2019)

MeCP2 Represses Enhancers through Chromosome Topology-Associated DNA Methylation.

Molecular cell pii:S1097-2765(19)30811-1 [Epub ahead of print].

The genomes of mammalian neurons contain uniquely high levels of non-CG DNA methylation that can be bound by the Rett syndrome protein, MeCP2, to regulate gene expression. How patterns of non-CG methylation are established in neurons and the mechanism by which this methylation works with MeCP2 to control gene expression is unclear. Here, we find that genes repressed by MeCP2 are often located within megabase-scale regions of high non-CG methylation that correspond with topologically associating domains of chromatin folding. MeCP2 represses enhancers found in these domains that are enriched for non-CG and CG methylation, with the strongest repression occurring for enhancers located within MeCP2-repressed genes. These alterations in enhancer activity provide a mechanism for how MeCP2 disruption in disease can lead to widespread changes in gene expression. Hence, we find that DNA topology can shape non-CG DNA methylation across the genome to dictate MeCP2-mediated enhancer regulation in the brain.

RevDate: 2020-01-08

Li L, Barth NKH, Pilarsky C, et al (2019)

Cancer Is Associated with Alterations in the Three-Dimensional Organization of the Genome.

Cancers, 11(12): pii:cancers11121886.

The human genome is organized into topologically associating domains (TADs), which represent contiguous regions with a higher frequency of intra-interactions as opposed to inter-interactions. TADs contribute to gene expression regulation by restricting the interactions between their regulatory elements, and TAD disruption has been associated with cancer. Here, we provide a proof of principle that mutations within TADs can be used to predict the survival of cancer patients. Specifically, we constructed a set of 1467 consensus TADs representing the three-dimensional organization of the human genome and used Cox regression analysis to identify a total of 35 prognostic TADs in different cancer types. Interestingly, only 46% of the 35 prognostic TADs comprised genes with known clinical relevance. Moreover, in the vast majority of such cases, the prognostic value of the TAD was not directly related to the presence/absence of mutations in the gene(s), emphasizing the importance of regulatory mutations. In addition, we found that 34% of the prognostic TADs show strong structural perturbations in the cancer genome, consistent with the widespread, global epigenetic dysregulation often observed in cancer patients. In summary, this study elucidates the mechanisms through which non-coding variants may influence cancer progression and opens new avenues for personalized medicine.

RevDate: 2019-12-09

Zhang H, Emerson DJ, Gilgenast TG, et al (2019)

Chromatin structure dynamics during the mitosis-to-G1 phase transition.

Nature, 576(7785):158-162.

Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis1,2. Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.

RevDate: 2019-11-24

Galupa R, Nora EP, Worsley-Hunt R, et al (2019)

A Conserved Noncoding Locus Regulates Random Monoallelic Xist Expression across a Topological Boundary.

Molecular cell pii:S1097-2765(19)30808-1 [Epub ahead of print].

cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.

RevDate: 2019-12-16

Davidson IF, Bauer B, Goetz D, et al (2019)

DNA loop extrusion by human cohesin.

Science (New York, N.Y.), 366(6471):1338-1345.

Eukaryotic genomes are folded into loops and topologically associating domains, which contribute to chromatin structure, gene regulation, and gene recombination. These structures depend on cohesin, a ring-shaped DNA-entrapping adenosine triphosphatase (ATPase) complex that has been proposed to form loops by extrusion. Such an activity has been observed for condensin, which forms loops in mitosis, but not for cohesin. Using biochemical reconstitution, we found that single human cohesin complexes form DNA loops symmetrically at rates up to 2.1 kilo-base pairs per second. Loop formation and maintenance depend on cohesin's ATPase activity and on NIPBL-MAU2, but not on topological entrapment of DNA by cohesin. During loop formation, cohesin and NIPBL-MAU2 reside at the base of loops, which indicates that they generate loops by extrusion. Our results show that cohesin and NIPBL-MAU2 form an active holoenzyme that interacts with DNA either pseudo-topologically or non-topologically to extrude genomic interphase DNA into loops.

RevDate: 2019-11-26

Di Filippo L, Righelli D, Gagliardi M, et al (2019)

HiCeekR: A Novel Shiny App for Hi-C Data Analysis.

Frontiers in genetics, 10:1079.

The High-throughput Chromosome Conformation Capture (Hi-C) technique combines the power of the Next Generation Sequencing technologies with chromosome conformation capture approach to study the 3D chromatin organization at the genome-wide scale. Although such a technique is quite recent, many tools are already available for pre-processing and analyzing Hi-C data, allowing to identify chromatin loops, topological associating domains and A/B compartments. However, only a few of them provide an exhaustive analysis pipeline or allow to easily integrate and visualize other omic layers. Moreover, most of the available tools are designed for expert users, who have great confidence with command-line applications. In this paper, we present HiCeekR (https://github.com/lucidif/HiCeekR), a novel R Graphical User Interface (GUI) that allows researchers to easily perform a complete Hi-C data analysis. With the aid of the Shiny libraries, it integrates several R/Bioconductor packages for Hi-C data analysis and visualization, guiding the user during the entire process. Here, we describe its architecture and functionalities, then illustrate its capabilities using a publicly available dataset.

RevDate: 2019-12-10

Huang Y, Mouttet B, Warnatz HJ, et al (2019)

The Leukemogenic TCF3-HLF Complex Rewires Enhancers Driving Cellular Identity and Self-Renewal Conferring EP300 Vulnerability.

Cancer cell, 36(6):630-644.e9.

The chimeric transcription factor TCF3-HLF defines an incurable acute lymphoblastic leukemia subtype. Here we decipher the regulome of endogenous TCF3-HLF and dissect its essential transcriptional components and targets by functional genomics. We demonstrate that TCF3-HLF recruits HLF binding sites at hematopoietic stem cell/myeloid lineage associated (super-) enhancers to drive lineage identity and self-renewal. Among direct targets, hijacking an HLF binding site in a MYC enhancer cluster by TCF3-HLF activates a conserved MYC-driven transformation program crucial for leukemia propagation in vivo. TCF3-HLF pioneers the cooperation with ERG and recruits histone acetyltransferase p300 (EP300), conferring susceptibility to EP300 inhibition. Our study provides a framework for targeting driving transcriptional dependencies in this fatal leukemia.

RevDate: 2020-01-08

Bernardi G (2019)

The Genomic Code: A Pervasive Encoding/Molding of Chromatin Structures and a Solution of the "Non-Coding DNA" Mystery.

BioEssays : news and reviews in molecular, cellular and developmental biology, 41(12):e1900106.

Recent investigations have revealed 1) that the isochores of the human genome group into two super-families characterized by two different long-range 3D structures, and 2) that these structures, essentially based on the distribution and topology of short sequences, mold primary chromatin domains (and define nucleosome binding). More specifically, GC-poor, gene-poor isochores are low-heterogeneity sequences with oligo-A spikes that mold the lamina-associated domains (LADs), whereas GC-rich, gene-rich isochores are characterized by single or multiple GC peaks that mold the topologically associating domains (TADs). The formation of these "primary TADs" may be followed by extrusion under the action of cohesin and CTCF. Finally, the genomic code, which is responsible for the pervasive encoding and molding of primary chromatin domains (LADs and primary TADs, namely the "gene spaces"/"spatial compartments") resolves the longstanding problems of "non-coding DNA," "junk DNA," and "selfish DNA" leading to a new vision of the genome as shaped by DNA sequences.

RevDate: 2019-12-06

Jerković I, Szabo Q, Bantignies F, et al (2019)

Higher-Order Chromosomal Structures Mediate Genome Function.

Journal of molecular biology pii:S0022-2836(19)30610-2 [Epub ahead of print].

How chromosomes are organized within the tridimensional space of the nucleus and how can this organization affect genome function have been long-standing questions on the path to understanding genome activity and its link to disease. In the last decade, high-throughput chromosome conformation capture techniques, such as Hi-C, have facilitated the discovery of new principles of genome folding. Chromosomes are folded in multiple high-order structures, with local contacts between enhancers and promoters, intermediate-level contacts forming Topologically Associating Domains (TADs) and higher-order chromatin structures sequestering chromatin into active and repressive compartments. However, despite the increasing evidence that genome organization can influence its function, we are still far from understanding the underlying mechanisms. Deciphering these mechanisms represents a major challenge for the future, which large, international initiatives, such as 4DN, HCA and LifeTime, aim to collaboratively tackle by using a conjunction of state-of-the-art population-based and single-cell approaches.

RevDate: 2019-12-20

Mozziconacci J, Merle M, A Lesne (2019)

The 3D Genome Shapes the Regulatory Code of Developmental Genes.

Journal of molecular biology pii:S0022-2836(19)30613-8 [Epub ahead of print].

We revisit the notion of gene regulatory code in embryonic development in the light of recent findings about genome spatial organization. By analogy with the genetic code, we posit that the concept of code can only be used if the corresponding adaptor can clearly be identified. An adaptor is here defined as an intermediary physical entity mediating the correspondence between codewords and objects in a gratuitous and evolvable way. In the context of the gene regulatory code, the encoded objects are the gene expression levels, while the concentrations of specific transcription factors in the cell nucleus provide the codewords. The notion of code is meaningful in the absence of direct physicochemical relationships between the objects and the codewords, when the mediation by an adaptor is required. We propose that a plausible adaptor for this code is the gene domain, that is, the genome segment delimited by topological insulators and comprising the gene and its enhancer regulatory sequences. We review recent evidences, based on genome-wide chromosome conformation capture experiments, showing that preferential contact domains found in metazoan genomes are the physical traces of gene domains. Accordingly, genome 3D folding plays a direct role in shaping the developmental gene regulatory code.

RevDate: 2019-11-19

Abramo K, Valton AL, Venev SV, et al (2019)

A chromosome folding intermediate at the condensin-to-cohesin transition during telophase.

Nature cell biology, 21(11):1393-1402.

Chromosome folding is modulated as cells progress through the cell cycle. During mitosis, condensins fold chromosomes into helical loop arrays. In interphase, the cohesin complex generates loops and topologically associating domains (TADs), while a separate process of compartmentalization drives segregation of active and inactive chromatin. We used synchronized cell cultures to determine how the mitotic chromosome conformation transforms into the interphase state. Using high-throughput chromosome conformation capture (Hi-C) analysis, chromatin binding assays and immunofluorescence, we show that, by telophase, condensin-mediated loops are lost and a transient folding intermediate is formed that is devoid of most loops. By cytokinesis, cohesin-mediated CTCF-CTCF loops and the positions of TADs emerge. Compartment boundaries are also established early, but long-range compartmentalization is a slow process and proceeds for hours after cells enter G1. Our results reveal the kinetics and order of events by which the interphase chromosome state is formed and identify telophase as a critical transition between condensin- and cohesin-driven chromosome folding.

RevDate: 2019-11-04

Grob S (2019)

Three-dimensional chromosome organization in flowering plants.

Briefings in functional genomics pii:5611253 [Epub ahead of print].

Research on plant three-dimensional (3D) genome architecture made rapid progress over the past 5 years. Numerous Hi-C interaction data sets were generated in a wide range of plant species, allowing for a comprehensive overview on 3D chromosome folding principles in the plant kingdom. Plants lack important genes reported to be vital for chromosome folding in animals. However, similar 3D structures such as topologically associating domains and chromatin loops were identified. Recent studies in Arabidopsis thaliana revealed how chromosomal regions are positioned within the nucleus by determining their association with both, the nuclear periphery and the nucleolus. Additionally, many plant species exhibit high-frequency interactions among KNOT entangled elements, which are associated with safeguarding the genome from invasive DNA elements. Many of the recently published Hi-C data sets were generated to aid de novo genome assembly and remain to date little explored. These data sets represent a valuable resource for future comparative studies, which may lead to a more profound understanding of the evolution of 3D chromosome organization in plants.

RevDate: 2019-11-04

Kantidze OL, Gurova KV, Studitsky VM, et al (2019)

The 3D Genome as a Target for Anticancer Therapy.

Trends in molecular medicine pii:S1471-4914(19)30268-0 [Epub ahead of print].

The role of 3D genome organization in the precise regulation of gene expression is well established. Accordingly, the mechanistic connections between 3D genome alterations and disease development are becoming increasingly apparent. This opinion article provides a snapshot of our current understanding of the 3D genome alterations associated with cancers. We discuss potential connections of the 3D genome and cancer transcriptional addiction phenomenon as well as molecular mechanisms of action of 3D genome-disrupting drugs. Finally, we highlight issues and perspectives raised by the discovery of the first pharmaceutical strongly affecting 3D genome organization.

RevDate: 2019-12-27

de Wit E (2019)

TADs as the Caller Calls Them.

Journal of molecular biology pii:S0022-2836(19)30592-3 [Epub ahead of print].

Developments in proximity ligation methods and sequencing technologies have provided high-resolution views of the organization of the genome inside the nucleus. A prominent feature of Hi-C maps is regions of increased self-interaction called topologically associating domains (TADs). Despite the strong evolutionary conservation and clear link with gene expression, the exact role of TADs and even their definition remains debatable. Here, I review the discovery of TADs, how they are commonly identified, and the mechanisms that lead to their formation. Furthermore, I discuss recent results that have created a more nuanced view of the role of TADs in the regulation of genes. In light of this, I propose that when we define TADs, we also consider the mechanisms that shape them.

RevDate: 2020-01-08

Lhoumaud P, Badri S, Rodriguez-Hernaez J, et al (2019)

NSD2 overexpression drives clustered chromatin and transcriptional changes in a subset of insulated domains.

Nature communications, 10(1):4843.

CTCF and cohesin play a key role in organizing chromatin into topologically associating domain (TAD) structures. Disruption of a single CTCF binding site is sufficient to change chromosomal interactions leading to alterations in chromatin modifications and gene regulation. However, the extent to which alterations in chromatin modifications can disrupt 3D chromosome organization leading to transcriptional changes is unknown. In multiple myeloma, a 4;14 translocation induces overexpression of the histone methyltransferase, NSD2, resulting in expansion of H3K36me2 and shrinkage of antagonistic H3K27me3 domains. Using isogenic cell lines producing high and low levels of NSD2, here we find oncogene activation is linked to alterations in H3K27ac and CTCF within H3K36me2 enriched chromatin. A logistic regression model reveals that differentially expressed genes are significantly enriched within the same insulated domain as altered H3K27ac and CTCF peaks. These results identify a bidirectional relationship between 2D chromatin and 3D genome organization in gene regulation.

RevDate: 2019-12-18
CmpDate: 2019-11-19

Ochs F, Karemore G, Miron E, et al (2019)

Stabilization of chromatin topology safeguards genome integrity.

Nature, 574(7779):571-574.

To safeguard genome integrity in response to DNA double-strand breaks (DSBs), mammalian cells mobilize the neighbouring chromatin to shield DNA ends against excessive resection that could undermine repair fidelity and cause damage to healthy chromosomes1. This form of genome surveillance is orchestrated by 53BP1, whose accumulation at DSBs triggers sequential recruitment of RIF1 and the shieldin-CST-POLα complex2. How this pathway reflects and influences the three-dimensional nuclear architecture is not known. Here we use super-resolution microscopy to show that 53BP1 and RIF1 form an autonomous functional module that stabilizes three-dimensional chromatin topology at sites of DNA breakage. This process is initiated by accumulation of 53BP1 at regions of compact chromatin that colocalize with topologically associating domain (TAD) sequences, followed by recruitment of RIF1 to the boundaries between such domains. The alternating distribution of 53BP1 and RIF1 stabilizes several neighbouring TAD-sized structures at a single DBS site into an ordered, circular arrangement. Depletion of 53BP1 or RIF1 (but not shieldin) disrupts this arrangement and leads to decompaction of DSB-flanking chromatin, reduction in interchromatin space, aberrant spreading of DNA repair proteins, and hyper-resection of DNA ends. Similar topological distortions are triggered by depletion of cohesin, which suggests that the maintenance of chromatin structure after DNA breakage involves basic mechanisms that shape three-dimensional nuclear organization. As topological stabilization of DSB-flanking chromatin is independent of DNA repair, we propose that, besides providing a structural scaffold to protect DNA ends against aberrant processing, 53BP1 and RIF1 safeguard epigenetic integrity at loci that are disrupted by DNA breakage.

RevDate: 2019-10-23

Zou D, Zhang H, Ke J, et al (2019)

Three functional variants were identified to affect RPS24 expression and significantly associated with risk of colorectal cancer.

Archives of toxicology pii:10.1007/s00204-019-02600-9 [Epub ahead of print].

GWAS-identified 10q22.3 loci with lead SNP rs704017 are significantly associated with CRC risk in both Asian and European populations. However, the functional mechanism of this region is unclear. In this study, we performed a fine-mapping analysis to identify the causal SNPs. To identify potential functional SNPs in linkage disequilibrium with the lead SNP, we searched for the potential target genes using a Hi-C database and an RNA interfering-based on-chip approach. The results indicated that rs12263636 (r2 = 0.41) showed the highest potential to be functional. It resided in a region with enhancer markers and a topologically associating domain. We found that RPS24 was the only gene that significantly promoted the proliferation rate of CRC cells and might have promoter-enhancer interaction with rs12263636. Dual-luciferase reporter assays confirmed that the risk alleles of two variants (rs3740253 and rs7071351) in RPS24 promoter could increase the expression of luciferase. Case control study consisting of 1134 cases and 2039 health controls confirmed that both the two variants were associated with risk of CRC (rs3740253: P = 0.0079, OR = 1.15, 95% CI 1.04-1.28; rs7071351: P = 0.0085, OR = 1.15, 95% CI 1.04-1.28). And plasmid containing mutant haplotypes containing all the three mutations (rs12263636 or rs3740253 and rs7071351) could most significantly increase luciferase expression, compared with any haplotype of the three mutations. The study explained the functional mechanism for the 10q22.3 loci and provided new insights into the prevention and treatment of CRC.

RevDate: 2019-12-10

Ghavi-Helm Y (2019)

Functional Consequences of Chromosomal Rearrangements on Gene Expression: Not So Deleterious After All?.

Journal of molecular biology pii:S0022-2836(19)30564-9 [Epub ahead of print].

Chromosomes are folded and organized into topologically associating domains (TADs) which provide a framework for the interaction of enhancers with the promoter of their target gene(s). Structural rearrangements observed during evolution or in disease contexts suggest that changes in genome organization strongly affect gene expression and can have drastic phenotypic effects. In this review, I will discuss how recent genomic engineering experiments reveal a more contrasted picture, suggesting that TADs are important but not always essential for gene expression regulation.

RevDate: 2019-12-30

Viets K, Sauria MEG, Chernoff C, et al (2019)

Characterization of Button Loci that Promote Homologous Chromosome Pairing and Cell-Type-Specific Interchromosomal Gene Regulation.

Developmental cell, 51(3):341-356.e7.

Homologous chromosomes colocalize to regulate gene expression in processes including genomic imprinting, X-inactivation, and transvection. In Drosophila, homologous chromosomes pair throughout development, promoting transvection. The "button" model of pairing proposes that specific regions along chromosomes pair with high affinity. Here, we identify buttons interspersed across the fly genome that pair with their homologous sequences, even when relocated to multiple positions in the genome. A majority of transgenes that span a full topologically associating domain (TAD) function as buttons, but not all buttons contain TADs. Additionally, buttons are enriched for insulator protein clusters. Fragments of buttons do not pair, suggesting that combinations of elements within a button are required for pairing. Pairing is necessary but not sufficient for transvection. Additionally, pairing and transvection are stronger in some cell types than in others, suggesting that pairing strength regulates transvection efficiency between cell types. Thus, buttons pair homologous chromosomes to facilitate cell-type-specific interchromosomal gene regulation.

RevDate: 2019-12-17
CmpDate: 2019-12-06

Renschler G, Richard G, Valsecchi CIK, et al (2019)

Hi-C guided assemblies reveal conserved regulatory topologies on X and autosomes despite extensive genome shuffling.

Genes & development, 33(21-22):1591-1612.

Genome rearrangements that occur during evolution impose major challenges on regulatory mechanisms that rely on three-dimensional genome architecture. Here, we developed a scaffolding algorithm and generated chromosome-length assemblies from Hi-C data for studying genome topology in three distantly related Drosophila species. We observe extensive genome shuffling between these species with one synteny breakpoint after approximately every six genes. A/B compartments, a set of large gene-dense topologically associating domains (TADs), and spatial contacts between high-affinity sites (HAS) located on the X chromosome are maintained over 40 million years, indicating architectural conservation at various hierarchies. Evolutionary conserved genes cluster in the vicinity of HAS, while HAS locations appear evolutionarily flexible, thus uncoupling functional requirement of dosage compensation from individual positions on the linear X chromosome. Therefore, 3D architecture is preserved even in scenarios of thousands of rearrangements highlighting its relevance for essential processes such as dosage compensation of the X chromosome.

RevDate: 2019-10-08

Le Caignec C, Pichon O, Briand A, et al (2019)

Fryns type mesomelic dysplasia of the upper limbs caused by inverted duplications of the HOXD gene cluster.

European journal of human genetics : EJHG pii:10.1038/s41431-019-0522-2 [Epub ahead of print].

The HoxD cluster is critical for vertebrate limb development. Enhancers located in both the telomeric and centromeric gene deserts flanking the cluster regulate the transcription of HoxD genes. In rare patients, duplications, balanced translocations or inversions misregulating HOXD genes are responsible for mesomelic dysplasia of the upper and lower limbs. By aCGH, whole-genome mate-pair sequencing, long-range PCR and fiber fluorescent in situ hybridization, we studied patients from two families displaying mesomelic dysplasia limited to the upper limbs. We identified microduplications including the HOXD cluster and showed that microduplications were in an inverted orientation and inserted between the HOXD cluster and the telomeric enhancers. Our results highlight the existence of an autosomal dominant condition consisting of isolated ulnar dysplasia caused by microduplications inserted between the HOXD cluster and the telomeric enhancers. The duplications likely disconnect the HOXD9 to HOXD11 genes from their regulatory sequences. This presumptive loss-of-function may have contributed to the phenotype. In both cases, however, these rearrangements brought HOXD13 closer to telomeric enhancers, suggesting that the alterations derive from the dominant-negative effect of this digit-specific protein when ectopically expressed during the early development of forearms, through the disruption of topologically associating domain structure at the HOXD locus.

RevDate: 2019-09-22

Ooi WF, Nargund AM, Lim KJ, et al (2019)

Integrated paired-end enhancer profiling and whole-genome sequencing reveals recurrent CCNE1 and IGF2 enhancer hijacking in primary gastric adenocarcinoma.

Gut pii:gutjnl-2018-317612 [Epub ahead of print].

OBJECTIVE: Genomic structural variations (SVs) causing rewiring of cis-regulatory elements remain largely unexplored in gastric cancer (GC). To identify SVs affecting enhancer elements in GC (enhancer-based SVs), we integrated epigenomic enhancer profiles revealed by paired-end H3K27ac ChIP-sequencing from primary GCs with tumour whole-genome sequencing (WGS) data (PeNChIP-seq/WGS).

DESIGN: We applied PeNChIP-seq to 11 primary GCs and matched normal tissues combined with WGS profiles of >200 GCs. Epigenome profiles were analysed alongside matched RNA-seq data to identify tumour-associated enhancer-based SVs with altered cancer transcription. Functional validation of candidate enhancer-based SVs was performed using CRISPR/Cas9 genome editing, chromosome conformation capture assays (4C-seq, Capture-C) and Hi-C analysis of primary GCs.

RESULTS: PeNChIP-seq/WGS revealed ~150 enhancer-based SVs in GC. The majority (63%) of SVs linked to target gene deregulation were associated with increased tumour expression. Enhancer-based SVs targeting CCNE1, a key driver of therapy resistance, occurred in 8% of patients frequently juxtaposing diverse distal enhancers to CCNE1 proximal regions. CCNE1-rearranged GCs were associated with high CCNE1 expression, disrupted CCNE1 topologically associating domain (TAD) boundaries, and novel TAD interactions in CCNE1-rearranged primary tumours. We also observed IGF2 enhancer-based SVs, previously noted in colorectal cancer, highlighting a common non-coding genetic driver alteration in gastric and colorectal malignancies.

CONCLUSION: Integrated paired-end NanoChIP-seq and WGS of gastric tumours reveals tumour-associated regulatory SV in regions associated with both simple and complex genomic rearrangements. Genomic rearrangements may thus exploit enhancer-hijacking as a common mechanism to drive oncogene expression in GC.

RevDate: 2019-11-09

Hansen AS, Hsieh TS, Cattoglio C, et al (2019)

Distinct Classes of Chromatin Loops Revealed by Deletion of an RNA-Binding Region in CTCF.

Molecular cell, 76(3):395-411.e13.

Mammalian genomes are folded into topologically associating domains (TADs), consisting of chromatin loops anchored by CTCF and cohesin. Some loops are cell-type specific. Here we asked whether CTCF loops are established by a universal or locus-specific mechanism. Investigating the molecular determinants of CTCF clustering, we found that CTCF self-association in vitro is RNase sensitive and that an internal RNA-binding region (RBRi) mediates CTCF clustering and RNA interaction in vivo. Strikingly, deleting the RBRi impairs about half of all chromatin loops in mESCs and causes deregulation of gene expression. Disrupted loop formation correlates with diminished clustering and chromatin binding of RBRi mutant CTCF, which in turn results in a failure to halt cohesin-mediated extrusion. Thus, CTCF loops fall into at least two classes: RBRi-independent and RBRi-dependent loops. We speculate that evidence for RBRi-dependent loops may provide a molecular mechanism for establishing cell-specific CTCF loops, potentially regulated by RNA(s) or other RBRi-interacting partners.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )