Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Neanderthals

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 08 Dec 2022 at 07:47 Created: 


Wikipedia: Neanderthals or Neandertals — named for the Neandertal region in Germany — were a species or subspecies of archaic human, in the genus Homo. Neanderthals became extinct around 40,000 years ago. They were closely related to modern humans, sharing 99.7% of DNA. Remains left by Neanderthals include bone and stone tools, which are found in Eurasia, from Western Europe to Central and Northern Asia. Neanderthals are generally classified by paleontologists as the species Homo neanderthalensis, having separated from the Homo sapiens lineage 600,000 years ago, but a minority consider them to be a subspecies of Homo sapiens (Homo sapiens neanderthalensis). Several cultural assemblages have been linked to the Neanderthals in Europe. The earliest, the Mousterian stone tool culture, dates to about 160,000 years ago. Late Mousterian artifacts were found in Gorham's Cave on the south-facing coast of Gibraltar. Compared to Homo sapiens, Neanderthals had a lower surface-to-volume ratio, with shorter legs and a bigger body, in conformance with Bergmann's rule, as an energy-loss reduction adaptation to life in a high-latitude (i.e. seasonally cold) climate. Their average cranial capacity was notably larger than typical for modern humans: 1600 cm3 vs. 1250-1400 cm3. The Neanderthal genome project published papers in 2010 and 2014 stating that Neanderthals contributed to the DNA of modern humans, including most humans outside sub-Saharan Africa, as well as a few populations in sub-Saharan Africa, through interbreeding, likely between 50,000 and 60,000 years ago.

Created with PubMed® Query: ( Neanderthal OR Neandertal ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-12-05

Saraiva LR (2022)

The Neanderthal inside us.

Nature reviews. Genetics [Epub ahead of print].

RevDate: 2022-12-06

Schäfer W, Stähler T, Pinto Espinoza C, et al (2022)

Origin, distribution, and function of three frequent coding polymorphisms in the gene for the human P2X7 ion channel.

Frontiers in pharmacology, 13:1033135.

P2X7, an ion channel gated by extracellular ATP, is widely expressed on the plasma membrane of immune cells and plays important roles in inflammation and apoptosis. Several single nucleotide polymorphisms have been identified in the human P2RX7 gene. In contrast to other members of the P2X family, non-synonymous polymorphisms in P2X7 are common. Three of these occur at overall frequencies of more than 25% and affect residues in the extracellular "head"-domain of P2X7 (155 Y/H), its "lower body" (270 R/H), and its "tail" in the second transmembrane domain (348 T/A). Comparison of the P2X7 orthologues of human and other great apes indicates that the ancestral allele is Y-R-T (at 155-270-348). Interestingly, each single amino acid variant displays lower ATP-sensitivity than the ancestral allele. The originally published reference sequence of human P2X7, often referred to as "wildtype," differs from the ancestral allele at all three positions, i.e. H-H-A. The 1,000 Genome Project determined the sequences of both alleles of 2,500 human individuals, including roughly 500 persons from each of the five major continental regions. This rich resource shows that the ancestral alleles Y155, R270, and T348 occur in all analyzed human populations, albeit at strikingly different frequencies in various subpopulations (e.g., 25%-59% for Y155, 59%-77% for R270, and 13%-47% for T348). BLAST analyses of ancient human genome sequences uncovered several homozygous carriers of variant P2X7 alleles, possibly reflecting a high degree of inbreeding, e.g., H-R-T for a 50.000 year old Neanderthal, H-R-A for a 24.000 year old Siberian, and Y-R-A for a 7,000 year old mesolithic European. In contrast, most present-day individuals co-express two copies of P2X7 that differ in one or more amino acids at positions 155, 270, and 348. Our results improve the understanding of how P2X7 structure affects its function and suggest the importance of considering P2X7 variants of participants when designing clinical trials targeting P2X7.

RevDate: 2022-12-06

Ma X, S Xu (2022)

Archaic introgression contributed to the pre-agriculture adaptation of vitamin B1 metabolism in East Asia.

iScience, 25(12):105614.

Thiamine (vitamin B1) is an essential micronutrient. Genes involved in thiamine metabolisms, such as SLC19A2, SLC35F3, and SLC35F4, were assumed to be underlying positive selection in East Asians, but the detailed mechanism remains unknown. Here, we analyzed genome data of 3,823 individuals representing 223 global populations and identified the adaptive haplotypes at thiamine genes. Interestingly, the putative adaptive haplotype at SLC35F4 was of Neanderthal ancestry, while that at SLC35F3 was also likely of archaic origins. Leveraging new methods and available ancient DNA data, we further demonstrated that the beneficial haplotypes reached a high frequency at least 10,000 years ago and are maintained persistently in present-day East Asians. We argue that pathogens, rather than agriculture developed ∼10,000 years ago in East Asia, were likely the initial driving force of the putative positive selection. Notably, the first American people did not carry the putative adaptive haplotype at SLC35F4.

RevDate: 2022-12-01

Velez AD, Quam R, Conde-Valverde M, et al (2022)

Geometric morphometric analysis of the bony labyrinth of the Sima de los Huesos hominins.

Journal of human evolution, 174:103280 pii:S0047-2484(22)00140-3 [Epub ahead of print].

The bony labyrinth contains phylogenetic information that can be used to determine interspecific differences between fossil hominins. The present study conducted a comparative 3D geometric morphometric analysis on the bony labyrinth of the Middle Pleistocene Sima de los Huesos (SH) hominins. The findings of this study corroborate previous multivariate analyses of the SH hominin bony labyrinth. The analysis of the semicircular canals revealed the SH hominin canal morphologies appear closer to those of the Neandertals than to those of Homo sapiens. This is attributable to a Neandertal-like ovoid anterior canal, and mediolaterally expanded, circular posterior canal. However, the SH hominins lack the increased torsion in the anterior canal and the inferior orientation of the lateral canal seen in Neandertals. The results of the cochlear analysis indicated that, although there is some overlap, there are notable differences between the SH hominins and the Neandertals. In particular, the SH hominin cochlea appears more constricted than in Neandertals in the first and second turns. A principal component analysis of the full bony labyrinth separated most SH hominins from the Neandertals, which largely clustered with modern humans. A covariance ratio analysis found a significant degree of modularity within the bony labyrinth of all three groups, with the SH hominins and Neandertals displaying the highest modularity. This modular signal in the bony labyrinth may be attributable to different selective pressures related to locomotion and audition. Overall, the results of this study confirm previous suggestions that the semicircular canals in the SH hominins are somewhat derived toward Neandertals, while their cochlea is largely primitive within the genus Homo.

RevDate: 2022-12-01

Britton K, Jimenez EL, Le Corre M, et al (2022)

Multi-isotope zooarchaeological investigations at Abri du Maras: The paleoecological and paleoenvironmental context of Neanderthal subsistence strategies in the Rhône Valley during MIS 3.

Journal of human evolution, 174:103292 pii:S0047-2484(22)00152-X [Epub ahead of print].

The exploitation of mid- and large-sized herbivores (ungulates) was central to hominin subsistence across Late Pleistocene Europe. Reconstructing the paleoecology of prey-taxa is key to better understanding procurement strategies, decisions and behaviors, and the isotope analysis of faunal bones and teeth found at archaeological sites represent a powerful means of accessing information about past faunal behaviors. These isotope zooarchaeological approaches also have a near-unique ability to reveal environmental conditions contemporary to the human activities that produced these remains. Here, we present the results of a multi-isotope, multitissue study of ungulate remains from the Middle Paleolithic site of Abri du Maras, southern France, providing new insights into the living landscapes of the Rhône Valley during MIS 3 (level 4.2 = 55 ± 2 to 42 ± 3 ka; level 4.1 = 46 ± 3 to 40 ± 3 ka). Isotope data (carbon, nitrogen) reveal the dietary niches of different ungulate taxa, including the now-extinct giant deer (Megaloceros). Oxygen isotope data are consistent with a mild seasonal climate during level 4.2, where horse (Equus), bison (Bison), and red deer (Cervus elaphus) were exploited year-round. Strontium and sulfur isotope analyses provide new evidence for behavioral plasticity in Late Pleistocene European reindeer (Rangifer) between level 4.2 and level 4.1, indicating a change from the migratory to the sedentary ecotype. In level 4.1, the strong seasonal nature of reindeer exploitation, combined with their nonmigratory behavior, is consistent with a seasonally restricted use of the site by Neanderthals at that time or the preferential hunting of reindeer when in peak physical condition during the autumn.

RevDate: 2022-11-28
CmpDate: 2022-11-28

Mangan RJ, Alsina FC, Mosti F, et al (2022)

Adaptive sequence divergence forged new neurodevelopmental enhancers in humans.

Cell, 185(24):4587-4603.e23.

Searches for the genetic underpinnings of uniquely human traits have focused on human-specific divergence in conserved genomic regions, which reflects adaptive modifications of existing functional elements. However, the study of conserved regions excludes functional elements that descended from previously neutral regions. Here, we demonstrate that the fastest-evolved regions of the human genome, which we term "human ancestor quickly evolved regions" (HAQERs), rapidly diverged in an episodic burst of directional positive selection prior to the human-Neanderthal split, before transitioning to constraint within hominins. HAQERs are enriched for bivalent chromatin states, particularly in gastrointestinal and neurodevelopmental tissues, and genetic variants linked to neurodevelopmental disease. We developed a multiplex, single-cell in vivo enhancer assay to discover that rapid sequence divergence in HAQERs generated hominin-unique enhancers in the developing cerebral cortex. We propose that a lack of pleiotropic constraints and elevated mutation rates poised HAQERs for rapid adaptation and subsequent susceptibility to disease.

RevDate: 2022-11-26
CmpDate: 2022-11-25

Deschamps M, Martín-Lerma I, Linares-Matás G, et al (2022)

Organization of residential space, site function variability, and seasonality of activities among MIS 5 Iberian Neandertals.

Scientific reports, 12(1):20221.

Whether ethnoarcheological models of hunter-gatherer mobility, landscape use, and structuration of the inhabited space are relevant to the archeology of Neandertals and the Middle Paleolithic remains controversial. The thin lenses of hearth-associated stone tools and faunal remains excavated in sub-complex AS5 of Cueva Antón (Murcia, Spain) significantly advance these debates. Dated to 77.8-85.1 ka, these living floors are interstratified in river-accumulated sands and were buried shortly after abandonment by low-energy inundation events, with minimal disturbance and negligible palimpsest formation. Stone tools were made and ergonomically modified to fit tasks; their spatial distributions and use-wear reveal hearth-focused activities and a division of the inhabited space into resting and working areas. Site function varied with season of the year: units III-i/j1 and III-i/j2-3 record winter visits focused on filleting and hide processing, while woodworking predominated in unit III-b/d, which subsumes visits to the site over the course of at least one winter, one spring, and one summer. These snapshots of Neandertal behavior match expectations derived from the ethnographic and Upper Paleolithic records for the lifeways of hunter-gatherers inhabiting temperate regions with a markedly seasonal climate.

RevDate: 2022-11-23

Wielgus K, Danielewski M, J Walkowiak (2022)

Svante Pääbo, reader of the Neanderthal genome.

RevDate: 2022-11-29
CmpDate: 2022-11-29

Harvati K, H Reyes-Centeno (2022)

Evolution of Homo in the Middle and Late Pleistocene.

Journal of human evolution, 173:103279.

The Middle and Late Pleistocene is arguably the most interesting period in human evolution. This broad period witnessed the evolution of our own lineage, as well as that of our sister taxon, the Neanderthals, and related Denisovans. It is exceptionally rich in both fossil and archaeological remains, and uniquely benefits from insights gained through molecular approaches, such as paleogenetics and paleoproteomics, that are currently not widely applicable in earlier contexts. This wealth of information paints a highly complex picture, often described as 'the Muddle in the Middle,' defying the common adage that 'more evidence is needed' to resolve it. Here we review competing phylogenetic scenarios and the historical and theoretical developments that shaped our approaches to the fossil record, as well as some of the many remaining open questions associated with this period. We propose that advancing our understanding of this critical time requires more than the addition of data and will necessitate a major shift in our conceptual and theoretical framework.

RevDate: 2022-12-02
CmpDate: 2022-11-09

Tveito K (2022)

From Icelandic family sagas to Neanderthal genes.

Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke, 142(16): pii:22-0684.

RevDate: 2022-11-20
CmpDate: 2022-11-09

Koller D, Wendt FR, Pathak GA, et al (2022)

Denisovan and Neanderthal archaic introgression differentially impacted the genetics of complex traits in modern populations.

BMC biology, 20(1):249.

BACKGROUND: Introgression from extinct Neanderthal and Denisovan human species has been shown to contribute to the genetic pool of modern human populations and their phenotypic spectrum. Evidence of how Neanderthal introgression shaped the genetics of human traits and diseases has been extensively studied in populations of European descent, with signatures of admixture reported for instance in genes associated with pigmentation, immunity, and metabolic traits. However, limited information is currently available about the impact of archaic introgression on other ancestry groups. Additionally, to date, no study has been conducted with respect to the impact of Denisovan introgression on the health and disease of modern populations. Here, we compare the way evolutionary pressures shaped the genetics of complex traits in East Asian and European populations, and provide evidence of the impact of Denisovan introgression on the health of East Asian and Central/South Asian populations.

RESULTS: Leveraging genome-wide association statistics from the Biobank Japan and UK Biobank, we assessed whether Denisovan and Neanderthal introgression together with other evolutionary genomic signatures were enriched for the heritability of physiological and pathological conditions in populations of East Asian and European descent. In EAS, Denisovan-introgressed loci were enriched for coronary artery disease heritability (1.69-fold enrichment, p=0.003). No enrichment for archaic introgression was observed in EUR. We also performed a phenome-wide association study of Denisovan and Neanderthal alleles in six ancestry groups available in the UK Biobank. In EAS, the Denisovan-introgressed SNP rs62391664 in the major histocompatibility complex region was associated with albumin/globulin ratio (beta=-0.17, p=3.57×10[-7]). Neanderthal-introgressed alleles were associated with psychiatric and cognitive traits in EAS (e.g., "No Bipolar or Depression"-rs79043717 beta=-1.5, p=1.1×10[-7]), and with blood biomarkers (e.g., alkaline phosphatase-rs11244089 beta=0.1, p=3.69×10[-116]) and red hair color (rs60733936 beta=-0.86, p=4.49×10[-165]) in EUR. In the other ancestry groups, Neanderthal alleles were associated with several traits, also including the use of certain medications (e.g., Central/South East Asia: indapamide - rs732632 beta=-2.38, p=5.22×10[-7]).

CONCLUSIONS: Our study provides novel evidence regarding the impact of archaic introgression on the genetics of complex traits in worldwide populations, highlighting the specific contribution of Denisovan introgression in EAS populations.

RevDate: 2022-11-25

Richards GD, Jabbour RS, Guipert G, et al (2022)

Endocranial anatomy of the Guercy 1 early Neanderthal from Baume Moula-Guercy (Soyons, Ardèche, France).

Anatomical record (Hoboken, N.J. : 2007) [Epub ahead of print].

We provide the first comparative description of the endocranium of the Guercy 1 Early Neanderthal and examine its affinities to Preneanderthals, Neanderthals, and Homo sapiens. The Guercy 1 cranium derives from deposits chronostratigraphically and biostratigraphically dated to the Eemian Interglacial (MIS 5e). For comparative purposes, we compiled a sample of European and Southwest Asian subadult and adult Middle-to-Late Pleistocene hominins (≈MIS 12-MIS 1; N = 65). We sampled both a Preneanderthal-Neanderthal group and a Homo sapiens group. The Preneanderthal-Neanderthal group was further divided into three time-successive subgroups defined by associated MIS stages. Metric and morphological observations were made on original fossils and physical and virtual endocranial reconstructions. Guercy 1 and other Early Neanderthals, differ from Preneanderthals by increased development of the prefrontal cortex, precentral and postcentral gyri, inferior parietal lobule, and frontoparietal operculum. Early Neanderthal differ, in general, from Late Neanderthals by exhibiting less development in most of the latter brain structures. The late group additionally differentiates itself from the early group by a greater development of the rostral superior parietal lobule, angular gyrus, superior and middle temporal gyri, and caudal branches of the superior temporal gyrus. Endocranial morphology assessed along the Preneanderthal-Neanderthal sequence show that brain structures prominent in Preneanderthals are accentuated in Early-to-Late Neanderthals. However, both the Early and Late groups differentiate themselves by also showing regionally specific changes in brain development. This pattern of morphological change is consistent with a mosaic pattern of neural evolution in these Middle-to-Late Pleistocene hominins.

RevDate: 2022-11-03

Graham F (2022)

Daily briefing: First known Neanderthal family discovered.

RevDate: 2022-12-05
CmpDate: 2022-11-04

Campelo Dos Santos AL, Owings A, Sullasi HSL, et al (2022)

Genomic evidence for ancient human migration routes along South America's Atlantic coast.

Proceedings. Biological sciences, 289(1986):20221078.

An increasing body of archaeological and genomic evidence has hinted at a complex settlement process of the Americas by humans. This is especially true for South America, where unexpected ancestral signals have raised perplexing scenarios for the early migrations into different regions of the continent. Here, we present ancient human genomes from the archaeologically rich Northeast Brazil and compare them to ancient and present-day genomic data. We find a distinct relationship between ancient genomes from Northeast Brazil, Lagoa Santa, Uruguay and Panama, representing evidence for ancient migration routes along South America's Atlantic coast. To further add to the existing complexity, we also detect greater Denisovan than Neanderthal ancestry in ancient Uruguay and Panama individuals. Moreover, we find a strong Australasian signal in an ancient genome from Panama. This work sheds light on the deep demographic history of eastern South America and presents a starting point for future fine-scale investigations on the regional level.

RevDate: 2022-11-02

Mortazavi SA, Bevelacqua JJ, Welsh JS, et al (2022)

The Paradox of COVID-19 in Sub-Saharan Africa: Why it is More Unethical Not to Investigate Low Dose Radiotherapy for COVID-19.

Journal of biomedical physics & engineering, 12(5):539-542.

An accumulating body of evidence shows that various ethnicities are differentially affected by SARS-COV-2 infection. Moreover, some evidence shows that due to the vaccine inequity and millions of people living with HIV, a major catastrophe could occur in African countries that possibly affects the whole world. Given the possibility that Neanderthal genes confer a slight increase in susceptibility, this difference, at least to some extent, might possibly decrease the risk of the emergence of new SARS-CoV-2 variants among black people in Africa. Recent studies show less death and fewer cases among the ethnic group classified as "Black Africans". Although Neanderthal DNA might explain some differences in morbidity and mortality of COVID-19, a multitude of confounders complicate things to where drawing definite conclusions is hard or even impossible. Using selective-pressure-free treatments (e.g. low dose radiotherapy) for COVID-19 pneumonia would be of crucial importance everywhere, but particularly in sub-Saharan Africa, where "long COVID" in millions of people with HIV paves the road for the more frequent emergence of new variants.

RevDate: 2022-10-27

Thompson B, S Bundell (2022)

Ancient DNA reveals family of Neanderthals living in Siberian cave.

RevDate: 2022-11-05

Vidal-Cordasco M, Ocio D, Hickler T, et al (2022)

Publisher Correction: Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia.

Nature ecology & evolution, 6(11):1789.

RevDate: 2022-10-28
CmpDate: 2022-10-28

Callaway E (2022)

First known Neanderthal family discovered in Siberian cave.

Nature, 610(7933):615-616.

RevDate: 2022-10-27
CmpDate: 2022-10-26

Skov L, Peyrégne S, Popli D, et al (2022)

Genetic insights into the social organization of Neanderthals.

Nature, 610(7932):519-525.

Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans[1-8], but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave[9,10] and 2 from Okladnikov Cave[11]-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.

RevDate: 2022-10-23
CmpDate: 2022-10-21

Cassidy LM (2022)

The first genomic portrait of a Neanderthal family.

Nature, 610(7932):454-455.

RevDate: 2022-10-22
CmpDate: 2022-10-21

Mayoral E, Duveau J, Santos A, et al (2022)

New dating of the Matalascañas footprints provides new evidence of the Middle Pleistocene (MIS 9-8) hominin paleoecology in southern Europe.

Scientific reports, 12(1):17505.

Hominin footprints were recently discovered at Matalascañas (Huelva; South of Iberian Peninsula). They were dated thanks to a previous study in deposits of the Asperillo cliff to 106 ± 19 ka, Upper Pleistocene, making Neandertals the most likely track-makers. In this paper, we report new Optically Stimulated Luminescence dating that places the hominin footprints surface in the range of 295.8 ± 17 ka (MIS 9-MIS 8 transition, Middle Pleistocene). This new age implies that the possible track-makers are individuals more likely from the Neandertal evolutionary lineage. Regardless of the taxon attributed to the Matalascañas footprints, they supplement the existing partial fossil record for the European Middle Pleistocene Hominins being notably the first palaeoanthropological evidence (hominin skeleton or footprints) from the MIS 9 and MIS 8 transition discovered in the Iberian Peninsula, a moment of climatic evolution from warm to cool. Thus, the Matalascañas footprints represent a crucial record for understanding human occupations in Europe in the Pleistocene.

RevDate: 2022-10-27
CmpDate: 2022-10-19

Bergman J, MH Schierup (2022)

Evolutionary dynamics of pseudoautosomal region 1 in humans and great apes.

Genome biology, 23(1):215.

BACKGROUND: The pseudoautosomal region 1 (PAR1) is a 2.7 Mb telomeric region of human sex chromosomes. PAR1 has a crucial role in ensuring proper segregation of sex chromosomes during male meiosis, exposing it to extreme recombination and mutation processes. We investigate PAR1 evolution using population genomic datasets of extant humans, eight populations of great apes, and two archaic human genome sequences.

RESULTS: We find that PAR1 is fast evolving and closer to evolutionary nucleotide equilibrium than autosomal telomeres. We detect a difference between substitution patterns and extant diversity in PAR1, mainly driven by the conflict between strong mutation and recombination-associated fixation bias at CpG sites. We detect excess C-to-G mutations in PAR1 of all great apes, specific to the mutagenic effect of male recombination. Despite recent evidence for Y chromosome introgression from humans into Neanderthals, we find that the Neanderthal PAR1 retained similarity to the Denisovan sequence. We find differences between substitution spectra of these archaics suggesting rapid evolution of PAR1 in recent hominin history. Frequency analysis of alleles segregating in females and males provided no evidence for recent sexual antagonism in this region. We study repeat content and double-strand break hotspot regions in PAR1 and find that they may play roles in ensuring the obligate X-Y recombination event during male meiosis.

CONCLUSIONS: Our study provides an unprecedented quantification of population genetic forces governing PAR1 biology across extant and extinct hominids. PAR1 evolutionary dynamics are predominantly governed by recombination processes with a strong impact on mutation patterns across all species.

RevDate: 2022-11-03
CmpDate: 2022-10-19

Jaouen K, Villalba-Mouco V, Smith GM, et al (2022)

A Neandertal dietary conundrum: Insights provided by tooth enamel Zn isotopes from Gabasa, Spain.

Proceedings of the National Academy of Sciences of the United States of America, 119(43):e2109315119.

The characterization of Neandertals' diets has mostly relied on nitrogen isotope analyses of bone and tooth collagen. However, few nitrogen isotope data have been recovered from bones or teeth from Iberia due to poor collagen preservation at Paleolithic sites in the region. Zinc isotopes have been shown to be a reliable method for reconstructing trophic levels in the absence of organic matter preservation. Here, we present the results of zinc (Zn), strontium (Sr), carbon (C), and oxygen (O) isotope and trace element ratio analysis measured in dental enamel on a Pleistocene food web in Gabasa, Spain, to characterize the diet and ecology of a Middle Paleolithic Neandertal individual. Based on the extremely low δ[66]Zn value observed in the Neandertal's tooth enamel, our results support the interpretation of Neandertals as carnivores as already suggested by δ[15]N isotope values of specimens from other regions. Further work could help identify if such isotopic peculiarities (lowest δ[66]Zn and highest δ[15]N of the food web) are due to a metabolic and/or dietary specificity of the Neandertals.

RevDate: 2022-11-08
CmpDate: 2022-10-17

Djakovic I, Key A, M Soressi (2022)

Optimal linear estimation models predict 1400-2900 years of overlap between Homo sapiens and Neandertals prior to their disappearance from France and northern Spain.

Scientific reports, 12(1):15000.

Recent fossil discoveries suggest that Neandertals and Homo sapiens may have co-existed in Europe for as long as 5 to 6000 years. Yet, evidence for their contemporaneity at any regional scale remains highly elusive. In France and northern Spain, a region which features some of the latest directly-dated Neandertals in Europe, Protoaurignacian assemblages attributed to Homo sapiens appear to 'replace' Neandertal-associated Châtelperronian assemblages. Using the earliest and latest known occurrences as starting points, Bayesian modelling has provided indication that these occupations may in fact have been partly contemporaneous. The reality, however, is that we are unlikely to ever identify the 'first' or 'last' appearance of a species or cultural tradition in the archaeological and fossil record. Here, we use optimal linear estimation modelling to estimate the first appearance date of Homo sapiens and the extinction date of Neandertals in France and northern Spain by statistically inferring these 'missing' portions of the Protoaurignacian and Châtelperronian archaeological records. Additionally, we estimate the extinction date of Neandertals in this region using a dataset of directly-dated Neandertal fossil remains. Our total dataset consists of sixty-six modernly produced radiocarbon determinations which we recalibrated using the newest calibration curve (IntCal20) to produce updated age ranges. The results suggest that the onset of the Homo sapiens occupation of this region likely preceded the extinction of Neandertals and the Châtelperronian by up to 1400-2900 years. This reaffirms the Bayesian-derived duration of co-existence between these groups during the initial Upper Palaeolithic of this region using a novel independent method, and indicates that our understanding of the timing of these occupations may not be suffering from substantial gaps in the record. Whether or not this co-existence featured some form of direct interaction, however, remains to be resolved.

RevDate: 2022-10-11

Callaway E (2022)

From Neanderthal genome to Nobel prize: meet geneticist Svante Pääbo.

RevDate: 2022-10-25
CmpDate: 2022-10-07

Dannemann M, Milaneschi Y, Yermakovich D, et al (2022)

Neandertal introgression partitions the genetic landscape of neuropsychiatric disorders and associated behavioral phenotypes.

Translational psychiatry, 12(1):433.

Despite advances in identifying the genetic basis of psychiatric and neurological disorders, fundamental questions about their evolutionary origins remain elusive. Here, introgressed variants from archaic humans such as Neandertals can serve as an intriguing research paradigm. We compared the number of associations for Neandertal variants to the number of associations of frequency-matched non-archaic variants with regard to human CNS disorders (neurological and psychiatric), nervous system drug prescriptions (as a proxy for disease), and related, non-disease phenotypes in the UK biobank (UKBB). While no enrichment for Neandertal genetic variants were observed in the UKBB for psychiatric or neurological disease categories, we found significant associations with certain behavioral phenotypes including pain, chronotype/sleep, smoking and alcohol consumption. In some instances, the enrichment signal was driven by Neandertal variants that represented the strongest association genome-wide. SNPs within a Neandertal haplotype that was associated with smoking in the UKBB could be replicated in four independent genomics datasets.Our data suggest that evolutionary processes in recent human evolution like admixture with Neandertals significantly contribute to behavioral phenotypes but not psychiatric and neurological diseases. These findings help to link genetic variants in a population to putative past beneficial effects, which likely only indirectly contribute to pathology in modern day humans.

RevDate: 2022-11-22
CmpDate: 2022-11-22

Huang X, Kruisz P, M Kuhlwilm (2022)

sstar: A Python Package for Detecting Archaic Introgression from Population Genetic Data with S.

Molecular biology and evolution, 39(11):.

S* is a widely used statistic for detecting archaic admixture from population genetic data. Previous studies used freezing-archer to apply S*, which is only directly applicable to the specific case of Neanderthal and Denisovan introgression in Papuans. Here, we implemented sstar for a more general purpose. Compared with several tools, including SPrime, SkovHMM, and ArchaicSeeker2.0, for detecting introgressed fragments with simulations, our results suggest that sstar is robust to differences in demographic models, including ghost introgression and two-source introgression. We believe sstar will be a useful tool for detecting introgressed fragments in various scenarios and in non-human species.

RevDate: 2022-11-18
CmpDate: 2022-11-04

Vidal-Cordasco M, Ocio D, Hickler T, et al (2022)

Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia.

Nature ecology & evolution, 6(11):1644-1657.

What role did fluctuations play in biomass availability for secondary consumers in the disappearance of Neanderthals and the survival of modern humans? To answer this, we quantify the effects of stadial and interstadial conditions on ecosystem productivity and human spatiotemporal distribution patterns during the Middle to Upper Palaeolithic transition (50,000-30,000 calibrated years before the present) in Iberia. First, we used summed probability distribution, optimal linear estimation and Bayesian age modelling to reconstruct an updated timescale for the transition. Next, we executed a generalized dynamic vegetation model to estimate the net primary productivity. Finally, we developed a macroecological model validated with present-day observations to calculate herbivore abundance. The results indicate that, in the Eurosiberian region, the disappearance of Neanderthal groups was contemporaneous with a significant decrease in the available biomass for secondary consumers, and the arrival of the first Homo sapiens populations coincided with an increase in herbivore carrying capacity. During stadials, the Mediterranean region had the most stable conditions and the highest biomass of medium and medium-large herbivores. These outcomes support an ecological cause for the hiatus between the Mousterian and Aurignacian technocomplexes in Northern Iberia and the longer persistence of Neanderthals in southern latitudes.

RevDate: 2022-09-29
CmpDate: 2022-09-29

Reilly PF, Tjahjadi A, Miller SL, et al (2022)

The contribution of Neanderthal introgression to modern human traits.

Current biology : CB, 32(18):R970-R983.

Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.

RevDate: 2022-11-25
CmpDate: 2022-10-26

Lockey AL, Rodríguez L, Martín-Francés L, et al (2022)

Comparing the Boxgrove and Atapuerca (Sima de los Huesos) human fossils: Do they represent distinct paleodemes?.

Journal of human evolution, 172:103253.

The early Middle Pleistocene human material from Boxgrove (West Sussex, UK) consists of a partial left tibia and two lower incisors from a separate adult individual. These remains derive from deposits assigned to the MIS 13 interglacial at about 480 ka and have been referred to as Homo cf. heidelbergensis. The much larger skeletal sample from the Sima de los Huesos (Atapuerca, Spain) is dated to the succeeding MIS 12, at about 430 ka. This fossil material has previously been assigned to Homo heidelbergensis but is now placed within the Neanderthal clade. Because of the scarcity of human remains from the Middle Pleistocene and their morphological variability, this study assessed whether the Boxgrove specimens fit within the morphological variability of the homogeneous Sima de los Huesos population. Based on morphometric analyses performed against 22 lower incisors from Sima de los Huesos and published material, the data from the Boxgrove incisors place them comfortably within the range of Sima de los Huesos. Both assemblages present robust incisors distinct from the overall small recent Homo sapiens incisors, and Boxgrove also aligns closely with Homo neanderthalensis and some other European Middle Pleistocene hominins. Following morphological and cross-sectional analyses of the Boxgrove tibia compared to seven adult Sima de los Huesos specimens and a set of comparative tibiae, Boxgrove is shown to be similar to Sima de los Huesos and Neanderthals in having thick cortices and bone walls, but in contrast resembles modern humans in having a straight anterior tibial crest and a suggestion of a lateral concavity. Based on the patterns observed, there is no justification for assigning the Boxgrove and Sima de los Huesos incisors to distinct paleodemes, but the tibial data show greater contrasts and suggest that all three of these samples are unlikely to represent the same paleodeme.

RevDate: 2022-10-25
CmpDate: 2022-09-28

Alagöz G, Molz B, Eising E, et al (2022)

Using neuroimaging genomics to investigate the evolution of human brain structure.

Proceedings of the National Academy of Sciences of the United States of America, 119(40):e2200638119.

Alterations in brain size and organization represent some of the most distinctive changes in the emergence of our species. Yet, there is limited understanding of how genetic factors contributed to altered neuroanatomy during human evolution. Here, we analyze neuroimaging and genetic data from up to 30,000 people in the UK Biobank and integrate with genomic annotations for different aspects of human evolution, including those based on ancient DNA and comparative genomics. We show that previously reported signals of recent polygenic selection for cortical anatomy are not replicable in a more ancestrally homogeneous sample. We then investigate relationships between evolutionary annotations and common genetic variants shaping cortical surface area and white-matter connectivity for each hemisphere. Our analyses identify single-nucleotide polymorphism heritability enrichment in human-gained regulatory elements that are active in early brain development, affecting surface areas of several parts of the cortex, including left-hemispheric speech-associated regions. We also detect heritability depletion in genomic regions with Neanderthal ancestry for connectivity of the uncinate fasciculus; this is a white-matter tract involved in memory, language, and socioemotional processing with relevance to neuropsychiatric disorders. Finally, we show that common genetic loci associated with left-hemispheric pars triangularis surface area overlap with a human-gained enhancer and affect regulation of ZIC4, a gene implicated in neurogenesis. This work demonstrates how genomic investigations of present-day neuroanatomical variation can help shed light on the complexities of our evolutionary past.

RevDate: 2022-11-22
CmpDate: 2022-09-28

Sossa-Ríos S, Mayor A, Hernández CM, et al (2022)

Multidisciplinary evidence of an isolated Neanderthal occupation in Abric del Pastor (Alcoi, Iberian Peninsula).

Scientific reports, 12(1):15883.

Testing Neanderthal behavioural hypotheses requires a spatial-temporal resolution to the level of a human single occupation episode. Yet, most of the behavioural data on Neanderthals has been obtained from coarsely dated, time-averaged contexts affected by the archaeological palimpsest effect and a diversity of postdepositional processes. This implies that time-resolved Neanderthal behaviour remains largely unknown. In this study, we performed archaeostratigraphic analysis on stratigraphic units IVe, IVf, IVg, Va, Vb and Vc from Abric del Pastor (Alcoi, Iberian Peninsula). Further, we isolated the archaeological remains associated with the resulting archaeostratigraphic unit and applied raw material, technological, use-wear, archaeozoological and spatial analyses. Our results show a low-density accumulation of remains from flintknapping, flint tool-use and animal processing around a hearth. These data provide a time-resolved human dimension to previous high-resolution environmental and pyrotechnological data on the same hearth, representing the first comprehensive characterisation of a Neanderthal single occupation episode. Our integrated, multidisciplinary method also contributes to advance our understanding of archaeological record formation processes.

RevDate: 2022-09-28

Garralda MD, Weiner S, Arensburg B, et al (2022)

Dental Paleobiology in a Juvenile Neanderthal (Combe-Grenal, Southwestern France).

Biology, 11(9):.

Combe-Grenal site (Southwest France) was excavated by F. Bordes between 1953 and 1965. He found several human remains in Mousterian levels 60, 39, 35 and especially 25, corresponding to MIS 4 (~75-70/60 ky BP) and with Quina Mousterian lithics. One of the fossils found in level 25 is Combe-Grenal IV, consisting of a fragment of the left corpus of a juvenile mandible. This fragment displays initial juvenile periodontitis, and the two preserved teeth (LLP4 and LLM1) show moderate attrition and dental calculus. The SEM tartar analysis demonstrates the presence of cocci and filamentous types of bacteria, the former being more prevalent. This result is quite different from those obtained for the two adult Neanderthals Kebara 2 and Subalyuk 1, where more filamentous bacteria appear, especially in the Subalyuk 1 sample from Central Europe. These findings agree with the available biomedical data on periodontitis and tartar development in extant individuals, despite the different environmental conditions and diets documented by numerous archeological, taphonomical and geological data available on Neanderthals and present-day populations. New metagenomic analyses are extending this information, and despite the inherent difficulties, they will open important perspectives in studying this ancient human pathology.

RevDate: 2022-12-03
CmpDate: 2022-12-02

Ruf CG, Schmidt S, Kliesch S, et al (2022)

Testicular germ cell tumours' clinical stage I: comparison of surveillance with adjuvant treatment strategies regarding recurrence rates and overall survival-a systematic review.

World journal of urology, 40(12):2889-2900.

PURPOSE: Testicular germ cell tumours (GCTs) represent the most common malignancy in young adult males with two thirds of all cases presenting with clinical stage I (CSI). Active surveillance is the management modality mostly favoured by current guidelines. This systematic review assesses the treatment results in CSI patients concerning recurrence rate and overall survival in non-seminoma (NS) and pure seminoma (SE) resulting from surveillance in comparison to adjuvant strategies.

METHODS/SYSTEMATIC REVIEW: We performed a systematic literature review confining the search to most recent studies published 2010-2021 that reported direct comparisons of surveillance to adjuvant management. We searched Medline and the Cochrane Library with additional hand-searching of reference lists to identify relevant studies. Data extraction and quality assessment of included studies were performed with stratification for histology (NS vs. SE) and treatment modalities. The results were tabulated and evaluated with descriptive statistical methods.

RESULTS: Thirty-four studies met the inclusion criteria. In NS patients relapse rates were 12 to 37%, 0 to 10%, and 0 to 11.8% for surveillance, chemotherapy and for retroperitoneal lymph node dissection (RPLND) while overall survival rates were 90.7-100%, 91.7-100%, and 97-99.1%, respectively. In SE CSI, relapse rates were 0-22.3%, 0-5%, and 0-12.5% for surveillance, radiotherapy, chemotherapy, while overall survival rates were 84.1-98.7%, 83.5-100%, and 92.3-100%, respectively.

CONCLUSION: In both histologic subgroups, active surveillance offers almost identical overall survival as adjuvant management strategies, however, at the expense of higher relapse rates. Each of the management strategies in CSI GCT patients have specific merits and shared-decision-making is advised to tailor treatment.

RevDate: 2022-09-12

Graham F (2022)

Daily briefing: Mutation might have given us a cognitive advantage over Neanderthals.

RevDate: 2022-11-01
CmpDate: 2022-09-13

Pinson A, Xing L, Namba T, et al (2022)

Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals.

Science (New York, N.Y.), 377(6611):eabl6422.

Neanderthal brains were similar in size to those of modern humans. We sought to investigate potential differences in neurogenesis during neocortex development. Modern human transketolase-like 1 (TKTL1) differs from Neanderthal TKTL1 by a lysine-to-arginine amino acid substitution. Using overexpression in developing mouse and ferret neocortex, knockout in fetal human neocortical tissue, and genome-edited cerebral organoids, we found that the modern human variant, hTKTL1, but not the Neanderthal variant, increases the abundance of basal radial glia (bRG) but not that of intermediate progenitors (bIPs). bRG generate more neocortical neurons than bIPs. The hTKTL1 effect requires the pentose phosphate pathway and fatty acid synthesis. Inhibition of these metabolic pathways reduces bRG abundance in fetal human neocortical tissue. Our data suggest that neocortical neurogenesis in modern humans differs from that in Neanderthals.

RevDate: 2022-10-26
CmpDate: 2022-10-04

Harvati K, RR Ackermann (2022)

Merging morphological and genetic evidence to assess hybridization in Western Eurasian late Pleistocene hominins.

Nature ecology & evolution, 6(10):1573-1585.

Previous scientific consensus saw human evolution as defined by adaptive differences (behavioural and/or biological) and the emergence of Homo sapiens as the ultimate replacement of non-modern groups by a modern, adaptively more competitive group. However, recent research has shown that the process underlying our origins was considerably more complex. While archaeological and fossil evidence suggests that behavioural complexity may not be confined to the modern human lineage, recent palaeogenomic work shows that gene flow between distinct lineages (for example, Neanderthals, Denisovans, early H. sapiens) occurred repeatedly in the late Pleistocene, probably contributing elements to our genetic make-up that might have been crucial to our success as a diverse, adaptable species. Following these advances, the prevailing human origins model has shifted from one of near-complete replacement to a more nuanced view of partial replacement with considerable reticulation. Here we provide a brief introduction to the current genetic evidence for hybridization among hominins, its prevalence in, and effects on, comparative mammal groups, and especially how it manifests in the skull. We then explore the degree to which cranial variation seen in the fossil record of late Pleistocene hominins from Western Eurasia corresponds with our current genetic and comparative data. We are especially interested in understanding the degree to which skeletal data can reflect admixture. Our findings indicate some correspondence between these different lines of evidence, flag individual fossils as possibly admixed, and suggest that different cranial regions may preserve hybridization signals differentially. We urge further studies of the phenotype to expand our ability to detect the ways in which migration, interaction and genetic exchange have shaped the human past, beyond what is currently visible with the lens of ancient DNA.

RevDate: 2022-10-18
CmpDate: 2022-09-08

Kaczanowska J, Ganglberger F, Chernomor O, et al (2022)

Molecular archaeology of human cognitive traits.

Cell reports, 40(9):111287.

The brains and minds of our human ancestors remain inaccessible for experimental exploration. Therefore, we reconstructed human cognitive evolution by projecting nonsynonymous/synonymous rate ratios (ω values) in mammalian phylogeny onto the anatomically modern human (AMH) brain. This atlas retraces human neurogenetic selection and allows imputation of ancestral evolution in task-related functional networks (FNs). Adaptive evolution (high ω values) is associated with excitatory neurons and synaptic function. It shifted from FNs for motor control in anthropoid ancestry (60-41 mya) to attention in ancient hominoids (26-19 mya) and hominids (19-7.4 mya). Selection in FNs for language emerged with an early hominin ancestor (7.4-1.7 mya) and was later accompanied by adaptive evolution in FNs for strategic thinking during recent (0.8 mya-present) speciation of AMHs. This pattern mirrors increasingly complex cognitive demands and suggests that co-selection for language alongside strategic thinking may have separated AMHs from their archaic Denisovan and Neanderthal relatives.

RevDate: 2022-08-30

Churchill SE, Keys K, AH Ross (2022)

Midfacial Morphology and Neandertal-Modern Human Interbreeding.

Biology, 11(8):.

Ancient DNA from, Neandertal and modern human fossils, and comparative morphological analyses of them, reveal a complex history of interbreeding between these lineages and the introgression of Neandertal genes into modern human genomes. Despite substantial increases in our knowledge of these events, the timing and geographic location of hybridization events remain unclear. Six measures of facial size and shape, from regional samples of Neandertals and early modern humans, were used in a multivariate exploratory analysis to try to identify regions in which early modern human facial morphology was more similar to that of Neandertals, which might thus represent regions of greater introgression of Neandertal genes. The results of canonical variates analysis and hierarchical cluster analysis suggest important affinities in facial morphology between both Middle and Upper Paleolithic early modern humans of the Near East with Neandertals, highlighting the importance of this region for interbreeding between the two lineages.

RevDate: 2022-10-14
CmpDate: 2022-08-25

Eising E, Mirza-Schreiber N, de Zeeuw EL, et al (2022)

Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people.

Proceedings of the National Academy of Sciences of the United States of America, 119(35):e2202764119.

The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10[-8]) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.

RevDate: 2022-08-25
CmpDate: 2022-08-19

Vettese D, Borel A, Blasco R, et al (2022)

New evidence of Neandertal butchery traditions through the marrow extraction in southwestern Europe (MIS 5-3).

PloS one, 17(8):e0271816.

Long bone breakage for bone marrow recovery is a commonly observed practice in Middle Palaeolithic contexts, regardless of the climatic conditions. While lithic technology is largely used to define cultural patterns in human groups, despite dedicating research by zooarchaeologists, for now butchering techniques rarely allowed the identification of clear traditions, notably for ancient Palaeolithic periods. In this paper, we test the hypothesis of butchery traditions among Neandertal groupsusing the bone assemblages from three sites in southwestern Europe. These sites are located in southeastern France and northern Italy and are dated to the Late Middle Palaeolithic: Abri du Maras (Marine Isotopic Stages (MIS) 4-3, Ardèche), Saint-Marcel (MIS 3, Ardèche), and Riparo Tagliente (MIS 4-3, Verona). The detection of culturally-induced patterns of bone breakage involves differentiating them from intuitively generated patterns. To tackle this issue, we used a zooarchaeological approach focusing on the percussion marks produced during the bone breakage process. Statistical analyses as the chi-square test of independence were employed to verify if percussion mark locations were randomly distributed, and if these distributions were different from the intuitive ones. For femurs and humeri, our results demonstrate that Neandertal groups occupying the Abri du Maras (levels 4.1 and 4.2) and the Saint-Marcel Cave (levels g and h) sites in France applied butchery traditions to recover yellow marrow. However, the traditions developed at each site were different. On the contrary, in Riparo Tagliente, in Italy, several groups or individuals of a same group did not share the same butchery traditions over time. Regarding the Abri du Maras and Saint Marcel Cave assemblages, our research demonstrates that Neandertal groups applied intense standardized bone breakage, far from the intuitive practice observed experimentally and related to bone density and/or skeletal morphology. These standardized patterns, which are systematic and counter-intuitive, can be interpreted as culturally induced for the Abri du Maras and Saint Marcel Cave. The diversity of Neandertal traditions should be considered by taking into account the butchery, in particular the practice of bone marrow extraction, and not only technological behaviours and types of tool kits.

RevDate: 2022-10-25
CmpDate: 2022-10-25

Roksandic M, Radović P, Wu XJ, et al (2022)

Homo bodoensis and why it matters.

Evolutionary anthropology, 31(5):240-244.

In our original paper, we proposed a new species, Homo bodoensis, to replace the problematical taxa Homo heidelbergensis and Homo rhodesiensis, with the goal of streamlining communication about human evolution in the Chibanian. We received two independent responses. Given their substantial overlap, we provide one combined reply. In this response: (1) we are encouraged that the primary proposal in our paper, to discontinue the use of H. heidelbergensis (as a junior synonym to Homo neanderthalensis) due to its' nomenclatural problems, is acknowledged. (2) we provide additional clarification about the rules governing taxonomic nomenclature as outlined by the International Code of Zoological Nomenclature and join the growing calls for a revision to these rules. (3) we discuss further why H. rhodesiensis should be abandoned, particularly in light of the current sensitivity to using culturally inappropriate names. We conclude that H. bodoensis is a better solution than the proposed alternatives.

RevDate: 2022-11-17
CmpDate: 2022-08-02

Andreeva TV, Manakhov AD, Gusev FE, et al (2022)

Genomic analysis of a novel Neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations.

Scientific reports, 12(1):13016.

The Mezmaiskaya cave is located on the North Caucasus near the border that divides Europe and Asia. Previously, fossil remains for two Neanderthals were reported from Mezmaiskaya Cave. A tooth from the third archaic hominin specimen (Mezmaiskaya 3) was retrieved from layer 3 in Mezmaiskaya Cave. We performed genome sequencing of Mezmaiskaya 3. Analysis of partial nuclear genome sequence revealed that it belongs to a Homo sapiens neanderthalensis female. Based on a high-coverage mitochondrial genome sequence, we demonstrated that the relationships of Mezmaiskaya 3 to Mezmaiskaya 1 and Stajnia S5000 individuals were closer than those to other Neanderthals. Our data demonstrate the close genetic connections between the early Middle Palaeolithic Neanderthals that were replaced by genetically distant later group in the same geographic areas. Based on mitochondrial DNA (mtDNA) data, we suggest that Mezmaiskaya 3 was the latest Neanderthal individual from the early Neanderthal's branches. We proposed a hierarchical nomenclature for the mtDNA haplogroups of Neanderthals. In addition, we retrieved ancestral mtDNA mutations in presumably functional sites fixed in the Neanderthal clades, and also provided the first data showing mtDNA heteroplasmy in Neanderthal specimen.

RevDate: 2022-12-03
CmpDate: 2022-12-02

Zengerling F, Beyersdorff D, Busch J, et al (2022)

Prognostic factors in patients with clinical stage I nonseminoma-beyond lymphovascular invasion: a systematic review.

World journal of urology, 40(12):2879-2887.

OBJECTIVE: To systematically evaluate evidence on prognostic factors for tumor recurrence in clinical stage I nonseminoma patients other than lymphovascular invasion (LVI).

METHODS: We performed a systematic literature search in the biomedical databases Medline (via Ovid) and Cochrane Central Register of Controlled Trials (search period January 2010 to February 2021) for full text publications in English and German language, reporting on retro- or prospectively assessed prognostic factors for tumor recurrence in patients with stage I nonseminomatous germ cell tumors.

RESULTS: Our literature search yielded eleven studies reporting on 20 potential prognostic factors. Results are based on cohort studies of mostly moderate to low quality. Five out of eight studies found a significant association of embryonal carcinoma (EC) in the primary tumor with relapse. Among the different risk definitions of embryonal carcinoma (presence, predominance, pure), presence of EC alone seems to be sufficient for prognostification. Interesting results were found for rete testis invasion, predominant yolk sac tumor, T-stage and history of cryptorchidism, but the sparse data situation does not justify their clinical use.

CONCLUSIONS: No additional factors that meet the prognostic value of LVI, especially when determined by immunohistochemistry, could be identified through our systematic search. The presence of EC might serve as a second, subordinate prognostic factor for clinical use as the data situation is less abundant than the one of LVI. Further efforts are necessary to optimize the use of these two prognostic factors and to evaluate and validate further potential factors with promising preliminary data.

RevDate: 2022-08-11
CmpDate: 2022-08-02

Mora-Bermúdez F, Kanis P, Macak D, et al (2022)

Longer metaphase and fewer chromosome segregation errors in modern human than Neanderthal brain development.

Science advances, 8(30):eabn7702.

Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.

RevDate: 2022-07-31

Borić D, Cristiani E, Hopkins R, et al (2022)

Neanderthals on the Lower Danube: Middle Palaeolithic evidence in the Danube Gorges of the Balkans.

Journal of quaternary science, 37(2):142-180.

The article presents evidence about the Middle Palaeolithic and Middle to Upper Palaeolithic transition interval in the karst area of the Danube Gorges in the Lower Danube Basin. We review the extant data and present new evidence from two recently investigated sites found on the Serbian side of the Danube River - Tabula Traiana and Dubočka-Kozja caves. The two sites have yielded layers dating to both the Middle and Upper Palaeolithic and have been investigated by the application of modern standards of excavation and recovery along with a suite of state-of-the-art analytical procedures. The presentation focuses on micromorphological analyses of the caves' sediments, characterisation of cryptotephra, a suite of new radiometric dates (accelerator mass spectrometry and optically stimulated luminescence) as well as proteomics (zooarchaeology by mass spectrometry) and stable isotope data in discerning patterns of human occupation of these locales over the long term.

RevDate: 2022-07-31

Boschin F, Columbu A, Spagnolo V, et al (2022)

Human occupation continuity in southern Italy towards the end of the Middle Palaeolithic: a palaeoenvironmental perspective from Apulia.

Journal of quaternary science, 37(2):204-216.

After the last interglacial [Marine Isotope Stage (MIS) 5e] Europe was affected by several harsh climatic oscillations. In this context southern Italy acted, like the rest of peninsular Mediterranean Europe, as a 'glacial refugium', allowing the survival of various species, and was involved in the spread of 'cold taxa' (e.g. woolly mammoth and woolly rhino) only during the coldest phases (MIS 4 and MIS 2). Both late Mousterian and early Upper Palaeolithic sites testify to a human occupation continuity in southern Italy and especially in Apulia in this time span. Here we present a focus on three key Apulian Palaeolithic sequences (Grotta di Santa Croce, Riparo L'Oscurusciuto and Grotta del Cavallo - layers F-E) jointly spanning from the late MIS 4 to the demise of Neanderthals around 43 ka. Novel chronological, sedimentological and zooarchaeological data are discussed for the first time in the light of the palaeoenvironmental information provided by recent analyses carried out on a speleothem from Pozzo Cucù cave (Bari) and the results of the magnetic susceptibility analysis from Riparo L'Oscurusciuto. This integrated reading allows a better understanding of the role played by the Apulian region as both a refugium for late Neaderthals and a suitable habitat for the early settling of modern humans.

RevDate: 2022-07-23

D Farhud D, Azari M, A Mehrabi (2022)

The History of Corona Virus: From Neanderthals to the Present Time: A Brief Review.

Iranian journal of public health, 51(3):531-534.

Contrary to popular belief, 2019 was not the first time humans were infected by the Coronavirus. Coronavirus is one of the oldest viruses on the earth. This article discusses the history of this virus from Neanderthal time so far. We have collected a variety of articles related to coronaviruses and the extent of their interaction with humans from the first time probably appeared on earth, given that this virus is one of the ancient viruses. By examining and following the footsteps of coronaviruses in different works of literature, we found that the first homo that was infected with the coronavirus was Neanderthal. Moreover, we realized that in addition to risk factors such as age and background diseases, genetic evolution also plays an essential role in the protection of the body against coronavirus. On the other hand, this virus has evolved throughout history gradually, the same as humans. The presence of disease in humans, in any period of history, causes changes in human quality of life. Therefore, paying attention to the background of ancient diseases reveals principal information about the complexity of pathogens.

RevDate: 2022-11-14
CmpDate: 2022-07-13

Peyrégne S, Kelso J, Peter BM, et al (2022)

The evolutionary history of human spindle genes includes back-and-forth gene flow with Neandertals.

eLife, 11:.

Proteins associated with the spindle apparatus, a cytoskeletal structure that ensures the proper segregation of chromosomes during cell division, experienced an unusual number of amino acid substitutions in modern humans after the split from the ancestors of Neandertals and Denisovans. Here, we analyze the history of these substitutions and show that some of the genes in which they occur may have been targets of positive selection. We also find that the two changes in the kinetochore scaffold 1 (KNL1) protein, previously believed to be specific to modern humans, were present in some Neandertals. We show that the KNL1 gene of these Neandertals shared a common ancestor with present-day Africans about 200,000 years ago due to gene flow from the ancestors (or relatives) of modern humans into Neandertals. Subsequently, some non-Africans inherited this modern human-like gene variant from Neandertals, but none inherited the ancestral gene variants. These results add to the growing evidence of early contacts between modern humans and archaic groups in Eurasia and illustrate the intricate relationships among these groups.

RevDate: 2022-08-16
CmpDate: 2022-08-09

Saha S, Khan N, Comi T, et al (2022)

Evolution of Human-Specific Alleles Protecting Cognitive Function of Grandmothers.

Molecular biology and evolution, 39(8):.

The myelomonocytic receptor CD33 (Siglec-3) inhibits innate immune reactivity by extracellular V-set domain recognition of sialic acid (Sia)-containing "self-associated molecular patterns" (SAMPs). We earlier showed that V-set domain-deficient CD33-variant allele, protective against late-onset Alzheimer's Disease (LOAD), is derived and specific to the hominin lineage. We now report multiple hominin-specific CD33 V-set domain mutations. Due to hominin-specific, fixed loss-of-function mutation in the CMAH gene, humans lack N-glycolylneuraminic acid (Neu5Gc), the preferred Sia-ligand of ancestral CD33. Mutational analysis and molecular dynamics (MD)-simulations indicate that fixed change in amino acid 21 of hominin V-set domain and conformational changes related to His45 corrected for Neu5Gc-loss by switching to N-acetylneuraminic acid (Neu5Ac)-recognition. We show that human-specific pathogens Neisseria gonorrhoeae and Group B Streptococcus selectively bind human CD33 (huCD33) as part of immune-evasive molecular mimicry of host SAMPs and that this binding is significantly impacted by amino acid 21 modification. In addition to LOAD-protective CD33 alleles, humans harbor derived, population-universal, cognition-protective variants at several other loci. Interestingly, 11 of 13 SNPs in these human genes (including CD33) are not shared by genomes of archaic hominins: Neanderthals and Denisovans. We present a plausible evolutionary scenario to compile, correlate, and comprehend existing knowledge about huCD33-evolution and suggest that grandmothering emerged in humans.

RevDate: 2022-11-13
CmpDate: 2022-08-11

Haeggström S, Ingelman-Sundberg M, Pääbo S, et al (2022)

The clinically relevant CYP2C8*3 and CYP2C9*2 haplotype is inherited from Neandertals.

The pharmacogenomics journal, 22(4):247-249.

Genetic variation in genes encoding cytochrome P450 enzymes influences the metabolism of drugs and endogenous compounds. The locus containing the cytochrome genes CYP2C8 and CYP2C9 on chromosome 10 exhibits linkage disequilibrium between the CYP2C8*3 and CYP2C9*2 alleles, forming a haplotype of ~300 kilobases. This haplotype is associated with altered metabolism of several drugs, most notably reduced metabolism of warfarin and phenytoin, leading to toxicity at otherwise therapeutic doses. Here we show that this haplotype is inherited from Neandertals.

RevDate: 2022-11-13
CmpDate: 2022-08-05

Kerner G, L Quintana-Murci (2022)

The genetic and evolutionary determinants of COVID-19 susceptibility.

European journal of human genetics : EJHG, 30(8):915-921.

Devastating pandemics, such as that due to COVID-19, can provide strong testimony to our knowledge of the genetic and evolutionary determinants of infectious disease susceptibility and severity. One of the most remarkable aspects of such outbreaks is the stunning interindividual variability observed in the course of infection. In recent decades, enormous progress has been made in the field of the human genetics of infectious diseases, and an increasing number of human genetic factors have been reported to explain, to a great extent, the observed variability for a large number of infectious agents. However, our understanding of the cellular, molecular, and immunological mechanisms underlying such disparities between individuals and ethnic groups, remains very limited. Here, we discuss recent findings relating to human genetic predisposition to infectious disease, from an immunological or population genetic perspective, and show how these and other innovative approaches have been applied to deciphering the genetic basis of human susceptibility to COVID-19 and the severity of this disease. From an evolutionary perspective, we show how past demographic and selection events characterizing the history of our species, including admixture with archaic humans, such as Neanderthals, facilitated modern human adaptation to the threats imposed by ancient pathogens. In the context of emerging infectious diseases, these past episodes of genetic adaptation may contribute to some of the observed population differences in the outcome of SARS-CoV-2 infection and the severity of COVID-19 illness.

RevDate: 2022-07-16

Theofanopoulou C, Andirkó A, Boeckx C, et al (2022)

Oxytocin and vasotocin receptor variation and the evolution of human prosociality.

Comprehensive psychoneuroendocrinology, 11:100139.

Modern human lifestyle strongly depends on complex social traits like empathy, tolerance and cooperation. These diverse facets of social cognition have been associated with variation in the oxytocin receptor (OTR) and its sister genes, the vasotocin/vasopressin receptors (VTR1A/AVPR1A and AVPR1B/VTR1B). Here, we compared the available genomic sequences of these receptors between modern humans, archaic humans, and 12 non-human primate species, and identified sites that show heterozygous variation in modern humans and archaic humans distinct from variation in other primates, and for which we could find association studies with clinical implications. On these sites, we performed a range of analyses (variant clustering, pathogenicity prediction, regulation, linkage disequilibrium frequency), and reviewed the literature on selection data in different modern-human populations. We found five sites with modern human specific variation, where the modern human allele is the major allele in the global population (OTR: rs1042778, rs237885, rs6770632; VTR1A: rs10877969; VTR1B: rs33985287). Among them, variation in the OTR-rs6770632 site was predicted to be the most functional. Two alleles (OTR: rs59190448 and rs237888) present only in modern humans and archaic humans were putatively under positive selection in modern humans, with rs237888 predicted to be a highly functional site. Three sites showed convergent evolution between modern humans and bonobos (OTR: rs2228485 and rs237897; VTR1A: rs1042615), with OTR-rs2228485 ranking highly in terms of functionality and reported to be under balancing selection in modern humans (Schaschl, 2015) [1]. Our findings have implications for understanding hominid prosociality, as well as the similarities between modern human and bonobo social behavior.

RevDate: 2022-07-12
CmpDate: 2022-06-27

Weasel L (2022)

How Neanderthals Became White: The Introgression of Race into Contemporary Human Evolutionary Genetics.

The American naturalist, 200(1):129-139.

AbstractHuman evolutionary theory has a history rife with racial biases in what might be considered its distant past that can appear glaringly obvious from our current vantage point. Despite the recognition that as a social activity science is always vulnerable to such biases (and science that attempts to uncover human origin stories all the more so), commitment to the scientific method can lead us to believe that we have improved on, overcome, or otherwise escaped these tendencies in our contemporary practices, whether through scientific contrition, changing social context, or better training and composition of research teams or as a result of advances in technologies and methodologies. This article adapts the evolutionary biology concept of introgression, which refers to the hybridization and repeated bidirectional backcross exchange of information between species, as a metaphorical frame to examine science itself and to trace the ways in which historic race biases from earlier, disowned human evolution research have been retained and selected for beneath the surface of current genomic research today. It takes as its focus the sequencing of the Neanderthal genome, first announced in 2006 and refined since, and the explosion of scientific research comparing that sequence to present-day human DNA from individuals around the world to illustrate the ways in which current research questions and findings in comparative evolutionary genomics draw on and dredge up earlier biases, albeit adapted to and disguised within contemporary social relations and power differentials.

RevDate: 2022-06-23
CmpDate: 2022-06-23

Ping WJ, Liu YC, QM Fu (2022)

Exploring the evolution of archaic humans through sedimentary ancient DNA.

Yi chuan = Hereditas, 44(5):362-369.

Recent success in the retrieval of nuclear DNA of ancient humans and animals from cave sediments paves the way for genome-wide studies of past populations directly from sediments. In three studies, nuclear genomes of different species were obtained from the sediments of multiple archeological caves and their genetic histories were revealed, including an unknown population replacement of Neanderthals from Estatuas cave in Spain, which was recovered using a new DNA capture approach. By extending sediments as a source of DNA beyond fossils, this breakthrough is of particular significance to the field of ancient human genomics, which brings about more possibilities for exploring the history of past population migration, evolution and adaptation within larger time-scales and geographical areas where no fossil remains exist. Here, we mainly review the significance of the technical advances in retrieving ancient nuclear DNA from sediments and present new insights into the genetic history of Neanderthals revealed by this technique. By combining ancient genomes retrieved from fossils and additional mitochondrial DNA extracted from sediments of archaeological sites, we may begin investigating diverse archaic populations and examine their genetic relationships, movements and replacements in detail.

RevDate: 2022-08-23
CmpDate: 2022-06-21

Pan L, Zanolli C, Martinón-Torres M, et al (2022)

Early Pleistocene hominin teeth from Gongwangling of Lantian, Central China.

Journal of human evolution, 168:103212.

The fossil hominin individual from Gongwangling of Lantian, Central China, represents one of the earliest members attributed to Homo erectus in East Asia. Recent paleomagnetic analyses have yielded an age of 1.63 Ma for the Gongwangling hominin. The fossils from this site are critical to characterize the morphological features of early hominins in East Asia and to understand their relationships with other earlier and later members of the genus Homo. However, most morphological details of the Gongwangling cranium were obliterated due to postmortem erosion and deformation. Here we used high-resolution microcomputed tomography and three-dimensional virtual imaging techniques to extract the teeth and reconstruct the worn/damaged areas, describe the external morphology, measure crown diameters, record nonmetric traits of the crown and root, and investigate the shape of the enamel-dentine junction using geometric morphometrics. We compared the data obtained from the six teeth of the Gongwangling hominin with African early Homo, African and Georgian Homo erectus s.l., Asian Homo erectus, Homo antecessor, pre-Neanderthals, Neanderthals, and modern humans. Our results show that the Gongwangling specimens display affinities with other specimens attributed to H. erectus s.l. The highly divergent and noncoalesced three-root system in the Gongwangling specimens is comparable to that in the Early Pleistocene members of H. erectus s.l., and differs from Middle Pleistocene representatives of the species. The enamel-dentine junction shape of the Gongwangling molars prefigures the Asian H. erectus pattern later found in East Asian Middle Pleistocene H. erectus. The morphological comparisons between East Asian Early Pleistocene (e.g., Gongwangling, Meipu, and Quyuan River Mouth) and Middle Pleistocene H. erectus (e.g., Zhoukoudian, Hexian, and Yiyuan) suggest a potential temporal trend within this species in East Asia.

RevDate: 2022-06-02

Marcazzan D, Miller CE, Ligouis B, et al (2022)

Middle and Upper Paleolithic occupations of Fumane Cave (Italy): a geoarchaeological investigation of the anthropogenic features.

Journal of anthropological sciences = Rivista di antropologia : JASS, 100: [Epub ahead of print].

Here we present the results of a microcontextual analysis of purported combustion features recovered from Middle and Upper Paleolithic occupations at the cave site of Fumane, Italy. Our analyses, which integrate micromorphology with organic petrology, show that only a few of the features represent primary, intact hearths; some of them show evidence for various phases of anthropogenic reworking, either through trampling or sweeping and dumping. Several of the features are multi-layered and reflect a complex formation history of various activities related to combustion and site maintenance. Many appear to be the remnants of occupation horizons only partially preserved and peripherally related to combustion. Within several of the intact hearths from the Mousterian, we were able to identify variable fuel sources in different features, implying a degree of flexibility in the fuel-selection strategies of the Neanderthal occupants of Fumane. In this study we design a classification system of the anthropogenic features and also conduct a spatial analysis, through which we can infer diachronic patterns in the frequency and intensity of site occupation and the spatial distribution of activities. We note a decrease in frequency of combustion features throughout the Mousterian which continues into the Uluzzian. The features associated with the Protoaurignacian occupation, in contrast with those from the Mousterian, are multi-layered and well-defined. We argue that these trends, which correspond with other trends in artefact frequency, imply changes in the settlement dynamics of the site during the transition from the last Neanderthal occupation of the cave to the arrival of modern humans.

RevDate: 2022-08-23
CmpDate: 2022-06-21

Zubova AV, Moiseyev VG, Kulkov AM, et al (2022)

Maxillary second molar from the Rozhok I Micoquian site (Azov Sea region): Another link between Eastern Europe and Siberia.

Journal of human evolution, 168:103209.

RevDate: 2022-07-21
CmpDate: 2022-05-27

Bergmann I, Hublin JJ, Ben-Ncer A, et al (2022)

The relevance of late MSA mandibles on the emergence of modern morphology in Northern Africa.

Scientific reports, 12(1):8841.

North Africa is a key area for understanding hominin population movements and the expansion of our species. It is home to the earliest currently known Homo sapiens (Jebel Irhoud) and several late Middle Stone Age (MSA) fossils, notably Kébibat, Contrebandiers 1, Dar-es-Soltane II H5 and El Harhoura. Mostly referred to as "Aterian" they fill a gap in the North African fossil record between Jebel Irhoud and Iberomaurusians. We explore morphological continuity in this region by quantifying mandibular shape using 3D (semi)landmark geometric morphometric methods in a comparative framework of late Early and Middle Pleistocene hominins (n = 15), Neanderthals (n = 27) and H. sapiens (n = 145). We discovered a set of mixed features among late MSA fossils that is in line with an accretion of modern traits through time and an ongoing masticatory gracilization process. In Northern Africa, Aterians display similarities to Iberomaurusians and recent humans in the area as well as to the Tighenif and Thomas Quarry hominins, suggesting a greater time depth for regional continuity than previously assumed. The evidence we lay out for a long-term succession of hominins and humans emphasizes North Africa's role as source area of the earliest H. sapiens.

RevDate: 2022-07-16

Buisan R, Moriano J, Andirkó A, et al (2022)

A Brain Region-Specific Expression Profile for Genes Within Large Introgression Deserts and Under Positive Selection in Homo sapiens.

Frontiers in cell and developmental biology, 10:824740.

Analyses of ancient DNA from extinct hominins have provided unique insights into the complex evolutionary history of Homo sapiens, intricately related to that of the Neanderthals and the Denisovans as revealed by several instances of admixture events. These analyses have also allowed the identification of introgression deserts: genomic regions in our species that are depleted of "archaic" haplotypes. The presence of genes like FOXP2 in these deserts has been taken to be suggestive of brain-related functional differences between Homo species. Here, we seek a deeper characterization of these regions and the specific expression trajectories of genes within them, taking into account signals of positive selection in our lineage. Analyzing publicly available transcriptomic data from the human brain at different developmental stages, we found that structures outside the cerebral neocortex, in particular the cerebellum, the striatum and the mediodorsal nucleus of the thalamus show the most divergent transcriptomic profiles when considering genes within large introgression deserts and under positive selection.

RevDate: 2022-12-03
CmpDate: 2022-12-02

Winter C, Zengerling F, Busch J, et al (2022)

How to classify, diagnose, treat and follow-up extragonadal germ cell tumors? A systematic review of available evidence.

World journal of urology, 40(12):2863-2878.

PURPOSE: To present the current evidence and the development of studies in recent years on the management of extragonadal germ cell tumors (EGCT).

METHODS: A systematic literature search was conducted in Medline and the Cochrane Library. Studies within the search period (January 2010 to February 2021) that addressed the classification, diagnosis, prognosis, treatment, and follow-up of extragonadal tumors were included. Risk of bias was assessed and relevant data were extracted in evidence tables.

RESULTS: The systematic search identified nine studies. Germ cell tumors (GCT) arise predominantly from within the testis, but about 5% of the tumors are primarily located extragonadal. EGCT are localized primarily mediastinal or retroperitoneal in the midline of the body. EGCT patients are classified according to the IGCCCG classification. Consecutively, all mediastinal non-seminomatous EGCT patients belong to the "poor prognosis" group. In contrast mediastinal seminoma and both retroperitoneal seminoma and non-seminoma patients seem to have a similar prognosis as patients with gonadal GCTs and metastasis at theses respective sites. The standard chemotherapy regimen for patients with a EGCT consists of 3-4 cycles (good vs intermediate prognosis) of bleomycin, etoposid, cisplatin (BEP); however, due to their very poor prognosis patients with non-seminomatous mediastinal GCT should receive a dose-intensified or high-dose chemotherapy approach upfront on an individual basis and should thus be referred to expert centers Ifosfamide may be exchanged for bleomycin in cases of additional pulmonary metastasis due to subsequently planned resections. In general patients with non-seminomatous EGCT, residual tumor resection (RTR) should be performed after chemotherapy.

CONCLUSION: In general, non-seminomatous EGCT have a poorer prognosis compared to testicular GCT, while seminomatous EGGCT seem to have a similar prognosis to patients with metastatic testicular seminoma. The current insights on EGCT are limited, since all data are mainly based on case series and studies with small patient numbers and non-comparative studies. In general, systemic treatment should be performed like in testicular metastatic GCTs but upfront dose intensification of chemotherapy should be considered for mediastinal non-seminoma patients. Thus, EGCT should be referred to interdisciplinary centers with utmost experience in the treatment of germ cell tumors.

RevDate: 2022-07-16
CmpDate: 2022-05-17

Andirkó A, C Boeckx (2022)

Brain region-specific effects of nearly fixed sapiens-derived alleles.

BMC genomic data, 23(1):36.

The availability of high-coverage genomes of our extinct relatives, the Neanderthals and Denisovans, and the emergence of large, tissue-specific databases of modern human genetic variation, offer the possibility of probing the effects of modern-derived alleles in specific tissues, such as the brain, and its specific regions. While previous research has explored the effects of introgressed variants in gene expression, the effects of Homo sapiens-specific gene expression variability are still understudied. Here we identify derived, Homo sapiens-specific high-frequency (≥90%) alleles that are associated with differential gene expression across 15 brain structures derived from the GTEx database. We show that regulation by these derived variants targets regions under positive selection more often than expected by chance, and that high-frequency derived alleles lie in functional categories related to transcriptional regulation. Our results highlight the role of these variants in gene regulation in specific regions like the cerebellum and pituitary.

RevDate: 2022-07-16
CmpDate: 2022-05-09

Mocci S, Littera R, Tranquilli S, et al (2022)

A Protective HLA Extended Haplotype Outweighs the Major COVID-19 Risk Factor Inherited From Neanderthals in the Sardinian Population.

Frontiers in immunology, 13:891147.

Sardinia has one of the lowest incidences of hospitalization and related mortality in Europe and yet a very high frequency of the Neanderthal risk locus variant on chromosome 3 (rs35044562), considered to be a major risk factor for a severe SARS-CoV-2 disease course. We evaluated 358 SARS-CoV-2 patients and 314 healthy Sardinian controls. One hundred and twenty patients were asymptomatic, 90 were pauci-symptomatic, 108 presented a moderate disease course and 40 were severely ill. All patients were analyzed for the Neanderthal-derived genetic variants reported as being protective (rs1156361) or causative (rs35044562) for severe illness. The β°39 C>T Thalassemia variant (rs11549407), HLA haplotypes, KIR genes, KIRs and their HLA class I ligand combinations were also investigated. Our findings revealed an increased risk for severe disease in Sardinian patients carrying the rs35044562 high risk variant [OR 5.32 (95% CI 2.53 - 12.01), p = 0.000]. Conversely, the protective effect of the HLA-A*02:01, B*18:01, DRB*03:01 three-loci extended haplotype in the Sardinian population was shown to efficiently contrast the high risk of a severe and devastating outcome of the infection predicted for carriers of the Neanderthal locus [OR 15.47 (95% CI 5.8 - 41.0), p < 0.0001]. This result suggests that the balance between risk and protective immunogenetic factors plays an important role in the evolution of COVID-19. A better understanding of these mechanisms may well turn out to be the biggest advantage in the race for the development of more efficient drugs and vaccines.

RevDate: 2022-11-13
CmpDate: 2022-05-09

Rüther PL, Husic IM, Bangsgaard P, et al (2022)

SPIN enables high throughput species identification of archaeological bone by proteomics.

Nature communications, 13(1):2458.

Species determination based on genetic evidence is an indispensable tool in archaeology, forensics, ecology, and food authentication. Most available analytical approaches involve compromises with regard to the number of detectable species, high cost due to low throughput, or a labor-intensive manual process. Here, we introduce "Species by Proteome INvestigation" (SPIN), a shotgun proteomics workflow for analyzing archaeological bone capable of querying over 150 mammalian species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rapid peptide chromatography and data-independent acquisition (DIA) with throughput of 200 samples per day reduce expensive MS time, whereas streamlined sample preparation and automated data interpretation save labor costs. We confirm the successful classification of known reference bones, including domestic species and great apes, beyond the taxonomic resolution of the conventional peptide mass fingerprinting (PMF)-based Zooarchaeology by Mass Spectrometry (ZooMS) method. In a blinded study of degraded Iron-Age material from Scandinavia, SPIN produces reproducible results between replicates, which are consistent with morphological analysis. Finally, we demonstrate the high throughput capabilities of the method in a high-degradation context by analyzing more than two hundred Middle and Upper Palaeolithic bones from Southern European sites with late Neanderthal occupation. While this initial study is focused on modern and archaeological mammalian bone, SPIN will be open and expandable to other biological tissues and taxa.

RevDate: 2022-07-16

Mora-Bermúdez F, WB Huttner (2022)

What Are the Human-Specific Aspects of Neocortex Development?.

Frontiers in neuroscience, 16:878950.

When considering what makes us human, the development of the neocortex, the seat of our higher cognitive abilities, is of central importance. Throughout this complex developmental process, neocortical stem and progenitor cells (NSPCs) exert a priming role in determining neocortical tissue fate, through a series of cellular and molecular events. In this Perspective article, we address five questions of relevance for potentially human-specific aspects of NSPCs, (i) Are there human-specific NSPC subtypes? (ii) What is the functional significance of the known temporal differences in NSPC dynamics between human and other great apes? (iii) Are there functional interactions between the human-specific genes preferentially expressed in NSPCs? (iv) Do humans amplify certain metabolic pathways for NSPC proliferation? and finally (v) Have differences evolved during human evolution, notably between modern humans and Neandertals, that affect the performance of key genes operating in NSPCs? We discuss potential implications inherent to these questions, and suggest experimental approaches on how to answer them, hoping to provide incentives to further understand key issues of human cortical development.

RevDate: 2022-07-16
CmpDate: 2022-05-02

Rodríguez J, Willmes C, Sommer C, et al (2022)

Sustainable human population density in Western Europe between 560.000 and 360.000 years ago.

Scientific reports, 12(1):6907.

The time period between 560 and 360 ka (MIS14 to MIS11) was critical for the evolution of the Neanderthal lineage and the appearance of Levallois technology in Europe. The shifts in the distribution of the human populations, driven by cyclical climate changes, are generally accepted to have played major roles in both processes. We used a dataset of palaeoclimate maps and a species distribution model to reconstruct the changes in the area of Western Europe with suitable environmental conditions for humans during 11 time intervals of the MIS14 to MIS 11 period. Eventually, the maximum sustainable human population within the suitable area during each time interval was estimated by extrapolating the relationship observed between recent hunter-gatherer population density and net primary productivity and applying it to the past. Contrary to common assumptions, our results showed the three Mediterranean Peninsulas were not the only region suitable for humans during the glacial periods. The estimated total sustainable population of Western Europe from MIS14 to MIS11 oscillated between 13,000 and 25,000 individuals. These results offer a new theoretical scenario to develop models and hypotheses to explain cultural and biological evolution during the Middle Pleistocene in Western Europe.

RevDate: 2022-07-20

Bruner E, Battaglia-Mayer A, R Caminiti (2022)

The parietal lobe evolution and the emergence of material culture in the human genus.

Brain structure & function [Epub ahead of print].

Traditional and new disciplines converge in suggesting that the parietal lobe underwent a considerable expansion during human evolution. Through the study of endocasts and shape analysis, paleoneurology has shown an increased globularity of the braincase and bulging of the parietal region in modern humans, as compared to other human species, including Neandertals. Cortical complexity increased in both the superior and inferior parietal lobules. Emerging fields bridging archaeology and neuroscience supply further evidence of the involvement of the parietal cortex in human-specific behaviors related to visuospatial capacity, technological integration, self-awareness, numerosity, mathematical reasoning and language. Here, we complement these inferences on the parietal lobe evolution, with results from more classical neuroscience disciplines, such as behavioral neurophysiology, functional neuroimaging, and brain lesions; and apply these to define the neural substrates and the role of the parietal lobes in the emergence of functions at the core of material culture, such as tool-making, tool use and constructional abilities.

RevDate: 2022-07-16
CmpDate: 2022-04-22

Vallini L, Marciani G, Aneli S, et al (2022)

Genetics and Material Culture Support Repeated Expansions into Paleolithic Eurasia from a Population Hub Out of Africa.

Genome biology and evolution, 14(4):.

The population dynamics that followed the Out of Africa (OoA) expansion and the whereabouts of the early migrants before the differentiation that ultimately led to the formation of Oceanian, West and East Eurasian macropopulations have long been debated. Shedding light on these events may, in turn, provide clues to better understand the cultural evolution in Eurasia between 50 and 35 ka. Here, we analyze Eurasian Paleolithic DNA evidence to provide a comprehensive population model and validate it in light of available material culture. Leveraging on our integrated approach we propose the existence of a Eurasian population Hub, where Homo sapiens lived between the OoA and the broader colonization of Eurasia, which was characterized by multiple events of expansion and local extinction. A major population wave out of Hub, of which Ust'Ishim, Bacho Kiro, and Tianyuan are unadmixed representatives, is broadly associated with Initial Upper Paleolithic lithics and populated West and East Eurasia before or around 45 ka, before getting largely extinct in Europe. In this light, we suggest a parsimonious placement of Oase1 as an individual related to Bacho Kiro who experienced additional Neanderthal introgression. Another expansion, started before 38 ka, is broadly associated with Upper Paleolithic industries and repopulated Europe with sporadic admixtures with the previous wave (GoyetQ116-1) and more systematic ones, whereas moving through Siberia (Yana, Mal'ta). Before these events, we also confirm Zlatý Kůň as the most basal human lineage sequenced to date OoA, potentially representing an earlier wave of expansion out of the Hub.

RevDate: 2022-09-20
CmpDate: 2022-09-08

Brand CM, Colbran LL, JA Capra (2022)

Predicting Archaic Hominin Phenotypes from Genomic Data.

Annual review of genomics and human genetics, 23:591-612.

Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes.

RevDate: 2022-07-16
CmpDate: 2022-04-19

Witt KE, Villanea F, Loughran E, et al (2022)

Apportioning archaic variants among modern populations.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 377(1852):20200411.

The apportionment of human genetic diversity within and between populations has been measured to understand human relatedness and demographic history. Likewise, the distribution of archaic ancestry in modern populations can be leveraged to better understand the interaction between our species and its archaic relatives. Resolving the interactions between modern and archaic human populations can be difficult, as archaic variants in modern populations have been shaped by genetic drift, bottlenecks and gene flow. Here, we investigate the distribution of archaic variation in Eurasian populations. We find that archaic ancestry coverage at the individual- and population-level present distinct patterns in modern human populations: South Asians have nearly twice the number of population-unique archaic alleles compared with Europeans or East Asians, indicating that these populations experienced differing demographic and archaic admixture events. We confirm previous observations that East Asian individuals have more Neanderthal ancestry than European individuals, but surprisingly, when we compare the number of single nucleotide polymorphisms with archaic alleles found across a population, Europeans have more Neanderthal ancestry than East Asians. We compare these results to simulated models and conclude that these patterns are consistent with multiple admixture events between modern humans and Neanderthals. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.

RevDate: 2022-09-23
CmpDate: 2022-04-22

Timmermann A, Yun KS, Raia P, et al (2022)

Climate effects on archaic human habitats and species successions.

Nature, 604(7906):495-501.

It has long been believed that climate shifts during the last 2 million years had a pivotal role in the evolution of our genus Homo[1-3]. However, given the limited number of representative palaeo-climate datasets from regions of anthropological interest, it has remained challenging to quantify this linkage. Here, we use an unprecedented transient Pleistocene coupled general circulation model simulation in combination with an extensive compilation of fossil and archaeological records to study the spatiotemporal habitat suitability for five hominin species over the past 2 million years. We show that astronomically forced changes in temperature, rainfall and terrestrial net primary production had a major impact on the observed distributions of these species. During the Early Pleistocene, hominins settled primarily in environments with weak orbital-scale climate variability. This behaviour changed substantially after the mid-Pleistocene transition, when archaic humans became global wanderers who adapted to a wide range of spatial climatic gradients. Analysis of the simulated hominin habitat overlap from approximately 300-400 thousand years ago further suggests that antiphased climate disruptions in southern Africa and Eurasia contributed to the evolutionary transformation of Homo heidelbergensis populations into Homo sapiens and Neanderthals, respectively. Our robust numerical simulations of climate-induced habitat changes provide a framework to test hypotheses on our human origin.

RevDate: 2022-05-10

Kubicka AM, Balzeau A, Kosicki J, et al (2022)

Publisher Correction: Variation in cross-sectional indicator of femoral robusticity in Homo sapiens and Neandertals.

Scientific reports, 12(1):6226 pii:10.1038/s41598-022-10446-y.

RevDate: 2022-08-01
CmpDate: 2022-07-15

Pagano AS, Smith CM, Balzeau A, et al (2022)

Nasopharyngeal morphology contributes to understanding the "muddle in the middle" of the Pleistocene hominin fossil record.

Anatomical record (Hoboken, N.J. : 2007), 305(8):2038-2064.

The late archeologist Glynn Isaac first applied the term "muddle in the middle" to a poorly understood period in the Middle Pleistocene human fossil record. This study uses the nasopharyngeal boundaries as a source of traits that may inform this unclear period of human evolution. The nasopharynx lies at the nexus of several vital physiological systems, yet relatively little is known about its importance in human evolution. We analyzed a geographically diverse contemporary Homo sapiens growth series (n = 180 adults, 237 nonadults), Homo neanderthalensis (La Chapelle aux Saints 1, La Ferrassie 1, Forbes Quarry 1, Monte Circeo 1, and Saccopastore 1), mid-Pleistocene Homo (Atapuerca 5, Kabwe 1, Petralona 1, and Steinheim 1), and two Homo erectus sensu lato (KNM-ER 3733 and Sangiran 17). Methods include traditional (Analysis 1) and 3D geometric morphometric analysis (Analysis 2). H. erectus exhibited tall, narrow nasopharyngeal shape, a robust, ancestral morphology. Kabwe 1 and Petralona 1 plotted among H. sapiens in Analysis 2, exhibiting relatively shorter and vertical cartilaginous Eustachian tubes and vertical medial pterygoid plates. Atapuerca 5 and Steinheim 1 exhibited horizontal vomeral orientation similar to H. neanderthalensis, indicating greater relative soft palate length and anteroposterior nasopharynx expansion. They may exhibit synapomorphies with H. neanderthalensis, supporting the accretionary hypothesis. Species-level differences were found among H. sapiens and H. neanderthalensis, including relatively longer dilator tubae muscles and extreme facial airorhynchy among Neanderthals. Furthermore, H. neanderthalensis were autapomorphic in exhibiting horizontal pterygoid plate orientation similar to human infants, suggesting that they may have had inferiorly low placement of the torus tubarius and Eustachian tube orifice on the lateral nasopharyngeal wall in life. This study supports use of osseous nasopharyngeal boundaries both for morphological characters and understanding evolution of otitis media susceptibility in living humans.

RevDate: 2022-05-09
CmpDate: 2022-04-14

Rios-Garaizar J, Iriarte E, Arnold LJ, et al (2022)

The intrusive nature of the Châtelperronian in the Iberian Peninsula.

PloS one, 17(3):e0265219.

Multiple factors have been proposed to explain the disappearance of Neandertals between ca. 50 and 40 kyr BP. Central to these discussions has been the identification of new techno-cultural complexes that overlap with the period of Neandertal demise in Europe. One such complex is the Châtelperronian, which extends from the Paris Basin to the Northern Iberian Peninsula between 43,760-39,220 BP. In this study we present the first open-air Châtelperronian site in the Northern Iberian Peninsula, Aranbaltza II. The technological features of its stone tool assemblage show no links with previous Middle Paleolithic technology in the region, and chronological modeling reveals a gap between the latest Middle Paleolithic and the Châtelperronian in this area. We interpret this as evidence of local Neandertal extinction and replacement by other Neandertal groups coming from southern France, illustrating how local extinction episodes could have played a role in the process of disappearance of Neandertals.

RevDate: 2022-05-31
CmpDate: 2022-04-19

Roksandic M, Radović P, Lindal J, et al (2022)

Early Neanderthals in contact: The Chibanian (Middle Pleistocene) hominin dentition from Velika Balanica Cave, Southern Serbia.

Journal of human evolution, 166:103175.

Neanderthals are Eurasian fossil hominins whose distinctive morphology developed in the southwestern corner of Europe and later spread throughout the continent, reaching Southwest Asia before the Late Pleistocene and spreading into Central Asia by 59-49 ka. The timing, tempo, and route of the Neanderthal movements eastward are poorly documented. The earliest probable evidence of Neanderthals in Asia comes from Karain E Cave (Anatolia, Turkey), dated to 250-200 ka. We present four Chibanian (Middle Pleistocene) hominin specimens, representing at least two individuals, from Velika Balanica Cave (Serbia): a permanent upper third molar (BH-2), a deciduous upper fourth premolar (BH-3) refitted to a poorly preserved maxillary fragment with the permanent first molar in the alveolus (BH-4), and a permanent upper central incisor (BH-5). We provide descriptions of the teeth, as well as a comparative analysis of the well-preserved M[1] (BH-4), including assessments of cusp angles, relative occlusal polygon area, relative cusp base areas, two- and three-dimensional enamel thickness, and taurodontism. Morphology of both the occlusal surface and the enamel dentine junction of the M[1] indicates that the maxillary fragment and associated dP[4] belonged to an early Neanderthal child. The heavily worn I[1] and M[3] are consistent with the Neanderthal morphology, although they are less distinct taxonomically. These Chibanian remains with provenance from layer 3a are constrained by two thermoluminescence dates: 285 ± 34 ka and 295 ± 74 ka. They represent the earliest current evidence of Neanderthal spread into the Eastern Mediterranean Area. We discuss these findings in light of recent direct evidence for cultural connections between Southwestern Asia and Southeast Europe in the Chibanian.

RevDate: 2022-05-17
CmpDate: 2022-04-19

Pop CM, Wilson L, CL Browne (2022)

Evaluating landscape knowledge and lithic resource selection at the French Middle Paleolithic site of the Bau de l'Aubesier.

Journal of human evolution, 166:103152.

We report on the application of a novel approach to exploring the degree of landscape knowledge, wayfinding abilities, and the nature of decision-making processes reflected in the utilization of stone resources in the French Middle Paleolithic. Specifically, we use data from the site of the Bau de l'Aubesier to explore the reasons why a majority of the 350 raw material sources cataloged in the surrounding region appear not to have been utilized, including several located near the site and yielding high-quality lithic materials. To this end, we focus on the spatial relationships between sources as an explanatory variable, operationalized in terms of minimum travel times. Using geographic information system software and a generalized linear model of resource selection derived from the Bau assemblages, we compute source utilization probabilities from the perspective of hominins located off-site. We do so under three optimization scenarios, factoring in the intrinsic characteristics (e.g., quality) and time required to reach each source on the way to the Bau. More generally, we find that in slightly more than 50% of cases, seemingly viable sources may have been ignored simply because the minimum cost path leading back to the Bau passes through or requires only minimal deviations to reach, higher quality options. More generally, we found that throughout the entire region, a cost/benefit analysis of competing sources favors those from source areas known to have been utilized. Virtually all the available information on lithic procurement at the Bau is consistent with a model of landscape utilization premised on detailed knowledge of a very large area, an ability to accurately estimate travel times between locations, and a pragmatic strategy of stone resource exploitation based on minimizing costs (travel and search times) and maximizing utility.

RevDate: 2022-07-16
CmpDate: 2022-04-15

Kubicka AM, Balzeau A, Kosicki J, et al (2022)

Variation in cross-sectional indicator of femoral robusticity in Homo sapiens and Neandertals.

Scientific reports, 12(1):4739.

Variations in the cross-sectional properties of long bones are used to reconstruct the activity of human groups and differences in their respective habitual behaviors. Knowledge of what factors influence bone structure in Homo sapiens and Neandertals is still insufficient thus, this study investigated which biological and environmental variables influence variations in the femoral robusticity indicator of these two species. The sample consisted of 13 adult Neandertals from the Middle Paleolithic and 1959 adult individuals of H. sapiens ranging chronologically from the Upper Paleolithic to recent times. The femoral biomechanical properties were derived from the European data set, the subject literature, and new CT scans. The material was tested using a Mantel test and statistical models. In the models, the polar moment of area (J) was the dependent variable; sex, age, chronological period, type of lifestyle, percentage of the cortical area (%CA), the ratio of second moment areas of inertia about the X and Y axes (Ix/Iy), and maximum slope of the terrain were independent covariates. The Mantel tests revealed spatial autocorrelation of the femoral index in H. sapiens but not in Neandertals. A generalized additive mixed model showed that sex, %CA, Ix/Iy, chronological period, and terrain significantly influenced variation in the robusticity indicator of H. sapiens femora. A linear mixed model revealed that none of the analyzed variables correlated with the femoral robusticity indicator of Neandertals. We did not confirm that the gradual decline in the femoral robusticity indicator of H. sapiens from the Middle Paleolithic to recent times is related to the type of lifestyle; however, it may be associated with lower levels of mechanical loading during adolescence. The lack of correlation between the analysed variables and the indicator of femoral robusticity in Neandertals may suggest that they needed a different level of mechanical stimulus to produce a morphological response in the long bone than H. sapiens.

RevDate: 2022-05-04
CmpDate: 2022-05-04

Urciuoli A, Kubat J, Schisanowski L, et al (2022)

Cochlear morphology of Indonesian Homo erectus from Sangiran.

Journal of human evolution, 165:103163.

Homo erectus s.l. is key for deciphering the origin and subsequent evolution of genus Homo. However, the characterization of this species is hindered by the existence of multiple variants in both mainland and insular Asia, as a result of divergent chronogeographical evolutionary trends, genetic isolation, and interbreeding with other human species. Previous research has shown that cochlear morphology embeds taxonomic and phylogenetic information that may help infer the phylogenetic relationships among hominin species. Here we describe the cochlear morphology of two Indonesian H. erectus individuals (Sangiran 2 and 4), and compare it with a sample of australopiths, Middle to Late Pleistocene humans, and extant humans by means of linear measurements and both principal components and canonical variates analyses performed on shape ratios. Our results indicate that H. erectus displays a mosaic morphology that combines plesiomorphic (australopithlike) features (such as a chimplike round cochlear cross section and low cochlear thickness), with derived characters of later humans (a voluminous and long cochlea, possibly related to hearing abilities)-consistent with the more basal position of H. erectus. Our results also denote substantial variation between the two studied individuals, particularly in the length and radius of the first turn, as well as cross-sectional shape. Given the small size of the available sample, it is not possible to discern whether such differences merely reflect intraspecific variation among roughly coeval H. erectus individuals or whether they might result from greater age differences between them than currently considered. However, our results demonstrate that most characters found in later humans were already present in Indonesian H. erectus, with the exception of Neanderthals, which display an autapomorphic condition relative to other Homo species.

RevDate: 2022-04-26
CmpDate: 2022-04-26

Moradmand M, M Yousefi (2022)

Ecological niche modelling and climate change in two species groups of huntsman spider genus Eusparassus in the Western Palearctic.

Scientific reports, 12(1):4138.

The huntsman spiders' genus Eusparassus are apex arthropod predators in desert ecosystems of the Afrotropical and Palearctic ecoregions. The Eusparassus dufouri and E. walckenaeri clades are two distinct taxonomic, phylogenetic, and geographic units concerning morphology, molecular phylogeny, and spatial data; but little is known about their ecological niche. We applied the maximum-entropy approach and modelled ecologic niches of these two phylogenetically closely related clades. Ecological niches of the two clades were compared using identity and background tests and two different metrics, the Schooner's D and Warren's I. We also predicted the impacts of climate change on the distribution of the two clades. The results of the identity test showed that the ecological niches of the two clades were different in geographic space but were similar in environmental space. While results of the background test revealed that the ecological niches of the two clades were similar in geographic and environmental space. This indicated that "niche conservatism" had an important role over the evolutionary time of allopatric diversification. However, the normalized difference vegetation index vs. topographic heterogeneity had influenced the niches of the dufouri and walckenaeri clades, respectively. The analyses recovered that the two clades' climatically suitable habitats will increase under future climate (the year 2070). However, since the two clades are characterized by the narrow range of environmental optimum and the accordingly high limits of tolerance, they are vulnerable to climate change.

RevDate: 2022-03-13

Picin A, Hajdinjak M, Nowaczewska W, et al (2022)

Author Correction: New perspectives on Neanderthal dispersal and turnover from Stajnia Cave (Poland).

Scientific reports, 12(1):4060 pii:10.1038/s41598-022-08141-z.

RevDate: 2022-10-25
CmpDate: 2022-04-15

Wang FG, Yang SX, Ge JY, et al (2022)

Innovative ochre processing and tool use in China 40,000 years ago.

Nature, 603(7900):284-289.

Homo sapiens was present in northern Asia by around 40,000 years ago, having replaced archaic populations across Eurasia after episodes of earlier population expansions and interbreeding[1-4]. Cultural adaptations of the last Neanderthals, the Denisovans and the incoming populations of H. sapiens into Asia remain unknown[1,5-7]. Here we describe Xiamabei, a well-preserved, approximately 40,000-year-old archaeological site in northern China, which includes the earliest known ochre-processing feature in east Asia, a distinctive miniaturized lithic assemblage with bladelet-like tools bearing traces of hafting, and a bone tool. The cultural assembly of traits at Xiamabei is unique for Eastern Asia and does not correspond with those found at other archaeological site assemblages inhabited by archaic populations or those generally associated with the expansion of H. sapiens, such as the Initial Upper Palaeolithic[8-10]. The record of northern Asia supports a process of technological innovations and cultural diversification emerging in a period of hominin hybridization and admixture[2,3,6,11].

RevDate: 2022-12-03
CmpDate: 2022-12-02

Pfister D, Oechsle K, Schmidt S, et al (2022)

First-line salvage treatment options for germ cell tumor patients failing stage-adapted primary treatment : A comprehensive review compiled by the German Testicular Cancer Study Group.

World journal of urology, 40(12):2853-2861.

PURPOSE: In this review, we summarize and discuss contemporary treatment standards and possible selection criteria for decision making after failure of adjuvant or first-line cisplatin-based chemotherapy for primarily localized or metastatic germ cell tumors.

METHODS: This work is based on a systematic literature search conducted for the elaboration of the first German clinical practice guideline to identify prospective clinical trials and retrospective comparative studies published between Jan 2010 and Feb 2021. Study end points of interest were progression-free (PFS) and overall survival (OS), relapse rate (RR), and/or safety.

RESULTS: Relapses of clinical stage I (CS I) patients irrespective of prior adjuvant treatment after orchiectomy are treated stage adapted in accordance for primary metastatic patients. Surgical approaches for sole retroperitoneal relapses are investigated in ongoing clinical trials. The appropriate salvage chemotherapy for metastatic patients progressing or relapsing after first-line cisplatin-based chemotherapy is still a matter of controversy. Conventional cisplatin-based chemotherapy is the international guideline-endorsed standard of care, but based on retrospective data high-dose chemotherapy and subsequent autologous stem cell transplantation may offer a 10-15% survival benefit for all patients. Secondary complete surgical resection of all visible residual masses irrespective of size is paramount for treatment success.

CONCLUSIONS: Patients relapsing after definite treatment of locoregional disease are to be treated by stage-adapted first-line standard therapy for metastatic disease. Patients with primary advanced/metastatic disease failing one line of cisplatin-based combination chemotherapy should be referred to GCT expert centers. Dose intensity is a matter of ongoing debate, but sequential high-dose chemotherapy seems to improve patients' survival.

RevDate: 2022-03-05
CmpDate: 2022-02-28

Zeberg H (2022)

The major genetic risk factor for severe COVID-19 is associated with protection against HIV.

Proceedings of the National Academy of Sciences of the United States of America, 119(9):.

There are genetic risk factors that influence the outcome of COVID-19 [COVID-19 Host Genetics Initiative, Nature 600, 472-477 (2021)]. The major genetic risk factor for severe COIVD-19 resides on chromosome 3 and is inherited from Neandertals [H. Zeberg, S. Pääbo, Nature 587, 610-612 (2020)]. The risk-associated DNA segment modulates the expression of several chemokine receptors, among them CCR5, a coreceptor for HIV which is down-regulated in carriers of the COVID-19 risk haplotype. Here I show that carriers of the risk variant have an ∼27% lower risk of HIV infection.

RevDate: 2022-03-16
CmpDate: 2022-03-16

Cerrito P, Nava A, Radovčić D, et al (2022)

Dental cementum virtual histology of Neanderthal teeth from Krapina (Croatia, 130-120 kyr): an informed estimate of age, sex and adult stressors.

Journal of the Royal Society, Interface, 19(187):20210820.

The evolution of modern human reproductive scheduling is an aspect of our life history that remains vastly uncomprehended. The present work aims to address this gap by validating a non-destructive cutting-edge methodology to infer adult life-history events on modern teeth with known life history and then applying it to fossil specimens. We use phase-contrast synchrotron X-ray microtomography to visualize the dental cementum of 21 specimens: nine contemporary humans; 10 Neanderthals from Krapina (Croatia, 130-120 kyr); one Neolithic Homo sapiens from Ajmana (Serbia); and one Mesolithic H. sapiens from Vlasac (Serbia). We were able to correctly detect and time (root mean square error = 2.1 years; R[2] = 0.98) all reproductive (menarche, parturition, menopause) and other physiologically impactful events in the modern sample. Nonetheless, we could not distinguish between the causes of the events detected. For the fossil specimens, we estimated age at death and age at occurrence of biologically significant events. Finally, we performed an exploratory analysis regarding possible sexual dimorphism in dental cementum microstructure, which allowed us to correctly infer the sex of the Neolithic specimen, for which the true value was known via DNA analysis.

RevDate: 2022-09-19
CmpDate: 2022-02-25

Lee HK, Knabl L, Knabl L, et al (2022)

Immune transcriptome analysis of COVID-19 patients infected with SARS-CoV-2 variants carrying the E484K escape mutation identifies a distinct gene module.

Scientific reports, 12(1):2784.

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. While viral infections elicit a conserved immune response, it is not known whether SARS-CoV-2 variants, which display enhanced binding to the ACE2 receptor and reduced neutralizing activity by vaccine-elicited antibodies, prompt specific genomic immune responses. To test this, we generated and investigated the transcriptomes in BCs from hospitalized patients infected with either the Alpha variant (n = 36) or with the Alpha variant that had acquired the E484K escape mutation (Alpha+E484K) (n = 13). We identified a gene module preferentially activated in patients infected with the Alpha+E484K variant and in patients infected with the Beta (n = 9) and Gamma (n = 3) variants that also carry by the E484K escape mutation. The E484K signature was enriched for genes preferentially expressed in monocytes and linked to severe viral infection. However, both cohorts had undergone similar treatments and no differences in disease severity were reported suggesting that this signature reflects a variant response and does not necessarily associate with disease outcome. Additionally, longitudinal transcriptome analyses revealed a more persistent retention of immune signatures in Alpha+E484K patients throughout the entire course of COVID-19 disease and convalescence. While the OAS1 Neanderthal mutation has been linked to a milder COVID-19 pathology, we did not identify significant immune transcriptomes differences in the 25 patients homozygous for this mutation. Our study offers insights into distinct molecular immune responses elicited by SARS-CoV-2 variants carrying the E484K escape mutation throughout the COVID-19 disease.

RevDate: 2022-05-31
CmpDate: 2022-04-08

Grigorenko AP, Protasova MS, Lisenkova AA, et al (2022)

Neurodevelopmental Syndrome with Intellectual Disability, Speech Impairment, and Quadrupedia Is Associated with Glutamate Receptor Delta 2 Gene Defect.

Cells, 11(3):.

Bipedalism, speech, and intellect are the most prominent traits that emerged in the evolution of Homo sapiens. Here, we describe a novel genetic cause of an "involution" phenotype in four patients, who are characterized by quadrupedal locomotion, intellectual impairment, the absence of speech, small stature, and hirsutism, observed in a consanguineous Brazilian family. Using whole-genome sequencing analysis and homozygous genetic mapping, we identified genes bearing homozygous genetic variants and found a homozygous 36.2 kb deletion in the gene of glutamate receptor delta 2 (GRID2) in the patients, resulting in the lack of a coding region from the fifth to the seventh exons. The GRID2 gene is highly expressed in the cerebellum cortex from prenatal development to adulthood, specifically in Purkinje neurons. Deletion in this gene leads to the loss of the alpha chain in the extracellular amino-terminal protein domain (ATD), essential in protein folding and transport from the endoplasmic reticulum (ER) to the cell surface. Then, we studied the evolutionary trajectories of the GRID2 gene. There was no sign of strong selection of the highly conservative GRID2 gene in ancient hominids (Neanderthals and Denisovans) or modern humans; however, according to in silico tests using the Mfold tool, the GRID2 gene possibly gained human-specific mutations that increased the stability of GRID2 mRNA.

RevDate: 2022-05-27
CmpDate: 2022-04-14

Göllner T, Larena M, Kutanan W, et al (2022)

Unveiling the Genetic History of the Maniq, a Primary Hunter-Gatherer Society.

Genome biology and evolution, 14(4):.

The Maniq of southern Thailand is one of the last remaining practicing hunter-gatherer communities in the world. However, our knowledge on their genetic origins and demographic history is still largely limited. We present here the genotype data covering ∼2.3 million single nucleotide polymorphisms of 11 unrelated Maniq individuals. Our analyses reveal the Maniq to be closely related to the Semang populations of Malaysia (Malay Negritos), who altogether carry an Andamanese-related ancestry linked to the ancient Hòabìnhian hunter-gatherers of Mainland Southeast Asia (MSEA). Moreover, the Maniq possess ∼35% East Asian-related ancestry, likely brought about by recent admixture with surrounding agriculturist communities in the region. In addition, the Maniq exhibit one of the highest levels of genetic differentiation found among living human populations, indicative of their small population size and historical practice of endogamy. Similar to other hunter-gatherer populations of MSEA, we also find the Maniq to possess low levels of Neanderthal ancestry and undetectable levels of Denisovan ancestry. Altogether, we reveal the Maniq to be a Semang group that experienced intense genetic drift and exhibits signs of ancient Hòabìnhian ancestry.

RevDate: 2022-02-14
CmpDate: 2022-02-14

Price M (2022)

A 10,000-year head start for modern humans in Europe?.

Science (New York, N.Y.), 375(6581):598-599.

Tooth and tools suggest moderns and Neanderthals took turns in French cave.

RevDate: 2022-02-25

Slimak L, Zanolli C, Higham T, et al (2022)

Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France.

Science advances, 8(6):eabj9496.

Determining the extent of overlap between modern humans and other hominins in Eurasia, such as Neanderthals and Denisovans, is fundamental to understanding the nature of their interactions and what led to the disappearance of archaic hominins. Apart from a possible sporadic pulse recorded in Greece during the Middle Pleistocene, the first settlements of modern humans in Europe have been constrained to ~45,000 to 43,000 years ago. Here, we report hominin fossils from Grotte Mandrin in France that reveal the earliest known presence of modern humans in Europe between 56,800 and 51,700 years ago. This early modern human incursion in the Rhône Valley is associated with technologies unknown in any industry of that age outside Africa or the Levant. Mandrin documents the first alternating occupation of Neanderthals and modern humans, with a modern human fossil and associated Neronian lithic industry found stratigraphically between layers containing Neanderthal remains associated with Mousterian industries.

RevDate: 2022-04-28
CmpDate: 2022-04-28

Liu W, Athreya S, Xing S, et al (2022)

Hominin evolution and diversity: a comparison of earlier-Middle and later-Middle Pleistocene hominin fossil variation in China.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 377(1847):20210040.

Historical views of Asia as an evolutionary 'backwater' are associated with the idea that Homo erectus experienced long periods of stasis and ultimately went extinct. However, recent discoveries of well-dated Middle Pleistocene hominin fossils in China have considerably challenged these ideas and provide sufficient data to propose a testable model that explains the patterning of variation in Middle Pleistocene China, and why it changed over time. A series of hominin fossil studies comparing earlier-Middle and later-Middle Pleistocene groups confirm that the expressions of certain traits shift around 300 ka. Fossils from the later Middle Pleistocene are more variable with a mix of archaic traits as well as ones that are common in Western Eurasian early Homo sapiens and Neanderthals. The period around 300 ka appears to have been a critical turning point for later-Middle Pleistocene morphological changes in China. It coincides with a phase of climatic instability in the Northern Hemisphere between Marine Isotope Stages 12 and 10 that would have led to changes in gene flow patterning, and regional population survival/extinction. This localized and testable model can be used for future explorations of hominin evolution in later Pleistocene eastern Eurasia. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.

RevDate: 2022-02-15
CmpDate: 2022-02-15

Hallinan E, Barzilai O, Bicho N, et al (2022)

No direct evidence for the presence of Nubian Levallois technology and its association with Neanderthals at Shukbah Cave.

Scientific reports, 12(1):1204.

RevDate: 2022-02-15
CmpDate: 2022-02-15

Blinkhorn J, Zanolli C, Compton T, et al (2022)

Reply to: 'No direct evidence for the presence of Nubian Levallois technology and its association with Neanderthals at Shukbah Cave'.

Scientific reports, 12(1):1208.

RevDate: 2022-03-09
CmpDate: 2022-03-09

Mihailović D, Kuhn SL, Bogićević K, et al (2022)

Connections between the Levant and the Balkans in the late Middle Pleistocene: Archaeological findings from Velika and Mala Balanica Caves (Serbia).

Journal of human evolution, 163:103138.

Major changes in the technological, economic, and social behavior of Middle Pleistocene hominins occurred at the onset of the Middle Paleolithic, 400-200 ka. However, until recently it was not possible to establish when, where, and how certain forms of Middle Paleolithic behavior appeared and spread into Southeastern Europe, mainly owing to gaps in the Paleolithic record. Here we report new results of dating, material culture, and the archaeological context of finds from the Balanica Cave Complex in Sićevo (Serbia). Two methods-thermoluminescence and electron spin resonance-were used to date the sequence. The geoarchaeological context was examined through sedimentology, micromorphology, and spatial analysis. Microfaunal remains were used to constrain the dates within an ecological zone, whereas macrofauna was analyzed for taxonomy and taphonomy to examine the source of accumulation and hominin behavior. Technological and typological features of the lithic assemblage were used to characterize lithic production at the site. Materials recovered from Layer 3 in Velika Balanica and from Layer 2 in Mala Balanica, both dated to MIS 9-7, include a distinctive set of archaeological assemblages which resemble contemporaneous Yabrudian assemblages from the Levant in important ways, and which are unlike contemporary material from the surrounding regions. In Velika Balanica, the lithic assemblages are associated with a large fireplace containing evidence of human activities similar to those from Qesem Cave (Israel). Dental remains uncovered in the same layer are consistent with Neanderthals. These findings suggest that the end of the Middle Pleistocene (before 300-240 ka) saw population movement and/or cultural transmission between Southwest Asia and the Balkans, which led eventually to a transfer of technology between Middle Eastern and European hominin populations and contributed to the shaping of Neanderthal behaviors throughout the eastern and northern Mediterranean.

RevDate: 2022-12-03
CmpDate: 2022-12-02

Busch J, Schmidt S, Albers P, et al (2022)

Can magnetic resonance imaging replace conventional computerized tomography for follow-up of patients with testicular cancer? A systematic review.

World journal of urology, 40(12):2843-2852.

PURPOSE: Follow-up protocols for patients with testicular cancer (TC) have significantly reduced the number of cross-sectional imaging studies to reduce radiation exposure. At present, it is unclear whether magnetic resonance imaging (MRI) could replace conventional computerized tomography (CT) imaging. The objective of this study is to summarize the scientific evidence on this topic and to review guideline recommendations with regard to the use of MRI.

METHODS: A systematic literature review was performed searching Medline and Cochrane databases for prospective studies on patients with TC in the follow-up care (last search in February 2021). Additionally, guideline recommendations for TC were screened. Data extraction and quality assessment of included studies were performed and used for a descriptive presentation of results.

RESULTS: A total of four studies including two ongoing trials were identified. Overall, the scientific evidence of prospective comparative studies is based on 102 patients. Data suggest that abdominal imaging with MRI can replace conventional CT for detection of lymph node metastasis of the retroperitoneum to spare radiation exposure and contrast media application. However, experienced radiologists are needed. Clinical guidelines are aware of the risk of diagnosis-induced secondary malignancy due to CT imaging and some have adapted their recommendations accordingly. Results of the two ongoing trials on 738 patients are expected soon to provide more reliable results on this topic.

CONCLUSIONS: There is growing evidence that abdominopelvic MRI imaging can replace CT imaging during follow-up of patients with TC in order to reduce radiation exposure and diagnosis-induced secondary malignancy.

RevDate: 2022-07-16
CmpDate: 2022-02-24

Huffman JE, Butler-Laporte G, Khan A, et al (2022)

Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19.

Nature genetics, 54(2):125-127.

The OAS1/2/3 cluster has been identified as a risk locus for severe COVID-19 among individuals of European ancestry, with a protective haplotype of approximately 75 kilobases (kb) derived from Neanderthals in the chromosomal region 12q24.13. This haplotype contains a splice variant of OAS1, which occurs in people of African ancestry independently of gene flow from Neanderthals. Using trans-ancestry fine-mapping approaches in 20,779 hospitalized cases, we demonstrate that this splice variant is likely to be the SNP responsible for the association at this locus, thus strongly implicating OAS1 as an effector gene influencing COVID-19 severity.

RevDate: 2022-03-09
CmpDate: 2022-03-09

Wu XJ, Bae CJ, Friess M, et al (2022)

Evolution of cranial capacity revisited: A view from the late Middle Pleistocene cranium from Xujiayao, China.

Journal of human evolution, 163:103119.

The Late Middle Pleistocene hominin fossils from the Xujiayao site in northern China have been closely studied in light of their morphological variability. However, all previous studies have focused on separated cranial fragments. Here, we report the first reconstruction of a fairly complete posterior cranium, Xujiayao 6 (XJY 6), confidently dated to ∼200-160 ka, which facilitated an assessment of its overall cranial size. XJY 6 was reconstructed from three of the original fragments-the PA1486 (No.7/XJY 6a) occipital bone, PA1490 (No.10/XJY 6b) right parietal bone, and PA1498 (No.17/XJY 15) left temporal bone-which originated from the same young adult individual. The XJY 6 endocranial capacity, estimated by measuring endocranial volume, was estimated using multiple regression formulae derived from ectocranial and endocranial measurements on select samples of Pleistocene hominins and recent modern humans. The results indicate that the larger pooled sample of both Pleistocene and recent modern humans was more robust for the endocranial capacity estimate. Based on the pooled sample using the ectocranial and endocranial measurements, we conservatively estimate the XJY 6 endocranial volume to be ∼1700 cm[3] with a 95% confidence interval of 1555-1781 cm[3]. This is close to Xuchang 1, which dates to 125-105 ka and whose endocranial volume is ∼1800 cm[3]. Thus, XJY 6 provides the earliest evidence of a brain size that falls in the upper range of Neanderthals and modern Homo sapiens. XJY 6, together with Xuchang 1, Homo floresiensis, Homo luzonensis, and Homo naledi, challenge the general pattern that brain size gradually increases over geological time. This study also finds that hominin brain size expansion occurred at different rates across time and space.

RevDate: 2022-02-10
CmpDate: 2022-02-10

Koch TJ, P Schmidt (2022)

A new method for birch tar making with materials available in the Stone Age.

Scientific reports, 12(1):413.

The use of birch tar can be traced back to the European Middle Palaeolithic and is relevant for our understanding of the technical skills and cognitive abilities of Neanderthals. Due to the lack of archaeological evidence, it remains unknown what techniques were used for birch tar making. Efficiency was recently used as a proxy to determine the method most likely used in the Middle Palaeolithic. Todtenhaupt et al. have proposed a technique employing a groove-like structure that is comparable with the recently presented condensation method. The groove method resulted in higher tar yields compared to other experimental aceramic production processes. However, the implications for Palaeolithic tar making remain unclear because some of the materials used in the experiment were not available then (polished granite slabs). To approach this problem, we replicated the groove with river cobbles and, in a second experiment with flint fragments, to evaluate whether similar results can be obtained. We were successful in producing birch tar in multiple runs with the cobble- and flint-grooves, which, in addition, proved to be more efficient than the condensation method in terms of tar yield per bark input. Our experimental study provides an additional possibility to make prehistoric birch tar.

RevDate: 2022-05-31
CmpDate: 2022-03-09

Zanolli C, Kaifu Y, Pan L, et al (2022)

Further analyses of the structural organization of Homo luzonensis teeth: Evolutionary implications.

Journal of human evolution, 163:103124.

The species Homo luzonensis has recently been described based on a set of dental and postcranial elements found at Callao Cave (Northern Luzon, Philippines) and dated to at least 50-67 ka. Seven postcanine maxillary teeth are attributed to this taxon, five of them belonging to the same individual (CCH6) and representing the holotype of H. luzonensis, whereas the isolated upper premolar CCH8 and the upper third molar CCH9 are paratypes of the species. The teeth are characterized by their small dimensions associated with primitive features, as also found in Homo floresiensis, another hominin having evolved in an insular environment of Southeast Asia. Postcranial bones of the hands and feet of H. luzonensis and H. floresiensis show Homo habilis-like or australopith-like features, whereas cranial and dental morphology are more consistent with the Asian Homo erectus morphology. Due to this mosaic morphology, the origin and phylogenetic relationships of both H. luzonensis and H. floresiensis are still debated. To test the hypotheses that H. luzonensis derives from H. erectus or from an earlier small-brained hominin, we analyzed the µCT scans of the teeth. We investigated both external and internal tooth structure using morphometric methods including: crown outline shape, tooth crown tissue proportions, enamel-dentine junction shape, and pulp morphology. Homo luzonensis external crown morphology aligns more with H. erectus than with H. habilis/H. rudolfensis. The internal structural organization of H. luzonensis teeth exhibits more affinities with that of H. erectus and H. floresiensis than with Neanderthals and modern humans. Our results suggest that both H. floresiensis and H. luzonensis likely evolved from some H. erectus groups that dispersed in the various islands of this region and became isolated until endemic speciation events occurred at least twice during the Pleistocene in insular environments.

RevDate: 2022-08-01
CmpDate: 2022-07-15

Balzeau A, A Pagano (2022)

The cranial base and related internal anatomical features in Homo neanderthalensis and Homo sapiens.

Anatomical record (Hoboken, N.J. : 2007), 305(8):2030-2037.

The cranial anatomy of Homo neanderthalensis and Homo sapiens is well documented in the paleoanthropological and medical literature. However, there are few high-quality visual guides of their comparative morphology. We give here a detailed description of the anatomy of two important fossil specimens, La Chapelle-aux-Saints 1 and abri Pataud 1, based on high-resolution imaging data with each specimen representing the respective morphologies of H. neanderthalensis and H. sapiens. We describe the comparative morphology of external, endocranial, and internal characteristics of the cranium, with a focus on the petrous and tympanic portions of the temporal bone. This descriptive approach shows differences between our specimens, including in positions of cerebral components relative to cranial structures and patterns of dural sinus drainage. Numerous external and internal differences in the shape of the petrous temporal are also described, including its articulation with the tympanic bone and the orientation of the petrotympanic crest. The presence of a large protuberance between the osseous Eustachian tube orifice and carotid foramen in H. neanderthalensis suggests that the levator veli palatini muscle took origin more laterally than the dilator tubae arm of the tensor veli palatini muscle, a feature shared with H. sapiens. The overall pattern that emerges is one in which two species have undergone large-scale evolutionary changes in a functionally critical region. Such differences necessitate high-quality visualization and consideration of both internal and external morphology.

RevDate: 2022-03-02

Coppo L, Mishra P, Siefert N, et al (2022)

A substitution in the glutathione reductase lowers electron leakage and inflammation in modern humans.

Science advances, 8(1):eabm1148.

Glutathione reductase is a critical enzyme for preventing oxidative stress and maintaining a reduced intracellular environment. Almost all present-day humans carry an amino acid substitution (S232G) in this enzyme relative to apes and Neanderthals. We express the modern human and the ancestral enzymes and show that whereas the activity and stability are unaffected by the amino acid substitution, the ancestral enzyme produces more reactive oxygen species and increases cellular levels of transcripts encoding cytokines. We furthermore show that the ancestral enzyme has been reintroduced into the modern human gene pool by gene flow from Neanderthals and is associated with multiple traits in present-day people, including increased susceptibility for inflammatory-associated disorders and vascular disease.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

SUPPORT ESP: Click covers to order from Amazon
The ESP project will earn a commission.


The first fossil recognized to be an ancestral human was found in the Neander Valley (thal in German) in 1856. William King suggested Homo neanderthalensis (human from the Neander Valley) as the scientific name for the specimen — hence Neanderthal became the common name by which this early human became known. Now Neanderthal genomes have been sequenced, more is known about their path to extinction, and the existence of Neanderthal culture, including music, has been established. To understand the evolutionary path of the hominid line, one must be familiar with Homo neanderthalensis. These books are highly recommended. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )