Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Symbiosis

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 26 Apr 2024 at 01:58 Created: 

Symbiosis

Symbiosis refers to an interaction between two or more different organisms living in close physical association, typically to the advantage of both. Symbiotic relationships were once thought to be exceptional situations. Recent studies, however, have shown that every multicellular eukaryote exists in a tight symbiotic relationship with billions of microbes. The associated microbial ecosystems are referred to as microbiome and the combination of a multicellular organism and its microbiota has been described as a holobiont. It seems "we are all lichens now."

Created with PubMed® Query: ( symbiosis[tiab] OR symbiotic[tiab] ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-04-25
CmpDate: 2024-04-25

Martin FM, Öpik M, IA Dickie (2024)

Mycorrhizal research now: from the micro- to the macro-scale.

The New phytologist, 242(4):1399-1403.

RevDate: 2024-04-25
CmpDate: 2024-04-25

Giovannetti M, Binci F, Navazio L, et al (2024)

Fungal signals and calcium-mediated transduction pathways along the plant defence-symbiosis continuum.

The New phytologist, 242(4):1404-1407.

RevDate: 2024-04-24

Gong W, Guo L, Huang C, et al (2024)

A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic.

The Science of the total environment pii:S0048-9697(24)02747-5 [Epub ahead of print].

Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.

RevDate: 2024-04-24

Quarta G, T Schlick (2024)

Riboswitch Distribution in the Human Gut Microbiome Reveals Common Metabolite Pathways.

The journal of physical chemistry. B [Epub ahead of print].

Riboswitches are widely distributed, conserved RNAs which regulate metabolite levels in bacterial cells through direct, noncovalent binding of their cognate metabolite. Various riboswitch families are highly enriched in gut bacteria, suggestive of a symbiotic relationship between the host and bacteria. Previous studies of the distribution of riboswitches have examined bacterial taxa broadly. Thus, the distribution of riboswitches associated with bacteria inhabiting the intestines of healthy individuals is not well understood. To address these questions, we survey the gut microbiome for riboswitches by including an international database of prokaryotic genomes from the gut samples. Using Infernal, a program that uses RNA-specific sequence and structural features, we survey this data set using existing riboswitch models. We identify 22 classes of riboswitches with vitamin cofactors making up the majority of riboswitch-associated pathways. Our finding is reproducible in other representative databases from the oral as well as the marine microbiomes, underscoring the importance of thiamine pyrophosphate, cobalamin, and flavin mononucleotide in gene regulation. Interestingly, riboswitches do not vary significantly across microbiome representatives from around the world despite major taxonomic differences; this suggests an underlying conservation. Further studies elucidating the role of bacterial riboswitches in the host metabolome are needed to illuminate the consequences of our finding.

RevDate: 2024-04-24

Shah S, Dougan KE, Chen Y, et al (2024)

Massive genome reduction predates the divergence of Symbiodiniaceae dinoflagellates.

The ISME journal pii:7657354 [Epub ahead of print].

Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e., symbiogenesis) is hypothesised to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here we present de novo assembled genomes (1.2-1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenisation. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.

RevDate: 2024-04-24
CmpDate: 2024-04-24

Churcher J (2024)

The psychoanalytic setting: José Bleger's encuadre.

The International journal of psycho-analysis, 105(2):216-233.

José Bleger's paper on the setting (encuadre) is integral to his 1967 book Symbiosis and Ambiguity. Relevant concepts from the book are summarised before examining his view of the setting as a "non-process" consisting of "constants", complementing the "variables" of the analytic process. Process and setting are related as figure and ground in Gestalt psychology. The ideally maintained setting is studied as a thought experiment, uniting the categories of institution, personality, body schema, and body. Deposited in the setting, the psychotic part of the personality, or "agglutinated nucleus", is a remnant of early symbiosis with the mother. Bleger distinguishes two settings: the analyst's and the patient's. The latter can only be analysed by strictly maintaining the former. Ritualisation of the setting denies temporal reality. De-symbiotisation is not always possible. A concept of "internal" setting is suggested, but Bleger nowhere mentions this and the concept is problematic, leaving open the question of how to listen to the silence of the setting. Bleger's concept of encuadre can be applied to constants (invariants) in the wider world, the psychotic part of the personality being deposited in everything that is familiar and felt to be constant, including technology, which creates a "platform" for human activity.

RevDate: 2024-04-25

Lailheugue V, Darriaut R, Tran J, et al (2024)

Both the scion and rootstock of grafted grapevines influence the rhizosphere and root endophyte microbiomes, but rootstocks have a greater impact.

Environmental microbiome, 19(1):24.

BACKGROUND: Soil microorganisms play an extensive role in the biogeochemical cycles providing the nutrients necessary for plant growth. Root-associated bacteria and fungi, originated from soil, are also known to influence host health. In response to environmental stresses, the plant roots exude specific molecules influencing the composition and functioning of the rhizospheric and root microbiomes. This response is host genotype-dependent and is affected by the soil microbiological and chemical properties. It is essential to unravel the influence of grapevine rootstock and scion genotypes on the composition of this microbiome, and to investigate this relationship with plant growth and adaptation to its environment. Here, the composition and the predicted functions of the microbiome of the root system were studied using metabarcoding on ten grapevine scion-rootstock combinations, in addition to plant growth and nutrition measurements.

RESULTS: The rootstock genotype significantly influenced the diversity and the structure of the bacterial and fungal microbiome, as well as its predicted functioning in rhizosphere and root compartments when grafted with the same scion cultivar. Based on β-diversity analyses, 1103P rootstock showed distinct bacterial and fungal communities compared to the five others (RGM, SO4, 41B, 3309 C and Nemadex). The influence of the scion genotype was more variable depending on the community and the investigated compartment. Its contribution was primarily observed on the β-diversity measured for bacteria and fungi in both root system compartments, as well as for the arbuscular mycorrhizal fungi (AMF) in the rhizosphere. Significant correlations were established between microbial variables and the plant phenotype, as well as with the plant mineral status measured in the petioles and the roots.

CONCLUSION: These results shed light on the capacity of grapevine rootstock and scion genotypes to recruit different functional communities of microorganisms, which affect host growth and adaptation to the environment. Selecting rootstocks capable of associating with positive symbiotic microorganisms is an adaptation tool that can facilitate the move towards sustainable viticulture and help cope with environmental constraints.

RevDate: 2024-04-25
CmpDate: 2024-04-24

Tao K, Jensen IT, Zhang S, et al (2024)

Nitrogen and Nod factor signaling determine Lotus japonicus root exudate composition and bacterial assembly.

Nature communications, 15(1):3436.

Symbiosis with soil-dwelling bacteria that fix atmospheric nitrogen allows legume plants to grow in nitrogen-depleted soil. Symbiosis impacts the assembly of root microbiota, but it is unknown how the interaction between the legume host and rhizobia impacts the remaining microbiota and whether it depends on nitrogen nutrition. Here, we use plant and bacterial mutants to address the role of Nod factor signaling on Lotus japonicus root microbiota assembly. We find that Nod factors are produced by symbionts to activate Nod factor signaling in the host and that this modulates the root exudate profile and the assembly of a symbiotic root microbiota. Lotus plants with different symbiotic abilities, grown in unfertilized or nitrate-supplemented soils, display three nitrogen-dependent nutritional states: starved, symbiotic, or inorganic. We find that root and rhizosphere microbiomes associated with these states differ in composition and connectivity, demonstrating that symbiosis and inorganic nitrogen impact the legume root microbiota differently. Finally, we demonstrate that selected bacterial genera characterizing state-dependent microbiomes have a high level of accurate prediction.

RevDate: 2024-04-23

Mi R, Wang X, Dong Y, et al (2024)

Sustainable treatment of aquaculture water employing fungi-microalgae consortium: Nutrients removal enhancement, bacterial communities optimization, emerging contaminants elimination, and mechanism analysis.

The Science of the total environment pii:S0048-9697(24)02746-3 [Epub ahead of print].

Fungi-microalgae consortium (FMC) has emerged as a promising system for advanced wastewater treatment due to its high biomass yield and environmental sustainability. This study aimed to investigate the nutrients removal, bacterial community shift, emerging contaminants elimination, and treatment mechanism of a FMC composed of Cordyceps militaris and Navicula seminulum for aquaculture pond water treatment. The fungi and microalgae were cultured and employed either alone or in combination to evaluate the treatment performance. The results demonstrated that the FMC could improve water quality more significantly by reducing nutrient pollutants and optimizing the bacterial community structures. Furthermore, it exhibited stronger positive correlation between the enrichment of functional bacteria for water quality improvement and pollutants removal performance than the single-species treatments. Moreover, the FMC outperformed other groups in eliminating emerging contaminants such as heavy metals, antibiotics, and pathogenic Vibrios. Superiorly, the FMC also showed excellent symbiotic interactions and cooperative mechanisms for pollutants removal. The results collectively corroborated the feasibility and sustainability of using C. militaris and N. seminulum for treating aquaculture water, and the FMC would produce more mutualistic benefits and synergistic effects than single-species treatments.

RevDate: 2024-04-24
CmpDate: 2024-04-24

Parker J (2024)

Symbiosis: Did bacteria bias the beetle big bang?.

Current biology : CB, 34(8):R323-R325.

The massive species richness of certain taxonomic groups has long enchanted evolutionary biologists, but even within such groups there are biases in cladogenesis. A study of Metazoa's greatest radiation - the beetles - points to metabolic symbioses with bacteria as a possible driver of enhanced diversification in herbivorous clades.

RevDate: 2024-04-23

Wang Z, Lian J, Liang J, et al (2024)

Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana.

Plant physiology and biochemistry : PPB, 210:108648 pii:S0981-9428(24)00316-4 [Epub ahead of print].

This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3[-] and NO2[-] concentrations in AM-DS P. cathayana were reduced, while NH4[+] concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3[-] assimilation while promoting NH4[+] assimilation. Furthermore, the transcriptional levels of NH4[+] transporter genes (PcAMT1-4 and PcAMT2-1) and NO3[-] transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4[+] transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.

RevDate: 2024-04-23

Gtari M, Beauchemin NJ, Sarker I, et al (2024)

An overview of Parafrankia (Nod+/Fix+) and Pseudofrankia (Nod+/Fix-) interactions through genome mining and experimental modeling in co-culture and co-inoculation of Elaeagnus angustifolia.

Applied and environmental microbiology [Epub ahead of print].

UNLABELLED: In many frankia, the ability to nodulate host plants (Nod+) and fix nitrogen (Fix+) is a common strategy. However, some frankia within the Pseudofrankia genus lack one or two of these traits. This phenomenon has been consistently observed across various actinorhizal nodule isolates, displaying Nod- and/or Fix- phenotypes. Yet, the mechanisms supporting the colonization and persistence of these inefficient frankia within nodules, both with and without symbiotic strains (Nod+/Fix+), remain unclear. It is also uncertain whether these associations burden or benefit host plants. This study delves into the ecological interactions between Parafrankia EUN1f and Pseudofrankia inefficax EuI1c, isolated from Elaeagnus umbellata nodules. EUN1f (Nod+/Fix+) and EuI1c (Nod+/Fix-) display contrasting symbiotic traits. While the prediction suggests a competitive scenario, the absence of direct interaction evidence implies that the competitive advantage of EUN1f and EuI1c is likely contingent on contextual factors such as substrate availability and the specific nature of stressors in their respective habitats. In co-culture, EUN1f outperforms EuI1c, especially under specific conditions, driven by its nitrogenase activity. Iron-depleted conditions favor EUN1f, emphasizing iron's role in microbial competition. Both strains benefit from host root exudates in pure culture, but EUN1f dominates in co-culture, enhancing its competitive traits. Nodulation experiments show that host plant preferences align with inoculum strain abundance under nitrogen-depleted conditions, while consistently favoring EUN1f in nitrogen-supplied media. This study unveils competitive dynamics and niche exclusion between EUN1f and EuI1c, suggesting that host plant may penalize less effective strains and even all strains. These findings highlight the complex interplay between strain competition and host selective pressure, warranting further research into the underlying mechanisms shaping plant-microbe-microbe interactions in diverse ecosystems.

IMPORTANCE: While Pseudofrankia strains typically lack the common traits of ability to nodulate the host plant (Nod-) and/or fix nitrogen (Fix-), they are still recovered from actinorhizal nodules. The enigmatic question of how and why these unconventional strains establish themselves within nodule tissue, thriving either alongside symbiotic strains (Nod+/Fix+) or independently, while considering potential metabolic costs to the host plant, remains a perplexing puzzle. This study endeavors to unravel the competitive dynamics between Pseudofrankia inefficax strain EuI1c (Nod+/Fix-) and Parafrankia strain EU1Nf (Nod+/Fix+) through a comprehensive exploration of genomic data and empirical modeling, conducted both in controlled laboratory settings and within the host plant environment.

RevDate: 2024-04-23

Dziuba MK, McIntire KM, Seto K, et al (2024)

Phylogeny, morphology, virulence, ecology, and host range of Ordospora pajunii (Ordosporidae), a microsporidian symbiont of Daphnia spp.

mBio [Epub ahead of print].

UNLABELLED: The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources.

IMPORTANCE: The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.

RevDate: 2024-04-23

Omondi ZN, Caner A, SK Arserim (2024)

Trypanosomes and Gut Microbiota Interactions in Triatomine bugs and Tsetse Flies: A vectorial perspective.

Medical and veterinary entomology [Epub ahead of print].

Triatomines (kissing bugs) and tsetse flies (genus: Glossina) are natural vectors of Trypanosoma cruzi and Trypanosoma brucei, respectively. T. cruzi is the causative agent of Chagas disease, endemic in Latin America, while T. brucei causes African sleeping sickness disease in sub-Saharan Africa. Both triatomines and tsetse flies are host to a diverse community of gut microbiota that co-exist with the parasites in the gut. Evidence has shown that the gut microbiota of both vectors plays a key role in parasite development and transmission. However, knowledge on the mechanism involved in parasite-microbiota interaction remains limited and scanty. Here, we attempt to analyse Trypanosoma spp. and gut microbiota interactions in tsetse flies and triatomines, with a focus on understanding the possible mechanisms involved by reviewing published articles on the subject. We report that interactions between Trypanosoma spp. and gut microbiota can be both direct and indirect. In direct interactions, the gut microbiota directly affects the parasite via the formation of biofilms and the production of anti-parasitic molecules, while on the other hand, Trypanosoma spp. produces antimicrobial proteins to regulate gut microbiota of the vector. In indirect interactions, the parasite and gut bacteria affect each other through host vector-activated processes such as immunity and metabolism. Although we are beginning to understand how gut microbiota interacts with the Trypanosoma parasites, there is still a need for further studies on functional role of gut microbiota in parasite development to maximize the use of symbiotic bacteria in vector and parasite control.

RevDate: 2024-04-23

Khandelwal R, Vagha JD, Meshram RJ, et al (2024)

A Comprehensive Review on Unveiling the Journey of Digoxin: Past, Present, and Future Perspectives.

Cureus, 16(3):e56755.

Digoxin, a cardiac glycoside derived from the foxglove plant (Digitalis spp.), has been utilized for centuries in managing various cardiac conditions due to its ability to increase myocardial contractility and regulate heart rate. This comprehensive review explores the historical context, pharmacological properties, clinical applications, efficacy, safety profile, challenges, and future perspectives of digoxin. Tracing its journey from traditional medicine to modern cardiovascular therapeutics, we delve into its mechanism of action, therapeutic indications, and clinical guidelines. While digoxin remains a cornerstone therapy for heart failure and atrial fibrillation, its narrow therapeutic index and individual variability in response pose challenges in clinical practice. Nevertheless, ongoing research efforts aim to elucidate its role in emerging therapeutic areas and technological advancements in drug delivery. Despite the advent of newer pharmacological agents, digoxin's enduring relevance lies in its established efficacy, affordability, and global accessibility. This review underscores the symbiotic relationship between tradition and progress in cardiovascular medicine, highlighting the timeless pursuit of medical innovation to optimize patient care.

RevDate: 2024-04-24
CmpDate: 2024-04-24

Lou K, Chi J, Wu J, et al (2024)

Research progress on the microbiota in bladder cancer tumors.

Frontiers in cellular and infection microbiology, 14:1374944.

The microbiota, also referred to as the microbial community, is a crucial component of the human microenvironment. It is located predominantly in various organs, including the intestines, skin, oral cavity, respiratory tract, and reproductive tract. The microbiota maintains a symbiotic relationship with the human body, influencing physiological and pathological functions to a significant degree. There is increasing evidence linking the microbial flora to human cancers. In contrast to the traditional belief that the urethra and urine of normal individuals are sterile, recent advancements in high-throughput sequencing technology and bacterial cultivation methods have led to the discovery of specific microbial communities in the urethras of healthy individuals. Given the prevalence of bladder cancer (BCa) as a common malignancy of the urinary system, researchers have shifted their focus to exploring the connection between disease development and the unique microbial community within tumors. This shift has led to a deeper investigation into the role of microbiota in the onset, progression, metastasis, prognosis, and potential for early detection of BCa. This article reviews the existing research on the microbiota within BCa tumors and summarizes the findings regarding the roles of different microbes in various aspects of this disease.

RevDate: 2024-04-22

Ding S, Hamm JN, Bale NJ, et al (2024)

Selective lipid recruitment by an archaeal DPANN symbiont from its host.

Nature communications, 15(1):3405.

The symbiont Ca. Nanohaloarchaeum antarcticus is obligately dependent on its host Halorubrum lacusprofundi for lipids and other metabolites due to its lack of certain biosynthetic genes. However, it remains unclear which specific lipids or metabolites are acquired from its host, and how the host responds to infection. Here, we explored the lipidome dynamics of the Ca. Nha. antarcticus - Hrr. lacusprofundi symbiotic relationship during co-cultivation. By using a comprehensive untargeted lipidomic methodology, our study reveals that Ca. Nha. antarcticus selectively recruits 110 lipid species from its host, i.e., nearly two-thirds of the total number of host lipids. Lipid profiles of co-cultures displayed shifts in abundances of bacterioruberins and menaquinones and changes in degree of bilayer-forming glycerolipid unsaturation. This likely results in increased membrane fluidity and improved resistance to membrane disruptions, consistent with compensation for higher metabolic load and mechanical stress on host membranes when in contact with Ca. Nha. antarcticus cells. Notably, our findings differ from previous observations of other DPANN symbiont-host systems, where no differences in lipidome composition were reported. Altogether, our work emphasizes the strength of employing untargeted lipidomics approaches to provide details into the dynamics underlying a DPANN symbiont-host system.

RevDate: 2024-04-22

Acar T, Moreau S, Jardinaud MF, et al (2024)

The association between Dioscorea sansibarensis and Orrella dioscoreae as a model for hereditary leaf symbiosis.

PloS one, 19(4):e0302377 pii:PONE-D-23-32436.

Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some plants. The precise mechanisms underlying transmission of functions of these associations are often difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems. Here, we demonstrate the potential of the leaf symbiosis between the wild yam Dioscorea sansibarensis and the bacterium Orrella dioscoreae (O. dioscoreae) as a model system for hereditary symbiosis. O. dioscoreae is easy to grow and genetically manipulate, which is unusual for hereditary symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but microscopic differences between symbiotic and aposymbiotic glands highlight the influence of bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont can be genetically altered and reintroduced to the host.

RevDate: 2024-04-22

Rodenburg SYA, de Ridder D, Govers F, et al (2024)

Oomycete metabolism is highly dynamic and reflects lifestyle adaptations.

Molecular plant-microbe interactions : MPMI [Epub ahead of print].

The selective pressure of pathogen-host symbiosis drives adaptations. How these interactions shape the metabolism of pathogens is largely unknown. Here, we use comparative genomics to systematically analyse the metabolic networks of oomycetes, a diverse group of eukaryotes that includes saprotrophs as well as pathogens of animal- and plant pathogens, the latter causing devastating diseases with significant economic and/or ecological impact. In our analyses of 44 oomycete species, we uncover considerable variation in metabolism that can be linked to lifestyle differences. Comparisons of metabolic gene content reveal that plant pathogenic oomycetes have a bipartite metabolism consisting of a conserved core and an accessory set. The accessory set can be associated with the degradation of defence compounds produced by plants when challenged by pathogens. Obligate biotrophic oomycetes have smaller metabolic networks, and taxonomically distantly related biotrophic lineages display convergent evolution by repeated gene losses in both the conserved as well as the accessory set of metabolism. When investigating to what extent the metabolic networks in obligate biotrophs differ from those in hemibiotrophic plant pathogens, we observe that the losses of metabolic enzymes in obligate biotrophs are not random and that gene losses predominantly influence the terminal branches of the metabolic networks. Our analyses represent the first metabolism-focused comparison of oomycetes at this scale and will contribute to a better understanding of the evolution of oomycete metabolism in relation to lifestyle adaptation.

RevDate: 2024-04-22

Bromfield ESP, S Cloutier (2024)

Bradyrhizobium ontarionense sp. nov., a novel bacterial symbiont isolated from Aeschynomene indica (Indian jointvetch), harbours photosynthesis, nitrogen fixation and nitrous oxide (N2O) reductase genes.

Antonie van Leeuwenhoek, 117(1):69.

A novel bacterial symbiont, strain A19[T], was previously isolated from a root-nodule of Aeschynomene indica and assigned to a new lineage in the photosynthetic clade of the genus Bradyrhizobium. Here data are presented for the detailed genomic and taxonomic analyses of novel strain A19[T]. Emphasis is placed on the analysis of genes of practical or ecological significance (photosynthesis, nitrous oxide reductase and nitrogen fixation genes). Phylogenomic analysis of whole genome sequences as well as 50 single-copy core gene sequences placed A19[T] in a highly supported lineage distinct from described Bradyrhizobium species with B. oligotrophicum as the closest relative. The digital DNA-DNA hybridization and average nucleotide identity values for A19[T] in pair-wise comparisons with close relatives were far lower than the respective threshold values of 70% and ~ 96% for definition of species boundaries. The complete genome of A19[T] consists of a single 8.44 Mbp chromosome and contains a photosynthesis gene cluster, nitrogen-fixation genes and genes encoding a complete denitrifying enzyme system including nitrous oxide reductase implicated in the reduction of N2O, a potent greenhouse gas, to inert dinitrogen. Nodulation and type III secretion system genes, needed for nodulation by most rhizobia, were not detected. Data for multiple phenotypic tests complemented the sequence-based analyses. Strain A19[T] elicits nitrogen-fixing nodules on stems and roots of A. indica plants but not on soybeans or Macroptilium atropurpureum. Based on the data presented, a new species named Bradyrhizobium ontarionense sp. nov. is proposed with strain A19[T] (= LMG 32638[T] = HAMBI 3761[T]) as the type strain.

RevDate: 2024-04-23

Zheng SJ, Hu H, Li Y, et al (2024)

Editorial: Microbial interaction with banana: mechanisms, symbiosis, and integrated diseases control.

Frontiers in microbiology, 15:1390969.

RevDate: 2024-04-23

Zhang J, Hu B, Deng X, et al (2024)

Multiomics analysis investigating the impact of a high-fat diet in female Sprague-Dawley rats: alterations in plasma, intestinal metabolism, and microbial composition.

Frontiers in nutrition, 11:1359989.

INTRODUCTION: With improvements in living conditions, modern individuals exhibit a pronounced inclination towards a high-fat diet, largely because of its distinctive gustatory appeal. However, the association between high-fat diets and metabolic complications has largely been ignored, and metabolic diseases such as obesity and non-alcoholic fatty liver disease now constitute a major public health concern. Because high-fat diets increase the risk of metabolic diseases, a thorough investigation into the impact of high-fat diets on gut microbiota and metabolism is required.

METHODS: We utilize 16S rRNA sequencing and untargeted metabolomics analysis to demonstrate that SD rats fed a high-fat diet exhibited marked alterations in gut microbiota and plasma, intestinal metabolism.

RESULTS: Changes in gut microbiota included a decreased abundance at phylum level for Verrucomicrobiota, and a decreased abundance at genus level for Akkermansia, Ralstonia, Bacteroides, and Faecalibacterium. Additionally, significant changes were observed in both intestinal and plasma metabolite levels, including an upregulation of bile acid metabolism, an upregulation of glucose-lipid metabolism, and increased levels of metabolites such as norlithocholic acid, cholic acid, D-fructose, D-mannose, fructose lactate, and glycerophosphocholine. We also investigated the correlations between microbial communities and metabolites, revealing a significant negative correlation between Akkermansia bacteria and cholic acid.

DISCUSSION: Overall, our findings shed light on the relationship between symbiotic bacteria associated with high-fat diets and metabolic biomarkers, and they provide insights for identifying novel therapeutic approaches to mitigate disease risks associated with a high-fat diet.

RevDate: 2024-04-23

Ro JW, Cunningham PR, Miller SA, et al (2024)

Technical, economic, and environmental feasibility of rice hull ash from electricity generation as a mineral additive to concrete.

Scientific reports, 14(1):9158.

A circular economy based on symbiotic relationships among sectors, where the waste from one is resource to another, holds promise for cost-effective and sustainable production. This research explores such a model for the agriculture, energy, and construction sectors in California. Here, we develop new an understanding for the synergistic utilization mechanisms for rice hull, a byproduct from rice production, as a feedstock for electricity generation and rice hull ash (RHA) used as a supplementary cementitious material in concrete. A suite of methods including experimental analysis, techno-economic analysis (TEA), and life-cycle assessment (LCA) were applied to estimate the cost and environmental performance of the system. TEA results showed that the electricity price required for break even on expenses without selling RHA is $0.07/kWh, lower than the market price. As such, RHA may be available at little to no cost to concrete producers. Our experimental results showed the viability of RHA to be used as a supplementary cementitious material, meaning it can replace a portion of the cement used in concrete. LCA results showed that replacing 15% of cement with RHA in concrete can reduce carbon dioxide equivalent (CO2e) emissions by 15% while still meeting material performance targets. While the substitution rate of RHA for cement may be modest, RHA generated from California alone could mitigate 0.2% of total CO2e from the entire cement production sector in the United States and 1% in California.

RevDate: 2024-04-21

Sharma N, A Tapwal (2024)

Mycorrhizal symbiosis in Taxus: a review.

Mycorrhiza [Epub ahead of print].

Taxus, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in Taxus is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. Taxus predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in Taxus species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in Taxus, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in Taxus, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.

RevDate: 2024-04-21

Hu J, Bi R, Luo Y, et al (2024)

The gut microbiome promotes locomotion of Drosophila larvae via octopamine signaling.

Insect science [Epub ahead of print].

The gut microbiome is a key partner of animals, influencing various aspects of their physiology and behaviors. Among the diverse behaviors regulated by the gut microbiome, locomotion is vital for survival and reproduction, although the underlying mechanisms remain unclear. Here, we reveal that the gut microbiome modulates the locomotor behavior of Drosophila larvae via a specific neuronal type in the brain. The crawling speed of germ-free (GF) larvae was significantly reduced compared to the conventionally reared larvae, while feeding and excretion behaviors were unaffected. Recolonization with Acetobacter and Lactobacillus can fully and partially rescue the locomotor defects in GF larvae, respectively, probably due to the highest abundance of Acetobacter as a symbiotic bacterium in the larval gut, followed by Lactobacillus. Moreover, the gut microbiome promoted larval locomotion, not by nutrition, but rather by enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA). Overexpression of Tdc2 rescued locomotion ability in GF larvae. These findings together demonstrate that the gut microbiome specifically modulates larval locomotor behavior through the OA signaling pathway, revealing a new mechanism underlying larval locomotion regulated by the gut microbiome.

RevDate: 2024-04-20

Lam AHC, Cooke A, Wright H, et al (2024)

Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants.

Current biology : CB pii:S0960-9822(24)00403-2 [Epub ahead of print].

The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,[1][,][2][,][3][,][4] suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.[5] The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.[6] Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.[7] Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.

RevDate: 2024-04-22
CmpDate: 2024-04-22

Pushpavathi D, YL Krishnamurthy (2024)

Study on endolichenic fungal assemblage in Parmotrema and Heterodermia lichens of Shivamoga, Karnataka.

Molecular biology reports, 51(1):549.

BACKGROUND: Lichen is a symbiotic association of algae and fungi, recognized as a self-sustaining ecosystem that constitutes an indeterminant number of bacteria, actinomycetes, fungi, and protozoa. We evaluated the endolichenic fungal assemblage given the dearth of knowledge on endolichenic fungi (ELFs), particularly from part of the Central Western Ghats, Karnataka, and conducted a phylogenetic analysis of xylariaceous fungi, the most diversified group of fungi using ITS and ITS+Tub2 gene set.

RESULTS: Out of 17 lichen thalli collected from 5 ecoregions, 42 morphospecies recovered, belong to the class Sordariomycetes, Eurotiomycetes, Dothideomycetes, Leotiomycetes, Saccharomycetes. About 19 and 13 ELF genera have been reported from Parmotrema and Heterodermia thallus. Among the ecoregions EC2 showing highest species diversity (Parmotrema (1-D) = 0.9382, (H) = 2.865, Fisher-α = 8.429, Heterodermia (1-D) = 0.8038, H = 1.894, F-α = 4.57) followed the EC3 and EC1. Xylariales are the predominant colonizer reported from at least one thallus from four ecoregions. The morphotypes ELFX04, ELFX05, ELFX08 and ELFX13 show the highest BLAST similarity (> 99%) with Xylaria psidii, X. feejeensis, X. berteri and Hypoxylon fragiforme respectively. Species delimitation and phylogenetic position reveal the closest relation of Xylariaceous ELFs with plant endophytes.

CONCLUSIONS: The observation highlights that the deciduous forest harness a high number of endolichenic fungi, a dominant portion of these fungi are non-sporulating and still exist as cryptic. Overall, 8 ELF species recognized based on phylogenetic analysis, including the two newly reported fungi ELFX03 and ELFX06 which are suspected to be new species based on the present evidence. The study proved, that the lichen being rich source to establish fungal diversity and finding new species. Successful amplification of most phylogenetic markers like RPB2, building of comprehensive taxonomic databases and application of multi-omics data are further needed to understand the complex nature of lichen-fungal symbiosis.

RevDate: 2024-04-20

Fang Y, Lu L, Chen K, et al (2024)

Tradeoffs among root functional traits for phosphorus acquisition in 13 soybean genotypes contrasting in mycorrhizal colonization.

Annals of botany pii:7655371 [Epub ahead of print].

BACKGROUND AND AIMS: Plants have adapted to acquire phosphorus (P) primarily through advantageous root morphologies, responsive physiological pathways, and associations with mycorrhizal fungi. Yet, to date, little information exists on how variation in arbuscular mycorrhizal (AM) colonization is coordinated with root morphological and physiological traits to enhance P acquisition.

METHODS: Thirteen root functional traits associated with P acquisition were characterized at full bloom stage in pot cultures under low soil P availability conditions for 13 soybean genotypes contrasting in AM colonization.

KEY RESULTS: Significant variation in root functional traits was observed in response to low P stress among the 13 tested soybean genotypes contrasting in AM colonization. Genotypes with low AM colonization exhibited greater root proliferation but with less advantageous root physiological characteristics for P acquisition. In contrast, genotypes with high AM colonization exhibited less root growth but higher phosphatase activities and carboxylate content in the rhizosheath. Root dry weights, and contents of carbon and P were positively correlated with root morphological traits of different root orders and whole root systems, and were negatively correlated with AM colonization of fine roots and whole root systems, as well as, rhizosheath phosphatase activities and carboxylate contents. These results taken in combination with significant positive correlation between plant P content and root morphological traits indicate that root morphological traits play a primary role in soybean P acquisition.

CONCLUSIONS: The results suggest that efficient P acquisition involves tradeoffs among carbon allocation to root proliferation, mycorrhizal symbiosis, or P-mobilizing exudation. Complementarity and complexity in the selection of P acquisition strategies was notable among soybean genotypes contrasting in AM colonization, which is closely related to plant C budgeting.

RevDate: 2024-04-20

Xie QY, Kuo LY, Chang CC, et al (2024)

Prevalent arbuscular mycorrhizae in roots and highly variable mycobiome in leaves of epiphytic subtropical fern Ophioderma pendulum.

American journal of botany [Epub ahead of print].

PREMISE: Endophytic and mycorrhizal fungi are crucial in facilitating plant nutrition acquisition and stress tolerance. In epiphytic habitats, plants face nutrition and water stress, but their roots are mostly nonmycorrhizal and especially lacking in arbuscular mycorrhizal associations. Ophioderma pendulum is an epiphytic fern with a partially mycoheterotrophic lifestyle, likely heavily reliant on symbiotic fungi. To characterize fungal associations in the sporophyte of O. pendulum, we focused on leaves and roots of O. pendulum, seeking to reveal the fungal communities in these organs.

METHODS: Roots and leaves from O. pendulum in a subtropical forest were examined microscopically to observe the morphology of fungal structures and determine the percentage of various fungal structures in host tissues. Fungal composition was profiled using metabarcoding techniques that targeted ITS2 of the nuclear ribosomal DNA.

RESULTS: Roots were consistently colonized by arbuscular mycorrhizal fungi (Glomeromycota), especially Acaulospora. Unlike previous findings on epiphytic ferns, dark septate endophytes were rare in O. pendulum roots. Leaves were predominantly colonized by Ascomycota fungi, specifically the classes Dothideomycetes (46.88%), Eurotiomycetes (11.51%), Sordariomycetes (6.23%), and Leotiomycetes (6.14%). Across sampling sites, fungal community compositions were similar in the roots but differed significantly in the leaves.

CONCLUSIONS: Ophioderma pendulum maintains stable, single-taxon-dominant communities in the roots, primarily featuring arbuscular mycorrhizal fungi, whereas the leaves may harbor opportunistic fungal colonizers. Our study underlines the significance of mycorrhizal fungi in the adaptation of epiphytic ferns.

RevDate: 2024-04-20

Pokrywka K, Grzechowiak M, Sliwiak J, et al (2024)

Probing the active site of Class 3 L-asparaginase by mutagenesis. I. Tinkering with the zinc coordination site of ReAV.

Frontiers in chemistry, 12:1381032.

ReAV, the inducible Class-3 L-asparaginase from the nitrogen-fixing symbiotic bacterium Rhizobium etli, is an interesting candidate for optimizing its enzymatic potential for antileukemic applications. Since it has no structural similarity to known enzymes with this activity, it may offer completely new ways of approach. Also, as an unrelated protein, it would evade the immunological response elicited by other asparaginases. The crystal structure of ReAV revealed a uniquely assembled protein homodimer with a highly specific C135/K138/C189 zinc binding site in each subunit. It was also shown before that the Zn[2+] cation at low and optimal concentration boosts the ReAV activity and improves substrate specificity, which indicates its role in substrate recognition. However, the detailed catalytic mechanism of ReAV is still unknown. In this work, we have applied site-directed mutagenesis coupled with enzymatic assays and X-ray structural analysis to elucidate the role of the residues in the zinc coordination sphere in catalysis. Almost all of the seven ReAV muteins created in this campaign lost the ability to hydrolyze L-asparagine, confirming our predictions about the significance of the selected residues in substrate hydrolysis. We were able to crystallize five of the ReAV mutants and solve their crystal structures, revealing some intriguing changes in the active site area as a result of the mutations. With alanine substitutions of Cys135 or Cys189, the zinc coordination site fell apart and the mutants were unable to bind the Zn[2+] cation. Moreover, the absence of Lys138 induced atomic shifts and conformational changes of the neighboring residues from two active-site Ser-Lys tandems. Ser48 from one of the tandems, which is hypothesized to be the catalytic nucleophile, usually changes its hydration pattern in response to the mutations. Taken together, the results provide many useful clues about the catalytic mechanism of the enzyme, allowing one to cautiously postulate a possible enzymatic scenario.

RevDate: 2024-04-18

Abresch H, Bell T, SR Miller (2024)

Diurnal transcriptional variation is reduced in a nitrogen-fixing diatom endosymbiont.

The ISME journal pii:7651117 [Epub ahead of print].

Many organisms have formed symbiotic relationships with nitrogen (N)-fixing bacteria to overcome N limitation. Diatoms in the family Rhopalodiaceae host unicellular, N-fixing cyanobacterial endosymbionts called spheroid bodies (SBs). Although this relationship is relatively young, SBs share many key features with older endosymbionts, including coordinated cell division and genome reduction. Unlike free-living relatives that fix N exclusively at night, SBs fix N largely during the day; however, how SB metabolism is regulated and coordinated with the host is not yet understood. We compared four SB genomes, including those from two new host species (Rhopalodia gibba and Epithemia adnata), to build a genome-wide phylogeny which provides a better understanding of SB evolutionary origins. Contrary to models of endosymbiotic genome reduction, the SB chromosome is unusually stable for an endosymbiont genome, likely due to the early loss of all mobile elements. Transcriptomic data for the R. gibba SB and host organelles addressed whether and how the allocation of transcriptional resources depends on light and nitrogen availability. Whereas allocation to the SB was high under all conditions, relative expression of chloroplast photosynthesis genes increased in the absence of nitrate, but this pattern was suppressed by nitrate addition. SB expression of catabolism genes was generally greater during daytime rather than at night, although the magnitude of diurnal changes in expression was modest compared to free-living cyanobacteria. We conclude that SB daytime catabolism likely supports N-fixation by linking the process to host photosynthetic carbon fixation.

RevDate: 2024-04-22
CmpDate: 2024-04-22

Ren H, Sun Y, Yang Y, et al (2024)

Unraveling the correlations between microbial communities and metabolic profiles of strong-flavor Jinhui Daqu with different storage periods.

Food microbiology, 121:104497.

Daqu is a saccharification agent required for fermenting Baijiu, a popular Chinese liquor. Our objective was to investigate the relationships between physicochemical indices, microbial community diversity, and metabolite profiles of strong-flavor Jinhui Daqu during different storage periods. During different storage periods of Jinhui Daqu, we combined Illumina MiSeq sequencing and non-target sequencing techniques to analyze dynamic changes of the microbial community and metabolite composition, established a symbiotic network and explored the correlation between dominant microorganisms and differential metabolites in Daqu. Fungal community diversity in 8d_Daqu was higher than that in 45d_Daqu and 90d_Daqu, whereas bacterial community diversity was higher in 90d_Daqu. Twelve bacterial and four fungal genera were dominant during storage of Daqu. Bacillus, Leuconostoc, Kroppenstedtia, Lactococcus, Thermomyces and Wickerhamomyces decreased as the storage period increased. Differences of microbiota structure led to various metabolic pathways, and 993 differential metabolites were found in all Daqu samples. Differential microorganisms were significantly related to key metabolites. Major metabolic pathways involved in the formation of amino acids and lipids, such as l-arogenate and hydroxyproline, were identified. Interactions between moisture, acidity, and microbes may drive the succession of the microbial community, which further affects the formation of metabolites.

RevDate: 2024-04-18

Ye Q, Gong X, Li A, et al (2024)

A typical acidic extracellular polysaccharide alludes to algae-bacteria-collaboration in microalgal-bacterial symbiosis.

The Science of the total environment pii:S0048-9697(24)02691-3 [Epub ahead of print].

Microalgal-bacterial symbioses are prevalent in aquatic ecosystems and play a pivotal role in carbon sequestration, significantly contributing to global carbon cycling. The understanding of the contribution of exopolysaccharides (EPSs), a crucial carbon-based component, to the structural integrity of microalgal-bacterial symbioses remains insufficiently elucidated. To address this gap, our study aims to enhance our comprehension of the composition and primary structure of EPSs within a specific type of granular microalgal-bacterial symbiosis named microalgal-bacterial granular sludge (MBGS). Our investigation reveals that the acidic EPSs characteristic of this symbiosis have molecular weights ranging from several hundred thousand to over one million Daltons, including components like glucopyranose, galactopyranose, mannose, and rhamnose. Our elucidation of the backbone linkage of a representative exopolysaccharide revealed a →3)-β-D-Galp-(1→4)-β-D-Glcp-(1→ glycosidic linkage. This linear structure closely resembles bacterial xanthan, while the branched chain structure bears similarities to algal EPSs. Our findings highlight the collaborative synthesis of acidic EPSs by both microalgae and bacteria, emphasizing their joint contribution in the production of macromolecules within microalgal-bacterial symbiosis. This collaborative synthesis underscores the intricate molecular interactions contributing to the stability and function of these symbiotic relationships.

RevDate: 2024-04-18

Bian Q, Cheng K, Chen L, et al (2024)

Organic amendments increased Chinese milk vetch symbiotic nitrogen fixation by enriching Mesorhizobium in rhizosphere.

Environmental research pii:S0013-9351(24)00827-2 [Epub ahead of print].

Symbiotic nitrogen fixation of Chinese milk vetch (Astragalus sinicus L.) can fix nitrogen from the atmosphere and serve as an organic nitrogen source in agricultural ecosystems. Exogenous organic material application is a common practice of affecting symbiotic nitrogen fixation; however, the results of the regulation activities remain under discussion. Studies on the impact of organic amendments on symbiotic nitrogen fixation have focused on dissolved organic carbon content changes, whereas the impact on dissolved organic carbon composition and the underlying mechanism remain unclear. In situ pot experiments were carried out using soils from a 40-year-old field experiment platform to investigate symbiotic nitrogen fixation rate trends, dissolved organic carbon concentration and component, and diazotroph community structure in roots and in rhizosphere soils following long-term application of different exogenous organic substrates, i.e., green manure, green manure and pig manure, and green manure and rice straw. Remarkable increases in rate were observed in and when compared with that in green manure treatment, with the greatest enhancement observed in the treatment. Moreover, organic amendments, particularly pig manure application, altered diazotroph community composition in rhizosphere soils, therefore increasing the abundance of the host-specific genus Mesorhizobium. Furthermore, organic amendments influence the diazotroph communities through two primary mechanisms. Firstly, the components of dissolved organic carbon promote an increase in available iron, facilitated by the presence of humus substrates. Secondly, the elevated content of dissolved organic carbon and available iron expands the niche breadth of Mesorhizobium within the rhizosphere. Consequently, these alterations result in a modified diazotroph community within the rhizosphere, which in turn influences Mesorhizobium nodulation in the root and symbiotic nitrogen fixation rate. The results of the present study enhance our understanding of the impact of organic amendments on symbiotic nitrogen fixation and the underlying mechanism, highlighting the key role of dissolved organic carbon composition on diazotroph community composition in the rhizosphere.

RevDate: 2024-04-18

Wani AK, Khan Z, Sena S, et al (2024)

Carbon nanotubes in plant dynamics: Unravelling multifaceted roles and phytotoxic implications.

Plant physiology and biochemistry : PPB, 210:108628 pii:S0981-9428(24)00296-1 [Epub ahead of print].

Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.

RevDate: 2024-04-20

Richards TA, NA Moran (2024)

Symbiosis: In search of a deeper understanding.

PLoS biology, 22(4):e3002595.

How do distinct species cofunction in symbiosis, despite conflicting interests? A new collection of articles explores emerging themes as researchers exploit modern research tools and new models to unravel how symbiotic interactions function and evolve.

RevDate: 2024-04-20

Ohdera AH, Mansbridge M, Wang M, et al (2024)

The microbiome of a Pacific moon jellyfish Aurelia coerulea.

PloS one, 19(4):e0298002.

The impact of microbiome in animal physiology is well appreciated, but characterization of animal-microbe symbiosis in marine environments remains a growing need. This study characterizes the microbial communities associated with the moon jellyfish Aurelia coerulea, first isolated from the East Pacific Ocean and has since been utilized as an experimental system. We find that the microbiome of this Pacific Aurelia culture is dominated by two taxa, a Mollicutes and Rickettsiales. The microbiome is stable across life stages, although composition varies. Mining the host sequencing data, we assembled the bacterial metagenome-assembled genomes (MAGs). The bacterial MAGs are highly reduced, and predict a high metabolic dependence on the host. Analysis using multiple metrics suggest that both bacteria are likely new species. We therefore propose the names Ca. Mariplasma lunae (Mollicutes) and Ca. Marinirickettsia aquamalans (Rickettsiales). Finally, comparison with studies of Aurelia from other geographical populations suggests the association with Ca. Mariplasma lunae occurs in Aurelia from multiple geographical locations. The low-diversity microbiome of Aurelia provides a relatively simple system to study host-microbe interactions.

RevDate: 2024-04-20

Hu T, Wang X, He Q, et al (2024)

Coupling development of sports industry and tourism industry based on internet of things.

PloS one, 19(4):e0299080.

This study investigates the positive coupling between the sports industry and tourism, exploring the ways to promote their interconnection. Under state guidance, the integration of sports industry services is facilitated to attract sports culture and tourism fairs, leveraging regional economic development advantages to enhance the industrial market appeal. The emerging leisure consumption mode of sports tourism injects vitality into the economy, fostering the core sports service industry. The coupling of the education and tourism sectors is strategically aligned with long-term national policies. Using IoT technology, this paper employs a grey relational analysis to assess the coupling between the sports industry and tourism, revealing a significant correlation. Experimental results demonstrate a positive coupling trend, likened to conjoined twins with a natural material basis and technical support. This coupling not only aligns with industry trends but also resonates with the "environmental protection era," "green era," and "ecological era," marking a pivotal aspect of industrial development. The study contributes valuable insights into the symbiotic relationship between the sports and tourism industries, emphasizing their interconnectedness and the positive implications for economic and environmental sustainability.

RevDate: 2024-04-18

Bordini FW, Fernandes JC, de Souza VLC, et al (2024)

Characterization of a symbiotic beverage based on water-soluble soybean extract fermented by Lactiplantibacillus plantarum ATCC 8014.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Epub ahead of print].

The health benefits of functional foods are associated with consumer interest and have supported the growth of the market for these types of foods, with emphasis on the development of new formulations based on plant extracts. Therefore, the present study aimed to characterize a symbiotic preparation based on water-soluble soy extract, supplemented with inulin and xylitol and fermented by Lactiplantibacillus plantarum ATCC 8014. Regarding nutritional issues, the symbiotic formulation can be considered a source of fiber (2 g/100 mL) and proteins (2.6 g/100 mL), and it also has a low-fat content and low caloric value. This formulation, in terms of microbiological aspects, remained adequate to legal standards after storage for 60 days under refrigeration and also presented an adequate quantity of the aforementioned probiotic strain, corresponding to 9.11 Log CFU.mL[-1]. These viable L. plantarum cells proved to be resistant to simulated human gastrointestinal tract conditions, reaching the intestine at high cell concentrations of 7.95 Log CFU.mL[-1] after 60 days of refrigeration. Regarding sensory evaluation, the formulation showed good acceptance, presenting an average overall impression score of 6.98, 5.98, and 5.16, for control samples stored for 30 and 60 days under refrigeration, respectively. These results demonstrate that water-soluble soy extract is a suitable matrix for fermentation involving L. plantarum ATCC 8014, supporting and providing data on the first steps towards the development of a symbiotic functional food, targeting consumers who have restrictions regarding the consumption of products of animal origin, diabetics, and individuals under calorie restrictions.

RevDate: 2024-04-18

Yin Y, Xie R, Sun Z, et al (2024)

Anti-Freezing and Ultrasensitive Zwitterionic Betaine Hydrogel-Based Strain Sensor for Motion Monitoring and Human-Machine Interaction.

Nano letters [Epub ahead of print].

Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.

RevDate: 2024-04-18

Anonymous (2024)

Corrigendum: Fast Reaction Kinetics and Commendable Low-Temperature Adaptability of Zinc Batteries Enabled by Aprotic Water-Acetamide Symbiotic Solvation Sheath.

RevDate: 2024-04-18

Bacha AA, Suhail M, Awwad FA, et al (2024)

Role of dietary fiber and lifestyle modification in gut health and sleep quality.

Frontiers in nutrition, 11:1324793.

Dietary fiber has an immense role in the gut microbiome by modulating juvenile growth, immune system maturation, glucose, and lipid metabolism. Lifestyle changes might disrupt gut microbiota symbiosis, leading to various chronic diseases with underlying inflammatory conditions, obesity, and its associated pathologies. An interventional study of 16 weeks examined the impact of psyllium husk fiber with and without lifestyle modification on gut health and sleep quality in people with central obesity (men = 60 and women = 60), those aged from 40 to 60 years, those having WC ≥ 90 cm (men) and WC ≥ 80 cm (women), and no history of any chronic disease or regular medication. The participants were subgrouped into three intervention groups, namely, the psyllium husk fiber (PSH) group, the lifestyle modification (LSM) group, and the LSM&PSH group and control group with equal gender bifurcation (men = 15 and women = 15). A 24-h dietary recall, gastrointestinal tract (GIT) symptoms, and sleep quality analysis data were collected on validated questionnaires. The analyses of variance and covariance were used for baseline and post-intervention, respectively. Student's t-test was applied for pre- and post-intervention changes on the variable of interest. The intervention effect on GIT health was highly significant (P < 0.001). The mean GIT scores of the LSM, PSH, and LSM&PSH groups were 2.99 ± 0.14, 2.49 ± 0.14, and 2.71 ± 0.14, respectively, compared to the mean GIT scores of the control group. No significant (P = 0.205) effect of either intervention was observed on sleep quality. The study concluded that psyllium husk fiber significantly improved the GIT symptoms, while no significant effect of the intervention was observed on sleep quality analysis.

RevDate: 2024-04-17

Arai H, Legeai F, Kageyama D, et al (2024)

Genomic insights into Spiroplasma endosymbionts that induce male-killing and protective phenotypes in the pea aphid.

FEMS microbiology letters pii:7649363 [Epub ahead of print].

The endosymbiotic bacteria Spiroplasma (Mollicutes) infect diverse plants and arthropods, and some of which induce male killing, where male hosts are killed during development. Male-killing Spiroplasma strains belong to either the phylogenetically distant Citri-Poulsonii or Ixodetis groups. In Drosophila flies, Spiroplasma poulsonii induces male killing via the Spaid toxin. While Spiroplasma ixodetis infects a wide range of insects and arachnids, little is known about the genetic basis of S. ixodetis-induced male killing. Here, we analyzed the genome of S. ixodetis strains in the pea aphid Acyrthosiphon pisum (Aphididae, Hemiptera). Genome sequencing constructed a complete genome of a male-killing strain, sAp269, consisting of a 1.5 Mb circular chromosome and an 80 Kb plasmid. sAp269 encoded putative virulence factors containing either ankyrin repeat, ovarian tumor-like deubiquitinase, or ribosome inactivating protein domains, but lacked the Spaid toxin. Further comparative genomics of Spiroplasma strains in A. pisum biotypes adapted to different host plants revealed their phylogenetic associations and the diversity of putative virulence factors. Although the mechanisms of S. ixodetis-induced male killing in pea aphids remain elusive, this study underlines the dynamic genome evolution of S. ixodetis and proposes independent acquisition events of male-killing mechanisms in insects.

RevDate: 2024-04-17

Wu H, Nie WB, Tan X, et al (2024)

Different oxygen affinities of methanotrophs and Comammox Nitrospira inform an electrically induced symbiosis for nitrogen loss.

Water research, 256:121606 pii:S0043-1354(24)00507-4 [Epub ahead of print].

Aerobic methanotrophs establish a symbiotic association with denitrifiers to facilitate the process of aerobic methane oxidation coupled with denitrification (AME-D). However, the symbiosis has been frequently observed in hypoxic conditions continuing to pose an enigma. The present study has firstly characterized an electrically induced symbiosis primarily governed by Methylosarcina and Hyphomicrobium for the AME-D process in a hypoxic niche caused by Comammox Nitrospira. The kinetic analysis revealed that Comammox Nitrospira exhibited a higher apparent oxygen affinity compared to Methylosarcina. While the coexistence of comammox and AME-D resulted in an increase in methane oxidation and nitrogen loss rates, from 0.82 ± 0.10 to 1.72 ± 0.09 mmol CH4 d[-1] and from 0.59 ± 0.04 to 1.30 ± 0.15 mmol N2 d[-1], respectively. Furthermore, the constructed microbial fuel cells demonstrated a pronounced dependence of the biocurrents on AME-D due to oxygen competition, suggesting the involvement of direct interspecies electron transfer in the AME-D process under hypoxic conditions. Metagenomic and metatranscriptomic analysis revealed that Methylosarcina efficiently oxidized methane to formaldehyde, subsequently generating abundant NAD(P)H for nitrate reduction by Hyphomicrobium through the dissimilatory RuMP pathway, leading to CO2 production. This study challenges the conventional understanding of survival mechanism employed by AME-D symbionts, thereby contributing to the characterization responsible for limiting methane emissions and promoting nitrogen removal in hypoxic regions.

RevDate: 2024-04-17

Pilgrim J (2024)

Comparative genomics of a novel Erwinia species associated with the Highland midge (Culicoides impunctatus).

Microbial genomics, 10(4):.

Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.

RevDate: 2024-04-17

Bard NW, Cronk QCB, TJ Davies (2024)

Fungal endophytes can modulate plant invasion.

Biological reviews of the Cambridge Philosophical Society [Epub ahead of print].

Symbiotic organisms may contribute to a host plant's success or failure to grow, its ability to maintain viable populations, and potentially, its probability of establishment and spread outside its native range. Intercellular and intracellular microbial symbionts that are asymptomatic in their plant host during some or all of their life cycle - endophytes - can form mutualistic, commensal, or pathogenic relationships, and sometimes novel associations with alien plants. Fungal endophytes are likely the most common endosymbiont infecting plants, with life-history, morphological, physiological, and plant-symbiotic traits that are distinct from other endophytic guilds. Here, we review the community dynamics of fungal endophytes during the process of plant invasion, and how their functional role may shift during the different stages of invasion: transport, introduction (colonisation), establishment, and spread. Each invasion stage presents distinct ecological filters that an alien plant must overcome to advance to the subsequent stage of invasion. Endophytes can alternately aid the host in overcoming stage-specific filters, or contribute to the barriers imposed by filters (e.g. biotic resistance), thereby affecting invasion pathways. A few fungi can be transported as seed endophytes from their native range and be vertically transmitted to future generations in the non-native range, especially in graminoids. In other plant groups, alien plants mostly acquire endophytes via horizontal transmission from the invaded plant community, and the host endophyte community is shaped by host filtering and biogeographic factors (e.g. dispersal limitation, environmental filtering). Endophytes infecting alien plants (both those transported with their host and those accumulated in the non-native range) may influence invasion success by affecting plant growth, reproduction, environmental tolerance, and pathogen and herbivory defences; however, the direction and magnitude of these effects can be contingent upon the host identity, life stage, ecological conditions, and invasion stage. This context dependence may cause endophytic fungi to shift to a non-endophytic (e.g. pathogenic) functional life stage in the same or different hosts, which can modify alien-native plant community dynamics. We conclude by identifying paths in which alien hosts can exploit the context dependency of endophyte function in novel abiotic and biotic conditions and at the different stages of invasion.

RevDate: 2024-04-18

Ullah A, Gao D, F Wu (2024)

Common mycorrhizal network: the predominant socialist and capitalist responses of possible plant-plant and plant-microbe interactions for sustainable agriculture.

Frontiers in microbiology, 15:1183024.

Plants engage in a variety of interactions, including sharing nutrients through common mycorrhizal networks (CMNs), which are facilitated by arbuscular mycorrhizal fungi (AMF). These networks can promote the establishment, growth, and distribution of limited nutrients that are important for plant growth, which in turn benefits the entire network of plants. Interactions between plants and microbes in the rhizosphere are complex and can either be socialist or capitalist in nature, and the knowledge of these interactions is equally important for the progress of sustainable agricultural practice. In the socialist network, resources are distributed more evenly, providing benefits for all connected plants, such as symbiosis. For example, direct or indirect transfer of nutrients to plants, direct stimulation of growth through phytohormones, antagonism toward pathogenic microorganisms, and mitigation of stresses. For the capitalist network, AMF would be privately controlled for the profit of certain groups of plants, hence increasing competition between connected plants. Such plant interactions invading by microbes act as saprophytic and cause necrotrophy in the colonizing plants. In the first case, an excess of the nutritional resources may be donated to the receiver plants by direct transfer. In the second case, an unequal distribution of resources occurs, which certainly favor individual groups and increases competition between interactions. This largely depends on which of these responses is predominant ("socialist" or "capitalist") at the moment plants are connected. Therefore, some plant species might benefit from CMNs more than others, depending on the fungal species and plant species involved in the association. Nevertheless, benefits and disadvantages from the interactions between the connected plants are hard to distinguish in nature once most of the plants are colonized simultaneously by multiple fungal species, each with its own cost-benefits. Classifying plant-microbe interactions based on their habitat specificity, such as their presence on leaf surfaces (phyllospheric), within plant tissues (endophytic), on root surfaces (rhizospheric), or as surface-dwelling organisms (epiphytic), helps to highlight the dense and intricate connections between plants and microbes that occur both above and below ground. In these complex relationships, microbes often engage in mutualistic interactions where both parties derive mutual benefits, exemplifying the socialistic or capitalistic nature of these interactions. This review discusses the ubiquity, functioning, and management interventions of different types of plant-plant and plant-microbe interactions in CMNs, and how they promote plant growth and address environmental challenges for sustainable agriculture.

RevDate: 2024-04-18

Preiner J, Steccari I, Oburger E, et al (2024)

Rhizobium symbiosis improves amino acid and secondary metabolite biosynthesis of tungsten-stressed soybean (Glycine max).

Frontiers in plant science, 15:1355136.

The industrially important transition metal tungsten (W) shares certain chemical properties with the essential plant micronutrient molybdenum and inhibits the activity of molybdoenzymes such as nitrate reductase, impacting plant growth. Furthermore, tungsten appears to interfere with metabolic processes on a much wider scale and to trigger common heavy metal stress response mechanisms. We have previously found evidence that the tungsten stress response of soybeans (Glycine max) grown with symbiotically associated N2-fixing rhizobia (Bradyrhizobium japonicum) differs from that observed in nitrogen-fertilized soy plants. This study aimed to investigate how association with symbiotic rhizobia affects the primary and secondary metabolite profiles of tungsten-stressed soybean and whether changes in metabolite composition enhance the plant's resilience to tungsten. This comprehensive metabolomic and proteomic study presents further evidence that the tungsten-stress response of soybean plants is shaped by associated rhizobia. Symbiotically grown plants (N fix) were able to significantly increase the synthesis of an array of protective compounds such as phenols, polyamines, gluconic acid, and amino acids such as proline. This resulted in a higher antioxidant capacity, reduced root-to-shoot translocation of tungsten, and, potentially, also enhanced resilience of N fix plants compared to non-symbiotic counterparts (N fed). Taken together, our study revealed a symbiosis-specific metabolic readjustment in tungsten-stressed soybean plants and contributed to a deeper understanding of the mechanisms involved in the rhizobium-induced systemic resistance in response to heavy metals.

RevDate: 2024-04-17

Hung CM, Chu WC, Huang WY, et al (2024)

Safety assessment of a proprietary fermented soybean solution, Symbiota®, as an ingredient for use in foods and dietary supplements: Non-clinical studies and a randomized trial.

Food science & nutrition, 12(4):2346-2363.

A safety evaluation was performed of Symbiota®, which is made by a proprietary anaerobic fermentation process of soybean with multistrains of probiotics and a yeast. The battery of genotoxicity studies showed that Symbiota® has no genotoxic effects. Safety and tolerability were further assessed by acute or repeated dose 28- and 90-day rodent studies, and no alterations in clinical observations, ophthalmological examination, blood chemistry, urinalysis, or hematology were observed between the control group and the different dosing groups (1.5, 5, and 15 mL/kg/day). There were no adverse effects on specific tissues or organs in terms of weight and histopathology. Importantly, the Symbiota® treatment did not perturb hormones and other endocrine-related endpoints. Of note, the No-Observed-Adverse-Effect-Level was determined to be 15 mL/kg/day in rats. Moreover, a randomized, double-blind, placebo-controlled clinical trial was recently conducted with healthy volunteers who consumed 8 mL/day of placebo or Symbiota® for 8 weeks. Only mild adverse events were reported in both groups, and the blood chemistry and blood cell profiles were also similar between the two groups. In summary, this study concluded that the oral consumption of Symbiota® at 8 mL/day by the general population does not pose any human health concerns.

RevDate: 2024-04-17

Comba P, Velmurugan G, P Baur (2024)

A Dicopper(II)-Based Carbonic Anhydrase Model - Quantum-Chemical Evaluation of the Mechanistic Pathway.

Angewandte Chemie (International ed. in English) [Epub ahead of print].

The cyanobacterium Prochloron didemni, an obligate symbiont of different species of colonial ascidians, occurring in the Pacific and Indian Oceans, produces a variety of cyclic peptides. These patellamide-type macrocycles lead to relatively stable dicopper(II) complexes that are extremely efficient carbonic anhydrase mimics, the most active model systems known so far. Importantly, it recently was shown that copper(II) is coordinated to patellamide derivatives in Prochloron cells. An interesting question therefore is, whether the biological function of patellamide-type macrocycles is related to the catalytic activity in CO2 hydration or its reverse. Here, we present a computational study to evaluate the energetics of the catalytic cycle in search of a possible answer to these questions and compare the computed energy barriers with the experimental kinetic data. It emerges that release of the bridging carbonate is a critical step and that the catalysis product inhibits catalysis at pH values above approx. 7. Therefore, carbonate transport rather than CO2 hydrolysis is proposed as the biological function of copper(II)-patellamide complexes in the Prochloron-Ascidian symbiosis.

RevDate: 2024-04-18
CmpDate: 2024-04-18

Baiz MD, Wood AW, DPL Toews (2024)

Association between the gut microbiome and carotenoid plumage phenotype in an avian hybrid zone.

Proceedings. Biological sciences, 291(2021):20240238.

Vertebrates host complex microbiomes that impact their physiology. In many taxa, including colourful wood-warblers, gut microbiome similarity decreases with evolutionary distance. This may suggest that as host populations diverge, so do their microbiomes, because of either tight coevolutionary dynamics, or differential environmental influences, or both. Hybridization is common in wood-warblers, but the effects of evolutionary divergence on the microbiome during secondary contact are unclear. Here, we analyse gut microbiomes in two geographically disjunct hybrid zones between blue-winged warblers (Vermivora cyanoptera) and golden-winged warblers (Vermivora chrysoptera). We performed 16S faecal metabarcoding to identify species-specific bacteria and test the hypothesis that host admixture is associated with gut microbiome disruption. Species identity explained a small amount of variation between microbiomes in only one hybrid zone. Co-occurrence of species-specific bacteria was rare for admixed individuals, yet microbiome richness was similar among admixed and parental individuals. Unexpectedly, we found several bacteria that were more abundant among admixed individuals with a broader deposition of carotenoid-based plumage pigments. These bacteria are predicted to encode carotenoid biosynthesis genes, suggesting birds may take advantage of pigments produced by their gut microbiomes. Thus, host admixture may facilitate beneficial symbiotic interactions which contribute to plumage ornaments that function in sexual selection.

RevDate: 2024-04-18

Alavi Foumani A, Jafari A, Tangestani Nejad A, et al (2023)

Effects of Probiotics on Clinical Manifestations of Bronchiectasis: A Randomized, Triple Blinded, Placebo-Controlled Clinical Trial.

Tanaffos, 22(2):221-229.

BACKGROUND: Bronchiectasis is a condition characterized by abnormal and permanent bronchial constriction that leads to sputum production and bronchial infection. The current study was done to evaluate the effects of symbiotic probiotics on the clinical manifestations and exacerbation of bronchiectasis.

MATERIALS AND METHODS: 26 patients in the placebo group (A) and 24 patients in the probiotic group (B) were allocated. In group A, patients took the placebo capsules two times daily for six months. In group B, patients took the LactoCare two times daily for six months.

RESULTS: The mean age of patients was 55.73±13.62 (group A) and 54.5±12.59 years (group B). Most of the patients had consumed azithromycin in both groups. The current study demonstrated there was no statistically significant difference between the decreased rate of pulmonary exacerbations in both groups. However, a decreasing trend was shown in the rate of pulmonary exacerbations without hospitalization (P=0.610). Also, there was a decreasing trend in the rate of pulmonary exacerbations leading to hospitalization (P=0.956). The most frequent etiologic pathogen was Pseudomonas sp. FEV1 and FVC/FEV1 ratios were higher in group B than in group A. However, there was no statistically significant difference between groups A and B (P=0.908 vs 0.403).

CONCLUSION: The symbiotic probiotics were not effective in the clinical improvement of bronchiectasis, consumption of antibiotics, the rate of pulmonary exacerbations with or without hospitalization, FEV1 and FEV1/FVC, and microbiological pattern.

RevDate: 2024-04-17

Rohner PT, AP Moczek (2024)

Vertically inherited microbiota and environment modifying behaviours conceal genetic variation in dung beetle life history.

Proceedings. Biological sciences, 291(2021):20240122.

Diverse organisms actively manipulate their (sym)biotic and physical environment in ways that feed back on their own development. However, the degree to which these processes affect microevolution remains poorly understood. The gazelle dung beetle both physically modifies its ontogenetic environment and structures its biotic interactions through vertical symbiont transmission. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess how environment modifying behaviour and microbiome transmission shape heritable variation and evolutionary potential. We found that depriving larvae of symbionts and environment modifying behaviours increased additive genetic variance and heritability for development time but not body size. This suggests that larvae's ability to manipulate their environment has the potential to modify heritable variation and to facilitate the accumulation of cryptic genetic variation. This cryptic variation may become released and selectable when organisms encounter environments that are less amenable to organismal manipulation or restructuring. Our findings also suggest that intact microbiomes, which are commonly thought to increase genetic variation of their hosts, may instead reduce and conceal heritable variation. More broadly, our findings highlight that the ability of organisms to actively manipulate their environment may affect the potential of populations to evolve when encountering novel, stressful conditions.

RevDate: 2024-04-17

Nandety RS, Oh S, Lee HK, et al (2024)

Genome-wide methylation landscape during somatic embryogenesis in Medicago truncatula reveals correlation between Tnt1 retrotransposition and hyperactive methylation regions.

The Plant journal : for cell and molecular biology [Epub ahead of print].

Medicago truncatula is a model legume for fundamental research on legume biology and symbiotic nitrogen fixation. Tnt1, a retrotransposon from tobacco, was used to generate insertion mutants in M. truncatula R108. Approximately 21 000 insertion lines have been generated and publicly available. Tnt1 retro-transposition event occurs during somatic embryogenesis (SE), a pivotal process that triggers massive methylation changes. We studied the SE of M. truncatula R108 using leaf explants and explored the dynamic shifts in the methylation landscape from leaf explants to callus formation and finally embryogenesis. Higher cytosine methylation in all three contexts of CG, CHG, and CHH patterns was observed during SE compared to the controls. Higher methylation patterns were observed in assumed promoter regions (~2-kb upstream regions of transcription start site) of the genes, while lowest was recorded in the untranslated regions. Differentially methylated promoter region analysis showed a higher CHH methylation in embryogenesis tissue samples when compared to CG and CHG methylation. Strong correlation (89.71%) was identified between the differentially methylated regions (DMRs) and the site of Tnt1 insertions in M. truncatula R108 and stronger hypermethylation of genes correlated with higher number of Tnt1 insertions in all contexts of CG, CHG, and CHH methylation. Gene ontology enrichment and KEGG pathway enrichment analysis identified genes and pathways enriched in the signal peptide processing, ATP hydrolysis, RNA polymerase activity, transport, secondary metabolites, and nitrogen metabolism pathways. Combined gene expression analysis and methylation profiling showed an inverse relationship between methylation in the DMRs (regions spanning genes) and the expression of genes. Our results show that a dynamic shift in methylation happens during the SE process in the context of CG, CHH and CHG methylation, and the Tnt1 retrotransposition correlates with the hyperactive methylation regions.

RevDate: 2024-04-16

Tisseyre P, Cartieaux F, Chabrillange N, et al (2024)

Setting up Agrobacterium tumefaciens-mediated transformation of the tropical legume Aeschynomene evenia, a powerful tool for studying gene function in Nod Factor-independent symbiosis.

PloS one, 19(4):e0297547 pii:PONE-D-23-23441.

Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 μM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 μM) and BAP (2,2 μM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.

RevDate: 2024-04-16

Zarei H, M Shahhosseini (2023)

Comparison effect of lasalocid, diclazuril, probiotic and symbiotic on histomorpholical changes of small intestine induced by E. tenella.

Veterinaria italiana, 59(2):.

This study aimed to investigate the comparison of effect of anticoccidal drugs including lasalocid and diclazuril with probiotic and synbiotic on the growth performance and intestinal morphology in broiler chicken. One hundred eighty chickens (Ross 308, 1 day old) were randomly divided into 6 equal groups (n=30) including the negative control (basal diet), the positive control (basal diet+oral inoculation of 3×104 sporulated oocytes of E. tenella, and four treatment groups. At days of 28 and 49 of age, 9 chickens were blindly chosen from each group were scarified by decapitation and their various segments of small intestine including ileum, jejunum, and duodenum were evaluated histomorphologically. We found that the economic losses resulted from coccidial infection in the poultry industry are caused by the decreased performance of broiler chicken induced by morphological changes in the any three segments specially jejunum. The anticoccidial drugs, synbiotic and probiotic can partially prevent morphological changes in any three segments of small intestine in broiler chicken with coccidiosis. Since morphological changes in the jejunum begin earlier than in other parts and surface area of jejunal villi is important for nutrition absorbance as well as growth performance, lasolacid was found to a be more efficient treatment in this regard.

RevDate: 2024-04-16

Grassi A, Pagliarani I, Avio L, et al (2024)

Bioprospecting for plant resilience to climate change: mycorrhizal symbionts of European and American beachgrass (Ammophila arenaria and Ammophila breviligulata) from maritime sand dunes.

Mycorrhiza [Epub ahead of print].

Climate change and global warming have contributed to increase terrestrial drought, causing negative impacts on agricultural production. Drought stress may be addressed using novel agronomic practices and beneficial soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), able to enhance plant use efficiency of soil resources and water and increase plant antioxidant defence systems. Specific traits functional to plant resilience improvement in dry conditions could have developed in AMF growing in association with xerophytic plants in maritime sand dunes, a drought-stressed and low-fertility environment. The most studied of such plants are European beachgrass (Ammophila arenaria Link), native to Europe and the Mediterranean basin, and American beachgrass (Ammophila breviligulata Fern.), found in North America. Given the critical role of AMF for the survival of these beachgrasses, knowledge of the composition of AMF communities colonizing their roots and rhizospheres and their distribution worldwide is fundamental for the location and isolation of native AMF as potential candidates to be tested for promoting crop growth and resilience under climate change. This review provides quantitative and qualitative data on the occurrence of AMF communities of A. arenaria and A. breviligulata growing in European, Mediterranean basin and North American maritime sand dunes, as detected by morphological studies, trap culture isolation and molecular methods, and reports on their symbiotic performance. Moreover, the review indicates the dominant AMF species associated with the two Ammophila species and the common species to be further studied to assess possible specific traits increasing their host plants resilience toward drought stress under climate change.

RevDate: 2024-04-16

Kastelli I, Mamica L, K Lee (2023)

New perspectives and issues in industrial policy for sustainable development: from developmental and entrepreneurial to environmental state.

Review of evolutionary political economy [Epub ahead of print].

The increasingly acute consequences of the climate crisis, the COVID-19 pandemic, and the energy crisis have put industrial policy back. The papers in this issue examine how different countries implement industrial policy for sustainable development from a variety of perspectives. A successful transition to sustainable development seems to require not only the mix of carrots and sticks but also a right mix of creation versus destruction, as in the case of the creation of renewable businesses and the destruction of fossil-fuel businesses. Furthermore, because institutional diversity and the risk of capture can result in very distinct economic, social, and environmental effects, consideration of heterogeneity at the country and sector levels and coordination of vested interests are essential ingredients for sustainable industrial policies, as shown by the case of industrial policy in France and the two industry cases in India. By contrast, the Amazon Fund case is indicative of the three success elements: multi-stakeholder governance, pay-for-performance funding, and non-reimbursable project financing. These three elements can be summarized as local ownership and accountable governance, provided with both carrots and sticks. The problematic case of urban development driven by the oil industry in Ghana can be criticized in terms of the lack of local ownership of the oil industry, which has led to all rents being monopolized by the absentee class. By comparison, the mixed success of cases of industrial symbiosis in Uganda is attributed to the lack of effective carrots. In sum, industrial policy for sustainable development requires handling well all three types of failure, namely, market, system, and capability failures, because it necessitates building capabilities of involved actors and coordinating actions of agents, in addition to providing optimal incentives to reflect externalities of global public goods. Overall, the shifting focus of industrial policy is consistent with the shift of the role of the state, from developmental to entrepreneurial, and finally to environmental state.

RevDate: 2024-04-16

Banerjee A, Kang C-Y, An M, et al (2024)

Fluoride export is required for the competitive fitness of pathogenic microorganisms in dental biofilm models.

mBio [Epub ahead of print].

UNLABELLED: Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLC[F] F[-]/H[+] antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLC[F] transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLC[F] transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity.

IMPORTANCE: Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.

RevDate: 2024-04-16

Baghel K, Khan A, N Kango (2024)

Role of Synbiotics (Prebiotics and Probiotics) as Dietary Supplements in Type 2 Diabetes Mellitus Induced Health Complications.

Journal of dietary supplements [Epub ahead of print].

Diabetes is a metabolic disorder whose prevalence has become a worrying condition in recent decades. Chronic diabetes can result in serious health conditions such as impaired kidney function, stroke, blindness, and myocardial infarction. Despite a variety of currently available treatments, cases of diabetes and its complications are on the rise. This review article provides a comprehensive account of the ameliorative effect of prebiotics and probiotics individually or in combination i.e. synbiotics on health complications induced by Type 2 Diabetes Mellitus (T2DM). Recent advances in the field underscore encouraging outcomes suggesting the consumption of synbiotics leads to favorable changes in the gut microbiota. These changes result in the production of bioactive metabolites such as short-chain fatty acids (crucial for lowering blood sugar levels), reducing inflammation, preventing insulin resistance, and encouraging the release of glucagon-like peptide-1 in the host. Notably, novel strategies supplementing synbiotics to support gut microbiota are gaining attraction as pivotal interventions in mitigating T2DM-induced health complications. Thus, by nurturing a symbiotic relationship between prebiotics and probiotics i.e. synbiotics, these interventions hold promise in reshaping the microbial landscape of the gut thereby offering a multifaceted approach to managing T2DM and its associated morbidities. Supporting the potential of synbiotics underscores a paradigm shift toward holistic and targeted interventions in diabetes management, offering prospects for improved outcomes and enhanced quality of life for affected individuals. Nevertheless, more research needs to be done to better understand the single and multispecies pre/pro and synbiotics in the prevention and management of T2DM-induced health complications.

RevDate: 2024-04-15

Han D, Park KT, Kim H, et al (2024)

Interaction between phytoplankton and heterotrophic bacteria in Arctic fjords during glacial melting season as revealed by eDNA metabarcoding.

FEMS microbiology ecology pii:7646086 [Epub ahead of print].

The hydrographic variability in the fjords of Svalbard significantly influences water mass properties, causing distinct patterns of microbial diversity and community composition between surface and subsurface layers. However, surveys on the phytoplankton-associated bacterial communities, pivotal to ecosystem functioning in Arctic fjords, are limited. This study investigated the interactions between phytoplankton and heterotrophic bacterial communities in Svalbard fjord waters through comprehensive eDNA metabarcoding with 16S and 18S rRNA genes. The 16S rRNA sequencing results revealed a homogenous community composition including a few dominant heterotrophic bacteria across fjord waters, whereas 18S rRNA results suggested a spatially diverse eukaryotic plankton distribution. The relative abundances of heterotrophic bacteria showed a depth-wise distribution. In contrast, the dominant phytoplankton populations exhibited variable distributions in surface waters. In the network model, the linkage of phytoplankton (Prasinophytae and Dinophyceae) to heterotrophic bacteria, particularly Actinobacteria, suggested the direct or indirect influence of bacterial contributions on the fate of phytoplankton-derived organic matter. Our prediction of the metabolic pathways for bacterial activity related to phytoplankton-derived organic matter suggested competitive advantages and symbiotic relationships between phytoplankton and heterotrophic bacteria. Our findings provide valuable insights into the response of phytoplankton-bacterial interactions to environmental changes in Arctic fjords.

RevDate: 2024-04-15

Chen X, Hu X, Jiang J, et al (2024)

Functions and Mechanisms of Brassinosteroids in Regulating Crop Agronomic Traits.

Plant & cell physiology pii:7645832 [Epub ahead of print].

Brassinosteroids (BRs) perform crucial functions controlling plant growth and developmental processes, encompassing many agronomic traits in crops. Studies of BR-related genes involved in agronomic traits have suggested that BRs could serve as a potential target for crop breeding. Given the pleiotropic effect of BRs, a systematic understanding of their functions and molecular mechanisms is conducive for application in crop improvement. Here, we summarize the functions and underlying mechanisms by which BRs regulate the several major crop agronomic traits, including plant architecture, grain size, as well as the specific trait of symbiotic nitrogen fixation in legume crops. For plant architecture, we discuss the roles of BRs in plant height, branching number, and leaf erectness and propose how progress in these fields may contribute to designing crops with optimal agronomic traits and improved grain yield by accurately modifying BR levels and signaling pathways.

RevDate: 2024-04-15

Baglivo I, Malgieri G, Roop RM, et al (2024)

MucR protein: Three decades of studies have led to the identification of a new H-NS-like protein.

Molecular microbiology [Epub ahead of print].

MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α-proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone-like Nucleoid Structuring (H-NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H-NS-like protein, which binds AT-rich regions of genomic DNA and regulates gene expression.

RevDate: 2024-04-16

Yeganeh E, Vatankhah E, Toghranegar Z, et al (2022)

Arbuscular Mycorrhiza Alters Metal Uptake and the Physio-biochemical Responses of Glycyrrhiza glabra in a Lead Contaminated Soil.

Gesunde Pflanzen [Epub ahead of print].

Arbuscular mycorrhizal (AM) fungi can affect the host's ability to cope with several environmental stresses, such as heavy metal stress. Therefore, an experiment was conducted to assess the effect of the Funneliformis mosseae inoculation on growth and physio-biochemical parameters and lead (Pb) accumulation in liquorice (Glycyrrhiza glabra L.) under Pb stress. A factorial experiment was performed with the combination of two factors, fungi (inoculated and non-inoculated (NM)) and soil Pb levels (0, 150, 300, and 450 mg kg[-1] soil) with four replicates. In the presence of Pb, symbiosis with F. mosseae exert positive effect on growth parameters, which was more significant in shoots than roots. Mycorrhization improved fresh and dry weights and length in shoot by 147, 112.5 and 83%, respectively, compared to NM plants at Pb150 level. Moreover, F. mosseae significantly increased tolerance index and the concentrations of soluble sugars and flavonoids in shoots and proline, phosphorus, potassium, calcium, zinc and manganese in shoots and roots but decreased their malondialdehyde concentrations under Pb stress. The Pb concentrations, transfer and bioaccumulation factors of mycorrhizal plants were less than non-mycorrhizal ones. A positive correlation was also observed between glomalin secretion and colonization rate in Pb treated soils. These results indicate the importance of mycorrhizal colonization in alleviating the Pb-induced stress in liquorice, mainly through improving the nutrition, modifying reactive oxygen species detoxifying metabolites and reducing the translocation of Pb to shoots. Observations revealed that mycorrhization of liquorice would be an efficient strategy to use in the phytoremediation practices of Pb-contaminated soils.

RevDate: 2024-04-15

Zeng T, Fu Q, Luo F, et al (2024)

Lactic acid bacteria modulate the CncC pathway to enhance resistance to β-cypermethrin in the oriental fruit fly.

The ISME journal pii:7645740 [Epub ahead of print].

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid (LA)-producing bacteria, increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis (Maf). BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C (VC) in resistant strain (RS) affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, LA feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.

RevDate: 2024-04-16

Tsai FT, Yang CC, Lin YC, et al (2024)

Temporal stability of tongue microbiota in older patients - A pilot study.

Journal of dental sciences, 19(2):1087-1095.

BACKGROUND/PURPOSE: Healthy states of human microbiota depend on a stable community of symbiotic microbes irrespective of external challenges from the environment. Thus, long-term stability of the oral microbiota is of importance, particularly for older patient populations.

MATERIALS AND METHODS: We used next-generation sequencing (NGS) to examine the tongue microbiota of 18 individuals receiving long-term care over a 10-month period.

RESULTS: Beta diversity analysis demonstrated temporal stability of the tongue microbiota, as microbial compositions from all time points were indistinguishable from each other (P = 0.0887). However, significant individual variation in microbial composition (P = 0.0001) was observed, underscoring the presence of a unique microbial profile for each patient.

CONCLUSION: The temporal dynamics of tongue microbiota exhibit long-term stability, providing diagnostic implications for oral diseases within older patient populations.

RevDate: 2024-04-16

Machado I, D Gambino (2024)

Metallomics: An Essential Tool for the Study of Potential Antiparasitic Metallodrugs.

ACS omega, 9(14):15744-15752.

Metallomics is an emerging area of omics approaches that has grown enormously in the past few years. It integrates research related to metals in biological systems, in symbiosis with genomics and proteomics. These omics approaches can provide in-depth insights into the mechanisms of action of potential metallodrugs, including their physiological metabolism and their molecular targets. Herein, we review the most significant advances concerning cellular uptake and subcellular distribution assays of different potential metallodrugs with activity against Trypanosma cruzi, the protozoan parasite that causes Chagas disease, a pressing health problem in high-poverty areas of Latin America. Furthermore, the first multiomics approaches including metallomics, proteomics, and transcriptomics for the comprehensive study of potential metallodrugs with anti-Trypanosoma cruzi activity are described.

RevDate: 2024-04-15

Mallikaarachchi KS, Huang JL, Madras S, et al (2024)

Sinorhizobium meliloti BR-bodies promote fitness during host colonization.

bioRxiv : the preprint server for biology pii:2024.04.05.588320.

UNLABELLED: Biomolecular condensates, such as the nucleoli or P-bodies, are non-membrane-bound assemblies of proteins and nucleic acids that facilitate specific cellular processes. Like eukaryotic P-bodies, the recently discovered bacterial ribonucleoprotein bodies (BR-bodies) organize the mRNA decay machinery, yet the similarities in molecular and cellular functions across species have been poorly explored. Here, we examine the functions of BR-bodies in the nitrogen-fixing endosymbiont Sinorhizobium meliloti , which colonizes the roots of compatible legume plants. Assembly of BR-bodies into visible foci in S. meliloti cells requires the C-terminal intrinsically disordered region (IDR) of RNase E, and foci fusion is readily observed in vivo , suggesting they are liquid-like condensates that form via mRNA sequestration. Using Rif-seq to measure mRNA lifetimes, we found a global slowdown in mRNA decay in a mutant deficient in BR-bodies, indicating that compartmentalization of the degradation machinery promotes efficient mRNA turnover. While BR-bodies are constitutively present during exponential growth, the abundance of BR-bodies increases upon cell stress, whereby they promote stress resistance. Finally, using Medicago truncatula as host, we show that BR-bodies enhance competitiveness during colonization and appear to be required for effective symbiosis, as mutants without BR-bodies failed to stimulate plant growth. These results suggest that BR-bodies provide a fitness advantage for bacteria during infection, perhaps by enabling better resistance against the host immune response.

SIGNIFICANCE: While eukaryotes often organize their biochemical pathways in membrane-bound organelles, bacteria generally lack such subcellular structures. Instead, membraneless compartments called biomolecular condensates have recently been found in bacteria to enhance biochemical activities. Bacterial ribonucleoprotein bodies (BR-bodies), as one of the most widespread biomolecular condensates identified to date, assemble the mRNA decay machinery via the intrinsically disordered regions (IDRs) of proteins. However, the implications of such assemblies are unclear. Using a plant-associated symbiont, we show that the IDR of its mRNA degradation protein is necessary for condensate formation. Absence of BR-bodies results in slower mRNA decay and ineffective symbiosis, suggesting that BR-bodies play critical roles in regulating biochemical pathways and promoting fitness during host colonization.

RevDate: 2024-04-15

Zhang W, Gundel PE, Jáuregui R, et al (2024)

The growth promotion in endophyte symbiotic plants does not penalise the resistance to herbivores and bacterial microbiota.

Plant, cell & environment [Epub ahead of print].

A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.

RevDate: 2024-04-16

Li Y, Wang J, Sun T, et al (2024)

Community structure of endophytic bacteria of Sargassum thubergii in the intertidal zone of Qingdao in China.

AMB Express, 14(1):35.

Endophytic bacteria are one of the symbiotic microbial groups closely related to host algae. However, less research on the endophytic bacteria of marine algae. In this study, the endophytic bacterial community of Sargassum thunbergii was investigated using the culture method and high-throughput sequencing. Thirty-nine endophytic bacterial strains, belonging to two phyla, five genera and sixteen species, were isolated, and Firmicutes, Bacillus and Metabacillus indicus were the dominant taxa at the phylum, genus and species level, respectively. High-throughput sequencing revealed 39 phyla and 574 genera of endophytic bacteria, and the dominant phylum was Proteobacteria, while the dominant genus was Ralstonia. The results also indicated that the endophytic bacteria of S. thunbergii included various groups with nitrogen fixation, salt tolerance, pollutant degradation, and antibacterial properties but also contained some pathogenic bacteria. Additionally, the endophytic bacterial community shared a large number of groups with the epiphytic bacteria and bacteria in the surrounding seawater, but the three groups of samples could be clustered separately. In conclusion, there are a variety of functional endophytic bacteria living in S. thunbergii, and the internal condition of algae is a selective factor for the formation of endophytic bacterial communities. This study enriched the database of endophytic bacteria in marine macroalgae, paving the way for further understanding of the interrelationships between endophytic bacteria, macroalgae, and the environment.

RevDate: 2024-04-16

Liu C, X Li (2024)

Identification of hub genes and establishment of a diagnostic model in tuberculosis infection.

AMB Express, 14(1):36.

Tuberculosis (TB) poses significant challenges due to its high transmissibility within populations and intrinsic resistance to treatment, rendering it a formidable respiratory disease with a substantial susceptibility burden. This study was designed to identify new potential therapeutic targets for TB and establish a diagnostic model. mRNA expression data for TB were from GEO database, followed by conducting differential expression analysis. The top 50 genes with differential expression were subjected to GO and KEGG enrichment analyses. To establish a PPI network, the STRING database was utilized, and hub genes were identified utilizing five algorithms (EPC, MCC, MNC, Radiality, and Stress) within the cytoHubba plugin of Cytoscape software. Furthermore, a hub gene co-expression network was constructed using the GeneMANIA database. Consistency clustering was performed on hub genes, and ssGSEA was utilized to analyze the extent of immune infiltration in different subgroups. LASSO analysis was employed to construct a diagnostic model, and ROC curves were used for validation. Through the analysis of GEO data, a total of 159 genes were identified as differentially expressed. Further, GO and KEGG enrichment analyses revealed that these genes were mainly enriched in viral defense, symbiotic defense, and innate immune response-related pathways. Hub genes, including DDX58, IFIT2, IFIH1, RSAD2, IFI44L, OAS2, OAS1, OASL, IFIT1, IFIT3, MX1, STAT1, and ISG15, were identified using cytoHubba analysis of the PPI network. The GeneMANIA analysis unmasked that the co-expression rate of hub genes was 81.55%, and the physical interaction rate was 12.27%. Consistency clustering divided TB patients into two subgroups, and ssGSEA revealed different degrees of immune infiltration in different subgroups. LASSO analysis identified IFIT1, IFIT2, IFIT3, IFIH1, RSAD2, OAS1, OAS2, and STAT1 as eight immune-related key genes, and a diagnostic model was constructed. The ROC curve demonstrated that the model exhibited excellent diagnostic performance. DDX58, IFIT2, IFIH1, RSAD2, IFI44L, OAS2, OAS1, OASL, IFIT1, IFIT3, MX1, STAT1, and ISG15 were hub genes in TB, and the diagnostic model based on eight immune-related key genes exhibited good diagnostic performance.

RevDate: 2024-04-16

Fricke LC, ARI Lindsey (2024)

Identification of Parthenogenesis-Inducing Effector Proteins in Wolbachia.

Genome biology and evolution, 16(4):.

Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 yr ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine-rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model Saccharomyces cerevisiae. We suggest that these proteins are parthenogenesis-inducing factors and our results indicate that this would be made possible by a novel mechanism of bacterial-host interaction.

RevDate: 2024-04-13

Li Q, Xu Y, Chen S, et al (2024)

Inorganic carbon limitation decreases ammonium removal and N2O production in the algae-nitrifying bacteria symbiosis system.

The Science of the total environment pii:S0048-9697(24)02586-5 [Epub ahead of print].

Ammonium removal by a symbiosis system of algae (Chlorella vulgaris) and nitrifying bacteria was evaluated in a long-term photo-sequencing batch reactor under varying influent inorganic carbon (IC) concentrations (15, 10, 5 and 2.5 mmol L[-1]) and different nitrogen loading rate (NLR) conditions (270 and 540 mg-N L[-1] d[-1]). The IC/N ratios provided were 2.33, 1.56, 0.78 and 0.39, respectively, for an influent NH+ 4-N concentration of 90 mg-N L[-1] (6.43 mmol L[-1]). The results confirmed that both ammonium removal and N2O production were positively related with IC concentration. Satisfactory ammonium removal efficiencies (>98 %) and rates (29-34 mg-N gVSS[-1] h[-1]) were achieved regardless of NLR levels under sufficient IC of 10 and 15 mmol L[-1], while insufficient IC at 2.5 mmol L[-1] led to the lowest ammonium removal rates of 0 mg-N gVSS[-1] h[-1]. The ammonia oxidation process by ammonia oxidizing bacteria (AOB) played a predominant role over the algae assimilation process in ammonium removal. Long-time IC deficiency also resulted in the decrease in biomass and pigments of algae and nitrifying bacteria. IC limitation led to the decreasing N2O production, probably due to its negative effect on ammonia oxidation by AOB. The optimal IC concentration was determined to be 10 mmol L[-1] (i.e., IC/N of 1.56, alkalinity of 500 mg CaCO3 L[-1]) in the algae-bacteria symbiosis reactor, corresponding to higher ammonia oxidation rate of ~41 mg-N gVSS[-1] h[-1] and lower N2O emission factor of 0.13 %. This suggests regulating IC concentrations to achieve high ammonium removal and low carbon emission simultaneously in the algae-bacteria symbiosis wastewater treatment process.

RevDate: 2024-04-15
CmpDate: 2024-04-15

Pereira QC, Fortunato IM, Oliveira FS, et al (2024)

Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging.

Nutrients, 16(7):.

In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.

RevDate: 2024-04-15
CmpDate: 2024-04-15

Sochacka K, Kotowska A, S Lachowicz-Wiśniewska (2024)

The Role of Gut Microbiota, Nutrition, and Physical Activity in Depression and Obesity-Interdependent Mechanisms/Co-Occurrence.

Nutrients, 16(7):.

Obesity and depression are interdependent pathological disorders with strong inflammatory effects commonly found worldwide. They determine the health status of the population and cause key problems in terms of morbidity and mortality. The role of gut microbiota and its composition in the treatment of obesity and psychological factors is increasingly emphasized. Published research suggests that prebiotic, probiotic, or symbiotic preparations can effectively intervene in obesity treatment and mood-dysregulation alleviation. Thus, this literature review aims to highlight the role of intestinal microbiota in treating depression and obesity. An additional purpose is to indicate probiotics, including psychobiotics and prebiotics, potentially beneficial in supporting the treatment of these two diseases.

RevDate: 2024-04-15
CmpDate: 2024-04-15

Sun X, Zhang H, Yang Z, et al (2024)

Overexpression of GmPAP4 Enhances Symbiotic Nitrogen Fixation and Seed Yield in Soybean under Phosphorus-Deficient Condition.

International journal of molecular sciences, 25(7):.

Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.

RevDate: 2024-04-15

Pasaribu B, Purba NP, Dewanti LP, et al (2024)

Lipid Droplets in Endosymbiotic Symbiodiniaceae spp. Associated with Corals.

Plants (Basel, Switzerland), 13(7):.

Symbiodiniaceae species is a dinoflagellate that plays a crucial role in maintaining the symbiotic mutualism of reef-building corals in the ocean. Reef-building corals, as hosts, provide the nutrition and habitat to endosymbiotic Symbiodiniaceae species and Symbiodiniaceae species transfer the fixed carbon to the corals for growth. Environmental stress is one of the factors impacting the physiology and metabolism of the corals-dinoflagellate association. The environmental stress triggers the metabolic changes in Symbiodiniaceae species resulting in an increase in the production of survival organelles related to storage components such as lipid droplets (LD). LDs are found as unique organelles, mainly composed of triacylglycerols surrounded by phospholipids embedded with some proteins. To date, it has been reported that investigation of lipid droplets significantly present in animals and plants led to the understanding that lipid droplets play a key role in lipid storage and transport. The major challenge of investigating endosymbiotic Symbiodiniaceae species lies in overcoming the strategies in isolating lesser lipid droplets present in its intercellular cells. Here, we review the most recent highlights of LD research in endosymbiotic Symbiodiniaceae species particularly focusing on LD biogenesis, mechanism, and major lipid droplet proteins. Moreover, to comprehend potential novel ways of energy storage in the symbiotic interaction between endosymbiotic Symbiodiniaceae species and its host, we also emphasize recent emerging environmental factors such as temperature, ocean acidification, and nutrient impacting the accumulation of lipid droplets in endosymbiotic Symbiodiniaceae species.

RevDate: 2024-04-14

Huang L, Fu Y, Liu Y, et al (2024)

Global insights into endophytic bacterial communities of terrestrial plants: Exploring the potential applications of endophytic microbiota in sustainable agriculture.

The Science of the total environment, 927:172231 pii:S0048-9697(24)02374-X [Epub ahead of print].

Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.

RevDate: 2024-04-12

Chu WC, Gao YY, Wu YX, et al (2024)

Biofilm of petroleum-based and bio-based microplastics in seawater in response to Zn(II): Biofilm formation, community structure, and microbial function.

The Science of the total environment pii:S0048-9697(24)02543-9 [Epub ahead of print].

Microplastic biofilms are novel vectors for the transport and spread of pathogenic and drug-resistant bacteria. With the increasing use of bio-based plastics, there is an urgent need to investigate the microbial colonization characteristics of these materials in seawater, particularly in comparison with conventional petroleum-based plastics. Furthermore, the effect of co-occurring contaminants, such as heavy metals, on the formation of microplastic biofilms and bacterial communities remains unclear. In this study, we compared the biofilm bacterial community structure of petroleum-based polyethylene (PE) and bio-based polylactic acid (PLA) in seawater under the influence of zinc ions (Zn[2+]). Our findings indicate that the biofilm on PLA microplastics in the late stage was impeded by the formation of a mildly acidic microenvironment resulting from the hydrolysis of the ester group on PLA. The PE surface had higher bacterial abundance and diversity, with a more intricate symbiotic pattern. The bacterial structures on the two types of microplastics were different; PE was more conducive to the colonization of anaerobic bacteria, whereas PLA was more favorable for the colonization of aerobic and acid-tolerant species. Furthermore, Zn increased the proportion of the dominant genera that could utilize microplastics as a carbon source, such as Alcanivorax and Nitratireductor. PLA had a greater propensity to harbor and disseminate pathogenic and drug-resistant bacteria, and Zn promoted the enrichment and spread of harmful bacteria such as, Pseudomonas and Clostridioides. Therefore, further research is essential to fully understand the potential environmental effects of bio-based microplastics and the role of heavy metals in the dynamics of bacterial colonization.

RevDate: 2024-04-12

Fotovvat M, Najafi F, Khavari-Nejad RA, et al (2024)

Investigating the simultaneous effect of chitosan and arbuscular mycorrhizal fungi on growth, phenolic compounds, PAL enzyme activity and lipid peroxidation in Salvia nemorosa L.

Plant physiology and biochemistry : PPB, 210:108617 pii:S0981-9428(24)00285-7 [Epub ahead of print].

Considering the importance of Salvia nemorosa L. in the pharmaceutical and food industries, and also beneficial approaches of arbuscular mycorrhizal fungi (AMF) symbiosis and the use of bioelicitors such as chitosan to improve secondary metabolites, the aim of this study was to evaluate the performance of chitosan on the symbiosis of AMF and the effect of both on the biochemical and phytochemical performance of this plant and finally introduced the best treatment. Two factors were considered for the factorial experiment: AMF with four levels (non-inoculated plants, Funneliformis mosseae, Rhizophagus intraradices and the combination of both), and chitosan with six levels (0, 50, 100, 200, 400 mg L[-1] and 1% acetic acid). Four months after treatments, the aerial part and root length, the levels of lipid peroxidation, H2O2, phenylalanine ammonia lyase (PAL) activity, total phenol and flavonoid contents and the main secondary metabolites (rosmarinic acid and quercetin) in the leaves and roots were determined. The flowering stage was observed in R. intraradices treatments and the highest percentage of colonization (78.87%) was observed in the treatment of F. mosseae × 400 mg L[-1] chitosan. Furthermore, simultaneous application of chitosan and AMF were more effective than their separate application to induce phenolic compounds accumulation, PAL activity and reduce oxidative compounds. The cluster and principal component analysis based on the measured variables indicated that the treatments could be classified into three clusters. It seems that different treatments in different tissues have different effects. However, in an overview, it can be concluded that 400 mg L[-1] chitosan and F. mosseae × R. intraradices showed better results in single and simultaneous applications. The results of this research can be considered in the optimization of this medicinal plant under normal conditions and experiments related to abiotic stresses in the future.

RevDate: 2024-04-15

Valente EEL, Klotz JL, Markmann RC, et al (2024)

5-hydroxytryphophan mitigates ergot alkaloid-induced suppression of serotonin and feed intake in cattle.

Journal of animal science, 102:.

The impact of ergot toxicosis on livestock industries is detrimental and treatments are needed in many countries. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan (5-HTP) supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. Eight Holstein steers (538 ± 18 kg) fitted with ruminal cannulas were used in a replicated 4 × 4 Latin Square design experiment with a 2 × 2 factorial treatment structure. The treatments were the combination of 0 (E-) or 15 µg ergovaline/kg BW (E+) and 0 (5HTP-) or 0.5 mg of 5-hydroxy-l-tryptophan/kg BW (5HTP+) administered daily for 6 d. Toxic endophyte-infected tall fescue seed was used to supply the daily dose of ergovaline. Endophyte-free seed was used to equalize seed intake between treatments. Ground seed was placed into the rumen immediately before feeding. The 5-HTP was dissolved in water and infused into the abomasum via the reticulo-omasal orifice. Blood was collected from a jugular vein catheter at 0, 1, 2, 4, 8, and 24 h after treatment administration. Ergovaline without 5-HTP (E+/5HTP-) decreased dry matter intake (DMI) in comparison to steers without ergovaline and 5-HTP (E-/5HTP-). However, 5-HTP infusion in association with ergovaline (E+/5HTP+) normalized the DMI. Although E + did not affect (P > 0.05) the area under the curve (AUC) of serum 5-HTP, 5-hydroxyindoleacetic acid, tryptophan, and kynurenine, serum and plasma serotonin concentrations were decreased (P < 0.05). The infusion of 5-HTP increased (P < 0.05) the AUC of serum 5-HTP, serum and plasma serotonin, and serum 5-hydroxyindoleacetic acid. In conclusion, acute exposure to ergot alkaloids reduced DMI and circulating serotonin in cattle but 5-HTP administration showed potential to normalize both circulating serotonin and feed intake.

RevDate: 2024-04-12

Brockhurst MA, Cameron DD, AP Beckerman (2024)

Fitness trade-offs and the origins of endosymbiosis.

PLoS biology, 22(4):e3002580 pii:PBIOLOGY-D-23-03118.

Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.

RevDate: 2024-04-12

Cardoso PM, Hill LJ, Villela HDM, et al (2024)

Localization and symbiotic status of probiotics in the coral holobiont.

mSystems [Epub ahead of print].

UNLABELLED: Corals establish symbiotic relationships with microorganisms, especially endosymbiotic photosynthetic algae. Although other microbes have been commonly detected in coral tissues, their identity and beneficial functions for their host are unclear. Here, we confirm the beneficial outcomes of the inoculation of bacteria selected as probiotics and use fluorescence in situ hybridization (FISH) to define their localization in the coral Pocillopora damicornis. Our results show the first evidence of the inherent presence of Halomonas sp. and Cobetia sp. in native coral tissues, even before their inoculation. Furthermore, the relative enrichment of these coral tissue-associated bacteria through their inoculation in corals correlates with health improvements, such as increases in photosynthetic potential, and productivity. Our study suggests the symbiotic status of Halomonas sp. and Cobetia sp. in corals by indicating their localization within coral gastrodermis and epidermis and correlating their increased relative abundance through active inoculation with beneficial outcomes for the holobiont. This knowledge is crucial to facilitate the screening and application of probiotics that may not be transient members of the coral microbiome.

IMPORTANCE: Despite the promising results indicating the beneficial outcomes associated with the application of probiotics in corals and some scarce knowledge regarding the identity of bacterial cells found within the coral tissue, the correlation between these two aspects is still missing. This gap limits our understanding of the actual diversity of coral-associated bacteria and whether these symbionts are beneficial. Some researchers, for example, have been suggesting that probiotic screening should only focus on the very few known tissue-associated bacteria, such as Endozoicomonas sp., assuming that the currently tested probiotics are not tissue-associated. Here, we provide specific FISH probes for Halomonas sp. and Cobetia sp., expand our knowledge of the identity of coral-associated bacteria and confirm the probiotic status of the tested probiotics. The presence of these beneficial microorganisms for corals (BMCs) inside host tissues and gastric cavities also supports the notion that direct interactions with the host may underpin their probiotic role. This is a new breakthrough; these results argue against the possibility that the positive effects of BMCs are due to factors that are not related to a direct symbiotic interaction, for example, that the host simply feeds on inoculated bacteria or that the bacteria change the water quality.

RevDate: 2024-04-12

Lin Z (2024)

Progress and challenges in the symbiosis of AI with science and medicine.

RevDate: 2024-04-13

Su C, Xie T, Jiang L, et al (2024)

Host genetics and larval host plant modulate microbiome structure and evolution underlying the intimate insect-microbe-plant interactions in Parnassius species on the Qinghai-Tibet Plateau.

Ecology and evolution, 14(4):e11218.

Insects harbor a remarkable diversity of gut microbiomes critical for host survival, health, and fitness, but the mechanism of this structured symbiotic community remains poorly known, especially for the insect group consisting of many closely related species that inhabit the Qinghai-Tibet Plateau. Here, we firstly analyzed population-level 16S rRNA microbial dataset, comprising 11 Parnassius species covering 5 subgenera, from 14 populations mostly sampled in mountainous regions across northwestern-to-southeastern China, and meanwhile clarified the relative importance of multiple factors on gut microbial community structure and evolution. Our findings indicated that both host genetics and larval host plant modulated gut microbial diversity and community structure. Moreover, the effect analysis of host genetics and larval diet on gut microbiomes showed that host genetics played a critical role in governing the gut microbial beta diversity and the symbiotic community structure, while larval host plant remarkably influenced the functional evolution of gut microbiomes. These findings of the intimate insect-microbe-plant interactions jointly provide some new insights into the correlation among the host genetic background, larval host plant, the structure and evolution of gut microbiome, as well as the mechanisms of high-altitude adaptation in closely related species of this alpine butterfly group.

RevDate: 2024-04-13

Jin P, Wang L, Chen D, et al (2024)

Unveiling the complexity of early childhood caries: Candida albicans and Streptococcus mutans cooperative strategies in carbohydrate metabolism and virulence.

Journal of oral microbiology, 16(1):2339161.

OBJECTIVE: To explore the mechanisms underlying the virulence changes in early childhood caries (ECC) caused by Candida albicans (C. albicans) and Streptococcus mutans (S. mutans), with a focus on carbohydrate metabolism and environmental acidification.

METHODS: A review of literature was conducted to understand the symbiotic relationship between C. albicans and S. mutans, and their role in the pathogenesis of ECC. The review also examined how their interactions influence carbohydrate metabolism and environmental acidification in the oral cavity.

RESULTS: C. albicans and S. mutans play crucial roles in the onset and progression of ECC. C. albicans promotes the adhesion and accumulation of S. mutans, while S. mutans creates an environment favorable for the growth of C. albicans. Their interactions, especially through carbohydrate metabolism, strengthen their pathogenic potential. The review highlights the importance of understanding these mechanisms for the development of effective management and treatment protocols for ECC.

CONCLUSION: The symbiotic relationship between C. albicans and S. mutans, and their interactions through carbohydrate metabolism and environmental acidification, are key factors in the pathogenesis of ECC. A comprehensive understanding of these mechanisms is crucial for developing effective strategies to manage and treat ECC.

RevDate: 2024-04-13

Sandeep F, Kiran N, Rahaman Z, et al (2024)

Pathology in the Age of Artificial Intelligence (AI): Redefining Roles and Responsibilities for Tomorrow's Practitioners.

Cureus, 16(3):e56040.

The evolution of pathology from its rudimentary beginnings around 1700 BC to the present day has been marked by profound advancement in understanding and diagnosing diseases. This journey, from the earliest dissections to the modern era of histochemical analysis, sets the stage for the next transformative leap to the integration of artificial intelligence (AI) in pathology. Recent research highlights AI's significant potential to revolutionize healthcare within the next decade, with a particular impact on diagnostic processes. A majority of pathologists foresee AI becoming a cornerstone in diagnostic workflow, driven by the advent of image-based algorithms and computational pathology. These innovations promise to enhance the precision of disease diagnosis, particularly in complex cases, such as cancers, by offering detailed insights into the molecular and cellular mechanisms. Moreover, AI-assisted tools are improving the efficiency and accuracy of histological analysis by automating the evaluation of immunohistochemical biomarkers and tissue architecture. This shift not only accelerates diagnostic processes but also facilitates early disease management, crucial for improving patient outcomes. Furthermore, AI is reshaping educational paradigms in pathology, offering interactive learning environments that promise to enrich the training of future pathologists. Despite these advancements, the integration of AI in pathology raises ethical considerations regarding patient consent and data privacy. As pathology embarks on this AI-augmented era, it is imperative to navigate these challenges thoughtfully, ensuring that AI enhances rather than replaces the pathologist's role. This editorial discussed the historical progression of pathology, the current impact of AI on diagnostic practices, and the ethical implications of its adoption, underscoring the need for a symbiotic relationship between pathologists and AI to unlock the full potential of healthcare.

RevDate: 2024-04-12

Belahmadi MSO, A Abdessemed (2024)

Enhancement of benzo[a]pyrene mineralization: symbiotic biodegradation by Acinetobacter sp. strain HAP1 in Association with Cyanobacteriota sp. S66.

Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes [Epub ahead of print].

The ability of Acinetobacter sp. strain HAP1, isolated from petroleum refinery effluent, to eliminate different concentrations (20, 40, 60, 80 and 100 mg/L) of Benzo[a]Pyrene degradation (BaP) was studied. A test to improve this degradation capacity was carried out by culturing the bacterial strain in association with a cyanobacteria. The results show a highly significant effect of the concentration of (BaP) and a very highly significant effect of the symbiosis between the bacterial strain and the cyanobacteria. This combination was able to significantly improve the (BaP) degradation rate by up to 18%. This degradation and especially in association leads to a complete mineralization of (BaP) and there is a difference in yield that can go up to 15%. Through molecular identification based on 16S rRNA gene sequence analysis, strains HAP1 and S66 were recognized as Acinetobacter sp. strain HAP1 and Cyanobacteriota sp. S66, respectively. Comparison of the retrieved sequences with the NCBI GenBank database was done, and the closest matches were found to be Acinetobacter pittii strain JD-10 for bacteria and Pseudochroococcus couteii strain PMC 885.14 for cyanobacteria.

RevDate: 2024-04-13

Song G, Shin D, JS Kim (2024)

Microbiome changes in Akanthomyces attenuatus JEF-147-infected two-spotted spider mites.

Journal of invertebrate pathology, 204:108102 pii:S0022-2011(24)00045-4 [Epub ahead of print].

The two-spotted spider mite (Tetranychus urticae Koch) is an agriculturally serious polyphagous pest that has acquired strong resistance against acaricides because of its short life cycle and continuous exposure to acaricides. As an alternative, mite-pathogenic fungi with different modes of action could be used to control the mites. The spider mite has symbiotic microorganisms that could be involved in the physiological and ecological adaptations to biotic stresses. In this study, mite-pathogenic fungi were used to control female adults, and the microbiomes changes in the fungus-infected mites were analyzed. The acaricidal activity of 77 fungal isolates was tested, and Akanthomyces attenuatus JEF-147 exhibited the highest acaricidal activity. Subsequently a dose-response assay and morphological characterization was undertaken For microbiome analysis in female adults infected with A. attenuatus JEF-147, 16S rDNA and ITS1 were sequenced using Illumina Miseq. Infected mite showed a higher Shannon index in bacterial diversity but lower index in fungal diversity. In beta diversity using principal component analysis, JEF-147-treated mites were significantly different from non-treated controls in both bacteria and fungi. Particularly in bacterial abundance, arthropod defense-related Rickettsia increased, but arthropod reproduction-associated Wolbachia decreased. The change in major bacterial abundance in the infected mites could be explained by a trade-off between reproduction and immunity against the early stage of fungal attack. In fungal abundance, Akanthomyces showed up as expected. Foremost, this work reports microbiome changes in a fungus-infected mite and suggests a possible trade-off in mites against fungal pathogens. Future studies will focus on gene-based investigations related to this topic.

RevDate: 2024-04-11

Yin L, Zhou A, Wei Y, et al (2024)

Deep insights into the roles and microbial ecological mechanisms behind waste activated sludge digestion triggered by persulfate oxidation activated through multiple modes.

Environmental research pii:S0013-9351(24)00809-0 [Epub ahead of print].

Persulfate oxidation (PS) is widely employed as a promising alternative for waste activated sludge pretreatment due to the capability of generating free radicals. The product differences and microbiological mechanisms by which PS activation triggers WAS digestion through multiple modes need to be further investigated. This study comprehensively investigated the effects of persulfate oxidation activated through multiple modes, i.e., ferrous, zero-valent iron (ZVI), ultraviolet (UV) and heat, on the performance of sludge digestion. Results showed that PS_ZVI significantly accelerated the methane production rate to 12.02 mL/g VSS. By contrast, PS_Heat promoted the sludge acidification and gained the maximum short-chain fatty acids (SCFAs) yield (277.11 ± 7.81 mg COD/g VSS), which was 3.41-fold compared to that in PS_ZVI. Moreover, ferrous and ZVI activated PS achieved the oriented conversion of acetate, the proportions of which took 73% and 78%, respectively. MiSeq sequencing results revealed that PS_Heat and PS_UV evidently enriched anaerobic fermentation bacteria (AFB) (i.e., Macellibacteroides and Clostridium XlVa). However, PS_Ferrous and PS_ZVI facilitated the enrichment of Woesearchaeota and methanogens. Furthermore, molecular ecological network and mantel test revealed the intrinsic interactions among the multiple functional microbes and environmental variables. The homo-acetogens and sulfate-reducing bacterial had potential cooperative and symbiotic relationships with AFB, while the nitrate-reducing bacteria displayed distinguishing ecological niches. Suitable activation modes for PS pretreatments resulted in an upregulation of genes expression responsible for digestion. This study established a scientific foundation for the application of sulfate radical-based oxidation on energy or high value-added chemicals recovery from waste residues.

RevDate: 2024-04-11

Yin Z, Liang J, Zhang M, et al (2024)

Pan-genome insights into adaptive evolution of bacterial symbionts in mixed host-microbe symbioses represented by human gut microbiota Bacteroides cellulosilyticus.

The Science of the total environment pii:S0048-9697(24)02394-5 [Epub ahead of print].

Animal hosts harbor diverse assemblages of microbial symbionts that play crucial roles in the host's lifestyle. The link between microbial symbiosis and host development remains poorly understood. In particular, little is known about the adaptive evolution of gut bacteria in host-microbe symbioses. Recently, symbiotic relationships have been categorized as open, closed, or mixed, reflecting their modes of inter-host transmission and resulting in distinct genomic features. Members of the genus Bacteroides are the most abundant human gut microbiota and possess both probiotic and pathogenic potential, providing an excellent model for studying pan-genome evolution in symbiotic systems. Here, we determined the complete genome of an novel clinical strain PL2022, which was isolated from a blood sample and performed pan-genome analyses on a representative set of Bacteroides cellulosilyticus strains to quantify the influence of the symbiotic relationship on the evolutionary dynamics. B. cellulosilyticus exhibited correlated genomic features with both open and closed symbioses, suggesting a mixed symbiosis. An open pan-genome is characterized by abundant accessory gene families, potential horizontal gene transfer (HGT), and diverse mobile genetic elements (MGEs), indicating an innovative gene pool, mainly associated with genomic islands and plasmids. However, massive parallel gene loss, weak purifying selection, and accumulation of positively selected mutations were the main drivers of genome reduction in B. cellulosilyticus. Metagenomic read recruitment analyses showed that B. cellulosilyticus members are globally distributed and active in human gut habitats, in line with predominant vertical transmission in the human gut. However, existence and/or high abundance were also detected in non-intestinal tissues, other animal hosts, and non-host environments, indicating occasional horizontal transmission to new niches, thereby creating arenas for the acquisition of novel genes. This case study of adaptive evolution under a mixed host-microbe symbiosis advances our understanding of symbiotic pan-genome evolution. Our results highlight the complexity of genetic evolution in this unusual intestinal symbiont.

RevDate: 2024-04-11

Tang CC, Hu YR, Zhang M, et al (2024)

Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(24)00665-1 [Epub ahead of print].

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to Zn[2+]. The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of zinc ion (Zn[2+]). When phosphate and Zn[2+] coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn[2+], with the increasing rates of 28.3% for total nitrogen removal, 37% for chemical oxygen demand removal, 78.3% for chlorophyll a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn[2+], both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn[2+] on the MABS system was irreversible. Further analysis showed that Zn[2+] preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn[2+] through extracellular adsorption and intracellular uptake. Under Zn[2+] stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn[2+]. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn[2+] on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.

RevDate: 2024-04-11

Dingemanse NJ, A Guse (2024)

Linking cell biology and ecology to understand coral symbiosis evolution.

PLoS biology, 22(4):e3002593 pii:PBIOLOGY-D-24-00342.

Understanding the evolution of coral endosymbiosis requires a predictive framework that integrates life-history theory and ecology with cell biology. The time has come to bridge disciplines and use a model systems approach to achieve this aim.

RevDate: 2024-04-11

Coale TH, Loconte V, Turk-Kubo KA, et al (2024)

Nitrogen-fixing organelle in a marine alga.

Science (New York, N.Y.), 384(6692):217-222.

Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."

RevDate: 2024-04-11

Han Q, Shi X, Kang K, et al (2024)

Silver Nanoparticles In Situ Enhanced Electrochemiluminescence of the Porphyrin Organic Matrix for Highly Sensitive and Rapid Monitoring of Tetracycline Residues.

Journal of agricultural and food chemistry [Epub ahead of print].

Accurate monitoring of tetracycline (TC) residues in the environment is crucial for avoiding contaminant risk. Herein, a novel TC biosensor was facilely designed by integrating silver nanoparticles (Ag NPs) into the porphyrin metal-organic matrix (Ag@AgPOM) as a bifunctional electrochemiluminescence (ECL) probe. Different from the step-by-step synthesis of the co-reaction accelerator and ECL emitter, the co-reaction accelerators Ag NPs were in situ-grown on the surface of 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) via a simple one-pot approach. Symbiotic Ag NPs on Ag@AgPOM formed an intimate interface and increased the collision efficiency of the ECL reaction, achieving the ECL enhancement of TCPP. Under the optimized conditions, the ternary ECL biosensor showed a wide linear detection range toward TC with a low detection limit of 0.14 fmol L[-1]. Compared with the traditional HPLC and ELISA methods, satisfied analytical adaptability made this sensing strategy feasible to monitor TC in complex environmental samples.

RevDate: 2024-04-11

Massoud R, Jafari R, K Khosravi-Darani (2024)

Kombucha as a Health-Beneficial Drink for Human Health.

Plant foods for human nutrition (Dordrecht, Netherlands) [Epub ahead of print].

Kombucha is a unique fermented beverage made from a symbiotic culture of yeast and bacteria. Kombucha is normally based on black tea added to water, then sugar is added as a substrate for fermentation in this beverage. This unique beverage is composed of amino acids, flavonoids, vitamins, and some active enzymes. Several beneficial health effects such as antioxidant, antimicrobial effects have been reported as a result of probiotics and prebiotics presence. These health effects of kombucha are attributed to its bioactive chemical and biological agents of probiotics bacteria e.g., Gluconobacter, Acetobacter and yeasts like Saccharomyces sps., along with glucuronic acid as the main sources of the health protection. This review focuses on the beneficial effects of Kombucha including antimicrobial, antioxidant, anti-cancer antidiabetic properties, as well as liver protection, treat of gastrointestinal problems, AIDS, gastric ulcers, obesity (and energy production), detoxification, and skin health.

RevDate: 2024-04-12
CmpDate: 2024-04-12

Li T, Ye ZX, Feng KH, et al (2024)

Molecular and biological characterization of a bunyavirus infecting the brown planthopper (Nilaparvata lugens).

The Journal of general virology, 105(4):.

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.

RevDate: 2024-04-12

Pang F, Li Q, Solanki MK, et al (2024)

Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms.

Frontiers in microbiology, 15:1383813.

Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.

RevDate: 2024-04-11

Guo H, Liu W, Xie Y, et al (2024)

Soil microbiome of shiro reveals the symbiotic relationship between Tricholoma bakamatsutake and Quercus mongolica.

Frontiers in microbiology, 15:1361117.

Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.

RevDate: 2024-04-11

Jansen CA, Zanzarin DM, Março PH, et al (2024)

Metabolomic kinetics investigation of Camellia sinensis kombucha using mass spectrometry and bioinformatics approaches.

Heliyon, 10(7):e28937.

Kombucha is created through the fermentation of Camellia sinensis tea leaves, along with sucrose, utilizing a symbiotic consortium of bacteria and yeast cultures. Nonetheless, there exists a dearth of comprehensive information regarding the spectrum of metabolites that constitute this beverage. To explore this intricate system, metabolomics was used to investigate fermentation kinetics of Kombucha. For that, an experimental framework was devised to assess the impact of varying sucrose concentrations and fermentation temperatures over a ten-day period of kombucha fermentation. Following fermentation, samples were analyzed using an LC-QTOF-MS system and a distinctive metabolomic profile was observed. Principal component analysis was used to discriminate between metabolite profiles. Moreover, the identified compounds were subjected to classification using the GNPS platform. The findings underscore notable differences in compound class concentrations attributable to distinct fermentation conditions. Furthermore, distinct metabolic pathways were identified, specially some related to the biotransformation of flavonoids. This comprehensive investigation offers valuable insights into the pivotal role of SCOBY in driving metabolite production and underscores the potential bioactivity harbored within Kombucha.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )