Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Microbial Ecology

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 15 Jul 2024 at 01:48 Created: 

Microbial Ecology

Wikipedia: Microbial Ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life — Eukaryota, Archaea, and Bacteria — as well as viruses. Microorganisms, by their omnipresence, impact the entire biosphere. Microbial life plays a primary role in regulating biogeochemical systems in virtually all of our planet's environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of deepest oceans, and some of the most familiar, such as the human small intestine. As a consequence of the quantitative magnitude of microbial life (Whitman and coworkers calculated 5.0×1030 cells, eight orders of magnitude greater than the number of stars in the observable universe) microbes, by virtue of their biomass alone, constitute a significant carbon sink. Aside from carbon fixation, microorganisms' key collective metabolic processes (including nitrogen fixation, methane metabolism, and sulfur metabolism) control global biogeochemical cycling. The immensity of microorganisms' production is such that, even in the total absence of eukaryotic life, these processes would likely continue unchanged.

Created with PubMed® Query: ( "microbial ecology" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-07-12

Huang C, Liu D, Yang S, et al (2024)

Effect of time-restricted eating regimen on weight loss is mediated by gut microbiome.

iScience, 27(7):110202.

Time-restricted eating (TRE) is a promising obesity management strategy, but weight-loss efficacy varies among participants, and the underlying mechanism is unclear. The study aimed to investigate the role of gut microbiota in weight-loss response during long-term TRE intervention. We analyzed data from 51 obese adults in a 12-month TRE program, categorizing them into distinct weight loss groups (DG) and moderate weight loss groups (MG) based on their TRE responses. Shotgun metagenomic sequencing analysis revealed a significant increase in species closely associated with weight loss effectiveness and metabolic parameter changes in the DG group. Pathways related to fatty acid biosynthesis, glycogen biosynthesis, and nucleotide metabolism were reduced in the DG group and enhanced in the MG group. Next, we identified nine specific species at baseline that contributed better responses to TRE intervention and significant weight loss. Collectively, gut microbiota contributes to responsiveness heterogeneity in TRE and can predict weight-loss effectiveness.

RevDate: 2024-07-11

Zeng X, Liu Y, Wang Q, et al (2024)

Tanning wastewater restructured nitrogen-transforming bacteria communities and promoted N2O emissions in receiving river riparian sediments.

Environmental research pii:S0013-9351(24)01485-3 [Epub ahead of print].

Physicochemical and toxicological characterization of leather tanning wastewater has been widely documented. However, few reports have examined the response of denitrification N2 and N2O emissions in riparian sediments of tannery wastewater-receiving rivers. In this study, [15]N-nitrate labeling was used to reveal the effects of tanning wastewater on denitrification N2 and N2O emission in a wastewater-receiving river (the old Mang River, OMR). OMR riparian sediments were highly polluted with total organic carbon (93.39 mg/kg), total nitrogen (5.00 g/kg) and heavy metals; specifically, Cr, Zn, Cd, and Pb were found at concentrations 47.3, 5.8, 1.6, 4.3, and 2.8 times that in a nearby parallel river without tanning wastewater input (the new Mang River, NMR), respectively. The denitrification N2 emission rates (0.0015 nmol N · g[-1] · h[-1]) of OMR riparian sediments were significantly reduced by 2.5 times compared with those from the NMR (p < 0.05), but the N2O emission rates (0.31 nmol N · g[-1] · h[-1]) were significantly increased (4.1 times, p < 0.05). Although the dominant nitrogen-transforming bacteria phylum was Proteobacteria in the riparian sediments of both rivers, 11 nitrogen-transforming bacteria genera in the OMR were found to be significantly enriched; five of these were related to pollutant degradation based on linear discriminant analysis (LDA > 3). The average activity of the electron transport system in the OMR was 6.3 times lower than that of the NMR (p < 0.05). Among pollution factors, heavy metal complex pollution was the dominant factor driving variations in N2O emissions, microbial community structure, and electron transport system activity. These results provide a new understanding and reference for the treatment of tanning wastewater-receiving rivers.

RevDate: 2024-07-12
CmpDate: 2024-07-10

Ng MS, Soon N, Afiq-Rosli L, et al (2024)

Highly Diverse Symbiodiniaceae Types Hosted by Corals in a Global Hotspot of Marine Biodiversity.

Microbial ecology, 87(1):92.

Symbiotic dinoflagellates in the genus Symbiodiniaceae play vital roles in promoting resilience and increasing stress tolerance in their coral hosts. While much of the world's coral succumb to the stresses associated with increasingly severe and frequent thermal bleaching events, live coral cover in Papua New Guinea (PNG) remains some of the highest reported globally despite the historically warm waters surrounding the country. Yet, in spite of the high coral cover in PNG and the acknowledged roles Symbiodiniaceae play within their hosts, these communities have not been characterized in this global biodiversity hotspot. Using high-throughput sequencing of the ITS2 rDNA gene, we profiled the endosymbionts of four coral species, Diploastrea heliopora, Pachyseris speciosa, Pocillopora acuta, and Porites lutea, across six sites in PNG. Our findings reveal patterns of Cladocopium and Durusdinium dominance similar to other reefs in the Coral Triangle, albeit with much greater intra- and intergenomic variation. Host- and site-specific variations in Symbiodiniaceae type profiles were observed across collection sites, appearing to be driven by environmental conditions. Notably, the extensive intra- and intergenomic variation, coupled with many previously unreported sequences, highlight PNG as a potential hotspot of symbiont diversity. This work represents the first characterization of the coral-symbiont community structure in the PNG marine biodiversity hotspot, serving as a baseline for future studies.

RevDate: 2024-07-10

Litchman E, Villéger S, Zinger L, et al (2024)

Refocusing the microbial rare biosphere concept through a functional lens.

Trends in ecology & evolution pii:S0169-5347(24)00143-5 [Epub ahead of print].

The influential concept of the rare biosphere in microbial ecology has underscored the importance of taxa occurring at low abundances yet potentially playing key roles in communities and ecosystems. Here, we refocus the concept of rare biosphere through a functional trait-based lens and provide a framework to characterize microbial functional rarity, a combination of numerical scarcity across space or time and trait distinctiveness. We demonstrate how this novel interpretation of the rare biosphere, rooted in microbial functions, can enhance our mechanistic understanding of microbial community structure. It also sheds light on functionally distinct microbes, directing conservation efforts towards taxa harboring rare yet ecologically crucial functions.

RevDate: 2024-07-10

Ugwuanyi IR, Steele A, M Glamoclija (2024)

Microbial Ecology of an Arctic Travertine Geothermal Spring: Implications for Biosignature Preservation and Astrobiology.

Astrobiology [Epub ahead of print].

Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site). Our results revealed that microbial communities exhibited spatial dynamics controlled by temperature, fluid availability, and geochemistry. Amorphous carbonates and silica precipitated within biofilm and on the surface of filamentous microorganisms. The water discharged at the source is warm, with near neutral pH, and undersaturated in silica. Hence, silicification possibly occurred through cooling, dehydration, and partially by a microbial presence or activities that promote silica precipitation. CO2 degassing and possible microbial contributions induced calcite precipitation and travertine formation. Jotun revealed that warm systems that are not very productive in carbonate formation may still produce significant carbonate buildups and provide settings favorable for fossilization through silicification and calcification. Our findings suggest that the potential for amorphous silica precipitation may be essential for Jezero Crater's marginal carbonates because it significantly increases the preservation potential of putative martian organisms.

RevDate: 2024-07-10

Hawes I, García-Maldonado JQ, LI Falcón (2024)

Editorial: Exploring microbial mat communities in extreme environments.

Frontiers in microbiology, 15:1440619.

RevDate: 2024-07-10

Jiang J, Xiang X, Zhou Q, et al (2024)

Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach.

Environmental science & technology [Epub ahead of print].

The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an R[2] value of 0.948 for predicting sulfate reduction (SR) intensity from anaerobic parameters with feature engineering. Stage two involved the CatBoost classification and regression model integrating anoxic parameters with the predicted SR values for predicting P removal, reaching an accuracy of 94% and an R[2] value of 0.93, respectively. This study identified key environmental factors, including SR intensity (20-45 mg S/L), influent P concentration (<9.0 mg P/L), mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio (0.55-0.72), influent C/S ratio (0.5-1.0), anoxic reaction time (5-6 h), and MLSS concentration (>6.50 g/L). A user-friendly graphic interface was developed to facilitate easier optimization and control. This approach streamlines the determination of optimal conditions for enhancing P removal in the DS-EBPR process.

RevDate: 2024-07-10
CmpDate: 2024-07-10

Sbibih Y, Saddari A, Alla I, et al (2024)

Microbial ecology of protective isolation room: Air and Surfaces.

La Tunisie medicale, 102(7):394-398 pii:/article/view/4807.

INTRODUCTION: Healthcare-associated infections pose a significant public health burden, leading to morbidity, mortality, prolonged hospital stays, and substantial social and economic costs. Immunocompromised patients are at a heightened risk of nosocomial infections.

AIM: This prospective study conducted at Mohammed VI University Hospital of Oujda aimed to assess the microbial ecology of surfaces and air in an immunosuppressed patient room compared to a double hospitalization room.

METHODS: Microbiological air purity tests were conducted employing both the sedimentation method and the collision method with the assistance of Microflow Alpha. The sedimentation method used Mueller Hinton with 5% human blood, facilitating the free fall of contaminated dust particles. The collection program employed was set for 10 minutes per 1 m3. For surface sampling, swabs were taken from a 25 cm2 surface. The swabs were immediately forwarded to the Microbiology Laboratory. We carried out both macroscopic and microscopic identification of colonies, followed by definitive biochemical identification using the BD phoenixTM system. Antibiotic susceptibility was assessed through agar diffusion on Muller Hinton medium coupled with the determination of the minimum inhibitory concentration.

RESULTS: The results revealed a decreased bacterial count within the protective isolation room, in contrast to the standard hospital room. We noted the predominance of coagulase-negative Staphylococcus spp and Bacillus spp. Staphylococcus aureus and Aspergillus spp, common pathogens in healthcare-associated infections, were notably absent in the protective isolation room. The findings underline the pivotal role of hospital environments in the transmission of healthcare-associated infections.

CONCLUSION: The protective isolation room demonstrated effective control of microbial contamination, with fewer and less resistant germs. The study highlighted the significance of air treatment systems in preventing the spread of opportunistic infections. Our study underscored the critical role of microbiological cleanliness in preventing nosocomial infections.

RevDate: 2024-07-09

Henson MW, JC Thrash (2024)

Microbial ecology of northern Gulf of Mexico estuarine waters.

mSystems [Epub ahead of print].

Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.

RevDate: 2024-07-09

Flinkstrom Z, Bryson S, Candry P, et al (2024)

Metagenomic clustering links specific metabolic functions to globally relevant ecosystems.

mSystems [Epub ahead of print].

UNLABELLED: Metagenomic sequencing has advanced our understanding of biogeochemical processes by providing an unprecedented view into the microbial composition of different ecosystems. While the amount of metagenomic data has grown rapidly, simple-to-use methods to analyze and compare across studies have lagged behind. Thus, tools expressing the metabolic traits of a community are needed to broaden the utility of existing data. Gene abundance profiles are a relatively low-dimensional embedding of a metagenome's functional potential and are, thus, tractable for comparison across many samples. Here, we compare the abundance of KEGG Ortholog Groups (KOs) from 6,539 metagenomes from the Joint Genome Institute's Integrated Microbial Genomes and Metagenomes (JGI IMG/M) database. We find that samples cluster into terrestrial, aquatic, and anaerobic ecosystems with marker KOs reflecting adaptations to these environments. For instance, functional clusters were differentiated by the metabolism of antibiotics, photosynthesis, methanogenesis, and surprisingly GC content. Using this functional gene approach, we reveal the broad-scale patterns shaping microbial communities and demonstrate the utility of ortholog abundance profiles for representing a rapidly expanding body of metagenomic data.

IMPORTANCE: Metagenomics, or the sequencing of DNA from complex microbiomes, provides a view into the microbial composition of different environments. Metagenome databases were created to compile sequencing data across studies, but it remains challenging to compare and gain insight from these large data sets. Consequently, there is a need to develop accessible approaches to extract knowledge across metagenomes. The abundance of different orthologs (i.e., genes that perform a similar function across species) provides a simplified representation of a metagenome's metabolic potential that can easily be compared with others. In this study, we cluster the ortholog abundance profiles of thousands of metagenomes from diverse environments and uncover the traits that distinguish them. This work provides a simple to use framework for functional comparison and advances our understanding of how the environment shapes microbial communities.

RevDate: 2024-07-09

Overgaard CK, Jamy M, Radutoiu S, et al (2024)

Benchmarking long-read sequencing strategies for obtaining ASV-resolved rRNA operons from environmental microeukaryotes.

Molecular ecology resources [Epub ahead of print].

The use of short-read metabarcoding for classifying microeukaryotes is challenged by the lack of comprehensive 18S rRNA reference databases. While recent advances in high-throughput long-read sequencing provide the potential to greatly increase the phylogenetic coverage of these databases, the performance of different sequencing technologies and subsequent bioinformatics processing remain to be evaluated, primarily because of the absence of well-defined eukaryotic mock communities. To address this challenge, we created a eukaryotic rRNA operon clone-library and turned it into a precisely defined synthetic eukaryotic mock community. This mock community was then used to evaluate the performance of three long-read sequencing strategies (PacBio circular consensus sequencing and two Nanopore approaches using unique molecular identifiers) and three tools for resolving amplicons sequence variants (ASVs) (USEARCH, VSEARCH, and DADA2). We investigated the sensitivity of the sequencing techniques based on the number of detected mock taxa, and the accuracy of the different ASV-calling tools with a specific focus on the presence of chimera among the final rRNA operon ASVs. Based on our findings, we provide recommendations and best practice protocols for how to cost-effectively obtain essentially error-free rRNA operons in high-throughput. An agricultural soil sample was used to demonstrate that the sequencing and bioinformatic results from the mock community also translates to highly diverse natural samples, which enables us to identify previously undescribed microeukaryotic lineages.

RevDate: 2024-07-09

Johnston JT, Quoc BN, Abrahamson B, et al (2024)

Increasing aggregate size reduces single-cell organic carbon incorporation by hydrogel-embedded wetland microbes.

ISME communications, 4(1):ycae086.

Microbial degradation of organic carbon in sediments is impacted by the availability of oxygen and substrates for growth. To better understand how particle size and redox zonation impact microbial organic carbon incorporation, techniques that maintain spatial information are necessary to quantify elemental cycling at the microscale. In this study, we produced hydrogel microspheres of various diameters (100, 250, and 500 μm) and inoculated them with an aerobic heterotrophic bacterium isolated from a freshwater wetland (Flavobacterium sp.), and in a second experiment with a microbial community from an urban lacustrine wetland. The hydrogel-embedded microbial populations were incubated with [13]C-labeled substrates to quantify organic carbon incorporation into biomass via nanoSIMS. Additionally, luminescent nanosensors enabled spatially explicit measurements of oxygen concentrations inside the microspheres. The experimental data were then incorporated into a reactive-transport model to project long-term steady-state conditions. Smaller (100 μm) particles exhibited the highest microbial cell-specific growth per volume, but also showed higher absolute activity near the surface compared to the larger particles (250 and 500 μm). The experimental results and computational models demonstrate that organic carbon availability was not high enough to allow steep oxygen gradients and as a result, all particle sizes remained well-oxygenated. Our study provides a foundational framework for future studies investigating spatially dependent microbial activity in aggregates using isotopically labeled substrates to quantify growth.

RevDate: 2024-07-08

Akay C, Ulrich N, Rocha U, et al (2024)

Sequential Anaerobic-Aerobic Treatment Enhances Sulfamethoxazole Removal: From Batch Cultures to Observations in a Large-Scale Wastewater Treatment Plant.

Environmental science & technology [Epub ahead of print].

Sulfamethoxazole (SMX) passes through conventional wastewater treatment plants (WWTPs) mainly unaltered. Under anoxic conditions sulfate-reducing bacteria can transform SMX but the fate of the transformation products (TPs) and their prevalence in WWTPs remain unknown. Here, we report the anaerobic formation and aerobic degradation of SMX TPs. SMX biotransformation was observed in nitrate- and sulfate-reducing enrichment cultures. We identified 10 SMX TPs predominantly showing alterations in the heterocyclic and N[4]-arylamine moieties. Abiotic oxic incubation of sulfate-reducing culture filtrates led to further degradation of the major anaerobic SMX TPs. Upon reinoculation under oxic conditions, all anaerobically formed TPs, including the secondary TPs, were degraded. In samples collected at different stages of a full-scale municipal WWTP, anaerobically formed SMX TPs were detected at high concentrations in the primary clarifier and digested sludge units, where anoxic conditions were prevalent. Contrarily, their concentrations were lower in oxic zones like the biological treatment and final effluent. Our results suggest that anaerobically formed TPs were eliminated in the aerobic treatment stages, consistent with our observations in batch biotransformation experiments. More generally, our findings highlight the significance of varying redox states determining the fate of SMX and its TPs in engineered environments.

RevDate: 2024-07-07

Zhang W, Zhang F, Wu Y, et al (2024)

Powdery Mildew of Xanthium strumarium Caused by Podosphaera xanthii in central China.

Plant disease [Epub ahead of print].

Xanthium strumarium, known as cocklebur, is an annual herb and has been used in traditional Chinese medicine. In October 2020, powdery mildew-like disease signs and symptoms were observed on X. strumarium grown in a crop field, Xinxiang city, Henan Province, China (35.36076° N, 113.93467° E). The specimen (PX-XS2023) was stored in Xinxiang Key Laboratory of Plant Stress Biology. White colonies in irregular or coalesced circular shaped-lesions were abundant on both ad- and abaxial surfaces of leaves and covered up to 99 % of the leaf area. Some of the infected leaves were senesced. More than 70 % of plants (n = 130) exhibited these signs and symptoms. Conidiophores were straight or slightly curved, 55 to 160 × 11 to 13 μm composed of foot-cells, shorter cells and conidia. Conidia were ellipsoid to oval, 29 to 40 × 14 to 20 μm (n = 50), with a length/width ration of 2.0 to 2.5, containing fibrosin bodies. Dark brown to black chasmothecia were found on infected leaves. The appendages were mycelium-shaped and at the base of scattered or gregarious chasmothecia (n = 50, 70 to 120 μm in diameter). Asci were 55 to 80 × 50 to 65 μm (n=30). These morphological characteristics were consistent with those of Podosphaera xanthii (Braun and Cook 2012). The internal transcribed spacer (ITS) region and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) region of the fungus (PX-XS2023) were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990) and GAPDH1/GAPDH3R (Bradshaw et al. 2022) according to a previously reported method (Zhu et al. 2022). The resulting sequences were respectively deposited into GenBank (Accession No. MW300956 and PP236083). BLASTn analysis indicated that the sequences were respectively 99.82 % (564/565) and 100% (272/272) identical to P. xanthii (MT260063 and ON075658). The phylogenetic analysis indicated that the strain PX-XS2023 and P. xanthii were clustered into a same branch. Therefore, the causal agent of powdery mildew on X. strumarium was P. xanthii. To conduct pathogenicity assays, mature leaves of five healthy X. strumarium (height in 50 centimeters) were inoculated with fungal conidia by gently pressing surfaces of infested leaves onto leaves of healthy plants (Zhu et al. 2020). Five untreated plants served as controls. The controls and inoculated plants were separately maintained in greenhouses (humidity, 60%; light/dark, 16 h/8 h; temperature, 18°C). Eight days post-inoculation, signs of powdery mildew were detectable on inoculated plants, however, the controls were asymptomatic. Thus, the fungal pathogen was morphologically and molecularly identified and confirmed as P. xanthii. This powdery mildew caused by P. xanthii was previously reported on X. strumarium in Korea, Russia and India (Farr and Rossman, 2021). In addition, P. xanthii was recorded on X. strumarium in Xinjiang Province, China (Tai 1979). However, this is the first report of P. xanthii on X. strumarium in central China, where is around 3000 km away from Xinjiang Province with geographically differences. The sudden presence of powdery mildew caused by P. xanthii may adversely affect plant health and thus reduce medical value of X. strumarium. Therefore, the identification and confirmation of P. xanthii infecting X. strumarium enhance the knowledge on the hosts of this pathogen in China and will provide fundamental information for disease control in the future.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Chen Y, Zhou H, Gao H, et al (2024)

Comprehensive comparison of water quality risk and microbial ecology between new and old cast iron pipe distribution systems.

Journal of environmental sciences (China), 146:55-66.

The effects of cast iron pipe corrosion on water quality risk and microbial ecology in drinking water distribution systems (DWDSs) were investigated. It was found that trihalomethane (THMs) concentration and antibiotic resistance genes (ARGs) increased sharply in the old DWDSs. Under the same residual chlorine concentration conditions, the adenosine triphosphate concentration in the effluent of old DWDSs (Eff-old) was significantly higher than that in the effluent of new DWDSs. Moreover, stronger bioflocculation ability and weaker hydrophobicity coexisted in the extracellular polymeric substances of Eff-old, meanwhile, iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms, hence enhancing the formation of THMs. Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger microbial antioxidant systems response, resulting in higher ARGs abundance. Corroded cast iron pipes induced a unique interaction system of biofilms, chlorine, and corrosion products. Therefore, as the age of cast iron pipes increases, the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Chen SC, Musat F, Richnow HH, et al (2024)

Microbial diversity and oil biodegradation potential of northern Barents Sea sediments.

Journal of environmental sciences (China), 146:283-297.

The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Ma B, Zheng L, Xie B, et al (2024)

Sustainable wastewater treatment and reuse in space.

Journal of environmental sciences (China), 146:237-240.

Exploring the vast extraterrestrial space is an inevitable trend with continuous human development. Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future. Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched. Herein, we briefly review the related wastewater characteristics and the history of water treatment in space stations, and we focus on future challenges and perspectives, aiming at providing insights for optimizing wastewater treatment technologies and closing the water cycle in future.

RevDate: 2024-07-07
CmpDate: 2024-07-05

Miettinen TP, Gomez AL, Wu Y, et al (2024)

Cell size, density, and nutrient dependency of unicellular algal gravitational sinking velocities.

Science advances, 10(27):eadn8356.

Eukaryotic phytoplankton, also known as algae, form the basis of marine food webs and drive marine carbon sequestration. Algae must regulate their motility and gravitational sinking to balance access to light at the surface and nutrients in deeper layers. However, the regulation of gravitational sinking remains largely unknown, especially in motile species. Here, we quantify gravitational sinking velocities according to Stokes' law in diverse clades of unicellular marine microalgae to reveal the cell size, density, and nutrient dependency of sinking velocities. We identify a motile algal species, Tetraselmis sp., that sinks faster when starved due to a photosynthesis-driven accumulation of carbohydrates and a loss of intracellular water, both of which increase cell density. Moreover, the regulation of cell sinking velocities is connected to proliferation and can respond to multiple nutrients. Overall, our work elucidates how cell size and density respond to environmental conditions to drive the vertical migration of motile algae.

RevDate: 2024-07-07
CmpDate: 2024-07-05

Babajanyan SG, Garushyants SK, Wolf YI, et al (2024)

Microbial diversity and ecological complexity emerging from environmental variation and horizontal gene transfer in a simple mathematical model.

BMC biology, 22(1):148.

BACKGROUND: Microbiomes are generally characterized by high diversity of coexisting microbial species and strains, and microbiome composition typically remains stable across a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. Therefore, the long-term persistence of microbiome diversity calls for an explanation.

RESULTS: To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis were obtained, namely, pure competition, host-parasite relationship, and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environment.

CONCLUSIONS: The results of this modeling study show that basic phenomena that are universal in microbial communities, namely, environmental variation and HGT, provide for stabilization and persistence of microbial diversity, and emergence of ecological complexity.

RevDate: 2024-07-04

Zhao F, Wang B, Cui Q, et al (2024)

Genetically modified indigenous Pseudomonas aeruginosa drove bacterial community to change positively toward microbial enhanced oil recovery applications.

Journal of applied microbiology pii:7706323 [Epub ahead of print].

AIMS: Microbial enhanced oil recovery (MEOR) is cost-effective and eco-friendly for oil exploitation. Genetically modified biosurfactants-producing high-yield strains are promising for ex-situ MEOR. However, can they survive and produce biosurfactants in petroleum reservoirs for in-situ MEOR? What is their effect on the native bacterial community?

METHODS AND RESULTS: A genetically modified indigenous biosurfactants-producing strain Pseudomonas aeruginosa PrhlAB was bioaugmented in simulated reservoir environments. P. aeruginosa PrhlAB could stably colonize in simulated reservoirs. Biosurfactants (200 mg L-1) were produced in simulated reservoirs after bio-augmenting strain PrhlAB. The surface tension of fluid was reduced to 32.1 mN m-1. Crude oil was emulsified with an emulsification index of 60.1%. Bio-augmenting strain PrhlAB stimulated the MEOR-related microbial activities. Hydrocarbons-degrading bacteria and biosurfactants-producing bacteria were activated, while the hydrogen sulfide producing bacteria were inhibited. Bio-augmenting P. aeruginosa PrhlAB reduced the diversity of bacterial community, and gradually simplified the species composition. Bacteria with oil displacement potential became dominant genera, such as Shewanella, Pseudomonas and Arcobacter.

CONCLUSIONS: Culture-based and sequence-based analysis reveal that genetically modified biosurfactants-producing strain P. aeruginosa PrhlAB are promising for in-situ MEOR as well.

RevDate: 2024-07-05

Lange E, Kranert L, Krüger J, et al (2024)

Microbiome modeling: a beginner's guide.

Frontiers in microbiology, 15:1368377.

Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.

RevDate: 2024-07-06
CmpDate: 2024-07-03

Bischof PSP, Bartolomaeus TUP, Löber U, et al (2024)

Microbiome Dynamics and Functional Composition in Coelopa frigida (Diptera, Coelopidae): Insights into Trophic Specialization of Kelp Flies.

Microbial ecology, 87(1):91.

Coelopidae (Diptera), known as kelp flies, exhibit an ecological association with beached kelp and other rotting seaweeds. This unique trophic specialization necessitates significant adaptations to overcome the limitations of an algal diet. We aimed to investigate whether the flies' microbiome could be one of these adaptive mechanisms. Our analysis focused on assessing composition and diversity of adult and larval microbiota of the kelp fly Coelopa frigida. Feeding habits of the larvae of this species have been subject of numerous studies, with debates whether they directly consume kelp or primarily feed on associated bacteria. By using a 16S rRNA metabarcoding approach, we found that the larval microbiota displayed considerably less diversity than adults, heavily dominated by only four operational taxonomic units (OTUs). Phylogenetic placement recovered the most dominant OTU of the larval microbiome, which is the source of more than half of all metabarcoding sequence reads, as an undescribed genus of Orbaceae (Gammaproteobacteria). Interestingly, this OTU is barely found among the 15 most abundant taxa of the adult microbiome, where it is responsible for less than 2% of the metabarcoding sequence reads. The other three OTUs dominating the larval microbiome have been assigned as Psychrobacter (Gammaproteobacteria), Wohlfahrtiimonas (Gammaproteobacteria), and Cetobacterium (Fusobacteriota). Moreover, we also uncovered a distinct shift in the functional composition between the larval and adult stages, where our taxonomic profiling suggests a significant decrease in functional diversity in larval samples. Our study offers insights into the microbiome dynamics and functional composition of Coelopa frigida.

RevDate: 2024-07-03

Mafune KK, Kasson MT, MH Winkler (2024)

Building blocks towards sustainable biofertilizers: Variation in arbuscular mycorrhizal spore germination when immobilized with diazotrophic bacteria in biodegradable hydrogel beads.

Journal of applied microbiology pii:7705611 [Epub ahead of print].

AIM: We investigated whether there was interspecies and intraspecies variation in spore germination of twelve strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads.

METHODS AND RESULTS: Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. 100 beads from each combination (total of 1,200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system.

CONCLUSIONS: Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant-growth promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.

RevDate: 2024-07-03

Perruzza L, Rezzonico Jost T, Raneri M, et al (2024)

Protection from environmental enteric dysfunction and growth improvement in malnourished newborns by amplification of secretory IgA.

Cell reports. Medicine pii:S2666-3791(24)00352-5 [Epub ahead of print].

Environmental enteric dysfunction (EED) is a condition associated with malnutrition that can progress to malabsorption and villous atrophy. Severe EED results in linear growth stunting, slowed neurocognitive development, and unresponsiveness to oral vaccines. Prenatal exposure to malnutrition and breast feeding by malnourished mothers replicates EED. Pups are characterized by deprivation of secretory IgA (SIgA) and altered development of the gut immune system and microbiota. Extracellular ATP (eATP) released by microbiota limits T follicular helper (Tfh) cell activity and SIgA generation in Peyer's patches (PPs). Administration of a live biotherapeutic releasing the ATP-degrading enzyme apyrase to malnourished pups restores SIgA levels and ameliorates stunted growth. SIgA is instrumental in improving the growth and intestinal immune competence of mice while they are continuously fed a malnourished diet. The analysis of microbiota composition suggests that amplification of endogenous SIgA may exert a dominant function in correcting malnourishment dysbiosis and its consequences on host organisms, irrespective of the actual microbial ecology.

RevDate: 2024-07-03
CmpDate: 2024-07-03

Dendooven L, Pérez-Hernández V, Navarro-Pérez G, et al (2024)

Spatial and Temporal Shifts of Endophytic Bacteria in Conifer Seedlings of Abies religiosa (Kunth) Schltdl. & Cham.

Microbial ecology, 87(1):90.

Endophytes play an important role in plant development, survival, and establishment, but their temporal dynamics in young conifer plants are still largely unknown. In this study, the bacterial community was determined by metabarcoding of the 16S rRNA gene in the rhizoplane, roots, and aerial parts of 1- and 5-month-old seedlings of natural populations of Abies religiosa (Kunth) Schltdl. & Cham. In 1-month-old seedlings, Pseudomonas dominated aerial parts (relative abundance 71.6%) and roots (37.9%). However, the roots exhibited significantly higher bacterial species richness than the aerial parts, with the dissimilarity between these plant sections mostly explained by the loss of bacterial amplification sequence variants. After 5 months, Mucilaginibacter dominated in the rhizoplane (9.0%), Streptomyces in the roots (12.2%), and Pseudomonas in the aerial parts (18.1%). The bacterial richness and community structure differed significantly between the plant sections, and these variations were explained mostly by 1-for-1 substitution. The relative abundance of putative metabolic pathways significantly differed between the plant sections at both 1 and 5 months. All the dominant bacterial genera (e.g., Pseudomonas and Burkholderia-Caballeronia-Paraburkholderia) have been reported to have plant growth-promoting capacities and/or antagonism against pathogens, but what defines their role for plant development has still to be determined. This investigation improves our understanding of the early plant-bacteria interactions essential for natural regeneration of A. religiosa forest.

RevDate: 2024-07-02
CmpDate: 2024-07-02

Pan H, Wattiez R, D Gillan (2024)

Soil Metaproteomics for Microbial Community Profiling: Methodologies and Challenges.

Current microbiology, 81(8):257.

Soil represents a complex and dynamic ecosystem, hosting a myriad of microorganisms that coexist and play vital roles in nutrient cycling and organic matter transformation. Among these microorganisms, bacteria and fungi are key members of the microbial community, profoundly influencing the fate of nitrogen, sulfur, and carbon in terrestrial environments. Understanding the intricacies of soil ecosystems and the biological processes orchestrated by microbial communities necessitates a deep dive into their composition and metabolic activities. The advent of next-generation sequencing and 'omics' techniques, such as metagenomics and metaproteomics, has revolutionized our understanding of microbial ecology and the functional dynamics of soil microbial communities. Metagenomics enables the identification of microbial community composition in soil, while metaproteomics sheds light on the current biological functions performed by these communities. However, metaproteomics presents several challenges, both technical and computational. Factors such as the presence of humic acids and variations in extraction methods can influence protein yield, while the absence of high-resolution mass spectrometry and comprehensive protein databases limits the depth of protein identification. Notwithstanding these limitations, metaproteomics remains a potent tool for unraveling the intricate biological processes and functions of soil microbial communities. In this review, we delve into the methodologies and challenges of metaproteomics in soil research, covering aspects such as protein extraction, identification, and bioinformatics analysis. Furthermore, we explore the applications of metaproteomics in soil bioremediation, highlighting its potential in addressing environmental challenges.

RevDate: 2024-07-04
CmpDate: 2024-07-02

Weisse T, Pröschold T, Kammerlander B, et al (2024)

Numerical and Thermal Response of the Bacterivorous Ciliate Colpidium kleini, a Species Potentially at Risk of Extinction by Rising Water Temperatures.

Microbial ecology, 87(1):89.

We investigated the food-dependent growth and thermal response of the freshwater ciliate Colpidium kleini using numerical response (NR) experiments. This bacterivorous ciliate occurs in lotic water and the pelagial of lakes and ponds. The C. kleini strain used in this work was isolated from a small alpine lake and identified by combining detailed morphological inspections with molecular phylogeny. Specific growth rates (rmax) were measured from 5 to 21 °C. The ciliate did not survive at 22 °C. The threshold bacterial food levels (0.3 - 2.2 × 10[6] bacterial cells mL[-1]) matched the bacterial abundance in the alpine lake from which C. kleini was isolated. The food threshold was notably lower than previously reported for C. kleini and two other Colpidium species. The threshold was similar to levels reported for oligotrich and choreotrich ciliates if expressed in terms of bacterial biomass (0.05 - 0.43 mg C L[-1]). From the NR results, we calculated physiological mortality rates at zero food concentration. The mean mortality (0.55 ± 0.17 d[-1]) of C. kleini was close to the mean estimate obtained for other planktonic ciliates that do not encyst. We used the data obtained by the NR experiments to fit a thermal performance curve (TPC). The TPC yielded a temperature optimum at 17.3 °C for C. kleini, a maximum upper thermal tolerance limit of 21.9 °C, and a thermal safety margin of 4.6 °C. We demonstrated that combining NR with TPC analysis is a powerful tool to predict better a species' fitness in response to temperature and food.

RevDate: 2024-07-02

Benammar L, Menasria T, AR Dibi (2024)

Deciphering the geochemical influences on bacterial diversity and communities among two Algerian hot springs.

Environmental science and pollution research international [Epub ahead of print].

Northeastern Algeria boasts numerous hot springs, yet these hydrothermal sites remain largely unexplored for their microbial ecology. The present study explores the bacterial abundance and diversity within two distinct Algerian hot springs (Hammam Saïda and Hammam Debagh) and investigates the link between the prevailing bacteria with geochemical parameters. High-throughput 16S rRNA gene sequencing of water and sediment samples revealed a bacterial dominance of 99.85-91.16% compared to Archaea (0.14-0.66%) in both springs. Interestingly, Saïda hot spring, characterized by higher temperatures and sodium content, harbored a community dominated by Pseudomonadota (51.13%), whereas Debagh, a Ca-Cl-SO4 type spring, was primarily populated by Bacillota with 55.33%. Bacteroidota displayed even distribution across both sites. Additional phyla, including Chloroflexota, Deinococcota, Cyanobacteriota, and Chlorobiota, were also present. Environmental factors, particularly temperature, sodium, potassium, and alkalinity, significantly influenced bacterial diversity and composition. These findings shed light on the interplay between distinct microbial communities and their associated geochemical properties, providing valuable insights for future research on biogeochemical processes in these unique ecosystems driven by distinct environmental conditions, including potential applications in bioremediation and enzyme discovery.

RevDate: 2024-07-03

Aqueel R, Badar A, Ijaz UZ, et al (2024)

Microbial influencers and cotton leaf curl disease (CLCuD) susceptibility: a network perspective.

Frontiers in microbiology, 15:1381883.

Biotic stresses, such as plant viruses, e.g., cotton leaf curl virus (CLCuV), can alter root-associated and leaf-associated microbial diversities in plants. There are complex ecological dynamics at play, with each microbe contributing to a multitude of biotic and abiotic interactions, thus deciding the stability of the plant's ecosystem in response to the disease. Deciphering these networks of interactions is a challenging task. The inferential research in microbiome is also at a nascent stage, often constrained by the underlying analytical assumptions and the limitations with respect to the depth of sequencing. There is also no real consensus on network-wide statistics to identify the influential microbial players in a network. Guided by the latest developments in network science, including recently published metrics such as Integrated View of Influence (IVI) and some other centrality measures, this study provides an exposé of the most influential nodes in the rhizospheric and phyllospheric microbial networks of the cotton leaf curl disease (CLCuD) susceptible, partially tolerant, and resistant cotton varieties. It is evident from our results that the CLCuD-resistant Gossypium arboreum possesses an equal share of keystone species, which helps it to withstand ecological pressures. In the resistant variety, the phyllosphere harbors the most influential nodes, whereas in the susceptible variety, they are present in the rhizosphere. Based on hubness score, spreading score, and IVI, the top 10 occurring keystone species in the FDH-228 (resistant) variety include Actinokineospora, Cohnella, Thermobacillus, Clostridium, Desulfofarcimen, and MDD-D21. Elusimicrobia, Clostridium-sensu-stricto_12, Candidatus woesebacteria, and Dyella were identified as the most influential nodes in the PFV-1 (partially tolerant) variety. In the PFV-2 (susceptible) variety, the keystone species were identified as Georginia, Nesterenkonia, Elusimicrobia MVP-88, Acetivibrio, Tepedisphaerales, Chelatococcus, Nitrosospira, and RCP2-54. This concept deciphers the diseased and healthy plant's response to viral disease, which may be microbially mediated.

RevDate: 2024-07-02

Malfent F, Zehl M, Kirkegaard RH, et al (2024)

Genomes and secondary metabolomes of Streptomyces spp. isolated from Leontopodium nivale ssp. alpinum.

Frontiers in microbiology, 15:1408479.

Bacterial endophytes dwelling in medicinal plants represent an as yet underexplored source of bioactive natural products with the potential to be developed into drugs against various human diseases. For the first time, several Streptomyces spp. were isolated from the rare and endangered traditional medicinal plant Leontopodium nivale ssp. alpinum, also known as Edelweiss. In the search for novel natural products, nine endophytic Streptomyces spp. from Edelweiss were investigated via genome sequencing and analysis, followed by fermentation in different media and investigation of secondary metabolomes. A total of 214 secondary metabolite biosynthetic gene clusters (BGCs), of which 35 are presumably unique, were identified by the bioinformatics tool antiSMASH in the genomes of these isolates. LC-MS analyses of the secondary metabolomes of these isolates revealed their potential to produce both known and presumably novel secondary metabolites, whereby most of the identified molecules could be linked to their cognate BGCs. This work sets the stage for further investigation of endophytic streptomycetes from Edelweiss aimed at the discovery and characterization of novel bioactive natural products.

RevDate: 2024-07-01

Langlois GA (2024)

Past-President address: My journey in microbial ecology-footprints in the sand, island hopping, supply chains, and technology bridges.

The Journal of eukaryotic microbiology [Epub ahead of print].

This paper highlights and honors the connectivity among protistan researchers, using my own research journey as a backdrop, with attention to the supply chain of ideas, supporters, and other influencers who helped to shape and guide my career by sharing their ideas, protocols, skills, and enthusiasm. In looking back at the journey, the supply chain in my career has also included changes in the conceptual framework for my research studies, converging with a continuous flow of ideas and support from colleagues and mentors. To illustrate the complex map of ideas and supporters, this paper will examine technological advances, paradigm shifts in ecological constructs, geographical considerations, breakthroughs in peritrich biology, and the importance of an integrated perspective as we navigate the changing realities of today's scientific challenges.

RevDate: 2024-07-01

Zayed N, Vertommen R, Simoens K, et al (2024)

How well do antimicrobial mouth rinses prevent dysbiosis in an in vitro periodontitis biofilm model?.

Journal of periodontology [Epub ahead of print].

BACKGROUND: Periodontal diseases are associated with dysbiosis in the oral microbial communities. Managing oral biofilms is therefore key for preventing these diseases. Management protocols often include over-the-counter antimicrobial mouth rinses, which lack data on their effects on the oral microbiome's ecology, bacterial composition, metabolic activity, and dysbiosis resilience. This study examined the efficacy of antimicrobial mouth rinses to halt dysbiosis in in vitro oral biofilms under periodontitis-simulating conditions.

METHODS: Multispecies oral biofilms were grown on hydroxyapatite discs (HADs) and rinsed daily with one of six mouth rinses. Positive and negative controls were included. After three rinses, biofilms were analyzed with viability quantitative polymerase chain reaction and visualized using scanning electron microscopy. Supernatants of rinsed biofilms were used for metabolic activity analysis. In addition, human oral keratinocytes were exposed to rinsed biofilms to assess their inflammatory response. All outputs were analyzed for correlation using Spearman coefficient.

RESULTS: Product-related changes were observed in the rinsed biofilms. Three of the six tested mouth rinses could significantly prevent dysbiosis with ≥30% reduction in pathobiont abundance relative to the control. These biofilms had lower metabolic activity, and the exposed human oral keratinocyte produced less interleukin-8. Interleukin-8 production correlated to both pathobiont quantity and the metabolic activity of the biofilms.

CONCLUSION: Some mouth rinses could support biofilm resilience and stop dysbiosis evolution in the biofilm model, with a clear product-related effect. Such mouth rinses can be considered for patients under maintenance/supportive periodontal therapy to prevent/delay disease recurrence. Others are more useful for different periodontal therapy stages.

RevDate: 2024-07-01
CmpDate: 2024-06-28

Pires CS, Costa L, Barbosa SG, et al (2024)

Microplastics Biodegradation by Estuarine and Landfill Microbiomes.

Microbial ecology, 87(1):88.

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.

RevDate: 2024-06-28

Harder CB, Miyauchi S, Virágh M, et al (2024)

Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations.

Cell genomics pii:S2666-979X(24)00170-8 [Epub ahead of print].

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.

RevDate: 2024-07-01
CmpDate: 2024-06-28

Picariello E, F De Nicola (2024)

Recover of Soil Microbial Community Functions in Beech and Turkey Oak Forests After Coppicing Interventions.

Microbial ecology, 87(1):86.

Forest management influences the occurrence of tree species, the organic matter input to the soil decomposer system, and hence, it can alter soil microbial community and key ecosystem functions it performs. In this study, we compared the potential effect of different forest management, coppice and high forest, on soil microbial functional diversity, enzyme activities and chemical-physical soil properties in two forests, turkey oak and beech, during summer and autumn. We hypothesized that coppicing influences soil microbial functional diversity with an overall decrease. Contrary to our hypothesis, in summer, the functional diversity of soil microbial community was higher in both coppice forests, suggesting a resilience response of the microbial communities in the soil after tree cutting, which occurred 15-20 years ago. In beech forest under coppice management, a higher content of soil organic matter (but also of soil recalcitrant and stable organic carbon) compared to high forest can explain the higher soil microbial functional diversity and metabolic activity. In turkey oak forest, although differences in functional diversity of soil microbial community between management were observed, for the other investigated parameters, the differences were mainly linked to seasonality. The findings highlight that the soil organic matter preservation depends on the type of forest, but the soil microbial community was able to recover after about 15 years from coppice intervention in both forest ecosystems. Thus, the type of management implemented in these forest ecosystems, not negatively affecting soil organic matter pool, preserving microbial community and potentially soil ecological functions, is sustainable in a scenario of climate change.

RevDate: 2024-07-02
CmpDate: 2024-07-02

Haller F, Jimenez K, Baumgartner M, et al (2024)

Nfe2l2/NRF2 Deletion Attenuates Tumorigenesis and Increases Bacterial Diversity in a Mouse Model of Lynch Syndrome.

Cancer prevention research (Philadelphia, Pa.), 17(7):311-324.

Lynch syndrome (LS) is the most prevalent heritable form of colorectal cancer. Its early onset and high lifetime risk for colorectal cancer emphasize the necessity for effective chemoprevention. NFE2L2 (NRF2) is often considered a potential druggable target, and many chemopreventive compounds induce NRF2. However, although NRF2 counteracts oxidative stress, it is also overexpressed in colorectal cancer and may promote tumorigenesis. In this study, we evaluated the role of NRF2 in the prevention of LS-associated neoplasia. We found increased levels of NRF2 in intestinal epithelia of mice with intestinal epithelium-specific Msh2 deletion (MSH2ΔIEC) compared with C57BL/6 (wild-type) mice, as well as an increase in downstream NRF2 targets NAD(P)H dehydrogenase (quinone 1) and glutamate-cysteine ligase catalytic subunit. Likewise, NRF2 levels were increased in human MSH2-deficient LS tumors compared with healthy human controls. In silico analysis of a publicly accessible RNA sequencing LS dataset also found an increase in downstream NRF2 targets. Upon crossing MSH2ΔIEC with Nrf2null (MSH2ΔIECNrf2null) mice, we unexpectedly found reduced tumorigenesis in MSH2ΔIECNrf2null mice compared with MSH2ΔIEC mice after 40 weeks, which occurred despite an increase in oxidative damage in MSH2ΔIECNrf2null mice. The loss of NRF2 impaired proliferation as seen by Ki67 intestinal staining and in organoid cultures. This was accompanied by diminished WNT/β-catenin signaling, but apoptosis was unaffected. Microbial α-diversity increased over time with the loss of NRF2 based upon 16S rRNA gene amplicon sequencing of murine fecal samples. Altogether, we show that NRF2 protein levels are increased in MSH2 deficiency and associated neoplasia, but the loss of NRF2 attenuates tumorigenesis. Activation of NRF2 may not be a feasible strategy for chemoprevention in LS. Prevention Relevance: Patients with LS have an early onset and high lifetime risk for colorectal cancer. In this study, we show that NRF2 protein levels are increased in MSH2 deficiency and associated neoplasia, but the loss of NRF2 attenuates tumorigenesis. This suggests that NRF2 may not be a tumor suppressor in this specific context.

RevDate: 2024-07-01
CmpDate: 2024-06-28

Ljaljević Grbić M, Dimkić I, Janakiev T, et al (2024)

Uncovering the Role of Autochthonous Deteriogenic Biofilm Community: Rožanec Mithraeum Monument (Slovenia).

Microbial ecology, 87(1):87.

The primary purpose of the study, as part of the planned conservation work, was to uncover all aspects of autochthonous biofilm pertaining to the formation of numerous deterioration symptoms occurring on the limestone Rožanec Mithraeum monument in Slovenia. Using state-of-the-art sequencing technologies combining mycobiome data with observations made via numerous light and spectroscopic (FTIR and Raman) microscopy analyses pointed out to epilithic lichen Gyalecta jenensis and its photobiont, carotenoid-rich Trentepohlia aurea, as the origin of salmon-hued pigmented alterations of limestone surface. Furthermore, the development of the main deterioration symptom on the monument, i.e., biopitting, was instigated by the formation of typical endolithic thalli and ascomata of representative Verrucariaceae family (Verrucaria sp.) in conjunction with the oxalic acid-mediated dissolution of limestone. The domination of lichenized fungi, as the main deterioration agents, both on the relief and surrounding limestone, was additionally supported by the high relative abundance of lichenized and symbiotroph groups in FUNGuild analysis. Obtained results not only upgraded knowledge of this frequently occurring but often overlooked group of extremophilic stone heritage deteriogens but also provided a necessary groundwork for the development of efficient biocontrol formulation applicable in situ for the preservation of similarly affected limestone monuments.

RevDate: 2024-06-30
CmpDate: 2024-06-28

Baroncelli R, Cobo-Díaz JF, Benocci T, et al (2024)

Genome evolution and transcriptome plasticity is associated with adaptation to monocot and dicot plants in Colletotrichum fungi.

GigaScience, 13:.

BACKGROUND: Colletotrichum fungi infect a wide diversity of monocot and dicot hosts, causing diseases on almost all economically important plants worldwide. Colletotrichum is also a suitable model for studying gene family evolution on a fine scale to uncover events in the genome associated with biological changes.

RESULTS: Here we present the genome sequences of 30 Colletotrichum species covering the diversity within the genus. Evolutionary analyses revealed that the Colletotrichum ancestor diverged in the late Cretaceous in parallel with the diversification of flowering plants. We provide evidence of independent host jumps from dicots to monocots during the evolution of Colletotrichum, coinciding with a progressive shrinking of the plant cell wall degradative arsenal and expansions in lineage-specific gene families. Comparative transcriptomics of 4 species adapted to different hosts revealed similarity in gene content but high diversity in the modulation of their transcription profiles on different plant substrates. Combining genomics and transcriptomics, we identified a set of core genes such as specific transcription factors, putatively involved in plant cell wall degradation.

CONCLUSIONS: These results indicate that the ancestral Colletotrichum were associated with dicot plants and certain branches progressively adapted to different monocot hosts, reshaping the gene content and its regulation.

RevDate: 2024-06-28

Xie G, Sun C, Luo W, et al (2024)

Distinct ecological niches and community dynamics: understanding free-living and particle-attached bacterial communities in an oligotrophic deep lake.

Applied and environmental microbiology [Epub ahead of print].

Oligotrophic deep-water lakes are unique and sensitive ecosystems with limited nutrient availability. Understanding bacterial communities within these lakes is crucial for assessing ecosystem health, biogeochemical cycling, and responses to environmental changes. In this study, we investigated the seasonal and vertical dynamics of both free-living (FL) and particle-attached (PA) bacteria in Lake Fuxian, a typical oligotrophic deep freshwater lake in southeast China. Our findings revealed distinct seasonal and vertical dynamics of FL and PA bacterial communities, driven by similar physiochemical environmental factors. PA bacteria exhibited higher α- and β-diversity and were enriched with Proteobacteria, Cyanobacteria, Firmicutes, Patescibacteria, Planctomycetota, and Verrucomicrobiota, while FL bacteria were enriched with Actinobacteria and Bacteroidota. FL bacteria showed enrichment in putative functions related to chemoheterotrophy and aerobic anoxygenic photosynthesis, whereas the PA fraction was enriched with intracellular parasites (mainly contributed by Rickettsiales, Chlamydiales, and Legionellales) and nitrogen metabolism functions. Deterministic processes predominantly shaped the assembly of both FL and PA bacterial communities, with stochastic processes playing a greater role in the FL fraction. Network analysis revealed extensive species interactions, with a higher proportion of positively correlated edges in the PA network, indicating mutualistic or cooperative interactions. Cyanobium, Comamonadaceae, and Roseomonas were identified as keystone taxa in the PA network, underscoring potential cooperation between autotrophic and heterotrophic bacteria in organic particle microhabitats. Overall, the disparities in bacterial diversity, community composition, putative function, and network characteristics between FL and PA fractions highlight their adaptation to distinct ecological niches within these unique lake ecosystems.IMPORTANCEUnderstanding the diversity of microbial communities, their assembly mechanisms, and their responses to environmental changes is fundamental to the study of aquatic microbial ecology. Oligotrophic deep-water lakes are fragile ecosystems with limited nutrient resources, rendering them highly susceptible to environmental fluctuations. Examining different bacterial types within these lakes offers valuable insights into the intricate mechanisms governing community dynamics and adaptation strategies across various scales. In our investigation of oligotrophic deep freshwater Lake Fuxian in China, we explored the seasonal and vertical dynamics of two bacterial types: free-living (FL) and particle-attached (PA). Our findings unveiled distinct patterns in the diversity, composition, and putative functions of these bacteria, all shaped by environmental factors. Understanding these subtleties provides insight into bacterial interactions, thereby influencing the overall ecosystem functioning. Ultimately, our research illuminates the adaptation and roles of FL and PA bacteria within these unique lake environments, contributing significantly to our broader comprehension of ecosystem stability and health.

RevDate: 2024-06-28

Shi Q, Sun L, Gao J, et al (2024)

Effects of sodium lauryl sulfate and postbiotic toothpaste on oral microecology.

Journal of oral microbiology, 16(1):2372224 pii:2372224.

The diversity and delicate balance of the oral microbiome contribute to oral health, with its disruption leading to oral and systemic diseases. Toothpaste includes elements like traditional additives such as sodium lauryl sulfate (SLS) as well as novel postbiotics derived from probiotics, which are commonly employed for maintaining oral hygiene and a healthy oral cavity. However, the response of the oral microbiota to these treatments remains poorly understood. In this study, we systematically investigated the impact of SLS, and toothpaste containing postbiotics (hereafter, postbiotic toothpaste) across three systems: biofilms, animal models, and clinical populations. SLS was found to kill bacteria in both preformed biofilms (mature biofilms) and developing biofilms (immature biofilms), and disturbed the microbial community structure by increasing the number of pathogenic bacteria. SLS also destroyed periodontal tissue, promoted alveolar bone resorption, and enhanced the extent of inflammatory response level. The postbiotic toothpaste favored bacterial homeostasis and the normal development of the two types of biofilms in vitro, and attenuated periodontitis and gingivitis in vivo via modulation of oral microecology. Importantly, the postbiotic toothpaste mitigated the adverse effects of SLS when used in combination, both in vitro and in vivo. Overall, the findings of this study describe the impact of toothpaste components on oral microflora and stress the necessity for obtaining a comprehensive understanding of oral microbial ecology by considering multiple aspects.

RevDate: 2024-06-28
CmpDate: 2024-06-28

Chaudhary DK, Kim SE, Park HJ, et al (2024)

Unveiling the Bacterial Community across the Stomach, Hepatopancreas, Anterior Intestine, and Posterior Intestine of Pacific Whiteleg Shrimp.

Journal of microbiology and biotechnology, 34(6):1260-1269.

The gastrointestinal (GI) tract of shrimp, which is comprised of the stomach, hepatopancreas, and intestine, houses microbial communities that play crucial roles in immune defense, nutrient absorption, and overall health. While the intestine's microbiome has been well-studied, there has been limited research investigating the stomach and hepatopancreas. The present study addresses this gap by profiling the bacterial community in these interconnected GI segments of Pacific whiteleg shrimp. To this end, shrimp samples were collected from a local aquaculture farm in South Korea, and 16S rRNA gene amplicon sequencing was performed. The results revealed significant variations in bacterial diversity and composition among GI segments. The stomach and hepatopancreas exhibited higher Proteobacteria abundance, while the intestine showed a more diverse microbiome, including Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Chloroflexi, and Verrucomicrobia. Genera such as Oceaniovalibus, Streptococcus, Actibacter, Ilumatobacter, and Litorilinea dominated the intestine, while Salinarimonas, Sphingomonas, and Oceaniovalibus prevailed in the stomach and hepatopancreas. It is particularly notable that Salinarimonas, which is associated with nitrate reduction and pollutant degradation, was prominent in the hepatopancreas. Overall, this study provides insights into the microbial ecology of the Pacific whiteleg shrimp's GI tract, thus enhancing our understanding of shrimp health with the aim of supporting sustainable aquaculture practices.

RevDate: 2024-06-28

Wu H, Mu C, Li X, et al (2024)

Breed-Driven Microbiome Heterogeneity Regulates Intestinal Stem Cell Proliferation via Lactobacillus-Lactate-GPR81 Signaling.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

Genetically lean and obese individuals have distinct intestinal microbiota and function. However, the underlying mechanisms of the microbiome heterogeneity and its regulation on epithelial function such as intestinal stem cell (ISC) fate remain unclear. Employing pigs of genetically distinct breeds (obese Meishan and lean Yorkshire), this study reveals transcriptome-wide variations in microbial ecology of the jejunum, characterized by enrichment of active Lactobacillus species, notably the predominant Lactobacillus amylovorus (L. amylovorus), and lactate metabolism network in obese breeds. The L. amylovorus-dominant heterogeneity is paralleled with epithelial functionality difference as reflected by highly expressed GPR81, more proliferative ISCs and activated Wnt/β-catenin signaling. Experiments using in-house developed porcine jejunal organoids prove that live L. amylovorus and its metabolite lactate promote intestinal organoid growth. Mechanistically, L. amylovorus and lactate activate Wnt/β-catenin signaling in a GPR81-dependent manner to promote ISC-mediated epithelial proliferation. However, heat-killed L. amylovorus fail to cause these changes. These findings uncover a previously underrepresented role of L. amylovorus in regulating jejunal stem cells via Lactobacillus-lactate-GPR81 axis, a key mechanism bridging breed-driven intestinal microbiome heterogeneity with ISC fate. Thus, results from this study provide new insights into the role of gut microbiome and stem cell interactions in maintaining intestinal homeostasis.

RevDate: 2024-06-27
CmpDate: 2024-06-27

Shen CL, Wankhade UD, Shankar K, et al (2024)

Effects of Statin and Annatto-extracted Tocotrienol Supplementation on Glucose Homeostasis, Bone Microstructure, and Gut Microbiota Composition in Obese Mice.

In vivo (Athens, Greece), 38(4):1557-1570.

BACKGROUND/AIM: This study examined the effects of tocotrienols (TT) in conjunction with statin on glucose homeostasis, bone microstructure, gut microbiome, and systemic and liver inflammatory markers in obese C57BL/6J mice.

MATERIALS AND METHODS: Forty male C57BL/6J mice were fed a high-fat diet (HFD) and assigned into four groups in a 2 (no statin vs. 120 mg statin/kg diet)×2 (no TT vs. 400 mg TT/kg diet) factorial design for 14 weeks.

RESULTS: Statin and TT improved glucose tolerance only when each was given alone, and only statin supplementation decreased insulin resistance. Consistently, only statin supplementation decreased serum insulin levels and HOMA-IR. Pancreatic insulin was also increased with statin treatment. Statin and TT, alone or in combination, reduced the levels of serum IL-6, but only TT attenuated the increased serum leptin levels induced by a HFD. Statin supplementation increased bone area/total area and connectivity density at LV-4, while TT supplementation increased bone area/total area and trabecular number, but decreased trabecular separation at the distal femur. Statin supplementation, but not TT, reduced hepatic inflammatory cytokine gene expression. Neither TT supplementation nor statin supplementation statistically altered microbiome species evenness or richness. However, they altered the relative abundance of certain microbiome species. Most notably, both TT and statin supplementation increased the relative abundance of Lachnospiraceae UCG-006.

CONCLUSION: TT and statin collectively benefit bone microstructure, glucose homeostasis, and microbial ecology in obese mice. Such changes may be, in part, associated with suppression of inflammation in the host.

RevDate: 2024-06-27
CmpDate: 2024-06-27

Morikawa T, Paudel D, Uehara O, et al (2024)

Effects of Laurus nobilis Leaf Extract (LAURESH[®]) on Oral and Gut Microbiota Diversity in Mice.

In vivo (Athens, Greece), 38(4):1758-1766.

BACKGROUND/AIM: The leaves of Laurus nobilis have been used for culinary purposes for many years and have recently been shown to have beneficial effects on human health by altering microbiota composition. However, the effects of L. nobilis on the diversity of microbiomes in the oral cavity and gut remain unknown. Therefore, in this study, we examined the effects of an extract of L. nobilis on the diversity of microbiomes in the oral cavity and gut in mice.

MATERIALS AND METHODS: C57BL/6J mice were randomly divided into two groups and fed a standard diet (SD) and a standard diet containing 5% LAURESH[®], a laurel extract (SDL). After 10 weeks, oral swabs and fecal samples were collected. The bacterial DNA extracted from the oral swabs and feces was used for microbiota analysis using 16S rRNA sequencing. The sequencing data were analyzed using the Quantitative Insights into Microbial Ecology 2 in the DADA2 pipeline and 16S rRNA database.

RESULTS: The α-diversity of the oral microbiome was significantly greater in the SDL group than in the SD group. The β-diversity of the oral microbiome was also significantly different between the groups. Moreover, the taxonomic abundance analysis showed that five bacteria in the gut were significantly different among the groups. Furthermore, the SDL diet increased the abundance of beneficial gut bacteria, such as Akkermansia sp.

CONCLUSION: Increased diversity of the oral microbiome and proportion of Akkermansia sp. in the gut microbiome induced by L. nobilis consumption may benefit oral and gut health.

RevDate: 2024-06-27

Chen YC, Destouches L, Cook A, et al (2024)

Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.

Journal of applied microbiology pii:7700725 [Epub ahead of print].

Microbiomes, the complex networks of micro-organisms and the molecules through which they interact, play a crucial role in health and ecology. Over at least the past two decades, engineering biology has made significant progress, impacting the bio-based industry, health and environmental sectors; but has only recently begun to explore the engineering of microbial ecosystems. The creation of synthetic microbial communities presents opportunities to help us understand the dynamics of wild ecosystems, learn how to manipulate and interact with existing microbiomes for therapeutic and other purposes, and to create entirely new microbial communities capable of undertaking tasks for industrial biology. Here, we describe how synthetic ecosystems can be constructed and controlled, focusing on how the available methods and interaction mechanisms facilitate the regulation of community composition and output. While experimental decisions are dictated by intended applications, the vast number of tools available suggests great opportunity for researchers to develop a diverse array of novel microbial ecosystems.

RevDate: 2024-06-27
CmpDate: 2024-06-27

O'Brien JM, Blais N, Butler C, et al (2024)

Ten "simple" rules for non-Indigenous researchers engaging Indigenous communities in Arctic research.

PLoS computational biology, 20(6):e1012093 pii:PCOMPBIOL-D-23-01083.

RevDate: 2024-06-27

Luo S, Zhang X, X Zhou (2024)

Temporospatial dynamics and host specificity of honeybee gut bacteria.

Cell reports, 43(7):114408 pii:S2211-1247(24)00737-X [Epub ahead of print].

Honeybees are important pollinators worldwide, with their gut microbiota playing a crucial role in maintaining their health. The gut bacteria of honeybees consist of primarily five core lineages that are spread through social interactions. Previous studies have provided a basic understanding of the composition and function of the honeybee gut microbiota, with recent advancements focusing on analyzing diversity at the strain level and changes in bacterial functional genes. Research on honeybee gut microbiota across different regions globally has provided insights into microbial ecology. Additionally, recent findings have shed light on the mechanisms of host specificity of honeybee gut bacteria. This review explores the temporospatial dynamics in honeybee gut microbiota, discussing the reasons and mechanisms behind these fluctuations. This synopsis provides insights into host-microbe interactions and is invaluable for honeybee health.

RevDate: 2024-06-27
CmpDate: 2024-06-27

Parra B, Lutz VT, Brøndsted L, et al (2024)

Characterization and Abundance of Plasmid-Dependent Alphatectivirus Bacteriophages.

Microbial ecology, 87(1):85.

Antimicrobial resistance (AMR) is a major public health threat, exacerbated by the ability of bacteria to rapidly disseminate antimicrobial resistance genes (ARG). Since conjugative plasmids of the incompatibility group P (IncP) are ubiquitous mobile genetic elements that often carry ARG and are broad-host-range, they are important targets to prevent the dissemination of AMR. Plasmid-dependent phages infect plasmid-carrying bacteria by recognizing components of the conjugative secretion system as receptors. We sought to isolate plasmid-dependent phages from wastewater using an avirulent strain of Salmonella enterica carrying the conjugative IncP plasmid pKJK5. Irrespective of the site, we only obtained bacteriophages belonging to the genus Alphatectivirus. Eleven isolates were sequenced, their genomes analyzed, and their host range established using S. enterica, Escherichia coli, and Pseudomonas putida carrying diverse conjugative plasmids. We confirmed that Alphatectivirus are abundant in domestic and hospital wastewater using culture-dependent and culture-independent approaches. However, these results are not consistent with their low or undetectable occurrence in metagenomes. Therefore, overall, our results emphasize the importance of performing phage isolation to uncover diversity, especially considering the potential of plasmid-dependent phages to reduce the spread of ARG carried by conjugative plasmids, and to help combat the AMR crisis.

RevDate: 2024-06-27

Rezende GS, Rocha FI, Funnicelli MIG, et al (2024)

Metabarcoding analysis reveals an interaction among distinct groups of bacteria associated with three different varietals of grapes used for wine production in Brazil.

Heliyon, 10(11):e32283 pii:S2405-8440(24)08314-2.

Grapes are globally popular with wine production being one of the most well-known uses of grapes worldwide. Brazil has a growing wine industry, and the Serra Gaúcha region is a significant contributor to the country's wine production. Nonetheless, other states are increasing their relevance in this segment. Environmental factors and the soil microbiome (bacteria and fungi) heavily influence grape quality, shaping the crucial "terroir" for wines. Here, soil quality was assessed through nutrient analysis and bacteria microbial diversity, which could significantly impact grape health and final wine attributes. Soil samples from São Paulo's vineyards, focusing on Syrah, Malbec, and Cabernet Sauvignon, underwent chemical and microbial analysis via 16S rRNA metabarcoding and highlighted significant differences in soil composition between vineyards. Statistical analyses including PCA and CAP showcased region-based separation and intricate associations between microbiota, region, and grape variety. Correlation analysis pinpointed microbial genera linked to specific soil nutrients. Random Forest analysis identified abundant bacterial genera per grape variety and the Network analysis revealed varied co-occurrence patterns, with Cabernet Sauvignon exhibiting complex microbial interactions. This study unveils complex relationships between soil microbiota, nutrients, and diverse grape varieties in distinct vineyard regions. Understanding how these specific microorganisms are associated with grapes can improve vineyard management, grape quality, and wine production. It can also potentially optimize soil health, bolster grapevine resilience against pests and diseases, and contribute to the unique character of wines known as terroir.

RevDate: 2024-06-27

Stemple B, Gulliver D, Sarkar P, et al (2024)

Metagenome-assembled genomes provide insight into the metabolic potential during early production of Hydraulic Fracturing Test Site 2 in the Delaware Basin.

Frontiers in microbiology, 15:1376536.

Demand for natural gas continues to climb in the United States, having reached a record monthly high of 104.9 billion cubic feet per day (Bcf/d) in November 2023. Hydraulic fracturing, a technique used to extract natural gas and oil from deep underground reservoirs, involves injecting large volumes of fluid, proppant, and chemical additives into shale units. This is followed by a "shut-in" period, during which the fracture fluid remains pressurized in the well for several weeks. The microbial processes that occur within the reservoir during this shut-in period are not well understood; yet, these reactions may significantly impact the structural integrity and overall recovery of oil and gas from the well. To shed light on this critical phase, we conducted an analysis of both pre-shut-in material alongside production fluid collected throughout the initial production phase at the Hydraulic Fracturing Test Site 2 (HFTS 2) located in the prolific Wolfcamp formation within the Permian Delaware Basin of west Texas, USA. Specifically, we aimed to assess the microbial ecology and functional potential of the microbial community during this crucial time frame. Prior analysis of 16S rRNA sequencing data through the first 35 days of production revealed a strong selection for a Clostridia species corresponding to a significant decrease in microbial diversity. Here, we performed a metagenomic analysis of produced water sampled on Day 33 of production. This analysis yielded three high-quality metagenome-assembled genomes (MAGs), one of which was a Clostridia draft genome closely related to the recently classified Petromonas tenebris. This draft genome likely represents the dominant Clostridia species observed in our 16S rRNA profile. Annotation of the MAGs revealed the presence of genes involved in critical metabolic processes, including thiosulfate reduction, mixed acid fermentation, and biofilm formation. These findings suggest that this microbial community has the potential to contribute to well souring, biocorrosion, and biofouling within the reservoir. Our research provides unique insights into the early stages of production in one of the most prolific unconventional plays in the United States, with important implications for well management and energy recovery.

RevDate: 2024-06-27

Ponce MA, Maille JM, Stoll I, et al (2024)

Microbial vectoring capacity by internal- and external-infesting stored product insects after varying dispersal periods between novel food patches: An underestimated risk.

Ecology and evolution, 14(6):e11368 pii:ECE311368.

Understanding the ability of internal- and external-infesting stored product insects to vector microbes is important for estimating the relative risk that insects pose to postharvest commodities as they move between habitat patches and in the landscape. Thus, the aim of the current study was to evaluate and compare the microbial growth in novel food patches at different dispersal periods by different populations of Sitophilus oryzae (e.g., internal-infesting) and Lasioderma serricorne (e.g., external-infesting). Adults of both species collected from laboratory colonies or field-captured populations were either placed immediately in a novel food patch, or given a dispersal period of 24 or 72 h in a sterilized environment before entering a surrogate food patch. Vectored microbes in new food patches were imaged after 3 or 5 days of foraging, and microbial growth was processed using ImageJ while fungal species were identified through sequencing the ITS4/5 ribosomal subunit. We found that increasing dispersal time resulted in multiple-fold reductions in microbial growth surrogate food patches by L. serricorne but not S. oryzae. This was likely attributable to higher mobility by S. oryzae than L. serricorne. A total of 20 morphospecies were identified from 13 genera among the 59 sequences, with a total of 23% and 16% classified as Aspergillus and Penicillium spp. Our data suggest that there is a persistent risk of microbial contamination by both species, which has important food safety implications at food facilities.

RevDate: 2024-06-27

Hernández-Zulueta J, Rubio-Bueno S, Zamora-Tavares MDP, et al (2024)

Metabarcoding the Bacterial Assemblages Associated with Toxopneustes roseus in the Mexican Central Pacific.

Microorganisms, 12(6): pii:microorganisms12061195.

The Mexican Central Pacific (MCP) region has discontinuous coral ecosystems with different protection and anthropogenic disturbance. Characterizing the bacterial assemblage associated with the sea urchin Toxopneustes roseus and its relationship with environmental variables will contribute to understanding the species' physiology and ecology. We collected sea urchins from coral ecosystems at six sites in the MCP during the summer and winter for two consecutive years. The spatial scale represented the most important variation in the T. roseus bacteriome, particularly because of Isla Isabel National Park (PNII). Likewise, spatial differences correlated with habitat structure variables, mainly the sponge and live coral cover. The PNII exhibited highly diverse bacterial assemblages compared to other sites, characterized by families associated with diseases and environmental stress (Saprospiraceae, Flammeovirgaceae, and Xanthobacteraceae). The remaining five sites presented a constant spatiotemporal pattern, where the predominance of the Campylobacteraceae and Helicobacteraceae families was key to T. roseus' holobiont. However, the dominance of certain bacterial families, such as Enterobacteriaceae, in the second analyzed year suggests that Punto B and Islas e islotes de Bahía Chamela Sanctuary were exposed to sewage contamination. Overall, our results improve the understanding of host-associated bacterial assemblages in specific time and space and their relationship with the environmental condition.

RevDate: 2024-06-27

Tata A, Massaro A, Miano B, et al (2024)

A Snapshot, Using a Multi-Omic Approach, of the Metabolic Cross-Talk and the Dynamics of the Resident Microbiota in Ripening Cheese Inoculated with Listeria innocua.

Foods (Basel, Switzerland), 13(12): pii:foods13121912.

Raw milk cheeses harbor complex microbial communities. Some of these microorganisms are technologically essential, but undesirable microorganisms can also be present. While most of the microbial dynamics and cross-talking studies involving interaction between food-derived bacteria have been carried out on agar plates in laboratory-controlled conditions, the present study evaluated the modulation of the resident microbiota and the changes of metabolite production directly in ripening raw milk cheese inoculated with Listeria innocua strains. Using a proxy of the pathogenic Listeria monocytogenes, we aimed to establish the key microbiota players and chemical signals that characterize Latteria raw milk cheese over 60 days of ripening time. The microbiota of both the control and Listeria-inoculated cheeses was analyzed using 16S rRNA targeted amplicon sequencing, while direct analysis in real time mass spectrometry (DART-HRMS) was applied to investigate the differences in the metabolic profiles of the cheeses. The diversity analysis showed the same microbial diversity trend in both the control cheese and the inoculated cheese, while the taxonomic analysis highlighted the most representative genera of bacteria in both the control and inoculated cheese: Lactobacillus and Streptococcus. On the other hand, the metabolic fingerprints revealed that the complex interactions between resident microbiota and L. innocua were governed by continuously changing chemical signals. Changes in the amounts of small organic acids, hydroxyl fatty acids, and antimicrobial compounds, including pyroglutamic acid, hydroxy-isocaproic acid, malic acid, phenyllactic acid, and lactic acid, were observed over time in the L. innocua-inoculated cheese. In cheese that was inoculated with L. innocua, Streptococcus was significantly correlated with the volatile compounds carboxylbenzaldheyde and cyclohexanecarboxylic acid, while Lactobacillus was positively correlated with some volatile and flavor compounds (cyclohexanecarboxylic acid, pyroxidal acid, aminobenzoic acid, and vanillic acid). Therefore, we determined the metabolic markers that characterize a raw milk cheese inoculated with L. innocua, the changes in these markers with the ripening time, and the positive correlation of flavor and volatile compounds with the resident microbiota. This multi-omics approach could suggest innovative food safety strategies based on the enhanced management of undesirable microorganisms by means of strain selection in raw matrices and the addition of specific antimicrobial metabolites to prevent the growth of undesirable microorganisms.

RevDate: 2024-06-27

Vale ADS, Pereira CMT, De Dea Lindner J, et al (2024)

Exploring Microbial Influence on Flavor Development during Coffee Processing in Humid Subtropical Climate through Metagenetic-Metabolomics Analysis.

Foods (Basel, Switzerland), 13(12): pii:foods13121871.

Research into microbial interactions during coffee processing is essential for developing new methods that adapt to climate change and improve flavor, thus enhancing the resilience and quality of global coffee production. This study aimed to investigate how microbial communities interact and contribute to flavor development in coffee processing within humid subtropical climates. Employing Illumina sequencing for microbial dynamics analysis, and high-performance liquid chromatography (HPLC) integrated with gas chromatography-mass spectrometry (GC-MS) for metabolite assessment, the study revealed intricate microbial diversity and associated metabolic activities. Throughout the fermentation process, dominant microbial species included Enterobacter, Erwinia, Kluyvera, and Pantoea from the prokaryotic group, and Fusarium, Cladosporium, Kurtzmaniella, Leptosphaerulina, Neonectria, and Penicillium from the eukaryotic group. The key metabolites identified were ethanol, and lactic, acetic, and citric acids. Notably, the bacterial community plays a crucial role in flavor development by utilizing metabolic versatility to produce esters and alcohols, while plant-derived metabolites such as caffeine and linalool remain stable throughout the fermentation process. The undirected network analysis revealed 321 interactions among microbial species and key substances during the fermentation process, with Enterobacter, Kluyvera, and Serratia showing strong connections with sugar and various volatile compounds, such as hexanal, benzaldehyde, 3-methylbenzaldehyde, 2-butenal, and 4-heptenal. These interactions, including inhibitory effects by Fusarium and Cladosporium, suggest microbial adaptability to subtropical conditions, potentially influencing fermentation and coffee quality. The sensory analysis showed that the final beverage obtained a score of 80.83 ± 0.39, being classified as a specialty coffee by the Specialty Coffee Association (SCA) metrics. Nonetheless, further enhancements in acidity, body, and aftertaste could lead to a more balanced flavor profile. The findings of this research hold substantial implications for the coffee industry in humid subtropical regions, offering potential strategies to enhance flavor quality and consistency through controlled fermentation practices. Furthermore, this study contributes to the broader understanding of how microbial ecology interplays with environmental factors to influence food and beverage fermentation, a topic of growing interest in the context of climate change and sustainable agriculture.

RevDate: 2024-06-27

Huang Y, Chen Y, Xie H, et al (2024)

Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish.

Biology, 13(6): pii:biology13060372.

The gut microbiota constitutes a complex ecosystem that has an important impact on host health. In this study, genetically engineered zebrafish with inducible nitric oxide synthase (iNOS or NOS2) knockout were used as a model to investigate the effects of nos2a/nos2b gene single knockout and nos2 gene double knockout on intestinal microbiome composition and function. Extensive 16S rRNA sequencing revealed substantial changes in microbial diversity and specific taxonomic abundances, yet it did not affect the functional structure of the intestinal tissues. Notably, iNOS-deficient zebrafish demonstrated a decrease in Vibrio species and an increase in Aeromonas species, with more pronounced effects observed in double knockouts. Further transcriptomic analysis of the gut in double iNOS knockout zebrafish indicated significant alterations in immune-related and metabolic pathways, including the complement and PPAR signaling pathways. These findings underscore the crucial interplay between host genetics and gut microbiota, indicating that iNOS plays a key role in modulating the gut microbial ecology, host immune system, and metabolic responses.

RevDate: 2024-06-26
CmpDate: 2024-06-26

Martin LC, O'Hare MA, Ghielmetti G, et al (2024)

Short-read full-length 16S rRNA amplicon sequencing for characterisation of the respiratory bacteriome of captive and free-ranging African elephants (Loxodonta africana).

Scientific reports, 14(1):14768.

Hypervariable region sequencing of the 16S ribosomal RNA (rRNA) gene plays a critical role in microbial ecology by offering insights into bacterial communities within specific niches. While providing valuable genus-level information, its reliance on data from targeted genetic regions limits its overall utility. Recent advances in sequencing technologies have enabled characterisation of the full-length 16S rRNA gene, enhancing species-level classification. Although current short-read platforms are cost-effective and precise, they lack full-length 16S rRNA amplicon sequencing capability. This study aimed to evaluate the feasibility of a modified 150 bp paired-end full-length 16S rRNA amplicon short-read sequencing technique on the Illumina iSeq 100 and 16S rRNA amplicon assembly workflow by utilising a standard mock microbial community and subsequently performing exploratory characterisation of captive (zoo) and free-ranging African elephant (Loxodonta africana) respiratory microbiota. Our findings demonstrate that, despite generating assembled amplicons averaging 869 bp in length, this sequencing technique provides taxonomic assignments consistent with the theoretical composition of the mock community and respiratory microbiota of other mammals. Tentative bacterial signatures, potentially representing distinct respiratory tract compartments (trunk and lower respiratory tract) were visually identified, necessitating further investigation to gain deeper insights into their implication for elephant physiology and health.

RevDate: 2024-06-26
CmpDate: 2024-06-26

Brown CL, Maile-Moskowitz A, Lopatkin AJ, et al (2024)

Selection and horizontal gene transfer underlie microdiversity-level heterogeneity in resistance gene fate during wastewater treatment.

Nature communications, 15(1):5412.

Activated sludge is the centerpiece of biological wastewater treatment, as it facilitates removal of sewage-associated pollutants, fecal bacteria, and pathogens from wastewater through semi-controlled microbial ecology. It has been hypothesized that horizontal gene transfer facilitates the spread of antibiotic resistance genes within the wastewater treatment plant, in part because of the presence of residual antibiotics in sewage. However, there has been surprisingly little evidence to suggest that sewage-associated antibiotics select for resistance at wastewater treatment plants via horizontal gene transfer or otherwise. We addressed the role of sewage-associated antibiotics in promoting antibiotic resistance using lab-scale sequencing batch reactors fed field-collected wastewater, metagenomic sequencing, and our recently developed bioinformatic tool Kairos. Here, we found confirmatory evidence that fluctuating levels of antibiotics in sewage are associated with horizontal gene transfer of antibiotic resistance genes, microbial ecology, and microdiversity-level differences in resistance gene fate in activated sludge.

RevDate: 2024-06-26
CmpDate: 2024-06-26

Bosch J, Lebre PH, Marais E, et al (2024)

Kinetics and pathways of sub-lithic microbial community (hypolithon) development.

Environmental microbiology reports, 16(3):e13290.

Type I hypolithons are microbial communities dominated by Cyanobacteria. They adhere to the underside of semi-translucent rocks in desert pavements, providing them with a refuge from the harsh abiotic stresses found on the desert soil surface. Despite their crucial role in soil nutrient cycling, our understanding of their growth rates and community development pathways remains limited. This study aimed to quantify the dynamics of hypolithon formation in the pavements of the Namib Desert. We established replicate arrays of sterile rock tiles with varying light transmission in two areas of the Namib Desert, each with different annual precipitation regimes. These were sampled annually over 7 years, and the samples were analysed using eDNA extraction and 16S rRNA gene amplicon sequencing. Our findings revealed that in the zone with higher precipitation, hypolithon formation became evident in semi-translucent rocks 3 years after the arrays were set up. This coincided with a Cyanobacterial 'bloom' in the adherent microbial community in the third year. In contrast, no visible hypolithon formation was observed at the array set up in the hyper-arid zone. This study provides the first quantitative evidence of the kinetics of hypolithon development in hot desert environments, suggesting that development rates are strongly influenced by precipitation regimes.

RevDate: 2024-06-26
CmpDate: 2024-06-26

Pérez-Pazos E, Beidler KV, Narayanan A, et al (2024)

Fungi rather than bacteria drive early mass loss from fungal necromass regardless of particle size.

Environmental microbiology reports, 16(3):e13280.

Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (>500, 250-500, and <250 μm) of Hyaloscypha bicolor necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal-bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates containing necromass-infused media. Microbial growth was measured after 5 days through quantitative PCR. Regardless of particle size, necromass colonized by fungi had higher mass loss and respiration than both bacteria and uninoculated controls. Fungal colonization increased necromass pH, water content, and altered chemistry, while necromass colonized by bacteria remained mostly unaltered. Bacteria grew significantly more when co-cultured with a fungus, while fungal growth was not significantly affected by bacteria. Collectively, our results suggest that fungi act as key early decomposers of fungal necromass and that bacteria may require the presence of fungi to actively participate in necromass decomposition.

RevDate: 2024-06-26

Filek K, Vuković BB, Žižek M, et al (2024)

Correction to: Loggerhead Sea Turtles as Hosts of Diverse Bacterial and Fungal Communities.

Microbial ecology, 87(1):84 pii:10.1007/s00248-024-02405-z.

RevDate: 2024-06-27

Wang C, Defoirdt T, A Rajkovic (2024)

The Effect of Caco-2 Cells on Sporulation and Enterotoxin Expression by Foodborne Clostridium perfringens.

Pathogens (Basel, Switzerland), 13(6):.

Clostridium perfringens enterotoxin (Cpe)-producing strains cause gastrointestinal infections in humans and account for the second-largest number of all foodborne outbreaks caused by bacterial toxins. The Cpe toxin is only produced during sporulation; this process might be affected when C. perfringens comes into contact with host cells. The current study determined how the cpe expression levels and spore formation changed over time during co-culture with Caco-2 cells (as a model of intestinal epithelial cells). In co-culture with Caco-2 cells, total C. perfringens cell counts first decreased and then remained more or less stable, whereas spore counts were stable over the whole incubation period. The cpe mRNA level in the co-culture with Caco-2 cells increased more rapidly than in the absence of Caco-2 cells (3.9-fold higher levels in coculture than in the absence of Caco-2 cells after 8 h of incubation). Finally, we found that cpe expression is inhibited by a cue released by Caco-2 cells (8.3-fold lower levels in the presence of supernatants of Caco-2 cells than in the absence of the supernatants after 10 h of incubation); as a consequence, the increased expression in co-culture with Caco-2 cells must be caused by a factor associated with the Caco-2 cells.

RevDate: 2024-06-27
CmpDate: 2024-06-27

Carrillo-Barragan P (2024)

Clean your own house first: integrating sustainability into microbiology labs.

FEMS microbiology ecology, 100(7):.

Microbiology laboratories are pivotal hubs for exploring the potential of microorganisms and addressing global challenges. Particularly, Environmental Microbiology facilities hold substantial influence in advancing knowledge and capabilities crucial for achieving the United Nations Sustainable Development Goals. This raises the imperative of integrating sustainable practices to mitigate the environmental impact of research activities and foster a culture of responsibility. Such an approach not only aligns with global sustainability objectives but also catalyses innovative, eco-conscious methodologies in scientific research aimed at tackling pressing environmental issues. Concerns regarding the environmental footprint of laboratory practices have stimulated innovative improvements within the scientific community, ranging from resource-efficient initiatives to the management of essential commodities like water and energy. This perspective discusses specific areas where microbiology laboratories can enhance their sustainability efforts, drawing on reports and case studies of pioneering groups. Additionally, it explores potential collaborators to support these endeavours and emphasises the pivotal role of early career researchers in driving this transition. By initiating discussions and sparking curiosity within the environmental microbial community, this commentary seeks to propel the microbial ecology field toward a greener future, starting from within the laboratory environment.

RevDate: 2024-06-26

Givati S, Forchielli E, Aharonovich D, et al (2024)

Diversity in the utilization of different molecular classes of dissolved organic matter by heterotrophic marine bacteria.

Applied and environmental microbiology [Epub ahead of print].

UNLABELLED: Heterotrophic marine bacteria utilize and recycle dissolved organic matter (DOM), impacting biogeochemical cycles. It is currently unclear to what extent distinct DOM components can be used by different heterotrophic clades. Here, we ask how a natural microbial community from the Eastern Mediterranean Sea (EMS) responds to different molecular classes of DOM (peptides, amino acids, amino sugars, disaccharides, monosaccharides, and organic acids) comprising much of the biomass of living organisms. Bulk bacterial activity increased after 24 h for all treatments relative to the control, while glucose and ATP uptake decreased or remained unchanged. Moreover, while the per-cell uptake rate of glucose and ATP decreased, that of Leucin significantly increased for amino acids, reflecting their importance as common metabolic currencies in the marine environment. Pseudoalteromonadaceae dominated the peptides treatment, while different Vibrionaceae strains became dominant in response to amino acids and amino sugars. Marinomonadaceae grew well on organic acids, and Alteromonadaseae on disaccharides. A comparison with a recent laboratory-based study reveals similar peptide preferences for Pseudoalteromonadaceae, while Alteromonadaceae, for example, grew well in the lab on many substrates but dominated in seawater samples only when disaccharides were added. We further demonstrate a potential correlation between the genetic capacity for degrading amino sugars and the dominance of specific clades in these treatments. These results highlight the diversity in DOM utilization among heterotrophic bacteria and complexities in the response of natural communities.

IMPORTANCE: A major goal of microbial ecology is to predict the dynamics of natural communities based on the identity of the organisms, their physiological traits, and their genomes. Our results show that several clades of heterotrophic bacteria each grow in response to one or more specific classes of organic matter. For some clades, but not others, growth in a complex community is similar to that of isolated strains in laboratory monoculture. Additionally, by measuring how the entire community responds to various classes of organic matter, we show that these results are ecologically relevant, and propose that some of these resources are utilized through common uptake pathways. Tracing the path between different resources to the specific microbes that utilize them, and identifying commonalities and differences between different natural communities and between them and lab cultures, is an important step toward understanding microbial community dynamics and predicting how communities will respond to perturbations.

RevDate: 2024-06-25
CmpDate: 2024-06-25

Dueholm MKD, Andersen KS, Korntved AC, et al (2024)

MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters.

Nature communications, 15(1):5361.

Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84-99% and 18-61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.

RevDate: 2024-06-25
CmpDate: 2024-06-25

Duong HL, Paufler S, Harms H, et al (2024)

Biocalorimetry-aided monitoring of fungal pretreatment of lignocellulosic agricultural residues.

Applied microbiology and biotechnology, 108(1):394.

The present study aimed to investigate whether and how non-invasive biocalorimetric measurements could serve for process monitoring of fungal pretreatment during solid-state fermentation (SSF) of lignocellulosic agricultural residues such as wheat straw. Seven filamentous fungi representing different lignocellulose decay types were employed. Water-soluble sugars being immediately available after fungal pretreatment and those becoming water-extractable after enzymatic digestion of pretreated wheat straw with hydrolysing (hemi)cellulases were considered to constitute the total bioaccessible sugar fraction. The latter was used to indicate the success of pretreatments and linked to corresponding species-specific metabolic heat yield coefficients (YQ/X) derived from metabolic heat flux measurements during fungal wheat straw colonisation. An YQ/X range of about 120 to 140 kJ/g was seemingly optimal for pretreatment upon consideration of all investigated fungi and application of a non-linear Gaussian fitting model. Upon exclusion from analysis of the brown-rot basidiomycete Gloeophyllum trabeum, which differs from all other here investigated fungi in employing extracellular Fenton chemistry for lignocellulose decomposition, a linear relationship where amounts of total bioaccessible sugars were suggested to increase with increasing YQ/X values was obtained. It remains to be elucidated whether an YQ/X range being optimal for fungal pretreatment could firmly be established, or if the sugar accessibility for post-treatment generally increases with increasing YQ/X values as long as "conventional" enzymatic, i.e. (hemi)cellulase-based, lignocellulose decomposition mechanisms are operative. In any case, metabolic heat measurement-derived parameters such as YQ/X values may become very valuable tools supporting the assessment of the suitability of different fungal species for pretreatment of lignocellulosic substrates. KEY POINTS: • Biocalorimetry was used to monitor wheat straw pretreatment with seven filamentous fungi. • Metabolic heat yield coefficients (YQ/X) seem to indicate pretreatment success. • YQ/X values may support the selection of suitable fungal strains for pretreatment.

RevDate: 2024-06-25

Gao Y, Heng S, Wang J, et al (2024)

Bioelectrochemically altering microbial ecology in upflow anaerobic sludge blanket to enhance methanogenesis fed with high-sulfate methanolic wastewater.

Bioresource technology pii:S0960-8524(24)00730-2 [Epub ahead of print].

A bioelectrochemical upflow anaerobic sludge blanket (BE-UASB) was constructed and compared with the traditional UASB to investigate the role of bioelectrocatalysis in modulating methanogenesis and sulfidogensis involved within anaerobic treatment of high-sulfate methanolic wastewater (COD/SO4[2-] ratio ≤ 2). Methane production rate for BE-UASB was 1.4 times higher than that of the single UASB, while SO4[2-] removal stabilized at 16.7 %. Bioelectrocatalysis selectively enriched key functional anaerobes and stimulated the secretion of extracellular polymeric substances, especially humic acids favoring electron transfer, thereby accelerating the electroactive biofilms development of electrodes. Methanomethylovorans was the dominant genus (35 %) to directly convert methanol to CH4. Methanobacterium as CO2 electroreduction methane-producing archaea appeared only on electrodes. Acetobacterium exhibited anode-dependence, which provided acetate for sulfate-reducing bacteria (norank Syntrophobacteraceae and Desulfomicrobium) through synergistic coexistence. This study confirmed that BE-UASB regulated the microbial ecology to achieve efficient removal and energy recovery of high-sulfate methanolic wastewater.

RevDate: 2024-06-25

Zhang D, Calmanovici B, Marican H, et al (2024)

The assembly and ecological roles of biofilms attached to plastic debris of Ashmore reef.

Marine pollution bulletin, 205:116651 pii:S0025-326X(24)00628-3 [Epub ahead of print].

Plastic pollution in the ocean is a global environmental hazard aggravated by poor management of plastic waste and growth of annual plastic consumption. Microbial communities colonizing the plastic's surface, the plastisphere, has gained global interest resulting in numerous efforts to characterize the plastisphere. However, there are insufficient studies deciphering the underlying metabolic processes governing the function of the plastisphere and the plastic they reside upon. Here, we collected plastic and seawater samples from Ashmore Reef in Australia to examine the planktonic microbes and plastic associated biofilm (PAB) to investigate the ecological impact, pathogenic potential, and plastic degradation capabilities of PAB in Ashmore Reef, as well as the role and impact of bacteriophages on PAB. Using high-throughput metagenomic sequencing, we demonstrated distinct microbial communities between seawater and PAB. Similar numbers of pathogenic bacteria were found in both sample types, yet plastic and seawater select for different pathogen populations. Virulence Factor analysis further illustrated stronger pathogenic potential in PAB, highlighting the pathogenicity of environmental PAB. Furthermore, functional analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed xenobiotic degradation and fatty acid degradation to be enriched in PABs. In addition, construction of metagenome-assembled genomes (MAG) and functional analysis further demonstrated the presence of a complete Polyethylene (PE) degradation pathway in multiple Proteobacteria MAGs, especially in Rhodobacteriaceae sp. Additionally, we identified viral population presence in PAB, revealing the key role of bacteriophages in shaping these communities within the PAB. Our result provides a comprehensive overview of the various ecological processes shaping microbial community on marine plastic debris.

RevDate: 2024-06-26

Levi EE, Jeppesen E, Nejstgaard JC, et al (2024)

High resolution chlorophyll- a in-situ fluorescence sensors versus in-vitro chlorophyll- a measurements in mesocosms with contrasting nutrient and temperature treatments.

Open research Europe, 4:69.

Harmful algal blooms (HABs) are a significant threat to freshwater ecosystems, and monitoring for changes in biomass is therefore important. Fluorescence in-situ sensors enable rapid and high frequency real-time data collection and have been widely used to determine chlorophyll- a (Chla) concentrations that are used as an indicator of the total algal biomass. However, conversion of fluorescence to equivalent Chla concentrations is often complicated due to biofouling, phytoplankton composition and the type of equipment used. Here, we validated measurements from 24 Chla and 12 phycocyanin (cyanobacteria indicator) fluorescence in-situ sensors (Cyclops-7F, Turner Designs) against spectrophotometrically (in-vitro) determined Chla and tested a data-cleaning procedure for eliminating data errors and impacts of non-photochemical quenching. The test was done across a range of freshwater plankton communities in 24 mesocosms (i.e. experimental tanks) with a 2x3 (high and low nutrient x ambient, IPCC-A2 and IPCC-A2+50% temperature scenarios) factorial design. For most mesocosms (tanks), we found accurate (r [2] ≥ 0.7) calibration of in-situ Chla fluorescence data using simple linear regression. An exception was tanks with high in-situ phycocyanin fluorescence, for which multiple regressions were employed, which increased the explained variance by >16%. Another exception was the low Chla concentration tanks (r [2] < 0.3). Our results also show that the high frequency in-situ fluorescence data recorded the timing of sudden Chla variations, while less frequent in-vitro sampling sometimes missed these or, when recorded, the duration of changes was inaccurately determined. Fluorescence in-situ sensors are particularly useful to detect and quantify sudden phytoplankton biomass variations through high frequency measurements, especially when using appropriate data-cleaning methods and accounting for factors that can impact the fluorescence readings.

RevDate: 2024-06-25

Goldman SL, Sanders JG, Sprockett DD, et al (2024)

Hackflex library preparation enables low-cost metagenomic profiling.

ISME communications, 4(1):ycae075.

Shotgun metagenomic sequencing provides valuable insights into microbial communities, but the high cost of library preparation with standard kits and protocols is a barrier for many. New methods such as Hackflex use diluted commercially available reagents to greatly reduce library preparation costs. However, these methods have not been systematically validated for metagenomic sequencing. Here, we evaluate Hackflex performance by sequencing metagenomic libraries from known mock communities as well as mouse fecal samples prepared by Hackflex, Illumina DNA Prep, and Illumina TruSeq methods. Hackflex successfully recovered all members of the Zymo mock community, performing best for samples with DNA concentrations <1 ng/μL. Furthermore, Hackflex was able to delineate microbiota of individual inbred mice from the same breeding stock at the same mouse facility, and statistical modeling indicated that mouse ID explained a greater fraction of the variance in metagenomic composition than did library preparation method. These results show that Hackflex is suitable for generating inventories of bacterial communities through metagenomic sequencing.

RevDate: 2024-06-24

Kommana G, Hupfer M, Woodhouse JN, et al (2024)

Reduced greenhouse gas emissions from particulate organic matter degradation in iron-enriched sediments.

Environmental science. Processes & impacts [Epub ahead of print].

Iron (Fe) plays an important role in the biogeochemical cycling of carbon and nutrients in aquatic systems. Reactive Fe phases can interact with organic carbon and facilitate the removal of carbon from the biogeochemical cycle; however, this important ecosystem function is often strongly controlled by Fe availability. Due to pollution from lignite mining in the Lusatian province in Northeast Germany, large amounts of iron and sulfate are released into the fluvial-lacustrine system of the Spree River. It was hypothesized that the input of freshly precipitated iron oxyhydroxides from mining areas (e.g., ferrihydrite) alter the biodegradation of particulate organic matter (POM) in downstream lacustrine sediments. To investigate the Fe-dependent degradation of POM, slurries mimicking iron-polluted sediments (85 mg Fe per g, 116 mg Fe per g, and 149 mg Fe per g dry weight) were incubated with plankton or leaf POM under anoxic and oxic headspace conditions, and CO2 and CH4 emissions, water chemistry, and stable isotopes of dissolved inorganic carbon were measured. The experiments revealed that (i) with an increasing Fe content, the CO2 and CH4 emissions were gradually reduced, (ii) CO2 and CH4 production was higher during plankton degradation than during leaf decomposition, and (iii) under oxic conditions, CO2 production was higher and CH4 production was lower when compared to the treatments under anoxic conditions. These findings demonstrate that while benthic mineralization of fresh POM typically releases greenhouse gases into the water column, the availability of iron oxyhydroxides can contribute to reduced greenhouse gas emissions from sediments. This is of considerable relevance for future carbon budgets of similar mining-affected, iron-polluted fluvial-lacustrine river systems.

RevDate: 2024-06-23

Kullberg RFJ, Wikki I, Haak BW, et al (2024)

Association between butyrate-producing gut bacteria and the risk of infectious disease hospitalisation: results from two observational, population-based microbiome studies.

The Lancet. Microbe pii:S2666-5247(24)00079-X [Epub ahead of print].

BACKGROUND: Microbiota alterations are common in patients hospitalised for severe infections, and preclinical models have shown that anaerobic butyrate-producing gut bacteria protect against systemic infections. However, the relationship between microbiota disruptions and increased susceptibility to severe infections in humans remains unclear. We investigated the relationship between gut microbiota and the risk of future infection-related hospitalisation in two large population-based cohorts.

METHODS: In this observational microbiome study, gut microbiota were characterised using 16S rRNA gene sequencing in independent population-based cohorts from the Netherlands (HELIUS study; derivation cohort) and Finland (FINRISK 2002 study; validation cohort). HELIUS was conducted in Amsterdam, Netherlands, and included adults (aged 18-70 years at inclusion) who were randomly sampled from the municipality register of Amsterdam. FINRISK 2002 was conducted in six regions in Finland and is a population survey that included a random sample of adults (aged 25-74 years). In both cohorts, participants completed questionnaires, underwent a physical examination, and provided a faecal sample at inclusion (Jan 3, 2013, to Nov 27, 2015, for HELIUS participants and Jan 21 to April 19, 2002, for FINRISK participants. For inclusion in our study, a faecal sample needed to be provided and successfully sequenced, and national registry data needed to be available. Primary predictor variables were microbiota composition, diversity, and relative abundance of butyrate-producing bacteria. Our primary outcome was hospitalisation or mortality due to any infectious disease during 5-7-year follow-up after faecal sample collection, based on national registry data. We examined associations between microbiota and infection risk using microbial ecology and Cox proportional hazards.

FINDINGS: We profiled gut microbiota from 10 699 participants (4248 [39·7%] from the derivation cohort and 6451 [60·3%] from the validation cohort). 602 (5·6%) participants (152 [3·6%] from the derivation cohort; 450 [7·0%] from the validation cohort) were hospitalised or died due to infections during follow-up. Gut microbiota composition of these participants differed from those without hospitalisation for infections (derivation p=0·041; validation p=0·0002). Specifically, higher relative abundance of butyrate-producing bacteria was associated with a reduced risk of hospitalisation for infections (derivation cohort cause-specific hazard ratio 0·75 [95% CI 0·60-0·94] per 10% increase in butyrate producers, p=0·013; validation cohort 0·86 [0·77-0·96] per 10% increase, p=0·0077). These associations remained unchanged following adjustment for demographics, lifestyle, antibiotic exposure, and comorbidities.

INTERPRETATION: Gut microbiota composition, specifically colonisation with butyrate-producing bacteria, was associated with protection against hospitalisation for infectious diseases in the general population across two independent European cohorts. Further studies should investigate whether modulation of the microbiome can reduce the risk of severe infections.

FUNDING: Amsterdam UMC, Porticus, National Institutes of Health, Netherlands Organisation for Health Research and Development (ZonMw), and Leducq Foundation.

RevDate: 2024-06-24
CmpDate: 2024-06-21

Schorn S, Graf JS, Littmann S, et al (2024)

Persistent activity of aerobic methane-oxidizing bacteria in anoxic lake waters due to metabolic versatility.

Nature communications, 15(1):5293.

Lacustrine methane emissions are strongly mitigated by aerobic methane-oxidizing bacteria (MOB) that are typically most active at the oxic-anoxic interface. Although oxygen is required by the MOB for the first step of methane oxidation, their occurrence in anoxic lake waters has raised the possibility that they are capable of oxidizing methane further anaerobically. Here, we investigate the activity and growth of MOB in Lake Zug, a permanently stratified freshwater lake. The rates of anaerobic methane oxidation in the anoxic hypolimnion reached up to 0.2 µM d[-1]. Single-cell nanoSIMS measurements, together with metagenomic and metatranscriptomic analyses, linked the measured rates to MOB of the order Methylococcales. Interestingly, their methane assimilation activity was similar under hypoxic and anoxic conditions. Our data suggest that these MOB use fermentation-based methanotrophy as well as denitrification under anoxic conditions, thus offering an explanation for their widespread presence in anoxic habitats such as stratified water columns. Thus, the methane sink capacity of anoxic basins may have been underestimated by not accounting for the anaerobic MOB activity.

RevDate: 2024-06-21

Ganier C, Callewaert C, Matos TR, et al (2024)

Young ESDR: Engaging and Nurturing the Next-Generation Skin Research Community.

The Journal of investigative dermatology pii:S0022-202X(24)00382-8 [Epub ahead of print].

RevDate: 2024-06-21

Kerr BJ, Anderson CL, Pearce SC, et al (2024)

Dietary isoacids effects on growth, nitrogen, and energy digestibility, and fecal VFA and microbial ecology in finishing pigs.

Journal of animal science pii:7696793 [Epub ahead of print].

Isoacids are branched ketoacids which when fed to ruminants have been shown to enhance the growth of fiber-digesting organisms. Ninety finishing gilts were individually fed dietary treatments consisting of diet type: corn-soybean meal (CSBM), a diet containing 40% distillers dried grains with solubles (DDGS), or a diet containing 40% sugar beet pulp (SBP); in combination with either no feed additive (CNT), the addition of 0.50% isobutyrate (IB), or the addition of a 0.88% mix of isobutyrate, isovalerate, and 2-methylbutyrate (MX). Gilts consumed an average of 2.171 kg/d over the 28-d trial. On d 26, fresh fecal samples were collected for determination of apparent total tract digestibility (ATTD) of gross energy (GE) and nitrogen (N), determination of fecal volatile fatty acids (VFA), and evaluation of microbial ecology. There was no interaction between diet type and isoacid addition, and no main effect of isoacid or diet type on alpha or Shannon microbial diversity measures (P > 0.05). There was no interaction between isoacid addition and diet type, and no main effect of isoacid addition on microbial beta diversity (P > 0.05), but differences were observed in microbial beta diversity due to diet type (P ≤ 0.05). There was no interaction between diet type and isoacid addition observed in fecal VFA concentrations (P > 0.05), with only minor differences in fecal VFA concentrations noted due to isoacid addition (P ≤ 0.05). The interaction between diet type and isoacid addition on ATTD of dietary GE and N (P ≤ 0.01) was largely because the addition of IB did not affect ATTD of GE or N in pigs fed the CSBM diet, but increased ATTD of GE and N in pigs fed diets containing DDGS and decreased the ATTD of GE and N in pigs fed diets containing SBP. In contrast, adding a blend of isoacids (i.e., MX) reduced the ATTD of GE and N, regardless of diet type. There was no interaction between diet type and isoacid addition, and no effect of isoacid addition was observed on pig performance (P > 0.05). Diet type did not affect ADG (P > 0.05), but pigs fed diets containing DDGS or SBP consumed less feed (P = 0.01) and exhibited greater GF ratios compared to pigs fed the low-fiber CSBM diet (P ≤ 0.05). In conclusion, there was little to no effect of isoacid addition on microbial ecology, fecal VFA concentrations, ATTD of GE or N, or pig performance, but the improvement in ATTD of GE and N in pigs fed diets containing DDGS when IB was added warrants further investigation.

RevDate: 2024-06-25
CmpDate: 2024-06-25

Munley JA, Kelly LS, Park G, et al (2024)

Acute emergence of the intestinal pathobiome after postinjury pneumonia.

The journal of trauma and acute care surgery, 97(1):65-72.

BACKGROUND: Previous preclinical studies have demonstrated sex-specific alterations in the gut microbiome following traumatic injury or sepsis alone; however, the impact of host sex on dysbiosis in the setting of postinjury sepsis acutely is unknown. We hypothesized that multicompartmental injury with subsequent pneumonia would result in host sex-specific dysbiosis.

METHODS: Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either multicompartmental trauma (PT) (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), PT plus 2-hour daily restraint stress (PT/RS), PT with postinjury day 1 Pseudomonas aeruginosa pneumonia (PT-PNA), PT/RS with pneumonia (PT/RS-PNA), or naive controls. Fecal microbiome was measured on days 0 and 2 using high-throughput 16S rRNA sequencing and Quantitative Insights Into Microbial Ecology 2 bioinformatics analyses. Microbial α-diversity was assessed using Chao1 (number of different unique species) and Shannon (species richness and evenness) indices. β-diversity was assessed using principal coordinate analysis. Significance was defined as p < 0.05.

RESULTS: All groups had drastic declines in the Chao1 (α-diversity) index compared with naive controls (p < 0.05). Groups PT-PNA and PT/RS-PNA resulted in different β-diversity arrays compared with uninfected counterparts (PT, PT/RS) (p = 0.001). Postinjury sepsis cohorts showed a loss of commensal bacteria along with emergence of pathogenic bacteria, with blooms of Proteus in PT-PNA and Escherichia-Shigella group in PT/RS-PNA compared with other cohorts. At day 2, PT-PNA resulted in β-diversity, which was unique between males and females (p = 0.004). Microbiome composition in PT-PNA males was dominated by Anaerostipes and Parasuterella , whereas females had increased Barnesiella and Oscillibacter . The PT/RS males had an abundance of Gastranaerophilales and Muribaculaceae .

CONCLUSION: Multicompartmental trauma complicated by sepsis significantly diminishes diversity and alters microbial composition toward a severely dysbiotic state early after injury, which varies between males and females. These findings highlight the role of sex in postinjury sepsis and the pathobiome, which may influence outcomes after severe trauma and sepsis.

RevDate: 2024-06-19

Elliott JFK, McLeod DV, Taylor TB, et al (2024)

Conditions for the spread of CRISPR-Cas immune systems into bacterial populations.

The ISME journal pii:7696269 [Epub ahead of print].

Bacteria contain a wide variety of innate and adaptive immune systems which provide protection to the host against invading genetic material, including bacteriophages (phages). It is becoming increasingly clear that bacterial immune systems are frequently lost and gained through horizontal gene transfer (HGT). However, how and when new immune systems can become established in a bacterial population has remained largely unstudied. We developed a joint epidemiological and evolutionary model that predicts the conditions necessary for the spread of a CRISPR-Cas immune system into a bacterial population lacking this system. We find that whether bacteria carrying CRISPR-Cas will spread (increase in frequency) into a bacterial population depends on the abundance of phages and the difference in the frequency of phage resistance mechanisms between bacteria carrying a CRISPR-Cas immune system, and those not (denoted as ${f}_{\Delta }$). Specifically, the abundance of cells carrying CRISPR-Cas will increase if there is a higher proportion of phage resistance (either via CRISPR-Cas immunity or surface modification) in the CRISPR-Cas possessing population than in the cells lacking CRISPR-Cas. We experimentally validated these predictions using Pseudomonas aeruginosa PA14 and phage DMS3vir as a model. Specifically, by varying the initial ratios of different strains of bacteria that carry alternative forms of phage resistance we confirmed that the spread of cells carrying CRISPR-Cas through a population can be predicted based on phage density and the relative frequency of resistance phenotypes. Understanding which conditions promote the spread of CRISPR-Cas systems helps to predict when and where these defences can establish in bacterial populations after a horizontal gene transfer event, both in ecological and clinical contexts.

RevDate: 2024-06-19
CmpDate: 2024-06-19

Zhang Y, Quensen J, Chen B, et al (2024)

Paenalcaligenes faecalis sp. nov., a novel species of the family Alcaligenaceae isolated from chicken faeces.

International journal of systematic and evolutionary microbiology, 74(6):.

A Gram-negative, motile, rod-shaped aerobic and alkalogenic bacterium, designated as strain YLCF04[T], was isolated from chicken faeces. Its growth was optimal at 28 °C (range, 10-40 °C), pH 8 (range, pH 6-9) and in 1 % (w/v) NaCl (range, 0-10 %). It was classified to the genus Paenalcaligenes and was most closely related to Paenalcaligenes hominis CCUG 53761A[T] (97.5 % similarity) based on 16S rRNA gene sequence analysis. Average nucleotide identity and digital DNA-DNA hybridization values between YLCF04[T] and P. hominis CCUG 53761A[T] were 76.3 and 18.2 %, respectively. Strain YLCF04[T] has a genome size of 2.7 Mb with DNA G+C content of 46.3 mol%. Based on its phylogenetic, genomic, phenotypic and biochemical characteristics, strain YLCF04[T] represents a novel species of the genus Paenalcaligenes, for which the name Paenalcaligenes faecalis sp. nov. is proposed. The type strain is YLCF04[T] (=CCTCC AB 2022359[T]= KCTC 92789[T]).

RevDate: 2024-06-20

Puente-Sánchez F, Macías-Pérez LA, Campbell KL, et al (2024)

Bacterioplankton taxa compete for iron along the early spring-summer transition in the Arctic Ocean.

Ecology and evolution, 14(6):e11546.

Microbial assemblages under the sea ice of the Dease Strait, Canadian Arctic, were sequenced for metagenomes of a small size fraction (0.2-3 μm). The community from early March was typical for this season, with Alpha- and Gammaproteobacteria as the dominant taxa, followed by Thaumarchaeota and Bacteroidetes. Toward summer, Bacteroidetes, and particularly the genus Polaribacter, became increasingly dominant, followed by the Gammaproteobacteria. Analysis of genes responsible for microbial acquisition of iron showed an abundance of ABC transporters for divalent cations and ferrous iron. The most abundant transporters, however, were the outer membrane TonB-dependent transporters of iron-siderophore complexes. The abundance of iron acquisition genes suggested this element was essential for the microbial assemblage. Interestingly, Gammaproteobacteria were responsible for most of the siderophore synthesis genes. On the contrary, Bacteroidetes did not synthesize siderophores but accounted for most of the transporters, suggesting a role as cheaters in the competition for siderophores as public goods. This cheating ability of the Bacteroidetes may have contributed to their dominance in the summer.

RevDate: 2024-06-20

Zou C, Yi X, Li H, et al (2024)

Correlation of methane production with physiological traits in Trichodesmium IMS 101 grown with methylphosphonate at different temperatures.

Frontiers in microbiology, 15:1396369.

The diazotrophic cyanobacterium Trichodesmium has been recognized as a potentially significant contributor to aerobic methane generation via several mechanisms including the utilization of methylphophonate (MPn) as a source of phosphorus. Currently, there is no information about how environmental factors regulate methane production by Trichodesmium. Here, we grew Trichodesmium IMS101 at five temperatures ranging from 16 to 31°C, and found that its methane production rates increased with rising temperatures to peak (1.028 ± 0.040 nmol CH4 μmol POC[-1] day[-1]) at 27°C, and then declined. Its specific growth rate changed from 0.03 ± 0.01 d[-1] to 0.34 ± 0.02 d[-1], with the optimal growth temperature identified between 27 and 31°C. Within the tested temperature range the Q10 for the methane production rate was 4.6 ± 0.7, indicating a high sensitivity to thermal changes. In parallel, the methane production rates showed robust positive correlations with the assimilation rates of carbon, nitrogen, and phosphorus, resulting in the methane production quotients (molar ratio of carbon, nitrogen, or phosphorus assimilated to methane produced) of 227-494 for carbon, 40-128 for nitrogen, and 1.8-3.4 for phosphorus within the tested temperature range. Based on the experimental data, we estimated that the methane released from Trichodesmium can offset about 1% of its CO2 mitigation effects.

RevDate: 2024-06-20
CmpDate: 2024-06-19

Thompson RS, Bowers SJ, Vargas F, et al (2024)

A Prebiotic Diet Containing Galactooligosaccharides and Polydextrose Produces Dynamic and Reproducible Changes in the Gut Microbial Ecosystem in Male Rats.

Nutrients, 16(11):.

Despite substantial evidence supporting the efficacy of prebiotics for promoting host health and stress resilience, few experiments present evidence documenting the dynamic changes in microbial ecology and fecal microbially modified metabolites over time. Furthermore, the literature reports a lack of reproducible effects of prebiotics on specific bacteria and bacterial-modified metabolites. The current experiments examined whether consumption of diets enriched in prebiotics (galactooligosaccharides (GOS) and polydextrose (PDX)), compared to a control diet, would consistently impact the gut microbiome and microbially modified bile acids over time and between two research sites. Male Sprague Dawley rats were fed control or prebiotic diets for several weeks, and their gut microbiomes and metabolomes were examined using 16S rRNA gene sequencing and untargeted LC-MS/MS analysis. Dietary prebiotics altered the beta diversity, relative abundance of bacterial genera, and microbially modified bile acids over time. PICRUSt2 analyses identified four inferred functional metabolic pathways modified by the prebiotic diet. Correlational network analyses between inferred metabolic pathways and microbially modified bile acids revealed deoxycholic acid as a potential network hub. All these reported effects were consistent between the two research sites, supporting the conclusion that dietary prebiotics robustly changed the gut microbial ecosystem. Consistent with our previous work demonstrating that GOS/PDX reduces the negative impacts of stressor exposure, we propose that ingesting a diet enriched in prebiotics facilitates the development of a health-promoting gut microbial ecosystem.

RevDate: 2024-06-20
CmpDate: 2024-06-19

Duysburgh C, Govaert M, Guillemet D, et al (2024)

Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties.

Nutrients, 16(11):.

Arabic gum, a high molecular weight heteropolysaccharide, is a promising prebiotic candidate as its fermentation occurs more distally in the colon, which is the region where most chronic colonic diseases originate. Baobab fiber could be complementary due to its relatively simple structure, facilitating breakdown in the proximal colon. Therefore, the current study aimed to gain insight into how the human gut microbiota was affected in response to long-term baobab fiber and Arabic gum supplementation when tested individually or as a combination of both, allowing the identification of potential complementary and/or synergetic effects. The validated Simulator of the Human Intestinal Microbial Ecosystem (SHIME[®]), an in vitro gut model simulating the entire human gastrointestinal tract, was used. The microbial metabolic activity was examined, and quantitative 16S-targeted Illumina sequencing was used to monitor the gut microbial composition. Moreover, the effect on the gut microbial metabolome was quantitatively analyzed. Repeated administration of baobab fiber, Arabic gum, and their combination had a significant effect on the metabolic activity, diversity index, and community composition of the microbiome present in the simulated proximal and distal colon with specific impacts on Bifidobacteriaceae and Faecalibacterium prausnitzii. Despite the lower dosage strategy (2.5 g/day), co-supplementation of both compounds resulted in some specific synergistic prebiotic effects, including a biological activity throughout the entire colon, SCFA synthesis including a synergy on propionate, specifically increasing abundance of Akkermansiaceae and Christensenellaceae in the distal colon region, and enhancing levels of spermidine and other metabolites of interest (such as serotonin and ProBetaine).

RevDate: 2024-06-19
CmpDate: 2024-06-19

Carpio LE, Olivares M, Benítez-Paez A, et al (2024)

Comparative Binding Study of Gliptins to Bacterial DPP4-like Enzymes for the Treatment of Type 2 Diabetes Mellitus (T2DM).

International journal of molecular sciences, 25(11):.

The role of the gut microbiota and its interplay with host metabolic health, particularly in the context of type 2 diabetes mellitus (T2DM) management, is garnering increasing attention. Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, constitute a class of drugs extensively used in T2DM treatment. However, their potential interactions with gut microbiota remain poorly understood. In this study, we employed computational methodologies to investigate the binding affinities of various gliptins to DPP4-like homologs produced by intestinal bacteria. The 3D structures of DPP4 homologs from gut microbiota species, including Segatella copri, Phocaeicola vulgatus, Bacteroides uniformis, Parabacteroides merdae, and Alistipes sp., were predicted using computational modeling techniques. Subsequently, molecular dynamics simulations were conducted for 200 ns to ensure the stability of the predicted structures. Stable structures were then utilized to predict the binding interactions with known gliptins through molecular docking algorithms. Our results revealed binding similarities of gliptins toward bacterial DPP4 homologs compared to human DPP4. Specifically, certain gliptins exhibited similar binding scores to bacterial DPP4 homologs as they did with human DPP4, suggesting a potential interaction of these drugs with gut microbiota. These findings could help in understanding the interplay between gliptins and gut microbiota DPP4 homologs, considering the intricate relationship between the host metabolism and microbial communities in the gut.

RevDate: 2024-06-18

Plewa-Tutaj K, Krzyściak P, A Dobrzycka (2024)

Mycological air contamination level and biodiversity of airborne fungi isolated from the zoological garden air - preliminary research.

Environmental science and pollution research international [Epub ahead of print].

The aim of this paper was to evaluate the degree of mycological air contamination and determine the taxonomic diversity of airborne fungi residing in the air of 20 different animal facilities in a zoological garden. The concentrations of fungi in the zoological garden were measured using a MAS-100 air sampler. The collected microorganisms were identified using the combination of molecular and morphological methods. The fungal concentration ranged from 50 to 3.65 × 10[4] CFU/m[3] during the whole study. The quantitative analysis of the fungal aerosol showed that the obtained concentration values were lower than the recommended permissible limits (5 × 10[4] CFU/m[3] for fungi). Environmental factors, including temperature and relative humidity, exerted a varying effect on the presence and concentration of isolated fungi. Relative humidity was shown to correlate positively with the concentration of fungal spores in the air of the facilities studied (rho = 0.57, p < 0.0021). In parallel, no significant correlation was established between temperature and total fungal concentration (rho = - 0.1, p < 0.2263). A total of 112 fungal strains belonging to 50 species and 10 genera were isolated. Penicillium was the dominant genera, including 58.9% of total fungal strains, followed by Aspergillus 25.89%, Cladosporium 3.57%, Talaromyces 3.57%, Mucor 1.78%, Schizophyllum 1.78%, Syncephalastrum 0.89%, Alternaria 0.89%, Absidia 0.89%, and Cunninghamella 0.89%. Our preliminary studies provide basic information about the fungal concentrations, as well as their biodiversity in zoological garden. Further studies are needed to generate additional data from long-term sampling in order to increase our understanding of airborne fungal composition in the zoological garden.

RevDate: 2024-06-18
CmpDate: 2024-06-18

Sanderson H, AP White (2024)

Methods for Genomic Epidemiology of Bacterial Pathogens: Example Salmonella.

Methods in molecular biology (Clifton, N.J.), 2813:19-37.

Genomics has revolutionized how we characterize and monitor infectious diseases for public health. The surveillance and characterization of Salmonella has improved drastically within the past decade. In this chapter, we discuss the prerequisites for good bacterial genomics studies and make note of advantages and disadvantages of this research approach. We discuss methods for outbreak detection and the evolutionary and epidemiological characterization of Salmonella spp. We provide an outline for determining the sequence type and serotype of isolates, building a core genome phylogenetic tree, and detecting antimicrobial resistance genes, virulence factors, and mobile genetic elements. These methods can be used to study other pathogenic bacterial species.

RevDate: 2024-06-18
CmpDate: 2024-06-18

Sagar A, Rai S, Sharma S, et al (2024)

Molecular Characterization Reveals Biodiversity and Biopotential of Rhizobacterial Isolates of Bacillus Spp.

Microbial ecology, 87(1):83.

Bacillus species appearas the most attractive plant growth-promoting rhizobacteria (PGPR) and alternative to synthetic chemical pesticides. The present study examined the antagonistic potential of spore forming-Bacilli isolated from organic farm soil samples of Allahabad, India. Eighty-seven Bacillus strains were isolated and characterized based on their morphological, plant growth promoting traits and molecular characteristics. The diversity analysis used 16S-rDNA, BOX-element, and enterobacterial repetitive intergenic consensus. Two strains, PR30 and PR32, later identified as Bacillus sp., exhibited potent in vitro antagonistic activity against Ralstonia solanaceorum. These isolates produced copious amounts of multiple PGP traits, such as indole-3-acetic acid (40.0 and 54.5 μg/mL), phosphate solubilization index (PSI) (4.4 and 5.3), ammonia, siderophore (3 and 4 cm), and 1-aminocyclopropane-1-carboxylate deaminase (8.1and 9.2 μM/mg//h) and hydrogen cyanide. These isolates were subjected to the antibiotic sensitivity test. The two potent isolates based on the higher antagonistic and the best plant growth-promoting ability were selected for plant growth-promoting response studies in tomatoe, broccoli, and chickpea. In the pot study, Bacillus subtilis (PR30 and PR31) showed significant improvement in seed germination (27-34%), root length (20-50%), shoot length (20-40%), vigor index (50-75%), carotenoid content (0.543-1.733), and lycopene content (2.333-2.646 mg/100 g) in tomato, broccoli, and chickpea. The present study demonstrated the production of multiple plant growth-promoting traits by the isolates and their potential as effective bioinoculants for plant growth promotion and biocontrol of phytopathogens.

RevDate: 2024-06-17

Piwosz K, Villena-Alemany C, Całkiewicz J, et al (2024)

Response of aerobic anoxygenic phototrophic bacteria to limitation and availability of organic carbon.

FEMS microbiology ecology pii:7695299 [Epub ahead of print].

Aerobic Anoxygenic Phototrophic (AAP) bacteria are an important component of freshwater bacterioplankton. They can support their heterotrophic metabolism with energy from light, enhancing their growth efficiency. Based on results from cultures, it was hypothesized that photoheterotrophy provides an advantage under carbon limitation and facilitates access to recalcitrant or low-energy carbon sources. However, verification of these hypotheses for natural AAP communities has been lacking. Here, we conducted whole community manipulation experiments and compared the growth of AAP bacteria under carbon limited and with recalcitrant or low-energy carbon sources under dark and light (near-infrared light, λ>800 nm) conditions to elucidate how they profit from photoheterotrophy. We found that AAP bacteria induce photoheterotrophic metabolism under carbon limitation but they overcompete heterotrophic bacteria when carbon is available. This effect seems to be driven by physiological responses rather than changes at the community level. Interestingly, recalcitrant (lignin) or low-energy (acetate) carbon sources inhibited the growth of AAP bacteria, especially in light. This unexpected observation may have ecosystem-level consequences as lake browning continues. In general, our findings contribute to the understanding of the dynamics of AAP bacteria in pelagic environments.

RevDate: 2024-06-17
CmpDate: 2024-06-17

Obregón-Gutierrez P, Aragón V, F Correa-Fiz (2024)

Analysis of the Nasal Microbiota in Healthy and Diseased Pigs.

Methods in molecular biology (Clifton, N.J.), 2815:93-113.

Massive sequencing of a fragment of 16S rRNA gene allows the characterization of bacterial communities in different body sites: the microbiota. Nasal microbiota can be analyzed by DNA extraction from nasal swabs, amplification of the specific fragment of interest, and posterior sequencing. The raw sequences obtained need to go through a computational process to check their quality and then assign the taxonomy. Here, we will describe the complete process from sampling to get the microbial diversity of nasal microbiota in health and disease.

RevDate: 2024-06-15

Zheng P, Mao A, Meng S, et al (2024)

Assembly mechanism of microbial community under different seasons in Shantou sea area.

Marine pollution bulletin, 205:116550 pii:S0025-326X(24)00527-7 [Epub ahead of print].

Coastal areas are often affected by a variety of climates, and microbial composition patterns are conducive to adaptation to these environments. In this study, the composition and pattern of microbial communities in the Shantou sea from four seasons were analyzed. The diversity of microbial community was significant differences under different seasons (p < 0.01). Meanwhile, dissolved oxygen levels, temperature were key factors to shift microbial communities. The assembly mechanism of microbial communities was constructed by the iCAMP (Infer community assembly mechanism by the phylogenetic bin-based null). Interestingly, the analyses revealed that drift was the predominant driver of this process (44.5 %), suggesting that microbial community assembly in this setting was dominated by stochastic processes. For example, Vibrio was found to be particularly susceptible to stochastic processes, indicating that the pattern of bacterial community was governed by stochastic processes. Thus, these results offering novel insight into the regulation of microbial ecology in marine environments.

RevDate: 2024-06-14
CmpDate: 2024-06-14

Kothe CI, Carøe C, Mazel F, et al (2024)

Novel misos shape distinct microbial ecologies: opportunities for flavourful sustainable food innovation.

Food research international (Ottawa, Ont.), 189:114490.

Fermentation is resurgent around the world as people seek healthier, more sustainable, and tasty food options. This study explores the microbial ecology of miso, a traditional Japanese fermented paste, made with novel regional substrates to develop new plant-based foods. Eight novel miso varieties were developed using different protein-rich substrates: yellow peas, Gotland lentils, and fava beans (each with two treatments: standard and nixtamalisation), as well as rye bread and soybeans. The misos were produced at Noma, a restaurant in Copenhagen, Denmark. Samples were analysed with biological and technical triplicates at the beginning and end of fermentation. We also incorporated in this study six samples of novel misos produced following the same recipe at Inua, a former affiliate restaurant of Noma in Tokyo, Japan. To analyse microbial community structure and diversity, metabarcoding (16S and ITS) and shotgun metagenomic analyses were performed. The misos contain a greater range of microbes than is currently described for miso in the literature. The composition of the novel yellow pea misos was notably similar to the traditional soybean ones, suggesting they are a good alternative, which supports our culinary collaborators' sensory conclusions. For bacteria, we found that overall substrate had the strongest effect, followed by time, treatment (nixtamalisation), and geography. For fungi, there was a slightly stronger effect of geography and a mild effect of substrate, and no significant effects for treatment or time. Based on an analysis of metagenome-assembled genomes (MAGs), strains of Staphylococccus epidermidis differentiated according to substrate. Carotenoid biosynthesis genes in these MAGs appeared in strains from Japan but not from Denmark, suggesting a possible gene-level geographical effect. The benign and possibly functional presence of S. epidermidis in these misos, a species typically associated with the human skin microbiome, suggests possible adaptation to the miso niche, and the flow of microbes between bodies and foods in certain fermentation as more common than is currently recognised. This study improves our understanding of miso ecology, highlights the potential for developing novel misos using diverse local ingredients, and suggests how fermentation innovation can contribute to studies of microbial ecology and evolution.

RevDate: 2024-06-15

Ponce-Jahen SJ, Valenzuela EI, Rangel-Mendez JR, et al (2024)

Anoxic nitrification with carbon-based materials as terminal electron acceptors.

Bioresource technology, 406:130961 pii:S0960-8524(24)00665-5 [Epub ahead of print].

This study investigates the potential of humic substances (HS) and graphene oxide (GO), as extracellular electron acceptors (EEA) for nitrification, aiming to explore alternatives to sustain this process in wastewater treatment systems. Experimental results demonstrate the conversion of ammonium to nitrate (up to 87 % of conversion) coupled to the reduction of either HS or GO by anaerobic consortia. Electron balance confirmed the contribution of HS and GO to ammonium oxidation. Tracer analysis in incubations performed with [15]NH4[+] demonstrated [15]NO3[-] as the main product with a minor fraction ending as [29]N2. Phylogenetic analysis identified Firmicutes, Euryarchaeota, and Chloroflexi as the microbial lineages potentially involved in anoxic nitrification linked to HS reduction. This study introduces a new avenue for research in which carbon-based materials with electron-accepting capacity may support the anoxic oxidation of ammonium, for instance in bioelectrochemical systems in which carbon-based anodes could support this novel process.

RevDate: 2024-06-17

Tomazelli D, Klauberg-Filho O, Mendes LW, et al (2024)

The impact of land-use changes and management intensification on bacterial communities in the last decade: a review.

Applied and environmental microbiology [Epub ahead of print].

In the last decade, advances in soil bacterial ecology have contributed to increasing agricultural production. Brazil is the world leading agriculture producer and leading soil biodiversity reservoir. Meanwhile, there is still a significant gap in the knowledge regarding the soil microscopic life and its interactions with agricultural practices, and the replacement of natural vegetation by agroecosystems is yet to be unfolded. Through high throughput DNA sequencing, scientists are now exploring the complexity of soil bacterial communities and their relationship with soil and environmental characteristics. This study aimed to investigate the progress of bacterial ecology studies in Brazil over the last 10 years, seeking to understand the effect of the conversion of natural vegetation in agricultural systems on the diversity and structure of the soil microbial communities. We conducted a systematic search for scientific publication databases. Our systematic search has matched 62 scientific articles from three different databases. Most of the studies were placed in southeastern and northern Brazil, with no records of studies about microbial ecology in 17 out of 27 Brazilian states. Out of the 26 studies that examined the effects of replacing natural vegetation with agroecosystems, most authors concluded that changes in soil pH and vegetation cover replacement were the primary drivers of shifts in microbial communities. Understanding the ecology of the bacteria inhabiting Brazilian soils in agroecosystems is paramount for developing more efficient soil management strategies and cleaner agricultural technologies.

RevDate: 2024-06-15
CmpDate: 2024-06-14

Pulvirenti F, Giufrè M, Pentimalli TM, et al (2024)

Oropharyngeal microbial ecosystem perturbations influence the risk for acute respiratory infections in common variable immunodeficiency.

Frontiers in immunology, 15:1371118.

BACKGROUND: The respiratory tract microbiome is essential for human health and well-being and is determined by genetic, lifestyle, and environmental factors. Patients with Common Variable Immunodeficiency (CVID) suffer from respiratory and intestinal tract infections, leading to chronic diseases and increased mortality rates. While CVID patients' gut microbiota have been analyzed, data on the respiratory microbiome ecosystem are limited.

OBJECTIVE: This study aims to analyze the bacterial composition of the oropharynx of adults with CVID and its link with clinical and immunological features and risk for respiratory acute infections.

METHODS: Oropharyngeal samples from 72 CVID adults and 26 controls were collected in a 12-month prospective study. The samples were analyzed by metagenomic bacterial 16S ribosomal RNA sequencing and processed using the Quantitative Insights Into Microbial Ecology (QIME) pipeline. Differentially abundant species were identified and used to build a dysbiosis index. A machine learning model trained on microbial abundance data was used to test the power of microbiome alterations to distinguish between healthy individuals and CVID patients.

RESULTS: Compared to controls, the oropharyngeal microbiome of CVID patients showed lower alpha- and beta-diversity, with a relatively increased abundance of the order Lactobacillales, including the family Streptococcaceae. Intra-CVID analysis identified age >45 years, COPD, lack of IgA, and low residual IgM as associated with a reduced alpha diversity. Expansion of Haemophilus and Streptococcus genera was observed in patients with undetectable IgA and COPD, independent from recent antibiotic use. Patients receiving azithromycin as antibiotic prophylaxis had a higher dysbiosis score. Expansion of Haemophilus and Anoxybacillus was associated with acute respiratory infections within six months.

CONCLUSIONS: CVID patients showed a perturbed oropharynx microbiota enriched with potentially pathogenic bacteria and decreased protective species. Low residual levels of IgA/IgM, chronic lung damage, anti antibiotic prophylaxis contributed to respiratory dysbiosis.

RevDate: 2024-06-15

Rodríguez-Cruz UE, Castelán-Sánchez HG, Madrigal-Trejo D, et al (2024)

Uncovering novel bacterial and archaeal diversity: genomic insights from metagenome-assembled genomes in Cuatro Cienegas, Coahuila.

Frontiers in microbiology, 15:1369263.

A comprehensive study was conducted in the Cuatro Ciénegas Basin (CCB) in Coahuila, Mexico, which is known for its diversity of microorganisms and unique physicochemical properties. The study focused on the "Archaean Domes" (AD) site in the CCB, which is characterized by an abundance of hypersaline, non-lithifying microbial mats. In AD, we analyzed the small domes and circular structures using metagenome assembly genomes (MAGs) with the aim of expanding our understanding of the prokaryotic tree of life by uncovering previously unreported lineages, as well as analyzing the diversity of bacteria and archaea in the CCB. A total of 325 MAGs were identified, including 48 Archaea and 277 Bacteria. Remarkably, 22 archaea and 104 bacteria could not be classified even at the genus level, highlighting the remarkable novel diversity of the CCB. Besides, AD site exhibited significant diversity at the phylum level, with Proteobacteria being the most abundant, followed by Desulfobacteria, Spirochaetes, Bacteroidetes, Nanoarchaeota, Halobacteriota, Cyanobacteria, Planctomycetota, Verrucomicrobiota, Actinomycetes and Chloroflexi. In Archaea, the monophyletic groups of MAGs belonged to the Archaeoglobi, Aenigmarchaeota, Candidate Nanoarchaeota, and Halobacteriota. Among Bacteria, monophyletic groups were also identified, including Spirochaetes, Proteobacteria, Planctomycetes, Actinobacteria, Verrucomicrobia, Bacteroidetes, Candidate Bipolaricaulota, Desulfobacteria, and Cyanobacteria. These monophyletic groups were possibly influenced by geographic isolation, as well as the extreme and fluctuating environmental conditions in the pond AD, such as stoichiometric imbalance of C:N:P of 122:42:1, fluctuating pH (5-9.8) and high salinity (5.28% to saturation).

RevDate: 2024-06-13
CmpDate: 2024-06-13

de la Cuesta-Zuluaga J, Boldt L, L Maier (2024)

Response, resistance, and recovery of gut bacteria to human-targeted drug exposure.

Cell host & microbe, 32(6):786-793.

Survival strategies of human-associated microbes to drug exposure have been mainly studied in the context of bona fide pathogens exposed to antibiotics. Less well understood are the survival strategies of non-pathogenic microbes and host-associated commensal communities to the variety of drugs and xenobiotics to which humans are exposed. The lifestyle of microbial commensals within complex communities offers a variety of ways to adapt to different drug-induced stresses. Here, we review the responses and survival strategies employed by gut commensals when exposed to drugs-antibiotics and non-antibiotics-at the individual and community level. We also discuss the factors influencing the recovery and establishment of a new community structure following drug exposure. These survival strategies are key to the stability and resilience of the gut microbiome, ultimately influencing the overall health and well-being of the host.

RevDate: 2024-06-13

Dyczko D, Krysmann A, Kolanek A, et al (2024)

Bacterial pathogens in Ixodes ricinus collected from lizards Lacerta agilis and Zootoca vivipara in urban areas of Wrocław, SW Poland- preliminary study.

Experimental & applied acarology [Epub ahead of print].

The aim of this study was to determine the level of infection of Ixodes ricinus ticks with pathogens (Borrelia spp., Rickettsia spp., and Anaplasma spp.) collected from Lacerta agilis and Zootoca vivipara lizards in the urban areas of Wrocław (SW Poland). The study was carried out in July-August 2020. Lizards were caught by a noose attached to a pole or by bare hands, identified by species, and examined for the presence of ticks. Each lizard was then released at the site of capture. Ticks were removed with tweezers, identified by species using keys, and molecular tests were performed for the presence of pathogens. From 28 lizards (17 specimens of Z. vivipara and 11 specimens of L. agilis) a total of 445 ticks, including 321 larvae and 124 nymphs, identified as I. ricinus were collected. A larger number of ticks were obtained from L. agilis compared to Z. vivipara. Molecular tests for the presence of pathogens were performed on 445 specimens of I. ricinus. The nested PCR method for the fla gene allowed the detection of Borrelia spp. in 9.4% of ticks, and it was higher in ticks from L. agilis (12.0%) than from Z. vivipara (1.0%). The RFLP method showed the presence of three species, including two belonging to the B. burgdorferi s.l. complex (B. lusitaniae and B. afzelii), and B. miyamotoi. The overall level of infection of Rickettsia spp. was 19.3%, including 27.2% in ticks collected from Z. vivipara and 17.0% from L. agilis. Sequencing of randomly selected samples confirmed the presence of R. helvetica. DNA of Anaplasma spp. was detected only in one pool of larvae collected from L. agilis, and sample sequencing confirmed the presence of (A) phagocytophilum. The research results indicate the important role of lizards as hosts of ticks and their role in maintaining pathogens in the environment including urban agglomeration as evidenced by the first recorded presence of (B) miyamotoi and (A) phagocytophilum in I. ricinus ticks collected from L. agilis. However, confirmation of the role of sand lizards in maintaining (B) miyamotoi and A. phagocytophilum requires more studies and sampling of lizard tissue.

RevDate: 2024-06-14

Riello GBC, da Silva PM, da Silva Oliveira FA, et al (2024)

Gut Microbiota Composition Correlates with Disease Severity in Myelodysplastic Syndrome.

International journal of hematology-oncology and stem cell research, 18(2):192-201.

The myelodysplastic syndrome (MDS) is a heterogeneous group of clonal disorders of hematopoietic progenitor cells related to ineffective hematopoiesis and an increased risk of transformation to acute myelogenous leukemia. MDS is divided into categories, namely lineage dysplasia (MDS-SLD), MDS with ring sideroblasts (MDS-RS), MDS with multilineage dysplasia (MDS-MLD), MDS with excess blasts (MDS-EB). The International Prognostic Classification System (IPSS) ranks the patients as very low, low, intermediate, high, and very high based on disease evolution and survival rates. Evidence points to toll-like receptor (TLR) abnormal signaling as an underlying mechanism of this disease, providing a link between MDS and immune dysfunction. Microbial signals, such as lipopolysaccharides from gram-negative bacteria, can activate or suppress TLRs. Therefore, we hypothesized that MDS patients present gut microbiota alterations associated with disease subtypes and prognosis. To test this hypothesis, we sequenced the 16S rRNA gene from fecal samples of 30 MDS patients and 16 healthy elderly controls. We observed a negative correlation between Prevotella spp. and Akkermansia spp. in MDS patients compared with the control group. High-risk patients presented a significant increase in the genus Prevotella spp. compared to the other risk categories. There was a significant reduction in the abundance of the genus Akkermansia spp. in high-risk patients compared with low- and intermediate-risk. There was a significant decrease in the genus Ruminococcus spp. in MDS-EB patients compared with controls. Our findings show a new association between gut dysbiosis and higher-risk MDS, with a predominance of gram-negative bacteria.

RevDate: 2024-06-14

Li M, Hu J, Wei Z, et al (2024)

Synthetic microbial communities: Sandbox and blueprint for soil health enhancement.

iMeta, 3(1):e172.

We summarize here the use of SynComs in improving various dimensions of soil health, including fertility, pollutant removal, soil-borne disease suppression, and soil resilience; as well as a set of useful guidelines to assess and understand the principles for designing SynComs to enhance soil health. Finally, we discuss the next stages of SynComs applications, including highly diverse and multikingdom SynComs targeting several functions simultaneously.

RevDate: 2024-06-14

Fu S, Wang R, Xu Z, et al (2023)

Metagenomic sequencing combined with flow cytometry facilitated a novel microbial risk assessment framework for bacterial pathogens in municipal wastewater without cultivation.

iMeta, 2(1):e77.

A workflow that combined metagenomic sequencing with flow cytometry was developed. The absolute abundance of pathogens was accurately estimated in mock communities and real samples. Metagenome-assembled genomes binned from metagenomic data set is robust in phylogenetic analysis and virulence profiling.

RevDate: 2024-06-14

Xi J, Lei B, Liu YX, et al (2022)

Microbial community roles and chemical mechanisms in the parasitic development of Orobanche cumana.

iMeta, 1(3):e31.

Orobanche cumana Wallr. is a holoparasite weed that extracts water and nutrients from its host the sunflower, thereby causing yield reductions and quality losses. However, the number of O. cumana parasites in the same farmland is distinctly different. The roots of some hosts have been heavily parasitized, while others have not been parasitized. What are the factors contributing to this phenomenon? Is it possible that sunflower interroot microorganisms are playing a regulatory role in this phenomenon? The role of the microbial community in this remains unclear. In this study, we investigated the rhizosphere soil microbiome for sunflowers with different degrees of O. cumana parasitism, that is, healthy, light infection, moderate infection, and severe infection on the sunflower roots. The microbial structures differed significantly according to the degree of parasitism, where Xanthomonadaceae was enriched in severe infections. Metagenomic analyses revealed that amino acid, carbohydrate, energy, and lipid metabolism were increased in the rhizosphere soils of severely infected sunflowers, which were attributed to the proliferation of Lysobacter. Lysobacter antibioticus (HX79) was isolated and its capacity to promote O. cumana seed germination and increase the germ tube length was confirmed by germination and pot experiments. Cyclo(Pro-Val), an active metabolite of strain HX79, was identified and metabolomic and molecular docking approaches confirmed it was responsible for promoting O. cumana seed germination and growth. And we found that Pseudomonas mandelii HX1 inhibited the growth of O. cumana in the host rhizosphere soil. Our findings clarify the role of rhizosphere microbiota in regulating the parasite O. cumana to possibly facilitate the development of a new weed suppression strategy.

RevDate: 2024-06-12

Mahjoubi M, Cherif H, Aliyu H, et al (2024)

Brucella pituitosa strain BU72, a new hydrocarbonoclastic bacterium through exopolysaccharide-based surfactant production.

International microbiology : the official journal of the Spanish Society for Microbiology [Epub ahead of print].

Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72. Besides its ability to grow on multiple hydrocarbons as the sole carbon source and highly tolerant to several heavy metals, BU72 produces different exopolysaccharide-based surfactants (EBS) when grown with glucose or with crude oil as sole carbon source. These EBS demonstrated particular and specific functional groups as determined by Fourier transform infrared (FTIR) spectral analysis that showed a strong absorption peak at 3250 cm[-1] generated by the -OH group for both EBS. The FTIR spectra of the produced EBS revealed major differences in functional groups and protein content. To better understand the EBS production coupled with the degradation of hydrocarbons and heavy metal resistance, the genome of strain BU72 was sequenced. Annotation of the genome revealed multiple genes putatively involved in EBS production pathways coupled with resistance to heavy metals genes such as arsenic tolerance and cobalt-zinc-cadmium resistance. The genome sequence analysis showed the potential of BU72 to synthesise secondary metabolites and the presence of genes involved in plant growth promotion. Here, we describe the physiological, metabolic, and genomic characteristics of Brucella pituitosa strain BU72, indicating its potential as a bioremediation agent.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )