Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Invasive Species

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 31 Aug 2024 at 01:33 Created: 

Invasive Species

Standard Definition: Invasive species are plants, animals, or pathogens that are non-native (or alien) to the ecosystem under consideration and whose introduction causes or is likely to cause harm. Although that definition allows a logical possibility that some species might be non-native and harmless, most of time it seems that invasive species and really bad critter (or weed) that should be eradicated are seen as equivalent phrases. But, there is a big conceptual problem with that notion: every species in every ecosystem started out in that ecosystem as an invader. If there were no invasive species, all of Hawaii would be nothing but bare volcanic rock. Without an invasion of species onto land, there would be no terrestrial ecosystems at all. For the entire history of life on Earth, the biosphere has responded to perturbation and to opportunity with evolutionary innovation and with physical movement. While one may raise economic or aesthetic arguments against invasive species, it is impossible to make such an argument on scientific grounds. Species movement — the occurrence of invasive species — is the way the biosphere responds to perturbation. One might even argue that species movement is the primary, short-term "healing" mechanism employed by the biosphere to respond to perturbation — to "damage." As with any healing process, the short-term effect may be aesthetically unappealing (who thinks scabs are appealing?), but the long-term effects can be glorious.

Created with PubMed® Query: ("invasive species" OR "invasion biology" OR "alien species" OR "introduced species" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-08-28

Petersen V, Santana M, Karina-Costa M, et al (2024)

Aedes (Ochlerotatus) scapularis, Aedes japonicus japonicus, and Aedes (Fredwardsius) vittatus (Diptera: Culicidae): Three Neglected Mosquitoes with Potential Global Health Risks.

Insects, 15(8): pii:insects15080600.

More than 3550 species of mosquitoes are known worldwide, and only a fraction is involved in the transmission of arboviruses. Mosquitoes in sylvatic and semi-sylvatic habitats may rapidly adapt to urban parks and metropolitan environments, increasing human contact. Many of these mosquitoes have been found naturally infected with arboviruses from the Alphaviridae, Flaviviridae, and Bunyaviridae families, with many being the cause of medically important diseases. However, there is a gap in knowledge about the vector status of newly invasive species and their potential threat to human and domestic animal populations. Due to their rapid distribution, adaptation to urban environments, and anthropophilic habits, some neglected mosquito species may deserve more attention regarding their role as secondary vectors. Taking these factors into account, we focus here on Aedes (Ochlerotatus) scapularis (Rondani), Aedes japonicus japonicus (Theobald), and Aedes (Fredwardsius) vittatus (Bigot) as species that have the potential to become important disease vectors. We further discuss the importance of these neglected mosquitoes and how factors such as urbanization, climate change, and globalization profoundly alter the dynamics of disease transmission and may increase the participation of neglected species in propagating diseases.

RevDate: 2024-08-28

Romanowski J, Ceryngier P, Vĕtrovec J, et al (2024)

Diversity of Ladybird Beetles (Coleoptera: Coccinellidae) in Tenerife and La Gomera (Canary Islands): The Role of Size and Other Island Characteristics.

Insects, 15(8): pii:insects15080596.

This paper provides new data on the ladybird beetles (Coccinellidae) from two islands in the Canary archipelago: Tenerife, the largest island, and La Gomera, the second smallest. As they clearly differ in size but are similar in location and geological age, they are a suitable model for testing the species-area relationship. Our study shows that, in line with this main assumption of the theory of island biogeography, clearly more species occur on a large island (Tenerife) than on a small one (La Gomera). The field surveys documented the occurrence of 35 ladybird species on Tenerife (including 5 not previously reported from this island) and of 20 species on La Gomera (2 species new to the island). Coelopterus sp. collected on Tenerife (a single female that could not be identified to species) is the first record of this genus for the whole Canary Islands. Taking our data and previously published records into account, 47 species of Coccinellidae are known to occur on Tenerife and 26 species on La Gomera. Tenerife has by far the richest ladybird fauna of all the Canary Islands (the next in line, Gran Canaria, has 41 recorded species), but it also has the highest number of non-native ladybird species. All of the ten non-native species recorded in the Canary Islands are found on Tenerife, and for most of them, Tenerife was the island of their first appearance in the archipelago. This island, much more distant from the mainland than the other relatively large islands (Fuerteventura, Lanzarote), appears to be the main recipient of ladybirds immigrating to the Canary Islands. Tenerife can play this role probably because of its great habitat diversity and altitude variation, as well as intensive tourism and trade-related transport.

RevDate: 2024-08-28

Mollet KA, Tembrock LR, Zink FA, et al (2024)

An Improved Bulk DNA Extraction Method for Detection of Helicoverpa armigera (Lepidoptera: Noctuidae) Using Real-Time PCR.

Insects, 15(8): pii:insects15080585.

Helicoverpa armigera is among the most problematic agricultural pests worldwide due to its polyphagy and ability to evolve pesticide resistance. Molecular detection methods for H. armigera have been developed to track its spread, as such methods allow for rapid and accurate differentiation from the native sibling species H. zea. Droplet digital PCR (ddPCR) is a preferred method for bulk screening due to its accuracy and tolerance to PCR inhibitors; however, real-time PCR is less expensive and more widely available in molecular labs. Improvements to DNA extraction yield, purity, and throughput are crucial for real-time PCR assay optimization. Bulk DNA extractions have recently been improved to where real-time PCR sensitivity can equal that of ddPCR, but these new methods require significant time and specialized equipment. In this study, we improve upon previously published bulk DNA extraction methods by reducing bench time and materials. Our results indicate that the addition of caffeine and RNase A improves DNA extraction, resulting in lower Cq values during real-time PCR while reducing the processing time and cost per specimen. Such improvements will enable the use of high throughput screening methods across multiple platforms to improve the probability of detection of H. armigera.

RevDate: 2024-08-28

O'Hea Miller SB, Davis AR, MYL Wong (2024)

The Impacts of Invasive Crayfish and Other Non-Native Species on Native Freshwater Crayfish: A Review.

Biology, 13(8): pii:biology13080610.

Freshwater crayfish are vital species in ecosystems where they naturally occur, as they hold keystone and ecological engineering positions in these systems. Non-native species are common and widely spread throughout Earth's freshwater ecosystems and can have severe impacts on native crayfish populations. There has yet to be a comprehensive global review of the impacts of non-native species on native crayfish. Two literature searches were conducted using Web of Science and Google Scholar to find articles to address four key aims: (1) summarise trends in the literature; (2) examine the mechanisms by which invasive crayfish impact native crayfish species; (3) examine the mechanisms by which other non-native species, such as fish, impact native crayfish species; and (4) identify gaps in knowledge and research priorities. This review highlights that a far greater amount of research has addressed the effects of invasive crayfish than other non-native species. The research on invasive crayfish focuses on four types of interactions with native crayfish: competition, predation, introduction of disease, and reproductive impacts. Studies addressing the impacts of other non-native species on crayfish indicate that predation and habitat destruction by these species are the key processes impacting native crayfish. It is evident that field-based research, particularly concerning competition between invasive and native crayfish, is limited. Therefore, further in situ research is needed to assess the validity of laboratory results in a natural setting. Additionally, in many cases, the impact of certain non-native species on native crayfish populations has gone unmonitored. For this reason, it is recommended that additional research focus on assessing the impact of these non-native species. To conclude, the impacts of invasive crayfish on native crayfish are profound and wide-ranging, often leading to population decline or extirpation. Further, other non-native species are also likely to have a highly deleterious impact on native crayfish populations; however, more research is required to understand the scope of this impact.

RevDate: 2024-08-28

Rodríguez-Gavilanes D, Garcés Botacio HA, Fuentes R, et al (2024)

An Annotated Checklist of Invasive Species of the Phyla Arthropods and Chordates in Panama.

Biology, 13(8): pii:biology13080571.

Invasive species are one of the five main causes of biodiversity loss, along with habitat destruction, overexploitation, pollution, and climate change. Numbers and species of invasive organisms represent one of the first barriers to overcome in ecological conservation programs since they are difficult to control and eradicate. Due to the lack of records of invasive exotic species in Panama, this study was necessary for identifying and registering the documented groups of invasive species of the Chordates and Arthropod groups in Panama. This exhaustive search for invasive species was carried out in different bibliographic databases, electronic portals, and scientific journals which addressed the topic at a global level. The results show that approximately 141 invasive exotic species of the Arthropoda and Chordata phyla have been reported in Panama. Of the 141 species, 50 species belonged to the Arthropoda phylum and 91 species belonged to the Chordate phylum. Panamanian economic activity could facilitate the introduction of alien species into the country. This study provides the first list of invasive exotic chordate and arthropod species reported for the Republic of Panama.

RevDate: 2024-08-28

Manattini MC, Buteler M, M Lozada (2024)

Cognitive abilities related to foraging behavior in Vespula vulgaris (Hymenoptera: Vespidae).

Current research in insect science, 6:100088 pii:S2666-5158(24)00018-0.

Vespula vulgaris is an invasive social wasp that has become established in many parts of the world. Plastic cognitive systems are expected to be advantageous for invasive species, given that they continuously face dynamic and unpredictable environments. We analyzed foraging behavior associated with undepleted and depleted resources. The wasps were trained to associate a certain location with food and we recorded their behavior after successive displacement of it. We also studied how long wasps continued to search for food that was no longer available and whether it was dependent on experience. We found that when wasps associated a certain location with food, they returned to the same site even though food was no longer available or had been displaced. Handling time remained constant, while relocation time and learning flights decreased with experience. With a food position change, learning flights increased and searching time varied with experience. When food was removed, hovering and landings were greatest in wasps that had the most experience with the resource, although extinction of the searching response was not dependent on experience. Our results illustrate the plasticity of wasp behavior in uncertain foraging contexts, which could have allowed the species to establish successfully in new habitats.

RevDate: 2024-08-28

Perry KI, Bahlai CA, Assal TJ, et al (2024)

Landscape change and alien invasions drive shifts in native lady beetle communities over a century.

Ecological applications : a publication of the Ecological Society of America [Epub ahead of print].

Understanding causes of insect population declines is essential for the development of successful conservation plans, but data limitations restrict assessment across spatial and temporal scales. Museum records represent a source of historical data that can be leveraged to investigate temporal trends in insect communities. Native lady beetle decline has been attributed to competition with established alien species and landscape change, but the relative importance of these drivers is difficult to measure with short-term field-based studies. We assessed distribution patterns for native lady beetles over 12 decades using museum records, and evaluated the relative importance of alien species and landscape change as factors contributing to changes in communities. We compiled occurrence records for 28 lady beetle species collected in Ohio, USA, from 1900 to 2018. Taxonomic beta-diversity was used to evaluate changes in lady beetle community composition over time. To evaluate the relative influence of temporal, spatial, landscape, and community factors on the captures of native species, we constructed negative binomial generalized additive models. We report evidence of declines in captures for several native species. Importantly, the timing, severity, and drivers of these documented declines were species-specific. Land cover change was associated with declines in captures, particularly for Coccinella novemnotata which declined prior to the arrival of alien species. Following the establishment and spread of alien lady beetles, processes of species loss/gain and turnover shifted communities toward the dominance of a few alien species beginning in the 1980s. Because factors associated with declines in captures were highly species-specific, this emphasizes that mechanisms driving population losses cannot be generalized even among closely related native species. These findings also indicate the importance of museum holdings and the analysis of species-level data when studying temporal trends in insect populations.

RevDate: 2024-08-27
CmpDate: 2024-08-27

Pérez LJ, Baele G, Hong SL, et al (2024)

Ecological Changes Exacerbating the Spread of Invasive Ticks has Driven the Dispersal of Severe Fever with Thrombocytopenia Syndrome Virus Throughout Southeast Asia.

Molecular biology and evolution, 41(8):.

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus recognized by the World Health Organization as an emerging infectious disease of growing concern. Utilizing phylodynamic and phylogeographic methods, we have reconstructed the origin and transmission patterns of SFTSV lineages and the roles demographic, ecological, and climatic factors have played in shaping its emergence and spread throughout Asia. Environmental changes and fluctuations in tick populations, exacerbated by the widespread use of pesticides, have contributed significantly to its geographic expansion. The increased adaptability of Lineage L2 strains to the Haemaphysalis longicornis vector has facilitated the dispersal of SFTSV through Southeast Asia. Increased surveillance and proactive measures are needed to prevent further spread to Australia, Indonesia, and North America.

RevDate: 2024-08-28
CmpDate: 2024-08-28

Khatri K, Negi B, Bargali K, et al (2024)

Toxicological assessment of invasive Ageratina adenophora on germination and growth efficiency of native tree and crop species of Kumaun Himalaya.

Ecotoxicology (London, England), 33(7):697-708.

The present study was designed to assess the allelopathic potential of invasive weed Ageratina adenophora leaf extracts on seed germination and seedling development efficiency of native tree [viz. Quercus leucotrichophora A. Camus (Oak) and Pinus roxburghii Sarg. (Pine)] and crop [(Triticum aestivum L. (Wheat) and Lens culinaris Medik. (Lentil)] species of Kumaun Himalaya. Pot experiments were conducted in the glasshouse of the Botany Department, D.S.B. Campus, Kumaun University Nainital, following a Completely Randomized Block Design (CRBD) with three treatments (C1-25%, C2-50%, and C3-100% of aqueous leaf extract) and one control, each with five replicates. The experiment lasted one year for tree species and continued until the seed maturation phase for crop species. Parameters such as seed germination proportion, root and shoot measurements, biomass, and crop productivity traits were recorded accordingly. Our bioassay results indicated that the inhibitory effect of leaf extracts on the measured traits of the selected native species was proportional to the applied extract concentrations of A. adenophora. Overall, lentil among crops and oak among tree species exhibited more inhibition compared to wheat and pine, respectively. At the highest concentration, reductions of 44%, 34%, 36%, and 24% in biomass production capacity were recorded for wheat, lentil, pine, and oak, respectively, while wheat and lentil productivity decreased by up to 33% and 45%, respectively. These results suggest that water-soluble allelochemicals produced by A. adenophora may impede the establishment of selected crop and tree species in agroecosystems and forest ecosystems invaded by this weed species. However, further studies on the characterization of phytochemicals and their specific role in seed germination and growth are warranted. Furthermore, the allelopathic potential of A. adenophora can be explored for the preparation of biopesticides and nature-friendly option to improve soil health, crop productivity, and reduce environmental pollution and management of this invasive weed.

RevDate: 2024-08-26

Tammone Santos A, Condorí WE, Fernández V, et al (2024)

Serologic Survey of Brucella spp. in Culled Invasive Alien Mammals from El Palmar National Park, Argentina and in Exposed Consumers.

Journal of wildlife diseases pii:502823 [Epub ahead of print].

Brucellosis is a worldwide zoonotic disease caused by Brucella spp. and transmitted from domestic and wild animals to humans. Brucellosis causes important economic losses in livestock, has a significant impact on public health, and may affect the health of wildlife. Hunting and consumption of meat from culled wildlife constitute a risk for Brucella spp. infection in humans and hunting dogs. In El Palmar National Park (EPNP), Argentina, the invasive alien mammals wild boar (Sus scrofa) and axis deer (Axis axis) are controlled, slaughtered in situ, and consumed by hunters, with meat trimmings and offal often fed to dogs. In this study, we evaluated but did not detect anti-Brucella antibodies in wild boar (n=95) and axis deer (n=238) from EPNP or in game consumers, dogs (n=39) and humans (n=61). These results suggest a lack of exposure to Brucella spp. at this site during the study period. Despite negative findings in the sampled location, One Health surveillance across multiple species contributes to our understanding of pathogen dynamics and enables targeted interventions to minimize health risks.

RevDate: 2024-08-27
CmpDate: 2024-08-27

Wu K, Wang Y, Liu Z, et al (2024)

Prediction of potential invasion of two weeds of the genus Avena in Asia under climate change based on Maxent.

The Science of the total environment, 950:175192.

Avena sterilis L. (A. sterilis) and Avena ludoviciana Dur. (A. ludoviciana) are extremely invasive weeds with strong competitive ability and multiple transmission routes. Both species can invade a variety of dryland crops, including wheat, corn, and beans. Asia, as the world's major food-producing continent, will experience significant losses to agricultural production if it is invaded by these weeds on a large scale. This study used the MaxEnt model and ArcGIS to map the distribution of suitable habitats of the two species in Asia under climate change conditions. The constructed model comprised four levels, with a total of 25 index-level indicator factors used to evaluate the invasion risk of the two species. The results showed that the distribution of suitable habitats for both Avena species was highly dependent on precipitation and temperature. Under climate warming conditions, although overall the total suitable area is predicted to decrease compared to the current period, there are still moderately or highly suitable areas. Asian countries need to provide early warning for areas with significant increases in moderate and highly suitable zones for these two species of weeds under the background of climate change. If there is already an invaded area or if the suitability of the original area is increased, this should be closely monitored, and control measures should be taken to prevent further spread and deterioration.

RevDate: 2024-08-27
CmpDate: 2024-08-27

Yuan C, Gao J, Huang L, et al (2024)

Chromolaena odorata affects soil nitrogen transformations and competition in tropical coral islands by altering soil ammonia oxidizing microbes.

The Science of the total environment, 950:175196.

Invasive plants can change the community structure of soil ammonia-oxidizing microbes, affect the process of soil nitrogen (N) transformation, and gain a competitive advantage. However, the current researches on competition mechanism of Chromolaena odorata have not involved soil nitrogen transformation. In this study, we compared the microbially mediated soil transformations of invasive C. odorata and natives (Pisonia grandis and Scaevola taccada) of tropical coral islands. We assessed how differences in plant biomass and tissue N contents, soil nutrients, N transformation rates, microbial biomass and activity, and diversity and abundance of ammonia oxidizing microbes associated with these species impact their competitiveness. The results showed that C. odorata outcompeted both native species by allocating more proportionally biomass to aboveground parts in response to interspecific competition (12.92 % and 22.72 % more than P. grandis and S. taccada, respectively). Additionally, when C. odorata was planted with native plants, the available N and net mineralization rates in C. odorata rhizosphere soil were higher than in native plants rhizosphere soils. Higher abundance of ammonia-oxidizing bacteria in C. odorata rhizosphere soil confirmed this, being positively correlated with soil N mineralization rates and available N. Our findings help to understand the soil N acquisition and competition strategies of C. odorata, and contribute to improving evaluations and predictions of invasive plant dynamics and their ecological effects in tropical coral islands.

RevDate: 2024-08-27
CmpDate: 2024-08-27

Forcina G, Clavero M, Meister M, et al (2024)

Introduced and extinct: neglected archival specimens shed new light on the historical biogeography of an iconic avian species in the Mediterranean.

Integrative zoology, 19(5):887-897.

Collection specimens provide valuable and often overlooked biological material that enables addressing relevant, long-unanswered questions in conservation biology, historical biogeography, and other research fields. Here, we use preserved specimens to analyze the historical distribution of the black francolin (Francolinus francolinus, Phasianidae), a case that has recently aroused the interest of archeozoologists and evolutionary biologists. The black francolin currently ranges from the Eastern Mediterranean and the Middle East to the Indian subcontinent, but, at least since the Middle Ages, it also had a circum-Mediterranean distribution. The species could have persisted in Greece and the Maghreb until the 19th century, even though this possibility had been questioned due to the absence of museum specimens and scant literary evidence. Nevertheless, we identified four 200-year-old stuffed black francolins-presumably the only ones still existing-from these areas and sequenced their mitochondrial DNA control region. Based on the comparison with conspecifics (n = 396) spanning the entirety of the historic and current species range, we found that the new samples pertain to previously identified genetic groups from either the Near East or the Indian subcontinent. While disproving the former occurrence of an allegedly native westernmost subspecies, these results point toward the role of the Crown of Aragon in the circum-Mediterranean expansion of the black francolin, including the Maghreb and Greece. Genetic evidence hints at the long-distance transport of these birds along the Silk Road, probably to be traded in the commerce centers of the Eastern Mediterranean.

RevDate: 2024-08-26

Jo A, Kim J, Park J, et al (2024)

Developing a list of Alert Alien Species in South Korea.

Biodiversity data journal, 12:e125517 pii:125517.

Along with transportation development, climate change and socio-economic changes, invasive alien species (IAS) are causing a significant decline in biodiversity around the world. Internationally, policies for pre-invasion management of IAS are being emphasised to minimise damage from biological invasions. In South Korea, through the 2[nd] Alien Species Management Plan (2019-2023), IAS that are not yet present in the country but are likely to be introduced are designated as Alert Alien Species (AAS). In this study, the overall process of AAS designation is summarised and improvements to the current system are presented. To select AAS, an invasive alien species database (IASD) of 8,456 species was built by integrating the IAS lists from many countries. Amongst them, 1,534 species, included in IASD at genus, family and order level, were excluded and 3,298 species confirmed to have been introduced to South Korea were excluded from the AAS candidate species. After the creation and review of species profiles by experts, 150 species were finally designated as AAS in 2023. The AAS discovery process needs to reflect international trends of IAS and be continuously supplemented through policy research of other countries. In addition, the IAS management system in South Korea, in which various ministries play their own roles with sufficient data sharing, should be systematically linked from introduction to control of IAS.

RevDate: 2024-08-26

Nixon LJ, Acebes-Doria A, Kirkpatrick D, et al (2024)

Influence of deployment method and maintenance on efficacy of sticky card traps for Halyomorpha halys (Hemiptera: Pentatomidae).

Journal of economic entomology pii:7741015 [Epub ahead of print].

Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive pest which feeds on numerous economically significant crops. Many integrated pest management strategies for this species rely on effective season-long monitoring for H. halys populations, including attract-and-kill and threshold-based insecticide sprays. Previous studies have shown that a black pyramid trap effectively captures all mobile life stages of H. halys, however, these bulky, ground-deployed traps can be impractical in active orchard rows. Clear sticky cards have been used as a more practical tool for monitoring when paired with the H. halys aggregation pheromone and synergist. Here, the efficacy of deploying single- or double-sided sticky cards hanging in trees or deployed on wooden stakes was compared to standard black pyramid traps over 2 years. The efficacy of single-sided sticky cards deployed on wooden stakes was also evaluated after occlusion of 25%, 50%, or 75% of the surface area by 2D inert materials and 3D organic matter. Single-sided sticky cards were also exposed to simulated sunlight and rainfall for 0, 4, 8, and 12 wk before deployment on wooden stakes. Captures of H. halys adults using sticky cards deployed on wooden stakes were comparable to pyramid traps. Occlusion of cards by 25% or more of any material type led to a decrease in H. halys captures, however, weathering did not influence capture. These data show that clear sticky cards deployed on wooden stakes are effective for season-long monitoring of H. halys in apple orchards, and card replacement should be driven by maintenance of cleanliness.

RevDate: 2024-08-25

Nepal V, Dillon M, Fabrizio MC, et al (2024)

Physiologically-informed predictions of climate warming effects on native and non-native populations of blue catfish.

Journal of thermal biology, 124:103951 pii:S0306-4565(24)00169-4 [Epub ahead of print].

Blue catfish Ictalurus furcatus has been widely introduced throughout the United States to enhance recreational fisheries. Its success in both its native and non-native range, especially in the context of climate change, will be influenced by its thermal performance. We conducted a laboratory experiment to investigate the responses of wild-captured, subadult blue catfish to temperatures ranging from 7 °C to 38 °C. Blue catfish had relatively low standard metabolic rates, indicating low energetic demands, and hence an ability to survive well even during low-food conditions. Metabolic scope and food consumption rate increased with temperature, with metabolic scope peaking at 29.1 °C, and consumption rate peaking at 32 °C. Body condition remained high up to 32 °C, but decreased drastically thereafter, suggesting limitations in maintaining metabolism through food consumption at temperatures >32 °C; blue catfish cannot survive in such habitats indefinitely. Yet, many fish were able to survive temperatures as high as 38 °C for 5 days, suggesting that acute and occasionally chronic heat waves will not limit this species. Using these results, we also predicted the performance of blue catfish under prevailing conditions and under climate warming at seven locations throughout their current range in the U.S. We found that some blue catfish populations in southern and southeastern areas will likely experience temperatures above the optimal temperature for extended periods due to climate change, thus limiting potential habitat availability for this species. But, many non-native populations, especially those in northern areas such as Idaho, North Dakota, and northern California, may benefit from the expected warmer temperatures during spring and fall.

RevDate: 2024-08-26
CmpDate: 2024-08-24

McKee RK, Taillie PJ, Hart KM, et al (2024)

Ecological function maintained despite mesomammal declines.

Scientific reports, 14(1):19668.

Mid-sized mammals (i.e., mesomammals) fulfill important ecological roles, serving as essential scavengers, predators, pollinators, and seed dispersers in the ecosystems they inhabit. Consequently, declines in mesomammal populations have the potential to alter ecological processes and fundamentally change ecosystems. However, ecosystems characterized by high functional redundancy, where multiple species can fulfil similar ecological roles, may be less impacted by the loss of mesomammals and other vertebrates. The Greater Everglades Ecosystem in southern Florida is a historically biodiverse region that has recently been impacted by multiple anthropogenic threats, most notably the introduction of the Burmese python (Python molurus bivittatus). Since pythons became established, mesomammal populations have become greatly reduced. To assess whether these declines in mesomammals have affected two critical ecosystem functions-scavenging and frugivory-we conducted experiments in areas where mesomammals were present and absent. We did not observe significant differences in scavenging or frugivory efficiency in areas with and without mesomammals, but we did observe significant differences in the communities responsible for scavenging and frugivory. Despite the observed evidence of redundancy, the changes in community composition could potentially lead to indirect consequences on processes like seed dispersal and disease dynamics within this ecosystem, emphasizing the need for further study.

RevDate: 2024-08-24

Jakovljević M, Đuretanović S, Kojadinović N, et al (2024)

Assessing spirlin Alburnoides bipunctatus (Bloch, 1782) as an early indicator of climate change and anthropogenic stressors using ecological modeling and machine learning.

The Science of the total environment pii:S0048-9697(24)05879-0 [Epub ahead of print].

Combining single-species ecological modeling with advanced machine learning to investigate the long-term population dynamics of the rheophilic fish spirlin offers a powerful approach to understanding environmental changes and climate shifts in aquatic ecosystems. A new ESHIPPOClim model was developed by integrating climate change assessment into the ESHIPPO model. The model identifies spirlin as a potential early indicator of environmental changes, highlighting the interactive effects of climate change and anthropogenic stressors on fish populations and freshwater ecosystems. The ESHIPPOClim model reveals that 28.72 % of the spirlin's data indicates high resilience and ecological responsiveness, with 34.92 % showing medium-high adaptability, suggesting its substantial ability to withstand environmental stressors. With 36.51 % of the data in medium level and no data in the low category, spirlin may serve as a sentinel species, providing early warnings of environmental stressors before they severely impact other species or ecosystems. The results of uniform manifold approximation and projection (UMAP) and a decision tree show that pollution has the highest impact on the population dynamics of spirlin, followed by annual water temperature, overexploitation, and invasive species. Despite the obtained key drivers, higher abundance, dominance, and frequency values were detected in habitats with higher HIPPO stressors and climate change effects. Integrating state-of-the-art machine learning models has enhanced the predictive power of the ESHIPPOClim model, achieving approximately 90 % accuracy in identifying spirlin as an early indicator of climate change and anthropogenic stressors. The ESHIPPOClim model offers a holistic approach with broad practical applications using a simplified 3-point scale, adaptable to various fish species, communities, and regions. The ecological modeling supported with advanced machine learning could serve as a foundation for rapid and cost-effective management of aquatic ecosystems, revealing the adaptability potential of fish species, which is crucial in rapidly changing environments.

RevDate: 2024-08-26
CmpDate: 2024-08-24

Mann-Vollrath F, Correa-Cuadros JP, Ávila-Thieme MI, et al (2024)

The ecological roles of the European rabbit in the Magellanic/Fuegian ecosystem of southernmost Chile.

Scientific reports, 14(1):19581.

The European rabbit has invaded numerous ecosystems worldwide, but rarely steppes. Since its various introduction attempts into the ecosystems of the Magallanes/Fuegian region, the rabbit has become a key player, interacting with species at different trophic levels and generating impacts on ecosystems. To better understand the role of the rabbit in steppe and scrub ecosystems, we characterised the food web in the Magallanes/Fuegian region to understand the identity of their interacting species, the mechanisms and complexities of their interactions to demonstrate that rabbit management may become more complex than just controlling a single species. Based on a bibliographic review and wildlife specialists' opinions, we built the Magellanic/Fuegian food web, evaluated their topological properties and performed a rabbit extinction simulation to assess the possible short-term ecological mechanisms operating in the community. We found that the network had 206 nodes (64% native, 13% exotic, and 22% mixed) and 535 links among nodes. The European rabbit was the most connected node of the food web, had the second largest dietary breadth, and ranked as the seventh prey item with more predators. A rabbit extinction simulation shows a possible release of herbivory pressure on plants, including that on several native plants (e.g., Gunnera tinctoria, Pratia repens, Gavilea lutea, Tetroncium magellanicus), and a possible release of competition for some herbivores that share resources with the rabbit (e.g., Ovis aries, Lama guanicoe, Bos taurus). Although rabbit predators have a broad and generalist diet, some such as the native Galicitis cuja, could face a 20% reduction in their trophic width and could intensify predation on alternative prey. These results show that the European rabbit is strongly embedded in the Magellanic/Fuegian ecosystem and linked to several native species. Therefore, rabbit management should consider ecosystem approaches accompanied by monitoring programs on native fauna and experimental pilot studies on native flora to conserve the Chilean Patagonia community.

RevDate: 2024-08-24
CmpDate: 2024-08-24

Rosa L, Ragettli S, Sinha R, et al (2024)

Regional irrigation expansion can support climate-resilient crop production in post-invasion Ukraine.

Nature food, 5(8):684-692.

Ukraine supplies a large proportion of grain and oilseeds to the world market and faces disruptions from the Russian invasion in 2022. Here we explore the combined effects of the invasion and climate change on Ukraine's irrigation. In 2021, only 1.6% of Ukraine's cropland was irrigated. Of this portion, 73% experienced substantial declines in irrigated crop production following the invasion. We estimate that by the mid-twenty-first century, three-quarters of croplands will experience water shortages, making business-as-usual rain-fed agricultural practices inadequate in addressing the challenges posed by climate change. We explore how leveraging local surface and groundwater resources could enable sustainable irrigation expansion over 18 million hectares of croplands and form a viable climate adaptation strategy. Finally, we identify regions for implementing enhancements or expansions of irrigation systems that can foster a more resilient agricultural sector-underscoring the growing importance of irrigation in sustaining crop production in Ukraine.

RevDate: 2024-08-24

Wang Q, Han X, Wang Z, et al (2024)

Eurasian otters prefer to prey on religious released non-native fish on the Qinghai-Tibetan Plateau.

Current zoology, 70(4):472-479.

Religious wildlife release is prevalent worldwide, especially in Asia countries. It is one of the anthropogenic pathways to cause biological invasions. Religious fish release is common on the Qinghai-Tibetan Plateau, yet few studies have assessed the influences of religious fish release on local species. In Yushu, a city on the Qinghai-Tibetan Plateau, we interviewed local people, conducted fish trap surveys in local rivers, and examined the diet of Eurasian otters Lutra lutra using a fecal DNA metabarcoding approach. We found that fish release started at least in 1980-1990s in Yushu. Tibetan residents released fish in large amounts and released fish were usually exotic commercial fish purchased from market. Despite such long-term and intensive fish release activities, released fish were few in local rivers. On the other hand, Eurasian otters mainly prey on fish and released fish accounted for ~20% of relative read abundance of prey DNA in otters' diet, indicating their high preference on released fish. Our study suggested that religious fish release may provide additional food resources for otters, whereas otters, as a top predator in local rivers, may deplete non-native fish once they were released and, therefore, reduce the probability of colonization of released fish, although further studies are required to assess otters' impact. Our study revealed otters' diet in Yushu, providing basic information for local otter management and conservation. Furthermore, it represents a case showing that native predators prey on religious released animals, implying a probable direction for controlling invasive species through native predator conservation.

RevDate: 2024-08-23

Song T, Huang Y, Fang L, et al (2024)

Non-native species in marine protected areas: Global distribution patterns.

Environmental science and ecotechnology, 22:100453 pii:S2666-4984(24)00067-X.

Marine protected areas (MPAs) across various countries have contributed to safeguarding coastal and marine environments. Despite these efforts, marine non-native species (NNS) continue to threaten biodiversity and ecosystems, even within MPAs. Currently, there is a lack of comprehensive studies on the inventories, distribution patterns, and effect factors of NNS within MPAs. Here we show a database containing over 15,000 occurrence records of 2714 marine NNS across 16,401 national or regional MPAs worldwide. To identify the primary mechanisms driving the occurrence of NNS, we utilize model selection with proxies representing colonization pressure, environmental variables, and MPA characteristics. Among the environmental predictors analyzed, sea surface temperature emerged as the sole factor strongly associated with NNS richness. Higher sea surface temperatures are linked to increased NNS richness, aligning with global marine biodiversity trends. Furthermore, human activities help species overcome geographical barriers and migration constraints. Consequently, this influences the distribution patterns of marine introduced species and associated environmental factors. As global climate change continues to alter sea temperatures, it is crucial to protect marine regions that are increasingly vulnerable to intense human activities and biological invasions.

RevDate: 2024-08-23

McCard M, McCard N, Coughlan NE, et al (2024)

Functional response metrics explain and predict high but differing ecological impacts of juvenile and adult lionfish.

Royal Society open science, 11(8):240855.

Recent accumulation of evidence across taxa indicates that the ecological impacts of invasive alien species are predictable from their functional response (FR; e.g. the maximum feeding rate) and functional response ratio (FRR; the FR attack rate divided by handling time). Here, we experimentally derive these metrics to predict the ecological impacts of both juvenile and adult lionfish (Pterois volitans), one of the world's most damaging invaders, across representative and likely future prey types. Potentially prey-population destabilizing Type II FRs were exhibited by both life stages of lionfish towards four prey species: Artemia salina, Gammarus oceanicus, Palaemonetes varians and Nephrops norvegicus. FR magnitudes revealed ontogenetic shifts in lionfish impacts where juvenile lionfish displayed similar if not higher consumption rates than adult lionfish towards prey, apart from N. norvegicus, where adult consumption rate was considerably higher. Additionally, lionfish FRR values were very substantially higher than mean FRR values across known damaging invasive taxa. Thus, both life stages of lionfish are predicted to contribute to differing but high ecological impacts across prey communities, including commercially important species. With lionfish invasion ranges currently expanding across multiple regions globally, efforts to reduce lionfish numbers and population size structure, with provision of prey refugia through habitat complexity, might curtail their impacts. Nevertheless, the present study indicates that management programmes to support early detection and complete eradication of lionfish individuals when discovered in new regions are advised.

RevDate: 2024-08-21
CmpDate: 2024-08-21

Dawson HRS, England MH, Morrison AK, et al (2024)

Floating debris and organisms can raft to Antarctic coasts from all major Southern Hemisphere landmasses.

Global change biology, 30(8):e17467.

Antarctica's unique marine ecosystems are threatened by the arrival of non-native marine species on rafting ocean objects. The harsh environmental conditions in Antarctica prevent the establishment of many such species, but warming around the continent and the opening up of ice-free regions may already be reducing these barriers. Although recent genomic work has revealed that rafts-potentially carrying diverse coastal passengers-reach Antarctica from sub-Antarctic islands, Antarctica's vulnerability to incursions from Southern Hemisphere continents remains unknown. Here we use 0.1° global ocean model simulations to explore whether drift connections exist between more northern, temperate landmasses and the Antarctic coastline. We show that passively floating objects can drift to Antarctica not only from sub-Antarctic islands, but also from continental locations north of the Subtropical Front including Australia, South Africa, South America and Zealandia. We find that the Antarctic Peninsula is the region at highest risk for non-native species introductions arriving by natural oceanic dispersal, highlighting the vulnerability of this region, which is also at risk from introductions via ship traffic and rapid warming. The widespread connections with sub-Antarctic and temperate landmasses, combined with an increasing abundance of marine anthropogenic rafting vectors, poses a growing risk to Antarctic marine ecosystems, especially as environmental conditions around Antarctica are projected to become more suitable for non-native species in the future.

RevDate: 2024-08-21

Chan CMH, Owers CJ, Fuller S, et al (2024)

Capacity and capability of remote sensing to inform invasive plant species management in the Pacific Islands region.

Conservation biology : the journal of the Society for Conservation Biology [Epub ahead of print].

The Pacific Islands region is home to several of the world's biodiversity hotspots, yet its unique flora and fauna are under threat because of biological invasions. These invasions are likely to proliferate as human activity increases and large-scale natural disturbances unfold, exacerbated by climate change. Remote sensing data and techniques provide a feasible method to map and monitor invasive plant species and inform invasive plant species management across the Pacific Islands region. We used case studies taken from literature retrieved from Google Scholar, 3 regional agencies' digital libraries, and 2 online catalogs on invasive plant species management to examine the uptake and challenges faced in the implementation of remote sensing technology in the Pacific region. We synthesized remote sensing techniques and outlined their potential to detect and map invasive plant species based on species phenology, structural characteristics, and image texture algorithms. The application of remote sensing methods to detect invasive plant species was heavily reliant on species ecology, extent of invasion, and available geospatial and remotely sensed image data. However, current mechanisms that support invasive plant species management, including policy frameworks and geospatial data infrastructure, operated in isolation, leading to duplication of efforts and creating unsustainable solutions for the region. For remote sensing to support invasive plant species management in the region, key stakeholders including conservation managers, researchers, and practitioners; funding agencies; and regional organizations must invest, where possible, in the broader geospatial and environmental sector, integrate, and streamline policies and improve capacity and technology access.

RevDate: 2024-08-21
CmpDate: 2024-08-21

Ruiling Z, Sha A, Z Zhong (2024)

Chitin synthase genes of Aedes albopictus and their effects on development of pupae.

Archives of insect biochemistry and physiology, 116(4):e22142.

The invasive species Aedes albopictus is a major vector of several arboviruses. The global spread of this species seriously threatens human health. Insecticide resistance is an increasing problem worldwide that limits the efficacy of mosquito control. As the major structural component of cuticles, chitin is indispensable to insects. Chitin synthase (CHS) is the enzyme that catalyzes the biosynthesis of chitin at the final step. In this study, two CHS genes of Aedes albopictus (AaCHS1 and AaCHS2) were identified and their basic characteristics were evaluated via bioinformatics analysis. The highest abundance of AaCHS1 transcripts was detected in pupae, whereas that of AaCHS2 transcripts was detected in females; the highest expression levels of AaCHS1 and AaCHS2 were found in the epidermis and the midgut of pupae, respectively. The survival and emergence rates of pupae were significantly reduced after the injection of double-stranded RNA of AaCHS1 or AaCHS2, indicating that both AaCHS1 and AaCHS2 play crucial roles in the pupal development. In addition, the chitin content of pupae was obviously decreased after the suppression of AaCHS1 expression by RNA interference (RNAi) treatment. This influence of the RNAi treatment was further supported by the reduced chitin thickness and weakened chitin fluorescence signal in the new cuticle. The midgut of pupae presented a reduced intensity of the chitin fluorescence signal along with RNAi treatment specific to AaCHS2 expression. The results of this study indicate that CHS genes may be suitable as molecular targets used for controlling mosquitoes.

RevDate: 2024-08-20
CmpDate: 2024-08-20

Rego RMC, Moura M, Olangua-Corral M, et al (2024)

Anthropogenic disturbance has altered the habitat of two Azorean endemic coastal plants.

BMC ecology and evolution, 24(1):111.

BACKGROUND: Anthropogenic threats are causing alteration of coastal areas worldwide. Most of the coastal biodiversity is endangered, taking a particular toll on island ecosystems, like the Azores. To better understand the biotic and abiotic factors constraining the distribution and conservation status of two endemic plants, Azorina vidalii (Campanulaceae) and Lotus azoricus (Fabaceae), we performed a global survey of coastal plant communities in the archipelago, also covering environmental descriptors, natural and anthropogenic threats. Moreover, we revised their IUCN conservation status and estimated the population fractions within protected areas.

RESULTS: Non-indigenous plants were commonly found in plots with or without the target endemics, contributing to the absence of well-defined coastal plant communities. Nonetheless, indigenous taxa commonly occurred at the plots with L. azoricus. With a larger area of occurrence, A. vidalii ecological niche differed from that of L. azoricus, the latter being restricted to dry and rocky sea cliffs, mostly in Santa Maria Island. Besides the presence of invasive plants, signs of habitat destruction, trampling and grazing, and of natural threats, such as coastal erosion, were commonly observed.

CONCLUSIONS: Occurrence data indicated an endangered status for both species, although this would change to critically endangered for L. azoricus when using smaller-sized occurrence cells. Both species are threatened since their habitat is restricted to a very narrow vegetation belt, strongly limited by sea influence and human pressure, and with the frequent presence of invasive plants. While focusing on two endemic plants, our study allowed a broader view of the impact of anthropogenic disturbance on Azorean coastal plant communities.

RevDate: 2024-08-21
CmpDate: 2024-08-21

Huhn M, Mark MD, Fiege A, et al (2024)

Native versus non-native ascidians in the Adriatic Sea: Species-specific patterns in behavior and HSP70 response during heat stress.

Journal of thermal biology, 123:103928.

RevDate: 2024-08-21
CmpDate: 2024-08-21

Munné-Bosch S, JAS Santos (2024)

The dramatic effects of well-intentioned but ill-designed management strategies in plant biological invasions.

Nature plants, 10(8):1148-1152.

RevDate: 2024-08-20
CmpDate: 2024-08-20

Legiec JR, GJ Langford (2024)

ALTERNATIVE ROUTE OF TRANSMISSION AND HOST SPECIFICITY OF CYRTOSOMUM PENNERI IN FLORIDA'S INVASIVE LIZARDS.

The Journal of parasitology, 110(4):386-388.

The atractid nematode Cyrtosomum penneri is an autoinfective parasite of several lizard species. Intraspecific transmission between hosts appears to occur exclusively through sexual copulation, yet it is unclear how worms are transferred between different host species. Our research aims to test the possibility of oral transmission of C. penneri using experimental infections. The lizards Anolis sagrei, Leiocephalus carinatus, Hemidactylus mabouia, and Agama picticauda were experimentally exposed to C. penneri in 1 of these groups: (1) oral infection using a feces and saline slurry to approximate host coprophagy, (2) oral infection with a large meal to approximate host predation, and (3) venereal infection using a pipette to confirm sexual transmission. Experimental infections to test venereal transmission were successful in A. sagrei, A. picticauda, and H. mabouia, but were unable to establish infections in L. carinatus. In the predation exposures, A. picticauda, A. sagrei, and H. mabouia hosted infections, whereas L. carinatus were uninfected. Finally, coprophagy experimental infections did not result in infections for any species of host. Our study corroborates venereal transmission of C. penneri in multiple species of lizards and establishes predation as an alternative route of infection. Predation as an oral route of transmission may provide C. penneri an opportunity for interspecific transmission that would otherwise be unlikely during host copulation.

RevDate: 2024-08-20
CmpDate: 2024-08-20

Wyatt AL, Pardoe HS, Cleal CJ, et al (2024)

Rapid morphological change in UK populations of Impatiens glandulifera.

Scientific reports, 14(1):19275.

The highly invasive Impatiens glandulifera (Himalayan balsam) is one of the most prolific and widespread invasive plants in the British Isles. Introduced in the early nineteenth century, it has now been reported in almost every vice county across the UK and is a fierce competitor that has adverse effects on the local community structure. Despite the negative impacts that invaders like I. glandulifera have on local communities, there have been very few studies which address the morphological changes that invasive plant populations have undergone since their initial introduction. This is the first study of its kind to investigate the morphological changes that have occurred in I. glandulifera. 315 herbarium specimens dating from 1865 to 2017 were used to measure changes in morphological traits such as leaf size, flower length and stomatal characteristics. We found that since 1865, there has been a significant reduction in overall leaf size, a significant reduction in stomatal density and a significant increase in the overall flower length. These results highlight the importance of monitoring the evolutionary change in prolific alien species over the course of their invasion, providing useful insights into changes in competitive ability which may prove useful in managing dispersal and providing options for potential management.

RevDate: 2024-08-20
CmpDate: 2024-08-20

Wouters RM, Beukema W, Schrama M, et al (2024)

Local environmental factors drive distributions of ecologically-contrasting mosquito species (Diptera: Culicidae).

Scientific reports, 14(1):19315.

Mosquitoes are important vectors of disease pathogens and multiple species are undergoing geographical shifts due to global changes. As such, there is a growing need for accurate distribution predictions. Ecological niche modelling (ENM) is an effective tool to assess mosquito distribution patterns and link these to underlying environmental preferences. Typically, macroclimatic variables are used as primary predictors of mosquito distributions. However, they likely undervalue local conditions and intraspecific variation in environmental preferences. This is problematic, as mosquito control takes place at the local scale. Utilising high-resolution (10 × 10 m) Maxent ENMs on the island of Bonaire as model system, we explore the influence of local environmental variables on mosquito distributions. Our results show a distinct set of environmental variables shape distribution patterns across ecologically-distinct species, with urban variables strongly associated with introduced species like Aedes aegypti and Culex quinquefasciatus, while native species show habitat preferences for either mangroves, forests, or ephemeral water habitats. These findings underscore the importance of distinct local environmental factors in shaping distributions of different mosquitoes, even on a small island. As such, these findings warrant further studies aimed at predicting high-resolution mosquito distributions, opening avenues for preventative management of vector-borne disease risks amidst ongoing global change and ecosystem degradation.

RevDate: 2024-08-20
CmpDate: 2024-08-20

Fletcher RJ, Beatty MA, Elmquist L, et al (2024)

An invasive prey and changing climate interact to shape the breeding phenology of an endangered predator.

Global change biology, 30(8):e17478.

Changes in phenology are occurring from global climate change, yet the impacts of other types of global change on the phenology of animals remain less appreciated. Understanding the potential for synergistic effects of different types of global change on phenology is needed, because changing climate regimes can have cascading effects, particularly on invasive species that vary in their thermal tolerances. Using 25 years of data from 5963 nests and 4675 marked individuals across the entire US breeding range of an endangered predator, the snail kite (Rostrhamus sociabilis plumbeus), we isolated the effects of an invasion of novel prey and warming temperatures on breeding phenology and its demographic consequences. Over this time period, breeding season length doubled, increasing by approximately 14 weeks. Both temperature and the establishment of invasive prey interacted to explain the timing of nest initiation. Temperature and invasive prey played distinct roles: earlier nest initiation occurred with increasing temperatures, whereas late nesting increased with invasion. Ultimately, both nest survival and juvenile survival declined later in the year, such that effects from invasive prey, but not warming temperatures, have the apparent potential for mistiming in breeding phenology by some individuals. Nonetheless, relatively few nesting events occurred during late fall when nest survival was very low, and seasonal declines in nest survival were weaker and renesting was more frequent in invaded wetlands, such that total reproductive output increased with invasion. Variation in demographic effects illustrate that considering only particular components of demography (e.g., nest survival rates) may be inadequate to infer the overall consequences of changes in phenology, particularly the potential for mistiming of phenological events. These results emphasize that species invasions may profoundly alter phenology of native species, such effects are distinct from climate effects, and both interact to drive population change.

RevDate: 2024-08-20

Lindroth RL, Zierden MR, Morrow CJ, et al (2024)

Forest defoliation by an invasive outbreak insect: Catastrophic consequences for a charismatic mega moth.

Ecology and evolution, 14(8):e70046.

Earth is now experiencing declines in insect abundance and diversity unparalleled in human history. The drivers underlying those declines are many, complex, and incompletely known. Here, using a natural experiment, we report the first test of the hypothesis that forest defoliation by an invasive outbreak insect compromises the fitness of a native insect via damage-induced increases in toxicity of the forest canopy. We demonstrate that defoliation by the invasive spongy moth (Lymantria dispar) elicits an average 8.4-fold increase in foliar defense expression among aspen (Populus tremuloides) genotypes. In turn, elevated defense dramatically reduces survivorship, feeding, and growth of a charismatic mega moth (Anthereae polyphemus). This work suggests that changes to the phytochemical landscape of forests, mediated by invasive outbreak insects, are likely to negatively impact native insects, with potential repercussions for community diversity and ecosystem function across expansive scales.

RevDate: 2024-08-19
CmpDate: 2024-08-19

Kaur A, Sharma A, Kaur S, et al (2024)

Role of plant functional traits in the invasion success: analysis of nine species of Asteraceae.

BMC plant biology, 24(1):784.

Various attributes are hypothesized to facilitate the dominance of an invasive species in non-native geographical and ecological regimes. To explore the characteristic invasive attributes of the family Asteraceae, a comparative study was conducted among nine species of this family, co-occurring in the western Himalayan region. Based on their nativity and invasion status, the species were categorized as "Invasive", "Naturalized", and "Native". Fifteen plant functional traits, strongly linked with invasion, were examined in the test species. The analyses revealed a strong dissimilarity between all the plant functional traits (except leaf carbon [Leaf C]) represented by "Invasive" and "Native" categories and most of the traits (except leaf area [LA], leaf nitrogen [Leaf N], Leaf C, and leaf carbon-nitrogen ratio [C: N]) represented by the "Naturalized" and "Native" categories. Similarly, "Invasive" and "Naturalized" categories also varied significantly for most of the traits (except Leaf N, Leaf C, capitula per m[2] population [Cm[2]], seeds per capitula [Scapitula], and seed mass). Invasive species are characterized by high LA, specific leaf area [SLA] and germination, and low C:N and leaf construction costs [LCC]. Most of the traits represented by native species justify their non-invasive behavior; whereas the naturalized species, despite having better size metrics (plant height), resource investment strategy (aboveground non-reproductive biomass [BNR], and aboveground reproductive biomass [BR]), and reproductive output (capitula per individual plant [Cplant], and seeds per individual plant [Splant]) failed to invade, which implies that the role of these functional aspects in imparting invasion potential to a species is not consistent in all the ecosystems and/or phylogenetic groups. Results of PCA revealed that trait divergence plays a more imperative role in invasion success than naturalization in the species of the family Asteraceae. The present study is intended to refine the pre-generalized invasion concepts associated with family Asteraceae to ensure more accurate identification of the potential invaders and better management of the existing ones.

RevDate: 2024-08-20
CmpDate: 2024-08-20

Dauvin JC (2024)

Do offshore wind farms promote the expansion and proliferation of non-indigenous invertebrate species?.

Marine pollution bulletin, 206:116802.

Based on a search of publications in the scientific literature as well as international reports available online, I draw up a list of 25 documents which include cross-references to the terms offshore wind farms (OFW), and non-indigenous species (NIS). This review shows that no relationship has yet been clearly established between the implementation of OFWs and the colonization of NIS on turbine foundations and scour protections. Evidence for such an effect needs to be documented and confirmed in the future.

RevDate: 2024-08-20
CmpDate: 2024-08-20

An SU, Choi A, Baek JW, et al (2024)

Spatial-temporal impacts of invasive Spartina anglica on the rates and pathways of organic carbon mineralization and resulting C-Fe-S cycles in the intertidal wetland of the Han River Estuary, Yellow Sea.

Marine pollution bulletin, 206:116681.

To elucidate the spatial-temporal impact of invasive saltmarsh plant Spartina anglica on the biogeochemical processes in coastal wetlands, we investigated the rates and partitioning of organic carbon (Corg) mineralization in three representative benthic habitats: (1) vegetated sediments inhabited by invasive S. anglica (SA); vegetated sediments by indigenous Suaeda japonica; and (3) unvegetated mud flats. Microbial metabolic rates were greatly stimulated at the SA site during the active growing seasons of Spartina, indicating that a substantial amount of organic substrates was supplied from the high below-ground biomass of Spartina. At the SA site, sulfate reduction dominated the Corg mineralization pathways during the plant growing season, whereas iron reduction dominated during the non-growing season. Overall, due to its greater biomass and longer growing season than native Suaeda, the expansion of invasive Spartina is likely to greatly alter the Corg-Fe-S cycles and carbon storage capacity in the coastal wetlands.

RevDate: 2024-08-20
CmpDate: 2024-08-20

Dey T, Dwivedi SK, Datta S, et al (2024)

Understanding the Temporal Dynamics of Invasive Late Blight Populations in India for Improved Management Practices.

Phytopathology, 114(8):1810-1821.

The microbial oomycete pathogen Phytophthora infestans causes severe epidemics of potato late blight in crops globally. Disease management benefits from an understanding of the diversity of pathogen populations. In this study, we explore the dynamics of P. infestans populations in the late blight-potato agro-ecosystem across the Indian subcontinent. Investigations of the macroecological observations at the field level and microbial ecological principles provided insights into future pathogen behavior. We use a comprehensive simple sequence repeat allele dataset to demonstrate that an invasive clonal lineage called EU_13_A2 has dominated populations over 14 years across India, Bangladesh, and Pakistan. Increasing levels of subclonal variation were tracked over time and space, and, for the first time, populations in Asia were also compared with the source populations from Europe. Within India, a regional pathogen population structure was observed with evidence for local migration, cross-border movement between surrounding countries, and introductions via imports. There was also evidence of genetic drift and between-season transmission of more strongly pathogenic subclones with a complete displacement of some subclonal types. The limited introduction of novel genotypes and the use of resistant potato cultivars could contribute to the dominance of the 13_A2 lineage. The insights will contribute to the management of the pathogen in these key global potato production regions.

RevDate: 2024-08-19

Acuña-Zegarra MA, Tocto-Erazo MR, García-Mendoza CC, et al (2024)

Presence and infestation waves of hematophagous arthropod species.

Mathematical biosciences pii:S0025-5564(24)00142-1 [Epub ahead of print].

The invasion of hematophagous arthropod species in human settlements represents a threat, not only to the economy but also to the health system in general. Recent examples of this phenomenon were seen in Paris and Mexico City, evidencing the importance of understanding these dynamics. In this work, we present a reaction-diffusion model to describe the invasion dynamics of hematophagous arthropod species. The proposed model considers a denso-dependent growth rate and parameters related to the control of the invasive species. Our results illustrate the existence of two invasion levels (presence and infestation) within a region, depending on control parameter values. We also prove analytically the existence of the presence and infestation waves and show different theoretical types of invasion waves that result from varying control parameters. In addition, we present a condition threshold that determines whether or not an infestation occurs. Finally, we illustrate some results when considering the case of bedbugs and brown dog ticks as invasion species.

RevDate: 2024-08-19

Bray JP, Hewitt CLR, PE Hulme (2024)

Bridging aquatic invasive species threats across multiple sectors through One Biosecurity.

Bioscience, 74(7):440-449.

Understanding the magnitude of biosecurity risks in aquatic environments is increasingly complex and urgent because increasing volumes of international shipping, rising demand for aquaculture products, and growth in the global aquarium trade, are accelerating invasive alien species spread worldwide. These threats are especially pressing amid climate and biodiversity crises. However, global and national biosecurity systems are poorly prepared to respond because of fragmented research and policy environments, that often fail to account for risks across sectors or across stakeholder needs and fail to recognize similarities in the processes underpinning biological invasions. In the present article, we illustrate the complex network of links between biosecurity threats across human, animal, plant, and environment sectors and propose a universal approach to risk assessment. One Biosecurity is a holistic, interdisciplinary approach that minimizes biosecurity risks across human, animal, plant, algal, and ecosystem health and is critical to reduce redundancy and increase cross-sectoral cohesion to improve policy, management, and research in aquatic biosecurity.

RevDate: 2024-08-18
CmpDate: 2024-08-18

Gillani SW, Ahmad M, Manzoor M, et al (2024)

The nexus between ecology of foraging and food security: cross-cultural perceptions of wild food plants in Kashmir Himalaya.

Journal of ethnobiology and ethnomedicine, 20(1):77.

BACKGROUND: Wild food plants (WFPs) play an important role in the traditional dietary habits of various indigenous communities worldwide, particularly in mountainous regions. To understand the dynamics of food preferences, cross-cultural studies on food plants should be conducted across diverse ethnic groups in a given area. In this context, the current study investigated the use of WFPs by seven different cultural groups in the Kashmir Himalayan Region. In this area, people gather wild plants and their parts for direct consumption, traditional foods, or sale in local markets. Despite this reliance, documentation of the food system, especially concerning WFPs, is notably lacking. Hence, our research aimed to document WFPs, along with associated traditional ecological knowledge, and identify major threats to their long-term sustainability in Division Muzaffarabad.

METHODS: Through a comprehensive approach involving questionnaires, interviews, focus groups, and market surveys, we gathered data from 321 respondents. PCA was performed to analyze threats and plant use using "factoextra" in R software. Origin Pro was used to create a chord diagram, while R software was used to generate a Polar heat map. Additionally, a Venn diagram was created using Bioinformatics software.

RESULTS: The study included 321 informants, of whom 75.38% were men and 24.61% were women. In total, 113 plant taxa from 74 genera and 41 botanical families were reported. Polygonaceae and Rosaceae accounted for the majority (17 species each), followed by Lamiaceae (7 species). Leaves were the most used part as food sources (41.04%), followed by fruits (33.33%). Most of the species are consumed as cooked (46.46%) and as raw snacks (37.80%). A total of 47 plant species were collected and cooked as wild vegetables, followed by 40 species used as fruits. This study is the first to describe the market potential and ecological distribution of WFPs in the study area. Cross-comparison showed that utilization of WFPs varies significantly across the region and communities, including their edible parts and mode of consumption. Jaccard index (JI) value ranged from 5.81 to 25. Furthermore, the current study describes 29 WFPs and 10 traditional food dishes that have rarely been documented in Pakistan's ethnobotanical literature. Climate change, invasive species, expansion of agriculture, and plant diseases are some of the most significant threats to WFPs in the study area.

CONCLUSIONS: The older age group has more knowledge about WFPs compared to the younger generation, who are not interested in learning about the utilization of WFPs. This lack of interest in information about WFPs among the younger generation can be attributed to their limited access to markets and availability of food plants in the study area. Traditional gathering of food plants has been reduced in younger generations during recent years; therefore, it is crucial to develop effective conservation strategies. These efforts not only safeguard indigenous flora, food knowledge, and cultural heritage, but they also contribute to food security and public health by utilizing local wild foods in the examined area.

RevDate: 2024-08-19
CmpDate: 2024-08-19

Tang Y, Zhang H, Zhu H, et al (2024)

DNA methylase 1 influences temperature responses and development in the invasive pest Tuta absoluta.

Insect molecular biology, 33(5):503-515.

DNA methylase 1 (Dnmt1) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)-a destructive invasive pest-can rapidly invade and adapt to different habitats; however, the role of Dnmt1 in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of Tuta absoluta to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in Tuta absoluta was cloned by RACE (Rapid amplification of cDNA ends). TaDnmt1 was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that TaDnmt1 participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of TaDnmt1 is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, TaDnmt1 expression is significantly altered by temperature stress treatments and within different development stages. Hence, TaDnmt1 likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing Tuta absoluta to 35°C heat shock or -12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, TaDnmt1 contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of T absoluta has been closely associated with TaDnmt1-mediated temperature tolerance. This study advances the research on 'thermos Dnmt' and provides a potential target for RNAi-driven regulation of Tuta absoluta.

RevDate: 2024-08-17
CmpDate: 2024-08-17

Martínez-de la Puente J, Magallanes S, González MA, et al (2024)

The invasive Aedes albopictus in the Doñana World Heritage Site.

Parasites & vectors, 17(1):343.

BACKGROUND: Aedes albopictus is catalogued as one of the 100 most dangerous species worldwide. Native to Asia, the species has drastically increased its distribution range, reaching all continents except Antarctica. The presence of Ae. albopictus in Spain was first reported in 2004 in Cataluña (NE Spain), and it is spreading in the country.

METHODS: We conducted an extensive mosquito monitoring study in the natural protected area of the Doñana National Park (SW Spain) in 2023. After identifying the presence of Ae. albopictus, a mosquito control strategy was developed and implemented to eradicate the species in the area.

RESULTS: Overall, 12,652 mosquito females of 14 different species were captured at nine sites within the park. For the first time, the presence of Ae. albopictus was recorded in the area, despite intensive trapping performed at some localities since 2003. The presence of this invasive species in the park is most likely linked to human activities, potentially facilitated by daily car trips of personnel. Although larvae of Culex, Anopheles, and Culiseta mosquitoes were identified in these containers, the presence of Ae. albopictus larvae was not recorded in those locations. In spite of that, the biological larvicide Bacillus thuringiensis israelensis (Bti) was applied to artificial containers potentially used by Ae. albopictus as breeding sites.

CONCLUSIONS: This work evidences the high capacity of Ae. albopictus to reach highly conserved natural areas far from urban foci. We discuss the implications of the presence of Ae. albopictus in this endangered ecosystem and the potential control measures necessary to prevent its reintroduction.

RevDate: 2024-08-18
CmpDate: 2024-08-18

Lavrador AS, Amaral FG, Moutinho J, et al (2024)

Comprehensive DNA metabarcoding-based detection of non-indigenous invertebrates in recreational marinas through a multi-substrate approach.

Marine environmental research, 200:106660.

eDNA metabarcoding has been increasingly employed in the monitoring of marine invertebrate non-indigenous species (NIS), in particular using filtered seawater. However, comprehensive detection of all NIS may require a diversity of sampling substrates. To assess the effectiveness of 5 sample types (hard and artificial substrates, water, zooplankton) on the recovery of invertebrates' diversity, two marinas were monitored over three time points, using COI and 18S rRNA genes as DNA metabarcoding markers. We detected a total of 628 species and 23 NIS, with only up to 9% species and 17% of NIS detected by all sample types. Hard and artificial substrates were similar to each other but displayed the most significant difference in invertebrate recovery when compared to water eDNA and zooplankton. Five NIS are potential first records for Portugal. No NIS were detected in all sample types and seasons, highlighting the need for varied sampling approaches, and consideration of temporal variation for comprehensive marine NIS surveillance.

RevDate: 2024-08-17
CmpDate: 2024-08-17

Wang C, Liu L, Yin M, et al (2024)

Chromosome-level genome assemblies reveal genome evolution of an invasive plant Phragmites australis.

Communications biology, 7(1):1007.

Biological invasions pose a significant threat to ecosystems, disrupting local biodiversity and ecosystem functions. The genomic underpinnings of invasiveness, however, are still largely unknown, making it difficult to predict and manage invasive species effectively. The common reed (Phragmites australis) is a dominant grass species in wetland ecosystems and has become particularly invasive when transferred from Europe to North America. Here, we present a high-quality gap-free, telomere-to-telomere genome assembly of Phragmites australis consisting of 24 pseudochromosomes and a B chromosome. Fully phased subgenomes demonstrated considerable subgenome dominance and revealed the divergence of diploid progenitors approximately 30.9 million years ago. Comparative genomics using chromosome-level scaffolds for three other lineages and a previously published draft genome assembly of an invasive lineage revealed that gene family expansions in the form of tandem duplications may have contributed to the invasiveness of the lineage. This study sheds light on the genome evolution of Arundinoideae grasses and suggests that genetic drivers, such as gene family expansions and tandem duplications, may underly the processes of biological invasion in plants. These findings provide a crucial step toward understanding and managing the genetic basis of invasiveness in plant species.

RevDate: 2024-08-17
CmpDate: 2024-08-17

Guo S, Liu B, Zhao Q, et al (2024)

Chromosome-level genome assembly of the invasive pest Pseudococcus jackbeardsleyi (Hemiptera: Pseudococcidae).

Scientific data, 11(1):899.

Among over 2,000 species of mealybugs (Hemiptera: Pseudococcidae), only 13 genomes have been published so far, seriously limiting the researches on the phylogeny and adaptive evolution of this group. The continuous publication of mealybug genomes will significantly facilitate our exploration of the biological characteristics, detrimental attributes, and control strategies of the Pseudococcidae family. Jack Beardsley mealybug (Pseudococcus jackbeardsleyi) as one of the hazardous invasive pests, it could cause enormous losses to the fruit and vegetable industries worldwide. Herein, we combined Nanopore long-read, short-read Illumina and Hi-C sequencing, generating a high-quality chromosome-level genome assembly of P. jackbeardsleyi. The genome size was determined to be 334.818 Mb, which was assembled into 5 linkage groups with a N50 of 67.233 Mb. The BUSCO analysis demonstrated the completeness of the genome assembly and annotation are 95.7% and 92.8%, respectively. The developed high-quality genome will serve as an asset for delving into the genetic mechanisms underlying the invasiveness of P. jackbeardsleyi, thereby offering a crucial theoretical foundation for the prevention and management of Pseudococcidae pests.

RevDate: 2024-08-17

Ran C, Pan J, Lin Y, et al (2024)

Utilizing spontaneous plants for sustainable development in residential green spaces: Insights from environmental drivers and niche analysis in Fuzhou City, China.

Journal of environmental management, 368:122219 pii:S0301-4797(24)02205-9 [Epub ahead of print].

This study, aimed at exploring low-maintenance, high-diversity, and sustainable greening strategies for residential areas, conducted a comprehensive survey and analysis of spontaneous plants in residential green spaces in Fuzhou City, documenting 361 species. Employing methods such as variance partitioning, Canonical Correspondence Analysis (CCA), and ecological niche analysis, we investigated the environmental factors influencing the distribution and composition of these plants, as well as their interrelationships. The study found that the composition of spontaneous plants in residential green spaces differs from other urban environments, with a high proportion of alien species (43.77%) due to influences such as resident activities, including a large number of ornamental and edible plants. Maintenance level, urbanization gradient, and green space ratio are common factors affecting the composition and distribution of spontaneous plants in urban environments, while unique residential socio-economic factors like building age, housing prices, and population density significantly affect the spontaneous plants in residential green spaces. The overall dominant plant community shows a significant positive association, indicating a relatively stable stage of succession. Although competition among most species is not significant and interspecific connectivity is weak, the presence of seven dominant invasive species intensifies competition. Based on these findings, the study proposes several specific sustainable management measures: adopting the concept of New Naturalistic Ecological Planting Design, selecting native spontaneous plants with strong adaptability, and constructing plant communities that are ecologically stable and have ornamental value by mimicking natural ecosystems. Additionally, specific methods for managing specific invasive species in residential green spaces using competitive replacement control methods are proposed. These measures aim to promote the health and sustainable development of urban residential green spaces.

RevDate: 2024-08-17

Yu S, Gong L, Han YC, et al (2024)

Oral secretions from striped stem borer (Chilo suppressalis) induce defenses in rice.

Pest management science [Epub ahead of print].

BACKGROUND: The striped stem borer (SSB, Chilo suppressalis) is one of the most destructive insect pests on rice. As a chewing insect, SSB larval feeding causes a dramatic increase in rice defense responses. However, the effects of oral secretions (OSs) during SSB feeding on rice defense remain largely unexplored.

RESULTS: In this study, based on transcriptome analysis results, treatment with SSB OSs regulated the expression of genes involved in the plant defense-related pathways of calcium, mitogen-activated protein kinases, reactive oxygen species, jasmonic acid (JA), herbivore-induced plant volatiles (HIPVs), and protease inhibitors. Unsurprisingly, treatment with SSB OSs elicited the accumulation of JA and JA-isoleucine in rice. The defense mechanisms activated by the cascade not only induced the expression of trypsin inhibitors, inhibiting the normal growth of SSB larvae but also induced HIPVs emission, rendering rice attractive to a common larval parasitoid. High-throughput proteome sequencing of SSB OSs led to 534 proteins being identified and 343 proteins with two or more unique peptides being detected.

CONCLUSION: The study demonstrates that SSB OSs trigger both direct and indirect defense mechanisms in rice, akin to the effects of SSB feeding. It identifies specific proteins in SSB OSs that may influence the interactions between SSB and rice during feeding, providing valuable insights for effectors research. © 2024 Society of Chemical Industry.

RevDate: 2024-08-17

Zhang T, Song B, Wang L, et al (2024)

Spartina alterniflora invasion reduces soil microbial diversity and weakens soil microbial inter-species relationships in coastal wetlands.

Frontiers in microbiology, 15:1422534.

Soil microorganisms play a crucial role in the plant invasion process, acting as both drivers of and responders to plant invasion. However, the effects of plant invasion on the complexity and stability of co-occurrence networks of soil microbial communities remain unclear. Here, we investigated how the invasion of Spartina alterniflora affected the diversity, composition, and co-occurrence networks of soil bacterial and fungal communities in the Yellow River Delta, China. Compared to the native plant (Suaeda salsa), S. alterniflora invasion decreased the α-diversity of soil bacterial communities but did not affect that of fungal communities. The β-diversity of soil bacterial and fungal communities under S. salsa and S. alterniflora habitats also differed dramatically. S. alterniflora invasion increased the relative abundance of the copiotrophic phylum Bacteroidota, whereas decreased the relative abundances of the oligotrophic phyla Acidobacteriota and Gemmatimonadota. Additionally, the relative abundance of Chytridiomycota, known for its role in degrading recalcitrant organic matter, increased substantially within the soil fungal community. Functional predictions revealed that S. alterniflora invasion increased the relative abundance of certain soil bacteria involved in carbon and nitrogen cycling, including aerobic chemoheterotrophy, nitrate reduction, and nitrate respiration. More importantly, S. alterniflora invasion reduced the complexity and stability of both soil bacterial and fungal community networks. The shifts in soil microbial community structure and diversity were mainly induced by soil available nutrients and soil salinity. Overall, our study highlights the profound impacts of S. alterniflora invasion on soil microbial communities, which could further indicate the modification of ecosystem functioning by invasive species.

RevDate: 2024-08-16
CmpDate: 2024-08-16

Liang W, Chen X, Chen ZL, et al (2024)

Unraveling the impact of Spartina alterniflora invasion on greenhouse gas production and emissions in coastal saltmarshes: New insights from dissolved organic matter characteristics and surface-porewater interactions.

Water research, 262:122120.

Saltmarshes along the Chinese coast are threatened by the invasion of Spartina alterniflora (S. alterniflora). This study was carried out in the Andong Shoal, Hangzhou Bay, China, with the aim of comprehending the intricate impacts of S. alterniflora invasion on greenhouse gases (GHG) production and emissions. To address this issue, we thoroughly examined the chemistry of dissolved organic matter (DOM) and the rate of surface water-porewater interaction. Porewater and surface water samples were collected from farm land, S. alterniflora invaded areas, and Scirpus mariqueter (S. mariqueter) dominated areas. The findings indicated that the invasion of S. alterniflora impeded the interaction between surface water and porewater, resulting in reduced porewater exchange rates within its affected region (0.015-0.440 cm d[-1]), in contrast to areas dominated by S. mariqueter (9.635-18.232 cm d[-1]). The invasion also increased dissolved organic carbon concentration in porewater and created a stable and closed soil environment that resulted in DOM with smaller molecule sizes and higher humification levels. The presence of high tryptophan-like fluorescent DOM caused an increase in the production of methane and carbon dioxide in S. alterniflora invaded area. However, both limited surface-porewater exchange and significant differences in GHG concentrations between porewater and surface water suggested that the aerenchyma tissues of S. alterniflora may play an important role in transporting GHG from soil to the atmosphere.

RevDate: 2024-08-17
CmpDate: 2024-08-17

Wilson CJ, Petrice TR, Poland TM, et al (2024)

Tree species richness and ash density have variable effects on emerald ash borer biological control by woodpeckers and parasitoid wasps in post-invasion white ash stands.

Environmental entomology, 53(4):544-560.

Emerald ash borer (EAB) (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) is the most destructive insect to invade North American forests. Identifying habitat features that support EAB natural enemies is necessary to enhance EAB biological control. In many forest ecosystems, tree species diversity has been linked with reduced pest abundance and increases in natural enemy abundance. We assessed the influence of tree species richness, ash density, and proportion of total ash basal area on ash canopy condition, EAB larval densities, and biocontrol by woodpeckers and parasitoids in pairs of healthy and declining overstory (DBH > 10 cm) and recruit-sized ash (DBH 2-10 cm) in 4 post-invasion forests in Michigan, USA. Tree species richness and ash density were not significantly associated with EAB larval densities, ash canopy dieback and transparency, and woodpecker predation of EAB larvae. In declining and healthy overstory ash, woodpeckers killed 38.5 ± 3.9% and 13.2 ± 3.7% of larvae, respectively, while the native parasitoid Phasgonophora sulcata Westwood killed 15.8 ± 3.8% and 8.3 ± 3.0% and the introduced parasitoid Spathius galinae Belokobylskij & Strazanac killed 10.8 ± 2.5% and 5.0 ± 2.6% of EAB larvae. Parasitism by P. sulcata was inversely related to ash density while parasitism by S. galinae was positively associated with ash density. Ash density, but not tree diversity, appears to differentially influence biological control of EAB by parasitoids, but this effect is not associated with reduced EAB densities or improved canopy condition.

RevDate: 2024-08-17
CmpDate: 2024-08-17

Morris TD, Gould JR, MK Fierke (2024)

Field phenology of emerald ash borer (Coleoptera: Buprestidae) parasitoids in New York State.

Environmental entomology, 53(4):532-543.

Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has caused extensive mortality of ash across North America. Biological control offers a potential long-term management option, allowing for long-term survival of ash. Careful monitoring of populations of biocontrol agents is necessary to understand their relative impacts. Understanding the emergence and flight phenology of these species allows for the optimization of monitoring schemes and improves our understanding of host-parasitoid interactions. We used yellow pan trapping data to assess the adult phenology of both EAB and its associated native and introduced parasitoids in 3 New York counties. We monitored 2 introduced larval biocontrol agents, Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius galinae Belokobylskij & Strazanac (Braconidae), for 3-4 years post-release, as well as the native parasitoid Phasgonophora sulcata Westword (Chalcididae). Results indicate a single discrete emergence event for both EAB and P. sulcata in all monitored counties, which is consistent with previously reported results. Our results also suggest there are 4 generations per year of T. planipennisi and 3 generations of S. galinae in the monitored counties. We recorded an additional generation of T. planipennisi that had not previously been reported in New York, and both T. planipennisi and S. galinae appeared to emerge earlier than previously documented.

RevDate: 2024-08-16

Giglio RM, Bowden CF, Brook RK, et al (2024)

Characterizing feral swine movement across the contiguous United States using neural networks and genetic data.

Molecular ecology [Epub ahead of print].

Globalization has led to the frequent movement of species out of their native habitat. Some of these species become highly invasive and capable of profoundly altering invaded ecosystems. Feral swine (Sus scrofa × domesticus) are recognized as being among the most destructive invasive species, with populations established on all continents except Antarctica. Within the United States (US), feral swine are responsible for extensive crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful human-mediated movement of feral swine has contributed to their rapid range expansion over the past 30 years. Patterns of deliberate introduction of feral swine have not been well described as populations may be established or augmented through small, undocumented releases. By leveraging an extensive genomic database of 18,789 samples genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural networks to identify translocated feral swine across the contiguous US. We classified 20% (3364/16,774) of sampled animals as having been translocated and described general patterns of translocation using measures of centrality in a network analysis. These findings unveil extensive movement of feral swine well beyond their dispersal capabilities, including individuals with predicted origins >1000 km away from their sampling locations. Our study provides insight into the patterns of human-mediated movement of feral swine across the US and from Canada to the northern areas of the US. Further, our study validates the use of neural networks for studying the spread of invasive species.

RevDate: 2024-08-15
CmpDate: 2024-08-15

Bian C, Li RH, Ruan ZQ, et al (2024)

Chromosome-level genome assembly of the glass catfish (Kryptopterus vitreolus) reveals molecular clues to its transparent phenotype.

Zoological research, 45(5):1027-1036.

Glass catfish (Kryptopterus vitreolus) are notable in the aquarium trade for their highly transparent body pattern. This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body, although certain black and silver pigments remain in the face and head. To date, however, the molecular mechanisms underlying this transparent phenotype remain largely unknown. To explore the genetic basis of this transparency, we constructed a chromosome-level haplotypic genome assembly for the glass catfish, encompassing 32 chromosomes and 23 344 protein-coding genes, using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines. Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene, encoding tyrosinase-related protein 1, rendering it a nonfunctional pseudogene. Notably, a synteny comparison with over 30 other fish species identified the loss of the endothelin-3 (edn3b) gene in the glass catfish genome. To investigate the role of edn3b, we generated edn3b [-/-] mutant zebrafish, which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish. These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish. Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish. These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish, but also offer a valuable genetic resource for further research on pigmentation in various animal species.

RevDate: 2024-08-16
CmpDate: 2024-08-16

Li X, Gao X, Tang N, et al (2024)

Functional traits of exotic submerged macrophytes mediate diversity-invasibility relationship in freshwater communities under eutrophication.

The Science of the total environment, 949:175060.

Plant diversity may respond differently in terms of whether it can drive plant invasions in freshwater ecosystem. Linkages and interactions between diversity and invasibility have not been clearly resolved, and it is unclear how nutrient enrichment (e.g., eutrophication) will affect this relationship. As a key predictor of plant growth, the ability of functional traits to mediate trade-offs in the diversity-invasibility relationship is unknown. Here, we conducted a series of experiments to determine the role of exotic plant functional traits in the diversity-invasibility relationship of submerged macrophyte communities under eutrophication. We selected common native and exotic submerged macrophytes in the subtropics to construct different diverse submerged macrophyte communities to simulate invasion. Meanwhile, to test the adaptability and importance of functional traits, we experimentally verified the differences in functional traits between exotic and native species. Our results showed a positive correlation between native plant diversity and community invasibility. Moreover, the invader's performance was predominantly determined by functional traits of exotic species, such as plant biomass and tissue nutrients, which were significantly altered by species diversity. Furthermore, our results suggested that functional traits contribute significantly more to the invasiveness of exotic submerged macrophytes than the other factors to which they are subjected. Plant functional traits can mediate the diversity-invasibility relationship because of the higher intrinsic dominance of exotic submerged macrophyte species. In summary, our study revealed diversity-invasibility relationship in submerged macrophyte communities and highlighted functional traits as key drivers of invasion of high-risk exotic submerged macrophyte species. Although previous studies have elucidated the importance of functional trait studies for plant invasions, our study provides the only current evidence demonstrating the important role of invaders' functional traits in mediating the diversity-invasibility relationship. This novel perspective offers valuable insights into the management and control of invasive aquatic plants.

RevDate: 2024-08-15
CmpDate: 2024-08-15

Modabbernia G, Meshgi B, AC Kinsley (2024)

Climatic variations and Fasciola: a review of impacts across the parasite life cycle.

Parasitology research, 123(8):300.

Fasciolosis, caused by the liver fluke Fasciola spp., is a significant parasitic disease of livestock and humans worldwide. Fasciola transmission and life cycle are highly dependent on climatic conditions, especially temperature and humidity. This dependency has gained significance in the context of ongoing climate change. This literature review examined evidence on the effects of temperature variability on the developmental stages of Fasciola spp. and the snail intermediate hosts. We reviewed free larval stages of Fasciola spp. development, as well as snail intermediate hosts, while investigating the climate-related factors influencing each stage. We found that Fasciola spp. egg hatching and development were inhibited below 10 °C and optimal between 20 and 30 °C, miracidia hatching time decreased with higher temperatures and cercarial shedding by snail hosts accelerated around 27 °C. Further, metacercarial viability declined at higher temperatures but was prolonged by higher humidity. Snail intermediate host growth rates peaked at 25 °C, and their susceptibility to Fasciola infection depends on temperature, underscoring its importance in transmission dynamics. Overall, the Fasciola life cycle and snail host development exhibit stage-specific temperature thresholds, indicating a complex relationship between temperature fluctuations and parasite transmission potential. This research highlights the key role of temperature and humidity on Fasciola spp. and snail development, shedding light on the potential consequences of climate change on their survival, development, and disease transmission. Data limitations, primarily from the scarcity of high-resolution climate-related experiments, should drive future research to enhance predictive models and deepen our understanding of the impact of climate change on this parasitic disease.

RevDate: 2024-08-15

Melen MK, Snyder ED, Fernandez M, et al (2024)

Invasion away from roadsides was not driven by adaptation to grassland habitats in Dittrichia graveolens (stinkwort).

Biological invasions, 26(9):2923-2939.

UNLABELLED: Invasive plants along transportation corridors can significantly threaten ecosystems and biodiversity if they spread beyond anthropogenic environments. Rapid evolution may increase the ability of invading plant populations to establish in resident plant communities over time, posing a challenge to invasion risk assessment. We tested for adaptive differentiation in Dittrichia graveolens (stinkwort), an invasive species of ruderal habitat in California that is increasingly spreading away from roadsides into more established vegetation. We collected seeds from eight pairs of vegetated sites and their nearest (presumed progenitor) roadside population. We assessed differentiation between populations in roadside and vegetated habitat for germination behavior and for response to competition in a greenhouse experiment. We also tested for increased performance in vegetated habitat with a grassland field experiment including a neighbor removal treatment. Germination rates were slightly reduced in seeds from vegetated sites, which may indicate lower seed viability. Otherwise, plants did not show consistent differences between the two habitat types. Competition strongly reduced performance of D. graveolens in both the greenhouse and in the field, but plants originating from vegetated sites did not show enhanced competitive ability. Our findings show no evidence of adaptive differentiation between D. graveolens populations from roadside and vegetated habitats to date, suggesting that invasiveness in grasslands has not been enhanced by rapid evolution in the 40 + years since this species was introduced to California. Evolutionary constraints or potentially high levels of gene flow at this small scale may limit adaptation to novel habitats along roadsides.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10530-024-03359-6.

RevDate: 2024-08-14

Duan JJ, Quinn NF, DC Weber (2024)

Parasitoid-host association in invaded communities.

Current opinion in insect science pii:S2214-5745(24)00092-0 [Epub ahead of print].

In nature, most parasitoids attack more than one host species, and nearly all hosts are attacked by several species of parasitoids. This opens many potential opportunities for interactions of invasive species with native parasitoid-host association networks in invaded communities. Despite this, few studies have examined the direct and indirect impacts of biological invasion on parasitoid-host associations. This review examines what is known of these relationships from the most recent literature and suggests future research priorities. We conclude that parasitoid-host association networks in invaded communities are complex, dynamic, and subject to trophic intrusions from invasive plants, herbivores, plant pathogens, parasitoids and hyperparasitoids. Future studies should take a holistic systems approach to understanding the impact of biological invasion and its consequences in shaping community structure through altering existing native, coevolved parasitoid-host association networks.

RevDate: 2024-08-14

Seo H, Ansai E, Sase T, et al (2024)

Introduction of a snake trematode of the genus Ochetosoma in eastern Japan.

Parasitology international pii:S1383-5769(24)00098-9 [Epub ahead of print].

In Japan, trematodes of the family Ochetosomatidae are not naturally distributed. However, the introduced ochetosomatid Ochetosoma kansense (Crow, 1913) has been reported from the oral cavity of native snakes in western Japan since 2010. In this study, trematodes were isolated from the oral cavities of the native Japanese snakes, Elaphe quadrivirgata (Boie, 1826), E. climacophora (Boie, 1826), and Rhabdophis tigrinus (Boie, 1826), in the central Kanto region of eastern Japan. Morphological and molecular analyses of the isolated trematodes revealed that all trematodes were identifiable to a newly introduced ochetosomatid species to Japan, O. elongatum (Pratt, 1903), which originated from North America; Lechriorchis tygarti was synonymized with O. elongatum based on identical molecular data and morphological similarity. To identify first intermediate hosts of O. elongatum, seven freshwater snail species were examined in eastern Japan. Molecular analysis was used to identify O. elongatum sporocysts in the freshwater snail Physella acuta (Draparnaud, 1805), which also originated from North America. The other six species did not host O. elongatum, suggesting that Ph. acuta is the only first intermediate host of O. elongatum in Japan. Although O. elongatum has been detected in Japan, its invasion route and period of introduction are unclear. Frequent imports of freshwater snails and wild snakes from North America, after the 1990s and 2005, respectively, presumably introduced O. elongatum in Japan.

RevDate: 2024-08-14
CmpDate: 2024-08-14

Strömbom D, Sands A, Graham JM, et al (2024)

Modeling human activity-related spread of the spotted lanternfly (Lycorma delicatula) in the US.

PloS one, 19(8):e0307754 pii:PONE-D-23-40892.

The spotted lanternfly (Lycorma delicatula) has recently spread from its native range to several other countries and forecasts predict that it may become a global invasive pest. In particular, since its confirmed presence in the United States in 2014 it has established itself as a major invasive pest in the Mid-Atlantic region where it is damaging both naturally occurring and commercially important farmed plants. Quarantine zones have been introduced to contain the infestation, but the spread to new areas continues. At present the pathways and drivers of spread are not well-understood. In particular, several human activity related factors have been proposed to contribute to the spread; however, which features of the current spread can be attributed to these factors remains unclear. Here we collect county level data on infestation status and four specific human activity related factors and use statistical methods to determine whether there is evidence for an association between the factors and infestation. Then we construct a network model based on the factors found to be associated with infestation and use it to simulate local spread. We find that the model reproduces key features of the spread 2014 to 2021. In particular, the growth of the main infestation region and the opening of spread corridors in the westward and southwestern directions is consistent with data and the model accurately forecasts the correct infestation status at the county level in 2021 with 81% accuracy. We then use the model to forecast the spread up to 2025 in a larger region. Given that this model is based on a few human activity related factors that can be targeted, it may prove useful to incorporate it into more elaborate predictive forecasting models and in informing management efforts focused on interstate highway transport and garden centers in the US and potentially for current and future invasions elsewhere globally.

RevDate: 2024-08-14
CmpDate: 2024-08-14

Lear L, Hesse E, A Buckling (2024)

Disturbances can facilitate prior invasions more than subsequent invasions in microbial communities.

Ecology letters, 27(8):e14493.

Invasions are commonly found to benefit from disturbance events. However, the importance of the relative timing of the invasion and disturbance for invader success and impact on community composition remains uncertain. Here, we experimentally test this by invading a five-species bacterial community on eight separate occasions-four before a disturbance and four after. Invader success and impact on community composition was greatest when the invasion immediately followed the disturbance. However, the subsequent invasions had negligible success or impact. Pre-disturbance, invader success and impact was greatest when the invader was added just before the disturbance. Importantly, however, the first three pre-disturbance invasion events had significantly greater success than the last three post-disturbance invasions. Moreover, these findings were consistent across a range of propagule pressures. Overall, we demonstrate that timing is highly important for both the success and impact on community composition of an invader, with both being lower as time since disturbance progresses.

RevDate: 2024-08-14

Reamon M, Marcussen JB, Laugen AT, et al (2024)

Efficient and reliable methods for estimating the abundance of keystone coastal macrofauna over large spatial scales.

Ecology and evolution, 14(8):e70088.

Coastal bivalves are important ecosystem engineers, and identifying critical habitats can enhance conservation outcomes for threated keystone species as well as determining hotspots for invasive species. As early action is more efficient in both conservation and mitigation of species invasions, efficient and reliable tools for mapping and monitoring species over large scales are essential. We assessed the reliability and efficiency of towed video and quadrat sampling for estimating the abundance of three keystone macrofaunal bivalve species. To assess reliability, we compared the measured density based on each of the two methods to the "true" density estimated by manually surveying an entire transect. We found that both the video and quadrat method caused underestimation of the density of bivalves, but that the amount of underestimation was comparable, and further that both methods took substantially less time than surveying an entire transect manually. The video method underestimated the abundance of Pacific oysters (Magallana gigas), European flat oysters (Ostrea edulis), and blue mussels (Mytilus spp.) by 23%, 24%, and 16%, respectively. The causes of underestimation for the two oyster species were bivalves grouped in clusters, large amounts of small individuals, and generally higher abundances. While Mytilus spp. were underestimated overall, here observer experience was important, with inexperienced observers overestimating and experienced observers underestimating. Our study found both methods to be reliable and efficient for estimating the abundance of three keystone macrofaunal species, suggesting their potential applicability to other sessile or slow-moving species. We propose that these methods, due to their efficiency, can advance scientific knowledge and enhance conservation outcomes by establishing population baselines, assessing trends over time, and identifying and protecting critical habitats.

RevDate: 2024-08-14

Brown RL, Charles D, Horwitz RJ, et al (2024)

Size-dependent effects of dams on river ecosystems and implications for dam removal outcomes.

Ecological applications : a publication of the Ecological Society of America [Epub ahead of print].

Understanding the relationship between a dam's size and its ecological effects is important for prioritization of river restoration efforts based on dam removal. Although much is known about the effects of large storage dams, this information may not be applicable to small dams, which represent the vast majority of dams being considered for removal. To better understand how dam effects vary with size, we conducted a multidisciplinary study of the downstream effect of dams on a range of ecological characteristics including geomorphology, water chemistry, periphyton, riparian vegetation, benthic macroinvertebrates, and fish. We related dam size variables to the downstream-upstream fractional difference in measured ecological characteristics for 16 dams in the mid-Atlantic region ranging from 0.9 to 57 m high, with hydraulic residence times (HRTs) ranging from 30 min to 1.5 years. For a range of physical attributes, larger dams had larger effects. For example, the water surface width below dams was greater below large dams. By contrast, there was no effect of dam size on sediment grain size, though the fraction of fine-grained bed material was lower below dams independently of dam size. Larger dams tended to reduce water quality more, with decreased downstream dissolved oxygen and increased temperature. Larger dams decreased inorganic nutrients (N, P, Si), but increased particulate nutrients (N, P) in downstream reaches. Aquatic organisms tended to have greater dissimilarity in species composition below larger dams (for fish and periphyton), lower taxonomic diversity (for macroinvertebrates), and greater pollution tolerance (for periphyton and macroinvertebrates). Plants responded differently below large and small dams, with fewer invasive species below large dams, but more below small dams. Overall, these results demonstrate that larger dams have much greater impact on the ecosystem components we measured, and hence their removal has the greatest potential for restoring river ecosystems.

RevDate: 2024-08-14

Acevedo FE (2024)

The Spotted Lanternfly Contains High Concentrations of Plant Hormones in its Salivary Glands: Implications in Host Plant Interactions.

Journal of chemical ecology [Epub ahead of print].

The spotted lanternfly (SLF), Lycorma delicatula is an invasive species in the United States that has emerged as a significant pest in vineyards. This polyphagous insect causes significant damage to grapevines and tree of heaven (TOH). SLF feeds voraciously on plant tissues using its piercing and sucking mouthparts through which it injects saliva and uptakes plant sap. Despite its impact, research on fundamental mechanisms mediating SLF interactions with their predominant hosts is limited. This study documents the morphology of salivary glands and quantifies plant hormones in salivary glands of SLF adults fed on grapevines and TOH using Liquid Chromatography-Mass Spectrometry (LC/MS). SLF adults have one pair of large salivary glands, ranging from 10 to 15 mm in length that extend from the insect's head to the last sections of the abdomen. The salivary glands of SLF contain salicylic acid (89 ng/g), abscisic acid (6.5 ng/g), 12-oxo-phytodienoic acid (5.7 ng/g), indole-3-acetic acid (2 ng/g), jasmonic acid (0.6 ng/g), jasmonic acid isoleucine (0.037 ng/g), and the cytokinin ribosides trans-zeatin (0.6 ng/g) and cis-zeatin (0.1 ng/g). While the concentrations of these hormones were similar in insects fed on grapevines and TOH, abscisic acid was more abundant in insects fed on grapevines, and jasmonic acid isoleucine was only detected in insects fed on grape. These results are discussed in the context of the possible implications that these hormones may have on the regulation of plant defenses. This study contributes to our understanding of the composition of SLF saliva and its potential role in plant immunity.

RevDate: 2024-08-13
CmpDate: 2024-08-13

Ward-Fear G, Bruny M, Rangers TB, et al (2024)

Taste aversion training can educate free-ranging crocodiles against toxic invaders.

Proceedings. Biological sciences, 291(2028):20232507.

Apex predators play critical ecological roles, making their conservation a high priority. In tropical Australia, some populations of freshwater crocodiles (Crocodylus johnstoni) have plummeted by greater than 70% due to lethal ingestion of toxic invasive cane toads (Rhinella marina). Laboratory-based research has identified conditioned taste aversion (CTA) as a way to discourage consumption of toads. To translate those ideas into landscape-scale management, we deployed 2395 baits (toad carcasses with toxin removed and containing a nausea-inducing chemical) across four gorge systems in north-western Australia and monitored bait uptake with remote cameras. Crocodile abundance was quantified with surveys. Free-ranging crocodiles rapidly learned to avoid toad baits but continued to consume control (chicken) baits. Toad invasion at our sites was followed by high rates of crocodile mortality (especially for small individuals) at a control site but not at nearby treatment sites. In areas with high connectivity to other waterbodies, repeated baiting over successive years had continuing positive impacts on crocodile survival. In summary, we succeeded in buffering the often-catastrophic impact of invasive cane toads on apex predators.

RevDate: 2024-08-14
CmpDate: 2024-08-14

Abdo AI, Li Y, Shi Z, et al (2024)

Biochar of invasive plants alleviated impact of acid rain on soil microbial community structure and functionality better than liming.

Ecotoxicology and environmental safety, 282:116726.

Acid rain and invasive plants have quintessential adverse impacts on terrestrial ecosystems. As an environmentally safe method for disposal of invasive plants, we tested the effect of biochar produced from these plants in altering soil deterioration under acid rain as compared with lime. Given the impacts of the feedstock type and soil properties on the response of soil to the added biochar, we hypothesized that the microbial community and functions would respond differently to the charred invasive plants under acid rain. A pot experiment was conducted to examine the response of soil microbiomes and functions to the biochar produced from Blackjack (Biden Pilosa), Wedelia (Wedelia trilobata), and Bitter vine (Mikania micrantha Kunth), or quicklime (CaO) at a rate of 1 % (w/w) under acid rain. Like soil pH, the nutrient contents (nitrogen, phosphorus, and potassium), calcium, and cation exchange capacity (CEC) were important as dominant edaphic factors affecting soil microbial community and functionality. In this respect, lime decreased nutrients availability, driven by 11-fold, 44 %, and 2-fold increments in calcium content, pH, and C/N ratio. Meanwhile, biochar improved nutrients availability under acid rain owing to maintaining a neutral pH (∼6.5), increasing calcium (by only 2-fold), and improving CEC, water repellency, and aggregation while decreasing the C/N ratio and aluminum content. Unlike biochar, lime decreased the relative abundance of Nitrosomonadaceae (the dominant ammonia-oxidizing bacteria) while augmenting the relative abundance of some fungal pathogens such as Spizellomycetaceae and Sporormiaceae. Given the highest nitrogen and dissolved organic carbon content than other biochar types, Wedelia-biochar resulted in the greatest relative abundance of Nitrosomonadaceae; thus, the microbial carbon and nitrogen biomasses were maximized. This study outlined the responses of the soil biogeochemical properties and the related microbial community structure and functionality to the biochar produced from invasive plants under acid rain. This study suggests that biochar can replace lime to ameliorate the effects of acid rain on soil physical, chemical and biological properties.

RevDate: 2024-08-13
CmpDate: 2024-08-13

Fertakos ME, BA Bradley (2024)

Propagule pressure from historic U.S. plant sales explains establishment but not invasion.

Ecology letters, 27(8):e14494.

Introduction history, including propagule pressure and residence time, has been proposed as a primary driver of biological invasions. However, it is unclear whether introduction history increases the likelihood that a species will be invasive or only the likelihood that it will be established. Using a dataset of non-native species historically available as ornamental plants in the conterminous United States, we investigated how introduction history relates to these stages of invasion. Introduction history was highly significant and a strong predictor of establishment, but only marginally significant and a poor predictor of invasive success. Propagule pressure predicted establishment better than residence time, with species likely to be established if they were introduced to only eight locations. These findings suggest that ongoing plant introductions will lead to widespread establishment but may not directly increase invasive success. Instead, other characteristics, like plant traits and local scale processes, may better predict whether a species becomes invasive.

RevDate: 2024-08-13

Croft L, Matheson P, Butterworth NJ, et al (2024)

Fitness consequences of population bottlenecks in an invasive blowfly.

Molecular ecology [Epub ahead of print].

Invasive species often undergo demographic bottlenecks that cause a decrease in genetic diversity and associated reductions in population fitness. Despite this, they manage to thrive in novel environments. Investigating the effects of inbreeding and genetic bottlenecks on population fitness for invasive species is, therefore, key to understanding how they may survive in new environments. We used the blowfly Calliphora vicina (Sciences, Mathématiques et Physique, 1830, 2, 1), which is native to Europe and was introduced to Australia and New Zealand, to examine the effects of genetic diversity on population fitness. We first collected 59 samples from 15 populations across New Zealand and one in Australia, and used 20,501 biallelic SNPs to investigate population genomic diversity, structure and admixture. We then explored the impacts of repeated experimental bottlenecks on population fitness by creating inbred and outbred lines of C. vicina and measuring a variety of fitness traits. In wild-caught samples, we found low overall genetic diversity, signals of genetic admixture and limited (<3%) genetic differentiation between North and South Island populations, with genetic links between the South Island and Australia. Following experimental bottlenecks, we found significant reductions in fitness for inbred lines. However, fitness effects were not felt equally across all phenotypic traits. Moreover, they were not enough to cause population collapse in any experimental line, suggesting that C. vicina (when under relaxed selection, as in laboratory settings) may be able to compensate for population bottlenecks even when highly inbred. Our results demonstrate the value of a tractable experimental system for investigating processes that may facilitate or hamper biological invasion.

RevDate: 2024-08-13

Waraniak JM, Eackles MS, Keagy J, et al (2024)

Population genetic structure and demographic history reconstruction of introduced flathead catfish (Pylodictis olivaris) in two US Mid-Atlantic rivers.

Journal of fish biology [Epub ahead of print].

Population genetic analysis of invasive populations can provide valuable insights into the source of introductions, pathways for expansion, and their demographic histories. Flathead catfish (Pylodictis olivaris) are a prolific invasive species with high fecundity, long-distance dispersal, and piscivorous feeding habits that can lead to declines in native fish populations. In this study, we analyse the genetics of invasive P. olivaris in the Mid-Atlantic region to assess their connectivity and attempt to reconstruct the history of introduced populations. Based on an assessment across 13 microsatellite loci, P. olivaris from the Susquehanna River system (N = 537), Schuylkill River (N = 33), and Delaware River (N = 1) have low genetic diversity (global Hobs = 0.504), although we detected no evidence of substantial inbreeding (FIS = -0.083 to 0.022). P. olivaris from these different river systems were genetically distinct, suggesting separate introductions. However, population structure was much weaker within each river system and exhibited a pattern of high connectivity, with some evidence of isolation by distance. P. olivaris from the Susquehanna and Schuylkill rivers showed evidence for recent genetic bottlenecks, and demographic models were consistent with historical records, which suggest that populations were established by recent founder events consisting of a small number of individuals. Our results show the risk posed by small introductions of P. olivaris, which can spread widely once a population is established, and highlight the importance of prevention and sensitive early detection methods to prevent the spread of P. olivaris in the future.

RevDate: 2024-08-12
CmpDate: 2024-08-13

Holden CA, McAinsh M, Taylor JE, et al (2024)

Attenuated total reflection Fourier-transform infrared spectroscopy reveals environment specific phenotypes in clonal Japanese knotweed.

BMC plant biology, 24(1):769.

BACKGROUND: Japanese knotweed (Reynoutria japonica var. japonica), a problematic invasive species, has a wide geographical distribution. We have previously shown the potential for attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometrics to segregate regional differentiation between Japanese knotweed plants. However, the contribution of environment to spectral differences remains unclear. Herein, the response of Japanese knotweed to varied environmental habitats has been studied. Eight unique growth environments were created by manipulation of the red: far-red light ratio (R: FR), water availability, nitrogen, and micronutrients. Their impacts on plant growth, photosynthetic parameters, and ATR-FTIR spectral profiles, were explored using chemometric techniques, including principal component analysis (PCA), linear discriminant analysis, support vector machines (SVM) and partial least squares regression. Key wavenumbers responsible for spectral differences were identified with PCA loadings, and molecular biomarkers were assigned. Partial least squared regression (PLSR) of spectral absorbance and root water potential (RWP) data was used to create a predictive model for RWP.

RESULTS: Spectra from plants grown in different environments were differentiated using ATR-FTIR spectroscopy coupled with SVM. Biomarkers highlighted through PCA loadings corresponded to several molecules, most commonly cell wall carbohydrates, suggesting that these wavenumbers could be consistent indicators of plant stress across species. R: FR most affected the ATR-FTIR spectra of intact dried leaf material. PLSR prediction of root water potential achieved an R2 of 0.8, supporting the potential use of ATR-FTIR spectrometers as sensors for prediction of plant physiological parameters.

CONCLUSIONS: Japanese knotweed exhibits environmentally induced phenotypes, indicated by measurable differences in their ATR-FTIR spectra. This high environmental plasticity reflected by key biomolecular changes may contribute to its success as an invasive species. Light quality (R: FR) appears critical in defining the growth and spectral response to environment. Cross-species conservation of biomarkers suggest that they could function as indicators of plant-environment interactions including abiotic stress responses and plant health.

RevDate: 2024-08-12
CmpDate: 2024-08-12

Rečnik K, Klun K, Lipej L, et al (2024)

Chemical composition and egg production capacity throughout bloom development of ctenophore Mnemiopsis leidyi in the northern Adriatic Sea.

PeerJ, 12:e17844.

High abundances of gelatinous zooplankton (GZ) can significantly impact marine ecosystem by acting as both sink and source of organic matter (OM) and nutrients. The decay of GZ bloom can introduce significant amount of OM to the ocean interior, with its variability influenced by GZ life traits and environmental factors, impacting microbial communities vital to marine biogeochemical cycles. The invasive ctenophores Mnemiopsis leidyi has formed massive blooms in the northern Adriatic Sea since 2016. However, the variability in the chemical composition and egg production of blooming populations, as well as the role of environmental factors in governing this variability, remains largely unknown. Our analysis of biometry, chemical composition, and fecundity of M. leidyi sampled in the Gulf of Trieste in 2021 revealed stable carbon and nitrogen content throughout bloom development, with no significant correlation with seawater temperature, salinity, oxygen, and chlorophyll a concentration. Although the studied population exhibited homogeneity in terms of biometry and chemical composition, the number of produced eggs varied substantially, showing no clear correlation with environmental variables and being somewhat lower than previously reported for the study area and other Mediterranean areas. We observed a positive correlation between the wet weight of individuals and the percentage of hatched eggs, as well as a significant positive correlation between the percentage of hatched eggs and ambient seawater temperature. Additionally, we noted that the speed of hatching decreased with decreasing seawater temperature in autumn, corresponding to the end of M. leidyi bloom.

RevDate: 2024-08-12
CmpDate: 2024-08-12

Stanton JC, Brey MK, Coulter AA, et al (2024)

Bayesian multistate models for measuring invasive carp movement and evaluating telemetry array performance.

PeerJ, 12:e17834.

Understanding the movement patterns of an invasive species can be a powerful tool in designing effective management and control strategies. Here, we used a Bayesian multistate model to investigate the movement of two invasive carp species, silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis), using acoustic telemetry. The invaded portions of the Illinois and Des Plaines Rivers, USA, are a high priority management zone in the broader efforts to combat the spread of invasive carps from reaching the Laurentian Great Lakes. Our main objective was to characterize the rates of upstream and downstream movements by carps between river pools that are maintained by navigation lock and dam structures. However, we also aimed to evaluate the efficacy of the available telemetry infrastructure to monitor carp movements through this system. We found that, on a monthly basis, most individuals of both species remained within their current river pools: averaging 76.2% of silver carp and 75.5% of bighead carp. Conversely, a smaller proportion of silver carp, averaging 14.2%, and bighead carp, averaging 13.9%, moved to downstream river pools. Movements towards upstream pools were the least likely for both species, with silver carp at an average of 6.7% and bighead carp at 7.9%. The highest probabilities for upstream movements were for fish originating from the three most downstream river pools, where most of the population recruitment occurs. However, our evaluation of the telemetry array's effectiveness indicated low probability to detect fish in this portion of the river. We provide insights to enhance the placement and use of these monitoring tools, aiming to deepen our comprehension of these species' movement patterns in the system.

RevDate: 2024-08-10

Clark PE, Woodruff CD, Hedrick AR, et al (2024)

The LTAR Grazing Land Common Experiment at the Great Basin.

Journal of environmental quality [Epub ahead of print].

The Long-Term Agroecosystem Research Network (LTAR), through its Common Experiment (CE) framework, contrasts prevailing and alternative agricultural practices for efficacy and sustainability within the indicator domains of environment, productivity, economics, and society. Invasive species, wildfire, and climate change are principal threats to Great Basin agroecosystems. Prescribed grazing may be an effective tool for restoring lands degraded by these disturbances. At the Great Basin (GB) LTAR site headquartered in Boise, ID, our contribution to the CE contrasts a prevailing (PRV), cattle grazing practice of fixed moderate stocking and duration with an alternative (ALT), prescribed grazing practice called high-intensity low-frequency (HILF) grazing where stocking and duration are tailored to suppress invasive annual grass competition with native or desirable plant species and thus promote recovery of rangelands degraded by annual grass invasion and recurrent wildfire. Preliminary results indicate cheatgrass density and fuel height have been reduced in ALT-treated paddocks compared to PRV paddocks. Since its inception in 2014, our GB CE has been a research co-production effort among ranchers, public land managers, and researchers. Future directions for this research will center on expanding the experiment to multiple study areas to better address the scope of the annual grass/wildfire problem. We expect this research will lead to effective and sustainable grazing practices for restoring >41 million hectares of degraded rangelands in the Great Basin and other areas of the western United States.

RevDate: 2024-08-12
CmpDate: 2024-08-12

Yan W, Du L, Liu H, et al (2024)

Current and future invasion risk of tomato red spider mite under climate change.

Journal of economic entomology, 117(4):1385-1395.

Tomato red spider mite Tetranychus evansi Baker and Pritchard (Acari: Tetranychidae) is a phytophagous pest that causes severe damage to Solanaceous plants worldwide, resulting in significant economic losses. In this study, the maximum entropy model was used to predict the potential current (1970-2000) and future (2021-2060) global distribution of the species based on its past occurrence records and high-resolution environmental data. The results showed that the mean values of the area under the curve were all >0.96, indicating that the model performed well. The three bioclimatic variables with the highest contributions were the coldest quarterly mean temperature (bio11), coldest monthly minimum temperature (bio6), and annual precipitation (bio12). A wide range of suitable areas was found across continents except Antarctica, both currently and in the future, with a much larger distribution area in South America, Africa, and Oceania (Australia), dominated by moderately and low suitable areas. A comparison of current and future suitable areas reveals a general trend of north expansion and increasing expansion over time. This study provides information for the prevention and management of this pest mite in the future.

RevDate: 2024-08-12
CmpDate: 2024-08-12

Liu F, Bittner TD, MC Whitmore (2024)

Environmental DNA assays for Laricobius beetles (Coleoptera: Derodontidae), biocontrol agents of the hemlock woolly adelgid in North America.

Journal of economic entomology, 117(4):1537-1544.

The hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is an invasive pest causing significant ecological and economic damage to certain hemlock tree (Tsuga (Endlicher) Carrière, Pinales:Pinaceae) species. In response to this invasive threat, biological control strategies have been implemented, introducing natural predators such as Laricobius nigrinus Fender (Coleoptera: Derodontidae) and, more recently, Laricobius osakensis Montgomery and Shiyake (Coleoptera: Derodontidae), as specialist predators against A. tsugae. However, the genetic and morphological similarities between L. osakensis and both L. nigrinus and the native beetle, Laricobius rubidus LeConte (Coleoptera: Derodontidae), pose challenges in their identification. Effective monitoring of released predators is integral to evaluating the success of biological control measures. Environmental DNA (eDNA) holds potential for various detection applications, including species monitoring. In this study, we developed specific primers and probes targeting the mitochondrial cytochrome oxidase 1 gene sequences, achieving high specificity despite their 95% sequence similarity. With an optimal annealing temperature of 60 °C, our tools effectively differentiated L. osakensis from the other 2 beetles and demonstrated eDNA detection sensitivity down to 2 copies/µl. This research underscores the potential of precise molecular tools for advancing biological control and biodiversity assessment against invasive threats like A. tsugae.

RevDate: 2024-08-10
CmpDate: 2024-08-10

Piłsyk S, Perlińska-Lenart U, Janik A, et al (2024)

Native and Alien Antarctic Grasses as a Habitat for Fungi.

International journal of molecular sciences, 25(15): pii:ijms25158475.

Biological invasions are now seen as one of the main threats to the Antarctic ecosystem. An example of such an invasion is the recent colonization of the H. Arctowski Polish Antarctic Station area by the non-native grass Poa annua. This site was previously occupied only by native plants like the Antarctic hair grass Deschampsia antarctica. To adapt successfully to new conditions, plants interact with soil microorganisms, including fungi. The aim of this study was to determine how the newly introduced grass P. annua established an interaction with fungi compared to resident grass D. antarctica. We found that fungal diversity in D. antarctica roots was significantly higher compared with P. annua roots. D. antarctica managed a biodiverse microbiome because of its ability to recruit fungal biocontrol agents from the soil, thus maintaining a beneficial nature of the endophyte community. P. annua relied on a set of specific fungal taxa, which likely modulated its cold response, increasing its competitiveness in Antarctic conditions. Cultivated endophytic fungi displayed strong chitinolysis, pointing towards their role as phytopathogenic fungi, nematode, and insect antagonists. This is the first study to compare the root mycobiomes of both grass species by direct culture-independent techniques as well as culture-based methods.

RevDate: 2024-08-10
CmpDate: 2024-08-10

Magalhães S, Aliaño-González MJ, Rodrigues M, et al (2024)

Enhancing Cellulose and Lignin Fractionation from Acacia Wood: Optimized Parameters Using a Deep Eutectic Solvent System and Solvent Recovery.

Molecules (Basel, Switzerland), 29(15): pii:molecules29153495.

Cellulose and lignin, sourced from biomass, hold potential for innovative bioprocesses and biomaterials. However, traditional fractionation and purification methods often rely on harmful chemicals and high temperatures, making these processes both hazardous and costly. This study introduces a sustainable approach for fractionating acacia wood, focusing on both cellulose and lignin extraction using a deep eutectic solvent (DES) composed of choline chloride (ChCl) and levulinic acid (LA). A design of experiment was employed for the optimization of the most relevant fractionation parameters: time and temperature. In the case of the lignin, both parameters were found to be significant variables in the fractionation process (p-values of 0.0128 and 0.0319 for time and temperature, respectively), with a positive influence. Likewise, in the cellulose case, time and temperature also demonstrated a positive effect, with p-values of 0.0103 and 0.028, respectively. An optimization study was finally conducted to determine the maximum fractionation yield of lignin and cellulose. The optimized conditions were found to be 15% (w/v) of the wood sample in 1:3 ChCl:LA under a treatment temperature of 160 °C for 8 h. The developed method was validated through repeatability and intermediate precision studies, which yielded a coefficient of variation lower than 5%. The recovery and reuse of DES were successfully evaluated, revealing remarkable fractionation yields even after five cycles. This work demonstrates the feasibility of selectively extracting lignin and cellulose from woody biomass using a sustainable solvent, thus paving the way for valorization of invasive species biomass.

RevDate: 2024-08-10

Babatunde EO, Gurav R, SS Hwang (2024)

Pistia stratiotes L. Biochar for Sorptive Removal of Aqueous Inorganic Nitrogen.

Materials (Basel, Switzerland), 17(15): pii:ma17153858.

Biochar has proven effective in the remediation of excess nitrogen from soil and water. Excess nitrogen from agricultural fields ends up in aquatic systems and leads to reduced water quality and the proliferation of invasive species. This study aimed to assess the efficiency of chemically surface-modified biochar produced from invasive Pistia stratiotes L. for the adsorption of inorganic nitrogen (NH4[+] and NO3[-]). Biochar structure was investigated using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma mass spectrometry. The results from adsorption experiments indicate that NH4[+] removal was optimal (0.8-1.3 mg N g[-1]) at near-neutral pH levels (6.0-7.5), while NO3[-] removal was optimal (0.4-0.8 mg N g[-1]) under acidic pH conditions (4.8-6.5) using the modified biochar. These findings highlight the significance of solution pH, biochar morphology, and surface chemistry in influencing the adsorption of NH4[+] and NO3[-]. However, further studies are necessary to assess the potential oxidative transformation of NH4[+] to NO3[-] by biochar, which might have contributed to the reduction in NH4[+] in the aqueous phase.

RevDate: 2024-08-10

Zhang Q, Si G, Chen L, et al (2024)

Current Status and Prospects of Pine Wilt Disease Management with Phytochemicals-A Review.

Plants (Basel, Switzerland), 13(15): pii:plants13152129.

PWD (pine wilt disease) is a devastating forest disease caused by the Bursaphelenchus xylophilus, which is the major invasive species in Asian and European countries. To control this disease, fumigation, pesticide injection, and clear cutting of epidemic trees have been widely used. But these management strategies have many limitations in terms of the effectiveness and environmental impacts, especially for the overuse of chemical pesticides. Thus, PCs (phytochemicals), the various compounds extracted from plants, have drawn extensive attention owing to their special characteristics, including abundant sources, low toxicity, high efficacy, and easy degradation. This review provides an overview of the current status of using PCs as alternative approaches to manage PWD. It discusses the efficacy of various PCs, the factors influencing their nematicidal activity, and their mechanism of action against B. xylophilus. These results will reveal the application of PCs in combating these devastating diseases and the necessity for further research.

RevDate: 2024-08-10

Gan L, Zhang S, Zeng R, et al (2024)

Impact of Personality Trait Interactions on Foraging and Growth in Native and Invasive Turtles.

Animals : an open access journal from MDPI, 14(15): pii:ani14152240.

Animal personalities play a crucial role in invasion dynamics. During the invasion process, the behavioral strategies of native species vary among personalities, just as the invasive species exhibit variations in behavior strategies across personalities. However, the impact of personality interactions between native species and invasive species on behavior and growth are rarely illustrated. The red-eared slider turtle (Trachemys scripta elegans) is one of the worst invasive species in the world, threatening the ecology and fitness of many freshwater turtles globally. The Chinese pond turtle (Mauremys reevesii) is one of the freshwater turtles most threatened by T. scripta elegans in China. In this study, we used T. scripta elegans and M. reevesii to investigate how the personality combinations of native and invasive turtles would impact the foraging strategy and growth of both species during the invasion process. We found that M. reevesii exhibited bolder and more exploratory personalities than T. scripta elegans. The foraging strategy of M. reevesii was mainly affected by the personality of T. scripta elegans, while the foraging strategy of T. scripta elegans was influenced by both their own personality and personalities of M. reevesii. Additionally, we did not find that the personality combination would affect the growth of either T. scripta elegans or M. reevesii. Differences in foraging strategy may be due to the dominance of invasive species and variations in the superficial exploration and thorough exploitation foraging strategies related to personalities. The lack of difference in growth may be due to the energy allocation trade-offs between personalities or be masked by the slow growth rate of turtles. Overall, our results reveal the mechanisms of personality interaction effects on the short-term foraging strategies of both native and invasive species during the invasion process. They provide empirical evidence to understand the effects of personality on invasion dynamics, which is beneficial for enhancing comprehension understanding of the personality effects on ecological interactions and invasion biology.

RevDate: 2024-08-10

de Lima NJ, Pádua GT, Cardoso ERN, et al (2024)

Serological and Molecular Survey of Rickettsial Agents in Wild Boars (Sus scrofa) from Midwestern Brazil.

Animals : an open access journal from MDPI, 14(15): pii:ani14152224.

Wild boars (Sus scrofa L.) are considered among the most harmful invasive species worldwide, causing irreversible ecosystem damage, acting as zoonotic spreaders and reservoirs, threatening human and animal health, and having an important economic impact. Accordingly, the present study has assessed the rickettsial exposure, tick infestation of wild boars, and rickettsial DNA presence in ticks from infested animals from the Cerrado biome in midwestern Brazil. Anti-Rickettsia spp. antibodies were detected in serum samples of wild boars by immunofluorescence assay. Overall, 106/285 (37.2%) wild boar serum samples from 13 to 18 (72.2%) municipalities showed seroreactivity to at least one of the four Rickettsia spp. antigens tested, the largest number of wild boars serologically tested to Rickettsia spp. in this type of study. Among the 106 seroreactive animals, 34 showed possible homologous reactions between R. parkeri, R. amblyommatis, and R. bellii, with endpoint titers between 128 and 512. A sample of 45 ticks collected from four culled wild boars was identified as Amblyomma sculptum, and all tested negative for rickettsial DNA presence. In conclusion, this study has provided a reliable sampling seroprevalence and indicated high exposure of wild boars to rickettsial agents, with a potential interaction with Rickettsia spp. from the spotted fever group within the Cerrado biome from midwestern Brazil.

RevDate: 2024-08-09

Everts T, Van Driessche C, Neyrinck S, et al (2024)

Phenological mismatches mitigate the ecological impact of a biological invader on amphibian communities.

Ecological applications : a publication of the Ecological Society of America [Epub ahead of print].

Horizon scans have emerged as a valuable tool to anticipate the incoming invasive alien species (IAS) by judging species on their potential impacts. However, little research has been conducted on quantifying actual impacts and assessing causes of species-specific vulnerabilities to particular IAS due to persistent methodological challenges. The underlying interspecific mechanisms driving species-specific vulnerabilities therefore remain poorly understood, even though they can substantially improve the accuracy of risk assessments. Given that interspecific interactions underlying ecological impacts of IAS are often shaped by phenological synchrony, we tested the hypothesis that temporal mismatches in breeding phenology between native species and IAS can mitigate their ecological impacts. Focusing on the invasive American bullfrog (Lithobates catesbeianus), we combined an environmental DNA (eDNA) quantitative barcoding and metabarcoding survey in Belgium with a global meta-analysis, and integrated citizen-science data on breeding phenology. We examined whether the presence of native amphibian species was negatively related to the presence or abundance of invasive bullfrogs and whether this relationship was affected by their phenological mismatches. The field study revealed a significant negative effect of increasing bullfrog eDNA concentrations on native amphibian species richness and community structure. These observations were shaped by species-specific vulnerabilities to invasive bullfrogs, with late spring- and summer-breeding species being strongly affected, while winter-breeding species remained unaffected. This trend was confirmed by the global meta-analysis. A significant negative relationship was observed between phenological mismatch and the impact of bullfrogs. Specifically, native amphibian species with breeding phenology differing by 6 weeks or less from invasive bullfrogs were more likely to be absent in the presence of bullfrogs than species whose phenology differed by more than 6 weeks with that of bullfrogs. Taken together, we present a novel method based on the combination of aqueous eDNA quantitative barcoding and metabarcoding to quantify the ecological impacts of biological invaders at the community level. We show that phenological mismatches between native and invasive species can be a strong predictor of invasion impact regardless of ecological or methodological context. Therefore, we advocate for the integration of temporal alignment between native and IAS's phenologies into invasion impact frameworks.

RevDate: 2024-08-08
CmpDate: 2024-08-08

Durand K, Yainna S, K Nam (2024)

Population genomics unravels a lag phase during the global fall armyworm invasion.

Communications biology, 7(1):957.

The time that elapsed between the initial introduction and the proliferation of an invasive species is referred to as the lag phase. The identification of the lag phase is critical for generating plans for pest management and for the prevention of biosecurity failure. However, lag phases have been identified mostly through retrospective searches of historical records. The agricultural pest fall armyworm (FAW; Spodoptera frugiperda) is native to the New World. FAW invasion was first reported from West Africa in 2016, then it spread quickly through Africa, Asia, and Oceania. Here, using population genomics approaches, we demonstrate that the FAW invasion involved an undocumented lag phase. Invasive FAW populations have negative signs of genomic Tajima's D, and invasive population-specific genetic variations have particularly decreased Tajima's D, supporting a substantial amount of time for the generation of new mutations in introduced FAW populations. Model-based diffusion approximations support the existence of a period with a cessation of gene flow between native and invasive FAW populations. Taken together, these results provide strong support for the presence of a lag phase during the FAW invasion. These results show the usefulness of using population genomics analyses to identify lag phases in biological invasions.

RevDate: 2024-08-08

Jiménez L, Fieberg JR, McCartney M, et al (2024)

A framework for modeling the impacts of adaptive search intensity on the efficiency of abundance surveys.

Ecology [Epub ahead of print].

When planning abundance surveys, the impact of search intensity on the quality of the density estimates is rarely considered. We constructed a time-budget modeling framework for abundance surveys using principles from optimal foraging theory. We link search intensity to the number of sample units surveyed, searcher detection probability, the number of detections made, and the precision of the estimated population density. This framework allowed us to determine how a searcher should behave to produce optimized density estimates. Using data collected from quadrat and removal surveys of zebra mussels (Dreissena polymorpha) in central Minnesota, we applied this framework to evaluate potential improvements. We found that by tuning searcher behavior, density estimates from removal surveys of zebra mussels could be improved by up to 60% in some cases, without changing the overall survey time. Our framework also predicts a critical population density where the best survey method switches from removal surveys at low densities to quadrat surveys at high densities, consistent with past empirical work. In addition, we provide simulation tools to apply this form of analysis to a number of other commonly used survey designs. Our results provide insights into how to improve the performance of many survey methods in high-density environments by either tuning searcher behavior or decoupling the estimation of population density and detection probability.

RevDate: 2024-08-08

Matos Queiroz JB, Costa KGD, de Oliveira ARG, et al (2024)

Ballast water transport of alien phytoplankton species to the Brazilian Amazon coast.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(24)01370-8 [Epub ahead of print].

The aim of this study was to investigate the presence of alien phytoplankton species transported through ballast water of ships that docked on the Amazon coast. Phytoplankton samples were collected from 25 ships between 2012 and 2014, revealing 215 identified species, mostly comprising oceanic planktonic marine species. However, several coastal and freshwater species not yet documented on the Maranhão coast were also observed. The identification of several coastal and freshwater species not yet recorded for Amazonian environments in the ballast water of the Ponta da Madeira Maritime Terminal (TMPM), as well as toxic microalgae genera such as the dinoflagellates Alexandrium and Gymnodinium and of some diatom species from the genus Pseudo-nitzchia, raises concerns regarding the possibility of introducing species. This indicates that ballast water can be responsible for the introduction of alien species in Amazonian aquatic environments, thereby highlighting the TMPM as a critical hotspot in the Amazonian region.

RevDate: 2024-08-08

Hekmat A, Naderi S, W Zamani (2024)

Masked invader in Iran! Habitat suitability analysis for invasive raccoon (Procyon lotor) in the west of Guilan Province.

Ecology and evolution, 14(8):e70090.

Nowadays, in addition to the destruction and fragmentation of the world's habitats, invasive species, and damage caused by them, are one of the most important factors in the destruction of ecosystems. The raccoon (Procyon lotor) is a medium-sized mammal that is placed in mid-levels of the food web and can affect a wide range of species. Considering the damage done to local ecosystems by this invasive species, habitat assessment and determining the factors affecting its habitat suitability would be a key step in managing this species. In this study, using the MaxEnt model and examining 12 environmental parameters (elevation, slope, aspect, geological units, soil type, vegetation, land use, distance to villages, distance to main roads, distance to waterways, average temperature, and rainfall) in the west of Guilan Province, habitat suitability of this alien species was determined, and the most important factors affecting this suitability were investigated. Results showed that the validity value of the model (AUC) was estimated to be 0.852 and parameters such as distance to village (34.5%), elevation (24.2%), and land use (15.9%) are among the most important and effective factors. Also, the results showed that 0.60% of the study area has high suitability, 6.14% moderate, 24.87% low, and 68.36% unsuitable areas for raccoons. The overall result shows that despite the lack of vast favorable areas for this invasive species, an increase in the number and expansion of this species is very likely because of its omnivorous diet, high adaptability to different environments and conditions, as well as extensive niche. All of these factors cause raccoons to spread further in the region and consequently increase the risks and damages to the native ecosystem.

RevDate: 2024-08-07
CmpDate: 2024-08-07

Liu F, Ye F, Yang Y, et al (2024)

Gut bacteria are essential for development of an invasive bark beetle by regulating glucose transport.

Proceedings of the National Academy of Sciences of the United States of America, 121(33):e2410889121.

Insects and their gut bacteria form a tight and beneficial relationship, especially in utilization of host nutrients. The red turpentine beetle (RTB), a destructive and invasive pine pest, employs mutualistic microbes to facilitate its invasion success. However, the molecular mechanism underlying the utilization of nutrients remains unknown. In this study, we found that gut bacteria are crucial for the utilization of D-glucose, a main carbon source for RTB development. Downstream assays revealed that gut bacteria-induced gut hypoxia and the secretion of riboflavin are responsible for RTB development by regulating D-glucose transport via the activation of a hypoxia-induced transcription factor 1 (Hif-1α). Further functional investigations confirmed that Hif-1α mediates glucose transport by direct upregulation of two glucose transporters (ST10 and ST27), thereby promoting RTB development. Our findings reveal how gut bacteria regulate the development of RTB, and promote our understanding of the mutualistic relationship of animals and their gut bacteria.

RevDate: 2024-08-08
CmpDate: 2024-08-08

Wang T, Yang X, Ouyang S, et al (2024)

The native submerged plant, Hydrilla verticillata outperforms its exotic confamilial with exposure to polyamide microplastic pollution: Implication for wetland revegetation and potential driving mechanism.

Aquatic toxicology (Amsterdam, Netherlands), 273:107029.

Microplastic pollution and biological invasion, as two by-products of human civilization, interfere the ecological function of aquatic ecosystem. The restoration of aquatic vegetation has been considered a practical approach to offset the deterioration of aquatic ecosystem. However, a lack of knowledge still lies in the species selection in the revegetation when confronting the interference from microplastic pollution and exotic counterpart. The present study subjected the native submerged species, Hydrilla verticillata and its exotic confamilial, Elodea nuttallii to the current and future scenarios of polyamide microplastic pollution. The plant performance proxies including biomass and ramet number were measured. We found that the native H. verticillata maintained its performance while the exotic E. nuttallii showed decreases in biomass and ramet number under severest pollution conditions. The restoration of native submerged plant such as H. verticillata appeared to be more effective in stabilizing aquatic vegetation in the scenario of accelerating microplastic pollution. In order to explore the underlying driving mechanism of performance differentiation, stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal microbiome were investigated. We found that polyamide microplastic had weak effects on stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal diversity, reflecting the decoupling between these indicators and plant performance. However, the relative abundance of sediment arbuscular mycorrhizal fungi for H. verticillata significantly increased while E. nuttallii gathered "useless" ectomycorrhizal fungi at the presence of severest polyamide microplastic pollution. We speculate that the arbuscular mycorrhizal fungi assisted the stabilization of plant performance for H. verticillata with exposure to the severest polyamide microplastic pollution.

RevDate: 2024-08-08
CmpDate: 2024-08-08

Mo TA (2024)

The battle against the introduced pathogenic monogenean Gyrodactylus salaris in Norwegian Atlantic salmon rivers and fish farms.

Journal of fish diseases, 47(9):e13981.

The introduced salmonid ectoparasite Gyrodactylus salaris has been detected on Atlantic salmon in 53 Norwegian rivers and in 39 Norwegian fish farms. In affected rivers, the mortality of Atlantic salmon juveniles is very high, estimated to a mean of 86%. G. salaris has been considered one of the biggest threats to wild Norwegian Atlantic salmon stocks. With various measures, the authorities have reduced the potential for further spread of the parasite to new rivers and fish farms, and G. salaris has been eradicated from 43 rivers and all fish farms. Furthermore, the eradication process is almost completed in five affected rivers located at the Norwegian west coast, while preparations for the eradication in the remaining five rivers in the southeastern part of Norway have begun. The goal of Norwegian management is to eradicate the introduced pathogenic G. salaris strains from all occurrences in Norway. In fish farms, the parasite has been removed by mandatory slaughter of infected fish. In rivers, G. salaris has mostly been removed by killing all the fish hosts with rotenone. The indigenous genetic Atlantic salmon stocks are re-established after eradication of the parasite. New methods are developed using chemicals that kill the parasite without killing fish in the rivers. Norwegian authorities have so far used more than NOK 1.5 billion on research, monitoring and combating G. salaris. However, the benefits are considered many times greater than the spending. Without control measures, G. salaris would likely have spread to new Atlantic salmon rivers where the same catastrophic outcome had to be expected. The Norwegian authorities seem to meet the goal in their long-term work to halt the spread of G. salaris and to eradicate the parasite in affected rivers.

RevDate: 2024-08-07

Liu X, Liu X, Chen S, et al (2024)

Calcium leakage involved in nematotoxic effects of the Conidiobolus obscurus CytCo protein on the pine wood nematode, Bursaphelenchus xylophilus.

Pest management science [Epub ahead of print].

BACKGROUND: The pine wood nematode Bursaphelenchus xylophilus, a severe invasive species, is responsible for causing widespread pine wilt disease. The CytCo protein, a pore-forming toxin derived from Conidiobolus obscurus, exhibits nematotoxicity towards B. xylophilus.

RESULTS: Our present study reveals the expression variation of a range of gene products in B. xylophilus that respond to the effects of CytCo using the isobaric tags for relative and absolute quantification proteomics technology. Functional enrichment analysis indicates that many differentially expressed proteins are linked to calcium signaling system, proteasome, energy production and conversion, and the determination of adult lifespan. It suggests that the dysregulation of calcium homeostasis, energy metabolism, and apoptosis contribute to the CytCo nematotoxicity. Using the calcium ion (Ca[2+])-indicator calcein, we detected changes in Ca[2+] levels in B. xylophilus, with a significantly increase in fluorescence in the nematode's intestine and pseudocoelom following CytCo treatments. Meanwhile, the apoptosis and reactive oxygen species (ROS) assays showed an enhancement of fluorescence in B. xylophilus cells, with increased CytCo concentrations.

CONCLUSION: The protein toxin CytCo triggers Ca[2+] leakage, disrupts Ca[2+] balance in B. xylophilus, and induces apoptosis and ROS outburst, thereby intensifying its nematotoxic effects. This finding facilitates our understanding of the modes of action of nematotoxic proteins, and contributes to the development of innovative nematode control strategies. © 2024 Society of Chemical Industry.

RevDate: 2024-08-06
CmpDate: 2024-08-06

Zhang MZ, Li WT, Liu WJ, et al (2024)

Rhizosphere microbial community construction during the latitudinal spread of the invader Chromolaena odorata.

BMC microbiology, 24(1):294.

The colonization of alien plants in new habitats is typically facilitated by microorganisms present in the soil environment. However, the diversity and structure of the archaeal, bacterial, and fungal communities in the latitudinal spread of alien plants remain unclear. In this study, the rhizosphere and bulk soil of Chromolaena odorata were collected from five latitudes in Pu' er city, Yunnan Province, followed by amplicon sequencing of the soil archaeal, bacterial, and fungal communities. Alpha and beta diversity results revealed that the richness indices and the structures of the archaeal, bacterial, and fungal communities significantly differed along the latitudinal gradient. Additionally, significant differences were observed in the bacterial Shannon index, as well as in the structures of the bacterial and fungal communities between the rhizosphere and bulk soils. Due to the small spatial scale, trends of latitudinal variation in the archaeal, bacterial, and fungal communities were not pronounced. Total potassium, total phosphorus, available nitrogen, available potassium and total nitrogen were the important driving factors affecting the soil microbial community structure. Compared with those in bulk soil, co-occurrence networks in rhizosphere microbial networks presented lower complexity but greater modularity and positive connections. Among the main functional fungi, arbuscular mycorrhizae and soil saprotrophs were more abundant in the bulk soil. The significant differences in the soil microbes between rhizosphere and bulk soils further underscore the impact of C. odorata invasion on soil environments. The significant differences in the soil microbiota along latitudinal gradients, along with specific driving factors, demonstrate distinct nutrient preferences among archaea, bacteria, and fungi and indicate complex microbial responses to soil nutrient elements following the invasion of C. odorata.

RevDate: 2024-08-07
CmpDate: 2024-08-07

Liu Y, R Heinen (2024)

Plant invasions under artificial light at night.

Trends in ecology & evolution, 39(8):703-705.

Artificial light at night (ALAN) is a global change driver but how it interacts with plant invasions is unclear. Determining this requires understanding direct effects of ALAN on physiology, phenology, growth, and fitness of both invasive and native plant species and its indirect effects mediated through mutualistic and/or antagonistic interactions.

RevDate: 2024-08-06

Reid N, Reyne MI, O'Neill W, et al (2024)

Unprecedented Harmful algal bloom in the UK and Ireland's largest lake associated with gastrointestinal bacteria, microcystins and anabaenopeptins presenting an environmental and public health risk.

Environment international, 190:108934 pii:S0160-4120(24)00520-8 [Epub ahead of print].

Harmful Algal Blooms (HABs) are outbreaks of aquatic toxic microalgae emerging as a global problem driven by nutrient enrichment, global climate change and invasive species. We uniquely describe a HAB of unprecedented duration, extent and magnitude during 2023 in Lough Neagh; the UK and Ireland's largest freshwater lake, using an unparalleled combination of satellite imagery, nutrient analysis, 16S rRNA gene sequencing and cyanotoxin profiling. The causative agent Microcystis aeruginosa accounted for over a third of DNA in water samples though common bacterioplankton species also bloomed. Water phosphate levels were hypertrophic and drove local algal biomass. The HAB pervaded the entire ecosystem with algal mats accumulating around jetties, marinas and lock gates. Over 80 % of bacterial DNA isolated from algal mat samples consisted of species associated with wildfowl or livestock faeces and human-effluent wastewater including 13 potential pathogens that can cause serious human illness including: E. coli, Salmonella, Enterobacter and Clostridium among others. Ten microcystins, nodularin and two anabaenopeptin toxins were confirmed as present (with a further microcystin and four anabaenopeptins suspected), with MC-RR and -LR in high concentrations at some locations (1,137-18,493 μg/L) with MC-LR exceeding World Health Organisation (WHO) recreational exposure guidelines in all algal mats sampled. This is the first detection of anabaenopeptins in any waterbody on the island of Ireland. Notwithstanding the ecological impacts, this HAB represented an environmental and public health risk, curtailing recreational activities in-and-around the lake and damaging local businesses. Reducing agricultural runoff and discharge from human-effluent wastewater treatment to manage nutrient loading, and the public health risk, should be the top priority of stakeholders, especially government. Key recommendations include Nature-based Solutions that avoid conflict with the productivity and profitability of the farming sector enhancing sustainability. We hope this stimulates real-world action to resolve the problems besetting this internationally important ecosystem.

RevDate: 2024-08-06
CmpDate: 2024-08-06

Kobayashi G, H Abe (2024)

Cost-efficient PCR based DNA barcoding of marine invertebrate specimens with NovaSeq amplicon sequencing.

Molecular biology reports, 51(1):887.

BACKGROUND: The marine environment harbors high biodiversity; however, it is poorly understood. Nucleotide sequence data of all marine organisms should be accumulated before natural and/or anthropogenic environmental changes jeopardize the marine environment. In this study, we report a cost-effective and easy DNA barcoding method. This method can be readily adopted without using library preparation kits. It includes multiplex PCR of short targets, indexing PCR, and outsourcing to a sequencing service using the NovaSeq system.

METHODS AND RESULTS: We targeted four mitochondrial genes [cytochrome c oxidase subunit I (COI), COIII, 16S rRNA (16S), and 12S rRNA (12S)] and three nuclear genes [18S rRNA (18S), 28S rRNA (28S), internal transcribed spacer 2 (ITS2)] in 95 marine invertebrate specimens, which were primarily annelids. The primers, including adapters and indices for NovaSeq sequencing, were newly designed. Two PCR runs were conducted. The 1st PCR amplified specific loci with universal primers and the 2nd added sequencing adapters and indices to the 1st PCR products. The gene sequences obtained from the FASTQ files were subjected to BLAST search and phylogenetic analyses. One run using 95 specimens yielded sequences averaging 2816 bp per specimen for a total length of six loci. Nuclear genes were more successfully assembled compared with mitochondrial genes. A weak but significantly negative correlation was observed between the average length of each locus and success rate of the assembly. Some of the sequences were almost identical to the sequences obtained from specimens collected far from Japan, indicating the presence of potentially invasive species identified for the first time.

CONCLUSIONS: We obtained gene sequences efficiently using next-generation sequencing rather than Sanger sequencing. Although this method requires further optimization to increase the success rate for some loci, it is used as a first step to select specimens for further analyses by determining the specific loci of the targets.

RevDate: 2024-08-06

Ruchitha BG, Kumar N, Sura C, et al (2024)

Selection for greater dispersal in early life leads to faster age-dependent decline in locomotor activity and shorter lifespan.

Journal of evolutionary biology pii:7727897 [Epub ahead of print].

Locomotor activity is one of the major traits that is affected by age. Greater locomotor activity is also known to evolve in the course of dispersal evolution. However, the impact of dispersal evolution on the functional senescence of locomotor activity is largely unknown. We addressed this knowledge gap using large outbred populations of Drosophila melanogaster selected for increased dispersal. We tracked locomotor activity of these flies at regular intervals until a late age. Longevity of these flies was also recorded. We found that locomotor activity declines with age in general. However interestingly, activity level of dispersal selected populations never drops below the ancestry-matched-controls, despite the rate of age-dependent decline in activity of the dispersal selected populations being greater than their respective controls. Dispersal selected population was also found to have shorter lifespan as compared to its control, a potential cost of elevated level of activity throughout their life. These results are crucial in the context of invasion biology as contemporary climate change, habitat degradation, and destruction provide congenial conditions for dispersal evolution. Such controlled and tractable studies investigating the ageing pattern of important functional traits are important in the field of biogerontology as well.

RevDate: 2024-08-06

Elhady A, Alghanmi L, Abd-Elgawad MMM, et al (2024)

Plant-parasitic nematode research in the arid desert landscape: a systematic review of challenges and bridging interventions.

Frontiers in plant science, 15:1432311.

Plant-parasitic nematode research in the Middle East and North Africa (MENA) region faces significant challenges rooted in a need for proper assembly, diversity, and a unified and purpose-driven framework. This led to exacerbating their detrimental effects on crop production. This systematic review addresses the current situation and challenges that require targeted interventions to sustainably manage plant-parasitic nematodes and reduce their detrimental impact on agriculture production in the MENA region. We analyzed the nematode-related research conducted within the region over the past three decades to assess available resources and promote diverse research approaches beyond basic morphology-focused surveys. We show that crops are attacked by a diverse spectrum of plant-parasitic nematodes that exceed the global economic threshold limits. In particular, Meloidogyne species exceed the threshold limit by 8 - 14-fold, with a 100% frequency of occurrence in the collected soil samples, posing a catastrophic threat to crop production and the economy. We highlight detrimental agriculture practices in the MENA region, such as transferring soil from established fields to barren land, which enhances the dissemination of plant-parasitic nematodes, disrupting soil ecology and causing significant agricultural challenges in newly cultivated areas. Looking into the behavior of farmers, raising awareness must be accompanied by available solutions, as more practical alternatives are needed to gain the confidence of the farmers. We propose integrating microbial-based products and soil development practices in hygienic farming as resilient and sustainable solutions for nematode management. Increased emphasis is required to diversify the nematode-related research areas to bridge the gaps and facilitate the transition from fundamental knowledge to practical solutions. A cohesive network of nematologists and collaboration with national and international entities is crucial for exchanging knowledge related to legislation against invasive species.

RevDate: 2024-08-06

Li Y, Song S, Chen B, et al (2024)

Deleting an xylosidase-encoding gene VdxyL3 increases growth and pathogenicity of Verticillium dahlia.

Frontiers in microbiology, 15:1428780.

INTRODUCTION: Verticillium dahliae causes a devastating Verticillium wilt disease on hundreds of plant species worldwide, including cotton. Understanding the interaction mechanism between V. dahliae and its hosts is the prerequisite for developing effective strategies for disease prevention.

METHODS: Here, based on the previous observation of an xylosidase-encoding gene (VdxyL3) in V. dahliae being obviously up-regulated after sensing root exudates from a cotton variety susceptible to this pathogen, we investigated the function of VdxyL3 in the growth and pathogenesis of V. dahliae by generating its deletion-mutant strains (ΔVdxyL3).

RESULTS: Deleting VdxyL3 led to increased colony expansion rate, conidial production, mycelial growth, carbon and nitrogen utilization capacities, and enhanced stress tolerance and pathogenicity of V. dahliae. VdxyL3 is a secretory protein; however, VdxyL3 failed to induce cell death in N. benthamiana based on transient expression experiment. Transcriptomic analysis identified 1300 genes differentially expressed (DEGs) between wild-type (Vd952) and ΔVdxyL3 during infection, including 348 DEGs encoding secretory proteins, among which contained 122 classical secreted proteins and 226 non-classical secreted proteins. It was notable that of the 122 classical secretory proteins, 50 were carbohydrate-active enzymes (CAZymes) and 58 were small cysteine rich proteins (SCRPs), which were required for the pathogenicity of V. dahliae.

CONCLUSION: The RNA-seq data thus potentially connected the genes encoding these proteins to the pathogenesis of V. dahliae. This study provides an experimental basis for further studies on the interaction between V. dahliae and cotton and the pathogenic mechanism of the fungus.

RevDate: 2024-08-06

Jiang Z, Sun Y, Zhou S, et al (2024)

An evaluation of the growth, development, reproductive characteristics and pest control potential of three Trichogramma species on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).

Pest management science [Epub ahead of print].

BACKGROUND: Tuta absoluta is an invasive alien species that has caused major losses in the Chinese tomato industry. Investigating the growth, development, reproduction and pest control effects of three native species of Trichogramma species on the eggs of T. absoluta could provide an ecological tool for preventing and controlling T. absoluta in China. In this study, we constructed age-stage two-sex life tables for three common species of Trichogramma and determined their relative abilities to control T. absoluta in greenhouse insect cages, thus allowing us to identify the species with the most effective ability to prey on T. absoluta eggs.

RESULTS: Analysis showed that the net reproductive rate (R0), gross reproduction rate (GRR) and intrinsic rate of increase (r) of Trichogramma ostriniae were the highest of the three species at 22.85, 32.58 and 1.31, respectively. In the presence of 10 eggs and under ideal conditions, T. ostriniae, Trichogramma chilonis, and Trichogramma dendrolimi produced 9451.04, 5199.56, and 1902.95 offspring, respectively. Following the release of T. ostriniae, tomato leaves incurred a damage index of 1 after the first week, while the number of T. absoluta reduced to 24.60 individuals by week 10 (8.75% of the control treatment).

CONCLUSION: Of the three species of Trichogramma tested in this study, T. ostriniae exhibited the best growth, development, reproductive capacity and predatory ability against T. absoluta, and has broad application prospects. © 2024 Society of Chemical Industry.

RevDate: 2024-08-05

Phang LY, Mingyuan L, Mohammadi M, et al (2024)

Phytoremediation as a viable ecological and socioeconomic management strategy.

Environmental science and pollution research international [Epub ahead of print].

Phytoremediation is an environmentally friendly alternative to traditional remediation technologies, notably for soil restoration and agricultural sustainability. This strategy makes use of marginal areas, incorporates biofortification processes, and expands crop alternatives. The ecological and economic benefits of phytoremediation are highlighted in this review. Native plant species provide cost-effective advantages and lower risks, while using invasive species to purify pollutants might be a potential solution to the dilemma of not removing them from the new habitat. Thus, strict management measures should be used to prevent the overgrowth of invasive species. The superior advantages of phytoremediation, including psychological and social improvements, make it a powerful tool for both successful cleanup and community well-being. Its ability to generate renewable biomass and adapt to a variety of uses strengthens its position in developing the bio-based economy. However, phytoremediation faces severe difficulties such as complex site circumstances and stakeholder doubts. Overcoming these challenges necessitates a comprehensive approach that balances economic viability, environmental protection, and community welfare. Incorporating regulatory standards such as ASTM and ISO demonstrates a commitment to long-term environmental sustainability, while also providing advice for unique nation-specific requirements. Finally, phytoremediation may contribute to a pleasant coexistence of human activity and the environment by navigating hurdles and embracing innovation.

RevDate: 2024-08-05

Borah K, Phukan B, Talukdar A, et al (2024)

Physio-metabolic alterations in Labeo rohita (Hamilton, 1822) and native predator Chitala chitala (Hamilton, 1822) in presence of an invasive species Piractus brachypomus (G. Cuvier, 1818).

Environmental science and pollution research international [Epub ahead of print].

A 60 days study was conducted to evaluate the physiological response of indigenous species Labeo rohita (LR) and indigenous predator Chitala chitala (CC) in presence of an invasive species Piaractus brachypomus (PB). Two treatment groups as LR + PB (T1) and LR + PB + CC (T2) with individual control groups as T0LR, T0PB and T0CC were designed in triplicates. Fingerlings of LR, PB and CC were randomly distributed into 15 circular tanks with a stocking ratio of 1:1 and 1:1:0.3 in T1 and T2 group, respectively and 10 nos. each of LR, PB and CC in respective control groups. At first 15 min of the experiment, cortisol level was found significantly (P < 0.05) higher in all three experimental fishes in T1 and T2 groups. With the experimental duration, the level of stress hormone (cortisol), oxidative stress enzymes (superoxide dismutase, catalase, and glutathione peroxidase), tissue metabolic enzymes (lactate dehydrogenase and malate dehydrogenase), serum metabolic enzymes (transaminase enzymes) and blood glucose level were significantly (P < 0.05) increased in T1 and T2 groups for LR and CC whereas, no variation (P > 0.05) were observed for PB in both T1 and T2 groups. The total antioxidant capacity (TAC), liver glycogen, total protein, albumin and globulin were found to be significantly (P < 0.05) decreased in LR in the presence of PB and CC. The present study provides a preliminary insight into the biological interaction between native and invasive species and their physiological responses in the presence of native predator with higher trophic index. Thus, the results of the study suggest the superior traits of invasive P. brachypomus try to dominate the other two native species by negatively influencing the native fauna even with a higher trophic index (C. chitala).

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

cover-pic

SUPPORT ESP: Order from Amazon
The ESP project will earn a commission.

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 28 JUL 2024 )