Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Fecal Transplantation

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 25 Feb 2024 at 01:47 Created: 

Fecal Transplantation

Fecal Transplantion is a procedure in which fecal matter is collected from a tested donor, mixed with a saline or other solution, strained, and placed in a patient, by colonoscopy, endoscopy, sigmoidoscopy, or enema. The theory behind the procedure is that a normal gut microbial ecosystem is required for good health and that sometimes a benefucuial ecosystem can be destroyed, perhaps by antibiotics, allowing other bacteria, specifically Clostridium difficile to over-populate the colon, causing debilitating, sometimes fatal diarrhea. C. diff. is on the rise throughout the world. The CDC reports that approximately 347,000 people in the U.S. alone were diagnosed with this infection in 2012. Of those, at least 14,000 died. Fecal transplant has also had promising results with many other digestive or auto-immune diseases, including Irritable Bowel Syndrome, Crohn's Disease, and Ulcerative Colitis. It has also been used around the world to treat other conditions, although more research in other areas is needed. Fecal transplant was first documented in 4th century China, where the treatment was known as yellow soup.

Created with PubMed® Query: ( "(fecal OR faecal) (transplant OR transplantation)" OR "fecal microbiota transplant" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-02-24

Tao W, Fan Q, J Wei (2024)

Gut-Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury.

Current issues in molecular biology, 46(2):1219-1236.

Drug-induced liver injury (DILI) is a liver disease that remains difficult to predict and diagnose, and the underlying mechanisms are yet to be fully clarified. The gut-liver axis refers to the reciprocal interactions between the gut and the liver, and its homeostasis plays a prominent role in maintaining liver health. It has been recently reported that patients and animals with DILI have a disrupted gut-liver axis, involving altered gut microbiota composition, increased intestinal permeability and lipopolysaccharide translocation, decreased short-chain fatty acids production, and impaired bile acid metabolism homeostasis. The present review will summarize the evidence from both clinical and preclinical studies about the role of the gut-liver axis in the pathogenesis of DILI. Moreover, we will focus attention on the potential therapeutic strategies for DILI based on improving gut-liver axis function, including herbs and phytochemicals, probiotics, fecal microbial transplantation, postbiotics, bile acids, and Farnesoid X receptor agonists.

RevDate: 2024-02-23

Lauwers E, Sabino J, Hoffman I, et al (2024)

Faecal microbiota transplantation in children: A systematic review.

Acta paediatrica (Oslo, Norway : 1992) [Epub ahead of print].

AIM: Novel technologies offer insights into the potential role of the intestinal microbiota in human health and disease. Dysbiosis has been associated with several diseases, and it is thought to play a role in the pathogenesis of different gastrointestinal diseases. Faecal microbiota transplantation (FMT) is emerging as a method to modulate the gastrointestinal microbial ecosystem. While recurrent Clostridioides difficile infection is the recognised FMT indication, exploration of other therapeutic uses is ongoing.

METHODS: Following PRISMA guidelines, we conducted a systematic review, extracting 583 articles from Embase and PubMed (index date to October 2022).

RESULTS: The search yielded 58 studies for full review, with 50 included in the systematic review. Articles were categorised by FMT indication, study design, efficacy, adverse events, donor selection and administration route. FMT appears safe and effective for recurrent Clostridioides difficile infection, although severe adverse events are reported in children. However, there are currently insufficient data to support the use of FMT for other potential therapeutic indications (such as irritable or inflammatory bowel disease or obesity), beside the potential to decolonise multi-drug resistant organisms.

CONCLUSION: This underscores the need for randomised, controlled, prospective cohort studies in children to assess FMT effectiveness in diverse conditions and counteract publication bias.

RevDate: 2024-02-23

Jirillo E, Palmirotta R, Colella M, et al (2024)

A Bird's-Eye View of the Pathophysiologic Role of the Human Urobiota in Health and Disease: Can We Modulate It?.

Pathophysiology : the official journal of the International Society for Pathophysiology, 31(1):52-67.

For a long time, urine has been considered sterile in physiological conditions, thanks to the particular structure of the urinary tract and the production of uromodulin or Tamm-Horsfall protein (THP) by it. More recently, thanks to the development and use of new technologies, i.e., next-generation sequencing and expanded urine culture, the identification of a microbial community in the urine, the so-called urobiota, became possible. Major phyla detected in the urine are represented by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Particularly, the female urobiota is largely represented by Lactobacillus spp., which are very active against urinary pathogenic Escherichia (E.) coli (UPEC) strains via the generation of lactic acid and hydrogen peroxide. Gut dysbiosis accounts for recurrent urinary tract infections (UTIs), so-called gut-bladder axis syndrome with the formation of intracellular bacterial communities in the course of acute cystitis. However, other chronic urinary tract infections are caused by bacterial strains of intestinal derivation. Monomicrobial and polymicrobial infections account for the outcome of acute and chronic UTIs, even including prostatitis and chronic pelvic pain. E. coli isolates have been shown to be more invasive and resistant to antibiotics. Probiotics, fecal microbial transplantation, phage therapy, antimicrobial peptides, and immune-mediated therapies, even including vaccines for the treatment of UTIs, will be described.

RevDate: 2024-02-24

Franco CD, Sagar RS, SFH Bokhari (2024)

From Microbes to Memories: Challenges and Future Perspectives Regarding the Gut-Brain Axis for Improved Cognitive Health in Alzheimer's.

Cureus, 16(1):e52795.

The gut-brain axis, a bidirectional communication network between the gastrointestinal tract and the central nervous system, regulates various physiological processes crucial for health, including immune response, metabolism, and neurotransmitter production. In the context of neurodegenerative diseases, especially Alzheimer's disease (AD), understanding the intricate connection of the gut-brain axis has gained significance. Disturbances along this axis have been implicated in neurodegenerative diseases, emphasizing its role in AD pathogenesis. Microbiota dysbiosis, influenced by diet, lifestyle, and genetics, contributes to altered gut permeability, leading to protein dyshomeostasis, astroglial activation, neuroinflammation, and cognitive decline. Understanding these mechanisms is crucial for developing interventions to restore a healthy gut microbiota and potentially mitigate AD-related cognitive decline. The bidirectional communication along the gut-brain axis involves microbial metabolites, influencing oxidative stress, protein aggregation, and other pathways linked to neuroprotection. Modulating the gut microbiota through dietary changes, prebiotics, probiotics, or fecal microbiota transplantation emerges as a promising approach to target cognitive decline in AD. Despite progress, challenges persist, including the correlational nature of studies, the complexity of the gut microbiome, and variations in methodologies. Standardization is essential for reliable findings and the identification of biomarkers associated with AD. Unanswered questions warrant further exploration, particularly in understanding specific mechanisms, the temporal dynamics of microbiota changes, and the influence of diet and lifestyle on the gut-brain axis in AD. Future perspectives involve promising therapeutic interventions targeting the gut-brain axis, emphasizing personalized medicine to optimize outcomes based on individual variations in the gut-brain axis characteristics.

RevDate: 2024-02-23

Lyu X, Zhang TT, Ye Z, et al (2024)

Astragaloside IV Mitigated Diabetic Nephropathy by Restructuring Intestinal Microflora and Ferroptosis.

Molecular nutrition & food research [Epub ahead of print].

SCOPE: To investigate the underlying mechanism of Astragaloside IV (AS-IV) in ameliorating diabetic nephropathy (DN) by regulating intestinal microbiota ecology and intestinal mucosal barrier.

METHODS AND RESULTS: Genetically db/db mice are used to establish DN mouse model to monitor the therapeutic effects of AS-IV and fecal microbiota transplantation (FMT) against DN. Supplementation with AS-IV dramatically attenuates several clinical indicators of DN in db/db mice. In addition, AS-IV markedly improves intestinal barrier function, modifies intestinal permeability, and reduces inflammation. Moreover, AS-IV treatment remarkably improves intestinal dysbiosis in db/db mice, characterized by an elevated abundance of Akkermansia, Ligilactobacillus, and Lactobacillus, indicating the fundamental role of the microbiome in DN progression. Furthermore, FMT derived from AS-IV-treated db/db mice is potentially efficient in antagonizing renal dysfunction, rebalancing gut microbiota, and improving intestinal permeability in recipient db/db mice. AS-IV-enriched Akkermansia muciniphila dramatically alleviates DN and intestinal mucosal barrier dysfunction in db/db mice. Intriguingly, AS-IV intervention dramatically diminishes ferroptosis in the kidney and colon tissues. CONCLUSION : Intestinal microbiome alterations and ferroptosis modulation by AS-IV may play instrumental roles in this mechanism, providing compelling evidence for the role of the gut-renal axis in DN.

RevDate: 2024-02-24

Cao Z, Fan D, Sun Y, et al (2024)

The gut ileal mucosal virome is disturbed in patients with Crohn's disease and exacerbates intestinal inflammation in mice.

Nature communications, 15(1):1638.

Gut bacteriome dysbiosis is known to be implicated in the pathogenesis of inflammatory bowel disease (IBD). Crohn's disease (CD) is an IBD subtype with extensive mucosal inflammation, yet the mucosal virome, an empirical modulator of the bacteriome and mucosal immunity, remains largely unclear regarding its composition and role. Here, we exploited trans-cohort CD patients and healthy individuals to compositionally and functionally investigate the small bowel (terminal ileum) virome and bacteriome. The CD ileal virome was characterised by an under-representation of both lytic and temperate bacteriophages (especially those targeting bacterial pathogens), particularly in patients with flare-up. Meanwhile, the virome-bacteriome ecology in CD ileal mucosa was featured by a lack of Bifidobacterium- and Lachnospiraceae-led mutualistic interactions between bacteria and bacteriophages; surprisingly it was more pronounced in CD remission than flare-up, underlining the refractory and recurrent nature of mucosal inflammation in CD. Lastly, we substantiated that ileal virions from CD patients causally exacerbated intestinal inflammation in IBD mouse models, by reshaping a gut virome-bacteriome ecology preceding intestinal inflammation (microbial trigger) and augmenting microbial sensing/defence pathways in the intestine cells (host response). Altogether, our results highlight the significance of mucosal virome in CD pathogenesis and importance of mucosal virome restoration in CD therapeutics.

RevDate: 2024-02-24

Yang J, Liu W, Han X, et al (2024)

Gut microbiota modulation enhances the immune capacity of lizards under climate warming.

Microbiome, 12(1):37.

BACKGROUND: Host-microbial interactions are expected to affect species' adaptability to climate change but have rarely been explored in ectothermic animals. Some studies have shown that short-term warming reduced gut microbial diversity that could hamper host functional performance.

RESULTS: However, our longitudinal experiments in semi-natural conditions demonstrated that warming decreased gut microbiota diversity at 2 months, but increased diversity at 13 and 27 months in a desert lizard (Eremias multiocellata). Simultaneously, long-term warming significantly increased the antibacterial activity of serum, immune responses (higher expression of intestinal immune-related genes), and the concentration of short-chain fatty acids (thereby intestinal barrier and immunity) in the lizard. Fecal microbiota transplant experiments further revealed that increased diversity of gut microbiota significantly enhanced antibacterial activity and the immune response of lizards. More specifically, the enhanced immunity is likely due to the higher relative abundance of Bacteroides in warming lizards, given that the bacteria of Bacteroides fragilis regulated IFN-β expression to increase the immune response of lizards under a warming climate.

CONCLUSIONS: Our study suggests that gut microbiota can help ectotherms cope with climate warming by enhancing host immune response, and highlights the importance of long-term studies on host-microbial interactions and their biological impacts.

RevDate: 2024-02-21

Wu JJ, Zheng X, Wu C, et al (2024)

Melatonin alleviates high temperature exposure induced fetal growth restriction via the gut-placenta-fetus axis in pregnant mice.

Journal of advanced research pii:S2090-1232(24)00076-6 [Epub ahead of print].

INTRODUCTION: Global warming augments the risk of adverse pregnancy outcomes in vulnerable expectant mothers. Pioneering investigations into heat stress (HS) have predominantly centered on its direct impact on reproductive functions, while the potential roles of gut microbiota, despite its significant influence on distant tissues, remain largely unexplored. Our understanding of deleterious mechanisms of HS and the development of effective intervention strategies to mitigate the detrimental impacts are still limited.

OBJECTIVES: In this study, we aimed to explore the mechanisms by which melatonin targets gut microbes to alleviate HS-induced reproductive impairment.

METHODS: We firstly evaluated the alleviating effects of melatonin supplementation on HS-induced reproductive disorder in pregnant mice. Microbial elimination and fecal microbiota transplantation (FMT) experiments were then conducted to confirm the efficacy of melatonin through regulating gut microbiota. Finally, a lipopolysaccharide (LPS)-challenged experiment was performed to verify the mechanism by which melatonin alleviates HS-induced reproductive impairment.

RESULTS: Melatonin supplementation reinstated gut microbiota in heat stressed pregnant mice, reducing LPS-producing bacteria (Aliivibrio) and increasing beneficial butyrate-producing microflora (Butyricimonas). This restoration corresponded to decreased LPS along the maternal gut-placenta-fetus axis, accompanied by enhanced intestinal and placental barrier integrity, safeguarding fetuses from oxidative stress and inflammation, and ultimately improving fetal weight. Further pseudo-sterile and fecal microbiota transplantation trials confirmed that the protective effect of melatonin on fetal intrauterine growth under HS was partially dependent on gut microbiota. In LPS- challenged pregnant mice, melatonin administration mitigated placental barrier injury and abnormal angiogenesis via the inactivation of the TLR4/MAPK/VEGF signaling pathway, ultimately leading to enhanced nutrient transportation in the placenta and thereby improving the fetal weight.

CONCLUSION: Melatonin alleviates HS-induced low fetal weight during pregnancy via the gut-placenta-fetus axis, the first time highlighting the gut microbiota as a novel intervention target to mitigate the detrimental impact of global temperature rise on vulnerable populations.

RevDate: 2024-02-22

Chen L, Xie L, Tan J, et al (2024)

The gut microbiota regulates the depressive-type behaviors and inflammatory processes after severe burn injuries in mice.

Heliyon, 10(4):e25617.

An emerging number of studies have recently revealed the correlation between burn injuries and psychological disorders. Gut microbiota and inflammatory factors may play a vital role in this process. Nevertheless, there are few studies conducted to disclose the potential mechanism of the gut microbiota between depression and burn injuries. In this study, we constructed a burn model of C57BL/6 mice, which showed that the symptom of depression became more and more severe with the burn of mice lasted longer. Meanwhile, there are significant differences of composition of gut microbiota among mice before and after burn. Then, we tested the inflammatory factors in the brain and peripheral blood, which showed an increased expression of Iba1, VWF, TNF-α and IL-6, and a decreased expression of IL-10 in burn mice. In addition, the expression of zonula occludens-1 (ZO-1) in cecum showed a down-regulation in burn mice, which indicated impaired intestinal barrier function. Lastly, the crossing fecal microbiota transplantation (FMT) and cohousing experiment were conducted to determine the functions of cross-transplantation of fecal microbiota on the depressive-type behaviours in burned mice. According to the score of Tail suspension test (TST), the burn mice were divided into two groups: Resilient mice (no-depressed mice) and Abnormal mice (depressed mice). After abnormal mice were transplanted with fecal microbiota of resilient mice, the symptom of depression was improved, and the expression of TNF-α, IL-6 and IL-10 return to normal levels (P < 0.05). On the contrary, after resilient mice were transplanted with fecal microbiota of abnormal mice both the TST scores and inflammatory factor developed depressive-type changes. In conclusion, our study demonstrated the changes of gut microbiota and inflammatory factors in depressed burn mice and non-depressed burn mice. The gut microbiota dysbiosis could impaired intestinal barrier function and lead to neuroinflammation, and this phenomenon could be significantly mitigated by FMT.

RevDate: 2024-02-23
CmpDate: 2024-02-23

Hao W, Ma Q, Wang L, et al (2024)

Gut dysbiosis induces the development of depression-like behavior through abnormal synapse pruning in microglia-mediated by complement C3.

Microbiome, 12(1):34.

BACKGROUND: Remodeling eubiosis of the gut microenvironment may contribute to preventing the occurrence and development of depression. Mounting experimental evidence has shown that complement C3 signaling is associated with the pathogenesis of depression, and disruption of the gut microbiota may be an underlying cause of complement system activation. However, the mechanism by which complement C3 participates in gut-brain crosstalk in the pathogenesis of depression remains unknown.

RESULTS: In the present study, we found that chronic unpredictable mild stress (CUMS)-induced mice exhibited obvious depression-like behavior as well as cognitive impairment, which was associated with significant gut dysbiosis, especially enrichment of Proteobacteria and elevation of microbiota-derived lipopolysaccharides (LPS). In addition, peripheral and central complement C3 activation and central C3/CR3-mediated aberrant synaptic pruning in microglia have also been observed. Transplantation of gut microbiota from CUMS-induced depression model mice into specific pathogen-free and germ-free mice induced depression-like behavior and concomitant cognitive impairment in the recipient mice, accompanied by increased activation of the complement C3/CR3 pathway in the prefrontal cortex and abnormalities in microglia-mediated synaptic pruning. Conversely, antidepressants and fecal microbiota transplantation from antidepressant-treated donors improved depression-like behaviors and restored gut microbiome disturbances in depressed mice. Concurrently, inhibition of the complement C3/CR3 pathway, amelioration of abnormal microglia-mediated synaptic pruning, and increased expression of the synapsin and postsynaptic density protein 95 were observed. Collectively, our results revealed that gut dysbiosis induces the development of depression-like behaviors through abnormal synapse pruning in microglia-mediated by complement C3, and the inhibition of abnormal synaptic pruning is the key to targeting microbes to treat depression.

CONCLUSIONS: Our findings provide novel insights into the involvement of complement C3/CR3 signaling and aberrant synaptic pruning of chemotactic microglia in gut-brain crosstalk in the pathogenesis of depression. Video Abstract.

RevDate: 2024-02-20

Isali I, Helstrom EK, Uzzo N, et al (2024)

Current Trends and Challenges of Microbiome Research in Bladder Cancer.

Current oncology reports [Epub ahead of print].

PURPOSE OF THE REVIEW: Microbiome research has provided valuable insights into the associations between microbial communities and bladder cancer. However, this field faces significant challenges that hinder the interpretation, generalization, and translation of findings into clinical practice. This review aims to elucidate these challenges and highlight the importance of addressing them for the advancement of microbiome research in bladder cancer.

RECENT FINDINGS: Recent findings underscore the complexities involved in microbiome research, particularly in the context of bladder cancer. Challenges include low microbial biomass in urine samples, potential contamination issues during collection and processing, variability in sequencing methods and primer selection, and the difficulty of establishing causality between microbiota and bladder cancer. Studies have shown the impact of sample storage conditions and DNA isolation kits on microbiome analysis, emphasizing the need for standardization. Additionally, variations in urine collection methods can introduce contamination and affect results. The choice of 16S rRNA gene amplicon sequencing or shotgun metagenomic sequencing introduces technical challenges, including primer selection and sequencing read length. Establishing causality between the microbiota and bladder cancer requires experimental methods like fecal microbiota transplantation and human microbiota-associated murine models, which face their own set of challenges. Translating microbiome research into therapeutic applications is hindered by methodological variability, incomplete understanding of bioactive molecules, imperfect animal models, and the inherent heterogeneity of microbiome communities among individuals. Microbiome research in bladder cancer presents significant challenges stemming from technical and conceptual complexities. Addressing these challenges through standardization, improved experimental models, and advanced analytical approaches is essential for advancing our understanding of the microbiome's role in bladder cancer and its potential clinical applications. Achieving this goal can lead to improved patient outcomes and novel therapeutic strategies in the future.

RevDate: 2024-02-21

Monday L, Tillotson G, T Chopra (2024)

Microbiota-Based Live Biotherapeutic Products for Clostridioides Difficile Infection- The Devil is in the Details.

Infection and drug resistance, 17:623-639.

Clostridioides difficile infection (CDI) remains a significant contributor to healthcare costs and morbidity due to high rates of recurrence. Currently, available antibiotic treatment strategies further disrupt the fecal microbiome and do not address the alterations in commensal flora (dysbiosis) that set the stage for CDI. Advances in microbiome-based research have resulted in the development of new agents, classified as live biotherapeutic products (LBPs), for preventing recurrent CDI (rCDI) by restoring eubiosis. Prior to the LBPs, fecal microbiota transplantation (FMT) was available for this purpose; however, lack of large-scale availability and safety concerns have remained barriers to its widespread use. The LBPs are an exciting development, but questions remain. Some are derived directly from human stool while other developmental products contain a defined microbial consortium manufactured ex vivo, and they may be composed of either living bacteria or their spores, making it difficult to compare members of this heterogenous drug class to one another. None have been studied head-to head or against FMT in preventing rCDI. As a class, they have considerable variability in their biologic composition, biopharmaceutic science, route of administration, stages of development, and clinical trial data. This review will start by explaining the role of dysbiosis in CDI, then give the details of the biopharmaceutical components for the LBPs which are approved or in development including how they differ from FMT and from one another. We then discuss the clinical trials of the LBPs currently approved for rCDI and end with the future clinical directions of LBPs beyond C. difficile.

RevDate: 2024-02-19

McMillan AS, Zhang G, Dougherty MK, et al (2024)

Metagenomic, metabolomic, and lipidomic shifts associated with fecal microbiota transplantation for recurrent Clostridioides difficile infection.

bioRxiv : the preprint server for biology pii:2024.02.07.579219.

Recurrent C. difficile infection (rCDI) is an urgent public health threat for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms which mediate a successful FMT are not well understood. Here we use longitudinal stool samples collected from patients undergoing FMT to evaluate changes in the microbiome, metabolome, and lipidome after successful FMTs. We show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae, which encode carnitine metabolism genes, and Lachnospiraceae, which encode bile salt hydrolases and baiA genes. LC-IMS-MS revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here we define the structural and functional changes in successful FMTs. This information will help guide targeted Live Biotherapeutic Product development for the treatment of rCDI and other intestinal diseases.

RevDate: 2023-12-05

Huang Q, Wei M, Feng X, et al (2024)

Hemorrhagic transformation in patients with large-artery atherosclerotic stroke is associated with the gut microbiota and lipopolysaccharide.

Neural regeneration research, 19(7):1532-1540.

Hemorrhagic transformation is a major complication of large-artery atherosclerotic stroke (a major ischemic stroke subtype) that worsens outcomes and increases mortality. Disruption of the gut microbiota is an important feature of stroke, and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis. We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in large-artery atherosclerotic stroke. An observational retrospective study was conducted. From May 2020 to September 2021, blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy, as well as 16 healthy controls. Patients with stroke who developed hemorrhagic transformation (n = 15) were compared to those who did not develop hemorrhagic transformation (n = 17) and with healthy controls. The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing. We also examined key components of the lipopolysaccharide pathway: lipopolysaccharide, lipopolysaccharide-binding protein, and soluble CD14. We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transformation group compared with the healthy controls. The patients with ischemic stroke who developed hemorrhagic transformation exhibited altered gut microbiota composition, in particular an increase in the relative abundance and diversity of members belonging to the Enterobacteriaceae family. Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transformation group. lipopolysaccharide, lipopolysaccharide-binding protein, and soluble CD14 concentrations were associated with increased abundance of Enterobacteriaceae. Next, the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model. In this model, transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide, lipopolysaccharide-binding protein, and soluble CD14. Taken together, our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation. This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transformation after stroke.

RevDate: 2024-02-21

Meroni M, Longo M, Paolini E, et al (2024)

A narrative review about cognitive impairment in metabolic Dysfunction-Associated liver disease (MASLD): Another matter to face through a holistic approach.

Journal of advanced research pii:S2090-1232(24)00069-9 [Epub ahead of print].

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic hepatic disorder worldwide in both adults and children. It is well established that MASLD represents the hepatic manifestation of the metabolic syndrome whose definition includes the presence of obesity, type 2 diabetes (T2D), dyslipidemia, hypertension and hypercoagulability. All these conditions contribute to a chronic inflammatory status which may impact on blood brain barrier (BBB) integrity leading to an impaired function of central nervous system (CNS).

AIM OF REVIEW: Since the mechanisms underlying the brain-liver-gut axis derangement are still inconclusive, the present narrative review aims to make a roundup of the most recent studies regarding the cognitive decline in MASLD also highlighting possible therapeutic strategies to reach a holistic advantage for the patients.

Due to its ever-growing prevalence, the MASLD-related mental dysfunction represents an enormous socio-economic burden since it largely impacts on the quality of life of patients as well as on their working productivity. Indeed, cognitive decline in MASLD translates in low concentration and processing speed, reduced memory, sleepiness but also anxiety and depression. Chronic systemic inflammation, hyperammonemia, genetic background and intestinal dysbiosis possibly contribute to the cognitive decline in MASLD patients. However, its diagnosis is still underestimated since the leading mechanisms are multi-faceted and unexplained and do not exist standardized diagnostic tools or cognitive test strategies. In this scenario, nutritional and lifestyle interventions as well as intestinal microbiota manipulation (probiotics, fecal transplantation) may represent new approaches to counteract mental impairment in these subjects. In sum, to face the "mental aspect" of this multifactorial disease which is almost unexplored, cognitive tools should be introduced in the management of MASLD patients.

RevDate: 2024-02-17

Xu H, Li O, Kim D, et al (2024)

Age-related gut microbiota transplantation disrupts myocardial energy homeostasis and induces oxidative damage.

The Journal of nutrition pii:S0022-3166(24)00097-X [Epub ahead of print].

BACKGROUND: Aging-related energy homeostasis significantly affects normal heart function and disease development. The relationship between the gut microbiota and host energy metabolism has been well established. However, the influence of an aged microbiota on energy metabolism in the heart remains unclear.

OBJECTIVE: To explore the effects of age-related microbiota composition on energy metabolism in the heart METHODS: In this study, we used the fecal microbiota transplantation (FMT) method. The fecal microbiota from young (2-3 months) and aged (18-22 months) donor mice were transplanted into separate groups of young (2-3 months) recipient mice. The analysis utilized whole 16S rRNA sequencing and plasma metabolomics to assess changes in the gut microbiota composition and metabolic potential. Energy changes were monitored by performing an oral glucose tolerance test (OGTT), biochemical testing, body composition analysis, and metabolic cage measurements. Metabolic markers and markers of DNA damage were assessed in heart samples.

RESULTS: FMT of an aged microbiota changed the composition of the recipient's gut microbiota, leading to an elevated Firmicutes-to-Bacteroidetes (F/B) ratio. It also affected overall energy metabolism, resulting in elevated plasma glucose levels, impaired glucose tolerance, and epididymal fat accumulation. Notably, FMT of an aged microbiota increased the heart weight and promoted cardiac hypertrophy. Furthermore, there were significant associations between heart weight and cardiac hypertrophy indicators, epididymal fat weight, and fasting glucose levels. Mechanistically, FMT of an aged microbiota modulated the glucose metabolic pathway and induced myocardial oxidative damage.

CONCLUSIONS: Our findings suggested that an aged microbiota can modulate metabolism and induce cardiac injury. This highlights the possible role of the gut microbiota in age-related metabolic disorders and cardiac dysfunction.

RevDate: 2024-02-17

Chen Q, Wu C, Xu J, et al (2024)

Donor-recipient intermicrobial interactions impact transfer of subspecies and fecal microbiota transplantation outcome.

Cell host & microbe pii:S1931-3128(24)00017-9 [Epub ahead of print].

Studies on fecal microbiota transplantation (FMT) have reported inconsistent connections between clinical outcomes and donor strain engraftment. Analyses of subspecies-level crosstalk and its influences on lineage transfer in metagenomic FMT datasets have proved challenging, as single-nucleotide polymorphisms (SNPs) are generally not linked and are often absent. Here, we utilized species genome bin (SGB), which employs co-abundance binning, to investigate subspecies-level microbiome dynamics in patients with autism spectrum disorder (ASD) who had gastrointestinal comorbidities and underwent encapsulated FMT (Chinese Clinical Trial: 2100043906). We found that interactions between donor and recipient microbes, which were overwhelmingly phylogenetically divergent, were important for subspecies transfer and positive clinical outcomes. Additionally, a donor-recipient SGB match was indicative of a high likelihood of strain transfer. Importantly, these ecodynamics were shared across FMT datasets encompassing multiple diseases. Collectively, these findings provide detailed insight into specific microbial interactions and dynamics that determine FMT success.

RevDate: 2024-02-19
CmpDate: 2024-02-19

Dong Q, Hua D, Wang X, et al (2024)

Temporal colonization and metabolic regulation of the gut microbiome in neonatal oxen at single nucleotide resolution.

The ISME journal, 18(1):.

The colonization of microbes in the gut is key to establishing a healthy host-microbiome symbiosis for newborns. We longitudinally profiled the gut microbiome in a model consisting of 36 neonatal oxen from birth up to 2 months postpartum and carried out microbial transplantation to reshape their gut microbiome. Genomic reconstruction of deeply sequenced fecal samples resulted in a total of 3931 metagenomic-assembled genomes from 472 representative species, of which 184 were identified as new species when compared with existing databases of oxen. Single nucleotide level metagenomic profiling shows a rapid influx of microbes after birth, followed by dynamic shifts during the first few weeks of life. Microbial transplantation was found to reshape the genetic makeup of 33 metagenomic-assembled genomes (FDR < 0.05), mainly from Prevotella and Bacteroides species. We further linked over 20 million microbial single nucleotide variations to 736 plasma metabolites, which enabled us to characterize 24 study-wide significant associations (P < 4.4 × 10-9) that identify the potential microbial genetic regulation of host immune and neuro-related metabolites, including glutathione and L-dopa. Our integration analyses further revealed that microbial genetic variations may influence the health status and growth performance by modulating metabolites via structural regulation of their encoded proteins. For instance, we found that the albumin levels and total antioxidant capacity were correlated with L-dopa, which was determined by single nucleotide variations via structural regulations of metabolic enzymes. The current results indicate that temporal colonization and transplantation-driven strain replacement are crucial for newborn gut development, offering insights for enhancing newborn health and growth.

RevDate: 2024-02-16

Weber AT, GR Lichtenstein (2024)

Evidence-Based Approach to Chronic Antibiotic Refractory Pouchitis: A Review.

Diseases of the colon and rectum pii:00003453-990000000-00574 [Epub ahead of print].

BACKGROUND: Chronic antibiotic refractory pouchitis after restorative proctocolectomy with ileal pouch-anal anastomosis, characterized by at least 4 weeks of pouchitis symptoms that have not responded to standard antibiotic therapy, presents a therapeutic challenge for patients and healthcare providers.

OBJECTIVE: The aim of this narrative review was to summarize the current evidence regarding management of chronic antibiotic refractory pouchitis.

DATA SOURCES: Studies were identified through search of PubMed database from the National Library of Medicine.

STUDY SELECTION: We included case series, cohort studies, randomized-controlled trials, and systematic reviews with meta-analyses that addressed chronic antibiotic refractory pouchitis management, with prioritization of data published within the last 3-5 years.

INTERVENTION: Studies examining pharmacologic and select non-pharmacologic interventions were included.

MAIN OUTCOME MEASURE: Outcomes measures included clinical, endoscopic, and histologic endpoints.

RESULTS: Mesalamine has demonstrated efficacy in symptom improvement but no improvement in quality of life. Budesonide has demonstrated high rates of clinical remission that have mostly been sustained in a small number of patients. Anti-tumor necrosis factor alpha therapies have demonstrated efficacy in reaching clinical and even endoscopic endpoints, although rates of treatment discontinuation were not insignificant. Limited evidence is encouraging for use of ustekinumab in achieving clinical response. Data for vedolizumab are favorable across clinical, endoscopic, and histologic endpoints, including one of the only randomized, placebo-controlled trials. Non-medication therapies including hyperbaric oxygen therapy and fecal microbiota transplant have undergone limited evaluation and concerns about ultimate accessibility of these therapies remain.

LIMITATIONS: Overall, studies assessing therapeutic options for chronic antibiotic refractory pouchitis are mostly limited to case series and retrospective studies with small sample sizes.

CONCLUSIONS: Biologic therapies have demonstrated efficacy in the management of chronic antibiotic refractory pouchitis and offer a steroid-sparing option for refractory disease. Non-pharmacologic therapies, including hyperbaric oxygen and fecal microbiota transplant, require further exploration. See video.

RevDate: 2024-02-16

Schöler D, B Schnabl (2024)

The role of the microbiome in liver disease.

Current opinion in gastroenterology pii:00001574-990000000-00127 [Epub ahead of print].

PURPOSE OF REVIEW: The intestinal microbiome and the gut-liver axis play a major role in health and disease. The human gut harbors trillions of microbes and a disruption of the gut homeostasis can contribute to liver disease. In this review, the progress in the field within the last 3 years is summarized, focusing on metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), autoimmune liver disease (AILD), and hepatocellular carcinoma (HCC).

RECENT FINDINGS: Changes in the fecal virome and fungal mycobiome have been described in patients with various liver diseases. Several microbial derived metabolites including endogenous ethanol produced by bacteria, have been mechanistically linked to liver disease such as MASLD. Virulence factors encoded by gut bacteria contribute to ALD, AILD and HCC. Novel therapeutic approaches focused on the microbiome including phages, pre- and postbiotics have been successfully used in preclinical models. Fecal microbiota transplantation has been effective in attenuating liver disease. Probiotics are safe in patients with alcohol-associated hepatitis and improve liver disease and alcohol addiction.

SUMMARY: The gut-liver axis plays a key role in the pathophysiology of liver diseases. Understanding the microbiota in liver disease can help to develop precise microbiota centered therapies.

RevDate: 2024-02-16

Mohamed ME, Saqr A, Staley C, et al (2024)

Pharmacomicrobiomics: Immunosuppressive Drugs and Microbiome Interactions in Transplantation.

Transplantation [Epub ahead of print].

The human microbiome is associated with human health and disease. Exogenous compounds, including pharmaceutical products, are also known to be affected by the microbiome, and this discovery has led to the field of pharmacomicobiomics. The microbiome can also alter drug pharmacokinetics and pharmacodynamics, possibly resulting in side effects, toxicities, and unanticipated disease response. Microbiome-mediated effects are referred to as drug-microbiome interactions (DMI). Rapid advances in the field of pharmacomicrobiomics have been driven by the availability of efficient bacterial genome sequencing methods and new computational and bioinformatics tools. The success of fecal microbiota transplantation for recurrent Clostridioides difficile has fueled enthusiasm and research in the field. This review focuses on the pharmacomicrobiome in transplantation. Alterations in the microbiome in transplant recipients are well documented, largely because of prophylactic antibiotic use, and the potential for DMI is high. There is evidence that the gut microbiome may alter the pharmacokinetic disposition of tacrolimus and result in microbiome-specific tacrolimus metabolites. The gut microbiome also impacts the enterohepatic recirculation of mycophenolate, resulting in substantial changes in pharmacokinetic disposition and systemic exposure. The mechanisms of these DMI and the specific bacteria or communities of bacteria are under investigation. There are little or no human DMI data for cyclosporine A, corticosteroids, and sirolimus. The available evidence in transplantation is limited and driven by small studies of heterogeneous designs. Larger clinical studies are needed, but the potential for future clinical application of the pharmacomicrobiome in avoiding poor outcomes is high.

RevDate: 2024-02-19
CmpDate: 2024-02-19

Loh JS, Mak WQ, Tan LKS, et al (2024)

Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases.

Signal transduction and targeted therapy, 9(1):37.

The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.

RevDate: 2024-02-20
CmpDate: 2024-02-19

Maghini DG, Dvorak M, Dahlen A, et al (2024)

Quantifying bias introduced by sample collection in relative and absolute microbiome measurements.

Nature biotechnology, 42(2):328-338.

To gain insight into the accuracy of microbial measurements, it is important to evaluate sources of bias related to sample condition, preservative method and bioinformatic analyses. There is increasing evidence that measurement of the total count and concentration of microbes in the gut, or 'absolute abundance', provides a richer source of information than relative abundance and can correct some conclusions drawn from relative abundance data. However, little is known about how preservative choice can affect these measurements. In this study, we investigated how two common preservatives and short-term storage conditions impact relative and absolute microbial measurements. OMNIgene GUT OMR-200 yields lower metagenomic taxonomic variation between different storage temperatures, whereas Zymo DNA/RNA Shield yields lower metatranscriptomic taxonomic variation. Absolute abundance quantification reveals two different causes of variable Bacteroidetes:Firmicutes ratios across preservatives. Based on these results, we recommend OMNIgene GUT OMR-200 preservative for field studies and Zymo DNA/RNA Shield for metatranscriptomics studies, and we strongly encourage absolute quantification for microbial measurements.

RevDate: 2024-02-16

Kriz J, Hysperska V, Bebrova E, et al (2024)

Faecal microbiota transplantation for multidrug-resistant organism decolonization in spinal cord injury patients: a case series.

Infection prevention in practice, 6(1):100340.

INTRODUCTION: The increase of multidrug-resistant (MDR) bacteria in healthcare settings is a worldwide concern. Isolation precautions must be implemented to control the significant risk of transmitting these pathogens among patients. Antibiotic decolonization is not recommended because of the threat of increasing antibiotic resistance. However, restoring gut microflora through faecal microbiota transplantation (FMT) is a hopeful solution.

PATIENTS AND METHOD: In 2019-2022, FMT was indicated in seven patients of the Spinal Cord Unit at University Hospital Motol who were colonized with MDR bacterial strains. Five patients tested positive for carriage of carbapenemase-producing Enterobacteriaceae, and two were carriers of vancomycin-resistant enterococci. Isolation measures were implemented in all patients. Donor faeces were obtained from healthy, young, screened volunteers. According to local protocol, 200-300 ml of suspension was applied through a nasoduodenal tube.

RESULTS: The mean age of the patients was 43 years. The mean length of previous hospital stay was 93.2 days. All patients were treated with broad-spectrum antibiotics for infectious complications before detecting colonisation with MDR bacteria. MDR organism decolonization was achieved in five patients, and consequently, isolation measures could be removed. Colonization persisted in two patients, one of whom remained colonized even after a third FMT. No adverse events were reported after FMT.

CONCLUSION: FMT is a safe and effective strategy to eradicate MDR bacteria, even in spinal cord injured patients. FMT can allow relaxation of isolation facilitates, the participation of patients in a complete rehabilitation program, their social integration, and transfer to follow-up rehabilitation centres.

RevDate: 2024-02-16
CmpDate: 2024-02-16

Zhang H, Dong M, Zheng J, et al (2023)

Fecal bacteria-free filtrate transplantation is proved as an effective way for the recovery of radiation-induced individuals in mice.

Frontiers in cellular and infection microbiology, 13:1343752.

BACKGROUND: Ionizing radiation can cause intestinal microecological dysbiosis, resulting in changes in the composition and function of gut microbiota. Altered gut microbiota is closely related to the development and progression of radiation-induced intestinal damage. Although microbiota-oriented therapeutic options such as fecal microbiota transplantation (FMT) have shown some efficacy in treating radiation toxicity, safety concerns endure. Therefore, fecal bacteria-free filtrate transplantation (FFT), which has the potential to become a possible alternative therapy, is well worth investigating. Herein, we performed FFT in a mouse model of radiation exposure and monitored its effects on radiation damage phenotypes, gut microbiota, and metabolomic profiles to assess the effectiveness of FFT as an alternative therapy to FMT safety concerns.

RESULTS: FFT treatment conferred radioprotection against radiation-induced toxicity, representing as better intestinal integrity, robust proinflammatory and anti-inflammatory cytokines homeostasis, and accompanied by significant shifts in gut microbiome. The bacterial compartment of recipients following FFT was characterized by an enrichment of radioprotective microorganisms (members of family Lachnospiraceae). Furthermore, metabolome data revealed increased levels of microbially generated short-chain fatty acids (SCFAs) in the feces of FFT mice.

CONCLUSIONS: FFT improves radiation-induced intestinal microecological dysbiosis by reshaping intestinal mucosal barrier function, gut microbiota configurations, and host metabolic profiles, highlighting FFT regimen as a promising safe alternative therapy for FMT is effective in the treatment of radiation intestinal injury.

RevDate: 2024-02-16
CmpDate: 2024-02-16

van Bergeijk DA, Augustijn HE, Elsayed SS, et al (2024)

Taxonomic and metabolic diversity of Actinomycetota isolated from faeces of a 28,000-year-old mammoth.

Environmental microbiology, 26(2):e16589.

Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.

RevDate: 2024-02-17
CmpDate: 2024-02-15

Liu B, Fan L, Wang Y, et al (2024)

Gut microbiota regulates host melatonin production through epithelial cell MyD88.

Gut microbes, 16(1):2313769.

Melatonin has various physiological effects, such as the maintenance of circadian rhythms, anti-inflammatory functions, and regulation of intestinal barriers. The regulatory functions of melatonin in gut microbiota remodeling have also been well clarified; however, the role of gut microbiota in regulating host melatonin production remains poorly understood. To address this, we studied the contribution of gut microbiota to host melatonin production using gut microbiota-perturbed models. We demonstrated that antibiotic-treated and germ-free mice possessed diminished melatonin levels in the serum and elevated melatonin levels in the colon. The influence of the intestinal microbiota on host melatonin production was further confirmed by fecal microbiota transplantation. Notably, Lactobacillus reuteri (L. R) and Escherichia coli (E. coli) recapitulated the effects of gut microbiota on host melatonin production. Mechanistically, L. R and E. coli activated the TLR2/4/MyD88/NF-κB signaling pathway to promote expression of arylalkylamine N-acetyltransferase (AANAT, a rate-limiting enzyme for melatonin production), and MyD88 deficiency in colonic epithelial cells abolished the influence of intestinal microbiota on colonic melatonin production. Collectively, we revealed a specific underlying mechanism of gut microbiota to modulate host melatonin production, which might provide novel therapeutic ideas for melatonin-related diseases.

RevDate: 2024-02-14

Kellogg TD, Ceglia S, Mortzfeld BM, et al (2024)

Microbiota encoded fatty-acid metabolism expands tuft cells to protect tissues homeostasis during Clostridioides difficile infection in the large intestine.

bioRxiv : the preprint server for biology pii:2024.01.29.574039.

Metabolic byproducts of the intestinal microbiota are crucial in maintaining host immune tone and shaping inter-species ecological dynamics. Among these metabolites, succinate is a driver of tuft cell (TC) differentiation and consequent type 2 immunity-dependent protection against invading parasites in the small intestine. Succinate is also a growth enhancer of the nosocomial pathogen Clostridioides difficile in the large intestine. To date, no research has shown the role of succinate in modulating TC dynamics in the large intestine, or the relevance of this immune pathway to C. difficile pathophysiology. Here we reveal the existence of a three-way circuit between commensal microbes, C. difficile and host epithelial cells which centers around succinate. Through selective microbiota depletion experiments we demonstrate higher levels of type 2 cytokines leading to expansion of TCs in the colon. We then demonstrate the causal role of the microbiome in modulating colonic TC abundance and subsequent type 2 cytokine induction using rational supplementation experiments with fecal transplants and microbial consortia of succinate-producing bacteria. We show that administration of a succinate-deficient Bacteroides thetaiotaomicron knockout (Δfrd) significantly reduces the enhanced type 2 immunity in mono-colonized mice. Finally, we demonstrate that mice prophylactically administered with the consortium of succinate-producing bacteria show reduced C. difficile -induced morbidity and mortality compared to mice administered with heat-killed bacteria or the vehicle. This effect is reduced in a partial tuft cell knockout mouse, Pou2f3 [+/-] , and nullified in the tuft cell knockout mouse, Pou2f3 [-/-] , confirming that the observed protection occurs via the TC pathway. Succinate is an intermediary metabolite of the production of short-chain fatty acids, and its concentration often increases during dysbiosis. The first barrier to enteric pathogens alike is the intestinal epithelial barrier, and host maintenance and strengthening of barrier integrity is vital to homeostasis. Considering our data, we propose that activation of TC by the microbiota-produced succinate in the colon is a mechanism evolved by the host to counterbalance microbiome-derived cues that facilitate invasion by intestinal pathogens.

RevDate: 2024-02-16
CmpDate: 2024-02-15

Wang J, Gao Y, Ren S, et al (2024)

Gut microbiota-derived trimethylamine N-Oxide: a novel target for the treatment of preeclampsia.

Gut microbes, 16(1):2311888.

Pre-eclampsia (PE) is the most common complication of pregnancy and seriously threatens the health and safety of the mother and child. Studies have shown that an imbalance in gut microbiota can affect the progression of PE. Trimethylamine N-oxide (TMAO) is an intestinal microbiota-derived metabolite that is thought to be involved in the occurrence of PE; however, its causal relationship and mechanism remain unclear. In this clinical cohort study, including 28 patients with eclampsia and 39 matched healthy controls, fecal samples were collected for 16S rRNA gene sequencing, and serum was collected for targeted metabolomics research. The results showed that the level of TMAO and the abundance of its source bacteria had significantly increased in patients with PE, and were positively correlated with the clinical progression of PE. Fecal microbiota transplantation (FMT) was applied to an antibiotic-depleted-treated mouse model and targeted inhibition of TMAO. The results of the FMT experiment revealed that mice that received fecal microbiota transplantation from patients with PE developed typical PE symptoms and increased oxidative stress and inflammatory damage, both of which were reversed by 3,3-Dimethyl-1-butanol (DMB), a TMAO inhibitor, which also improved pregnancy outcomes in the model mice. Similar results were obtained in the classical NG-Nitroarginine methyl ester (L-NAME) induced PE mouse model. Mechanistically, TMAO promotes the progression of PE by regulating inflammatory and oxidative stress-related signaling pathways, affecting the migration and angiogenesis of vascular endothelial cells, as well as the migration and invasion of trophoblast cells. Our results reveal the role and mechanism of gut microbiota and TMAO in the progression of PE, provides new ideas for exploring the pathogenesis and therapeutic targets of PE, and determines the potential application value of TMAO as a target for PE intervention.

RevDate: 2024-02-15
CmpDate: 2024-02-15

Yin S, Liao Y, Ma Y, et al (2023)

Lactiplantibacillus plantarum and faecal microbiota transplantation can improve colitis in mice by affecting gut microbiota and metabolomics.

Beneficial microbes, 14(6):609-622.

Gut microbiota may have therapeutic effects on inflammatory bowel disease (IBD). Regulating intestinal microbiota through Lactiplantibacillus plantarum (L. plantarum) and faecal microbiota transplantation (FMT) is a novel approach to treating IBD. This study aimed to explore the effect of L. plantarum and FMT pretreatment in alleviating colitis in mice. Five groups of mice (n = 6 per group) were included: CON group, DSS group (dextran sodium sulphate-induced colitis mice), LP-DSS pretreatment group (colitis mice were given strain L. plantarum and 5% DSS), DSS-FMT group (mice pretreated with faecal microbiota transplantation were given 5% DSS), and LP-FMT pretreatment group (mice pretreated with faecal microbiota transplantation and L. plantarum were given 5% DSS). Serum metabolites and intestinal microbiota were analysed by 16S rRNA sequencing liquid chromatography-mass spectrometry (LC-MS). The results demonstrated that L. plantarum and FMT improved gut microbiota in mice by increasing Firmicutes and decreasing the Bacteroidetes. In the serum metabolomics analysis, there were 11 differential metabolites in the DSS-FMT and LP-FMT pretreatment groups, and these differential metabolites were mainly glycerophospholipids and sphingolipids. It is worth noting that Lachnospira and Lactobacillus were positively associated with 8 differential metabolites. These results suggest that L. plantarum and FMT can regulate intestinal microorganisms and serum metabolomics to alleviate inflammation.

RevDate: 2024-02-14

Zhou X, Chen R, Cai Y, et al (2024)

Fecal Microbiota Transplantation: A Prospective Treatment for Type 2 Diabetes Mellitus.

Diabetes, metabolic syndrome and obesity : targets and therapy, 17:647-659.

PURPOSE OF REVIEW: The aim of this review is to summarize the role of gastrointestinal microbiome (GM) in the development of type 2 diabetes mellitus (T2DM). Besides, we discuss the feasibility of applying FMT in the treatment of T2DM and propose a series of processes to refine the use of FMT in the treatment of T2DM.

RECENT FINDINGS: T2DM is a metabolic disease which is connected with the GM. According to many researches, GM can produce a variety of metabolites such as bile acid, short chain fatty acids, lipopolysaccharides and trimethylamine oxide which play an important role in metabolism. FMT is a method to regulate GM and has been observed to be effective in the treatment of metabolic diseases such as T2DM in some mouse models and people. However, there is still a lack of direct evidence for the use of FMT in the treatment of T2DM, and the process of FMT is not standardized.

SUMMARY: Dysregulation of GM is closely related to the development of T2DM. Promoting the conversion of GM in T2DM patients to normal population through FMT can reduce insulin resistance and lower their blood glucose level, which is an optional treatment for T2DM patients in the future. At present, the feasibility and limitations of applying FMT to the treatment of T2DM need to be further studied.

RevDate: 2024-02-14
CmpDate: 2024-02-14

Behling AH, Wilson BC, Ho D, et al (2024)

Horizontal gene transfer after faecal microbiota transplantation in adolescents with obesity.

Microbiome, 12(1):26.

BACKGROUND: Horizontal gene transfer (HGT) describes the transmission of DNA outside of direct ancestral lineages. The process is best characterised within the bacterial kingdom and can enable the acquisition of genetic traits that support bacterial adaptation to novel niches. The adaptation of bacteria to novel niches has particular relevance for faecal microbiota transplantation (FMT), a therapeutic procedure which aims to resolve gut-related health conditions of individuals, through transplanted gut microbiota from healthy donors.

RESULTS: Three hundred eighty-one stool metagenomic samples from a placebo-controlled FMT trial for obese adolescents (the Gut Bugs Trial) were analysed for HGT, using two complementary methodologies. First, all putative HGT events, including historical HGT signatures, were quantified using the bioinformatics application WAAFLE. Second, metagenomic assembly and gene clustering were used to assess and quantify donor-specific genes transferred to recipients following the intervention. Both methodologies found no difference between the level of putative HGT events in the gut microbiomes of FMT and placebo recipients, post-intervention. HGT events facilitated by engrafted donor species in the FMT recipient gut at 6 weeks post-intervention were identified and characterised. Bacterial strains contributing to this subset of HGT events predominantly belonged to the phylum Bacteroidetes. Engraftment-dependent horizontally transferred genes were retained within recipient microbiomes at 12 and 26 weeks post-intervention.

CONCLUSION: Our study suggests that novel microorganisms introduced into the recipient gut following FMT have no impact on the basal rate of HGT within the human gut microbiome. Analyses of further FMT studies are required to assess the generalisability of this conclusion across different FMT study designs and for the treatment of different gut-related conditions. Video Abstract.

RevDate: 2024-02-15

Anonymous (2024)

Correction: Dynamics of inflammation-associated plasma proteins following faecal microbiota transplantation in patients with psoriatic arthritis and healthy controls: exploratory findings from the FLORA trial.

RMD open, 10(1): pii:rmdopen-2023-003750corr1.

RevDate: 2024-02-14
CmpDate: 2024-02-14

Pett N, Hunter M, Carranza García NA, et al (2024)

T4 Bacteriophage and E. coli Interaction in the Murine Intestine: A Prototypical Model for Studying Host-Bacteriophage Dynamics In Vivo.

Journal of visualized experiments : JoVE.

Bacteriophages (phages) are viruses that infect bacteria with species- and strain-level specificity and are the most abundant biological entities across all known ecosystems. Within bacterial communities, such as those found in the gut microbiota, phages are implicated in regulating microbiota population dynamics and driving bacterial evolution. There has been renewed interest in phage research in the last decade, in part due to the host-specific killing capabilities of lytic phages, which offer a promising tool to counter the increasing threat of antimicrobial resistant bacteria. Furthermore, recent studies demonstrating that phages adhere to intestinal mucus suggest they may have a protective role in preventing bacterial invasion into the underlying epithelium. Importantly, like bacterial microbiomes, disrupted phageomes have been associated with worsened outcomes in diseases such as inflammatory bowel disease. Previous studies have demonstrated that phages can modulate the microbiome of animals and humans through fecal filtrate transplants, benefiting the host's health. With this recent wave of research comes the necessity to establish and standardize protocols for studying phages in the context of the gut microbiome. This protocol provides a set of procedures to study isolated T4 phages and their bacterial host, Escherichia coli, in the context of the murine gastrointestinal tract. The methods described here outline how to start from a phage lysate, administer it to mice and assess effects on bacterial host and phage levels. This protocol can be modified and applied to other phage-bacterial pairs and provides a starting point for studying host-phage dynamics in vivo.

RevDate: 2024-02-13

Deac IŞ, Ofrim AM, Fărcaş RA, et al (2024)

The management of Clostridioides difficile infection: from empirism to evidence.

Medicine and pharmacy reports, 97(1):5-11.

Clostridioides difficile infection (CDI) in clinical practice represents a challenge for its management and also prevention of recurrence. Even though there are updated guidelines for infection prevention, control and treatment, CDI remains a leading cause of healthcare acquired diarrhea with increasing incidence in the community. We present here a synthesis of the most recent international guidelines on the management of CDI. In 2021 updated guidelines on the treatment of CDI in adults were published by the Infectious Diseases Society of America (IDSA) and the Society for Healthcare Epidemiology of America (SHEA), American College of Gastroenterology (ACG) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). These guidelines focused on CDI management in adults, including new data on the clinical efficacy of Fidaxomicin (FDX) and Bezlotoxumab. The 2017 publication of IDSA and SHEA - Clinical Practice Guidelines for Clostridium difficile infection also included pediatric treatment recommendations that are not a part of the 2021 update. Vancomycin (VAN) treatment for an initial CDI episode remains an acceptable alternative to FDX, considering the monetary and logistical challenge of acquiring FDX. There is growing literature on fecal microbiota transplantation (FMT) and the 2021 guidelines describe its role in severe complicated refractory CDI cases and for which surgical management is not feasible. Moreover, there are new data on the secondary prophylaxis with VAN in refractory CDI in patients with risk factors who receive broad spectrum antibiotics.

RevDate: 2024-02-13

Zhu H, Wang W, Y Li (2024)

The interplay between microbiota and brain-gut axis in epilepsy treatment.

Frontiers in pharmacology, 15:1276551.

The brain-gut axis plays a vital role in connecting the cognitive and emotional centers of the brain with the intricate workings of the intestines. An imbalance in the microbiota-mediated brain-gut axis extends far beyond conditions like Irritable Bowel Syndrome (IBS) and obesity, playing a critical role in the development and progression of various neurological disorders, including epilepsy, depression, Alzheimer's disease (AD), and Parkinson's disease (PD). Epilepsy, a brain disorder characterized by unprovoked seizures, affects approximately 50 million people worldwide. Accumulating evidence suggests that rebuilding the gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and ketogenic diets (KD) can benefit drug-resistant epilepsy. The disturbances in the gut microbiota could contribute to the toxic side effects of antiepileptic drugs and the development of drug resistance in epilepsy patients. These findings imply the potential impact of the gut microbiota on epilepsy and suggest that interventions targeting the microbiota, such as the KD, hold promise for managing and treating epilepsy. However, the full extent of the importance of microbiota in epilepsy treatment is not yet fully understood, and many aspects of this field remain unclear. Therefore, this article aims to provide an overview of the clinical and animal evidence supporting the regulatory role of gut microbiota in epilepsy, and of potential pathways within the brain-gut axis that may be influenced by the gut microbiota in epilepsy. Furthermore, we will discuss the recent advancements in epilepsy treatment, including the KD, fecal microbiota transplantation, and antiseizure drugs, all from the perspective of the gut microbiota.

RevDate: 2024-02-14
CmpDate: 2024-02-14

Tweedie-Cullen RY, Leong K, Wilson BC, et al (2024)

Protocol for the Gut Bugs in Autism Trial: a double-blind randomised placebo-controlled trial of faecal microbiome transfer for the treatment of gastrointestinal symptoms in autistic adolescents and adults.

BMJ open, 14(2):e074625.

INTRODUCTION: Autism (formally autism spectrum disorder) encompasses a group of complex neurodevelopmental conditions, characterised by differences in communication and social interactions. Co-occurring chronic gastrointestinal symptoms are common among autistic individuals and can adversely affect their quality of life. This study aims to evaluate the efficacy of oral encapsulated faecal microbiome transfer (FMT) in improving gastrointestinal symptoms and well-being among autistic adolescents and adults.

METHODS AND ANALYSIS: This double-blind, randomised, placebo-controlled trial will recruit 100 autistic adolescents and adults aged 16-45 years, who have mild to severe gastrointestinal symptoms (Gastrointestinal Symptoms Rating Scale (GSRS) score ≥2.0). We will also recruit eight healthy donors aged 18-32 years, who will undergo extensive clinical screening. Recipients will be randomised 1:1 to receive FMT or placebo, stratified by biological sex. Capsules will be administered over two consecutive days following an overnight bowel cleanse with follow-up assessments at 6, 12 and 26 weeks post-treatment. The primary outcome is GSRS score at 6 weeks. Other assessments include anthropometry, body composition, hair cortisol concentration, gut microbiome profile, urine/plasma gut-derived metabolites, plasma markers of gut inflammation/permeability and questionnaires on general well-being, sleep quality, physical activity, food diversity and treatment tolerability. Adverse events will be recorded and reviewed by an independent data monitoring committee.

ETHICS AND DISSEMINATION: Ethics approval for the study was granted by the Central Health and Disability Ethics Committee on 24 August 2021 (reference number: 21/CEN/211). Results will be published in peer-reviewed journals and presented to both scientific and consumer group audiences.

TRIAL REGISTRATION NUMBER: ACTRN12622000015741.

RevDate: 2024-02-13

Luqman A, Hassan A, Ullah M, et al (2024)

Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder.

Frontiers in immunology, 15:1321395.

The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.

RevDate: 2024-02-10

Sun H, Yang B, Zhu X, et al (2024)

Oral exposure of polystyrene microplastics and doxycycline affects mice neurological function via gut microbiota disruption: The orchestrating role of fecal microbiota transplantation.

Journal of hazardous materials, 467:133714 pii:S0304-3894(24)00293-0 [Epub ahead of print].

The debris of plastics with a size < 5 mm, called microplastics, possess long-lived legacies of plastic pollution and a growing threat to human beings. The adverse effects and corresponding molecular mechanisms of microplastics are still largely unknown and must be prioritized. Antibiotics commonly co-existed with microplastics; the current study investigated the syngenetic toxic effect of doxycycline (Dox) and polystyrene microplastics (PS). Specifically, we found that Dox combined with PS exposure perturbed gut microbiota homeostasis in mice, which mediated brain lesions and inflammation with a concomitant decline in learning and memory behaviors through the gut-brain axis. Of note, PS exposure resulted in intestinal damage and structural change, but Dox did not accelerate the disruption of intestinal barrier integrity in PS-treated mice. Interestingly, fecal microbiota transplantation (FMT) can reverse neurological impairment caused by combined PS and Dox exposure via compensating gut microbes; therefore, the learning and memory abilities of mice were also recovered. This work not only provides insights into the syngenetic effect of microplastics and antibiotics and highlights their distal neurotoxicity through the gut-brain axis but also offers a promising strategy against their combined toxicity.

RevDate: 2024-02-12

Vongsavath T, Rahmani R, Tun KM, et al (2024)

The Use of Fecal Microbiota Transplant in Overcoming and Modulating Resistance to Anti-PD-1 Therapy in Patients with Skin Cancer.

Cancers, 16(3):.

While immune checkpoint inhibitors have evolved into the standard of care for advanced melanoma, 40-50% of melanoma cases progress while on therapies. The relationship between bacterium and carcinogenesis is well founded, such as in H. pylori in gastric cancers, and Fusobacterium in colorectal cancers. This interplay between dysbiosis and carcinogenesis questions whether changes in the microbiome could affect treatment. Thus, FMT may find utility in modifying the efficacy of anti-PD-1. This review aims to examine the use of FMT in treatment-resistant melanoma. A literature search was performed using the keywords "fecal microbiota transplant" and "skin cancer". Studies were reviewed for inclusion criteria and quality and in the final stage, and three studies were included. Overall objective responses were reported in 65% of patients who were able to achieve CR, and 45% who achieved PR. Clinical benefit rate of combined CR/PR with stable disease greater or equal to 6 months was 75%. Reported objective responses found durable stable disease lasting 12 months. Overall survival was 7 months, and overall PRS was 3 months. As for the evaluation of safety, many patients reported grade 1-2 FMT related AE. Only following the administration of anti-PD-1 therapy were there a grade 3 or higher AE.

RevDate: 2024-02-12

Chechushkov A, Desyukevich P, Yakovlev T, et al (2024)

Sterile Fecal Microbiota Transplantation Boosts Anti-Inflammatory T-Cell Response in Ulcerative Colitis Patients.

International journal of molecular sciences, 25(3):.

Ulcerative colitis is a chronic immune-mediated disease of unclear etiology, affecting people of different ages and significantly reducing the quality of life. Modern methods of therapy are mainly represented by anti-inflammatory drugs and are not aimed at a specific pathogenetic factor. In this study, we investigated the effect of transplantation of sterile stool filtrate from healthy donors on the induction of anti-inflammatory immune mechanisms. It was shown that performing such a procedure in patients with ulcerative colitis caused the appearance of T helper cells in the blood, which reacted to the content of sterile stool filtrates in an antigen-specific manner and produced IL-10. At the same time, cells of the same patients before therapy in response to the addition of sterile stool filtrates were less reactive and predominantly produced IL-4, indicating its pro-inflammatory skewing. The obtained data demonstrated the effect of an anti-inflammatory shift in the T-helper response after transplantation of sterile stool filtrate, which increased and persisted for at least three months after the procedure.

RevDate: 2024-02-09

Singh A, Midha V, Chauhan NS, et al (2024)

Current perspectives on fecal microbiota transplantation in inflammatory bowel disease.

Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology [Epub ahead of print].

Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic modality within the domain of inflammatory bowel disease (IBD). While FMT has secured approval and demonstrated efficacy in addressing recurrent and refractory Clostridioides difficile infection, its application in IBD remains an area of active exploration and research. The current status of FMT in IBD reflects a nuanced landscape, with ongoing investigations delving into its effectiveness, safety and optimal implementation. Early-stage clinical trials and observational studies have provided insights into the potential of FMT to modulate the dysbiotic gut microbiota associated with IBD, aiming to mitigate inflammation and promote mucosal healing. However, considerable complexities persist, including variations in donor selection, treatment protocols and outcome assessments. Challenges in standardizing FMT protocols for IBD treatment are compounded by the dynamic nature of the gut microbiome and the heterogeneity of IBD itself. Despite these challenges, enthusiasm for FMT in IBD emanates from its capacity to address gut microbial dysbiosis, signifying a paradigm shift towards more comprehensive approaches in IBD management. As ongoing research progresses, an enhanced understanding of FMT's role in IBD therapy is anticipated. This article synthesizes the current status of FMT in IBD, elucidating the attendant challenges and aspiring towards the refinement of its application for improved patient outcomes.

RevDate: 2024-02-11

Liu Y, Li Z, Sun T, et al (2024)

Gut microbiota regulates hepatic ischemia-reperfusion injury-induced cognitive dysfunction via the HDAC2-ACSS2 axis in mice.

CNS neuroscience & therapeutics, 30(2):e14610.

AIMS: Hepatic ischemia-reperfusion injury (HIRI) resulting from hepatic inflow occlusion, which is a common procedure in liver surgery is inevitable. Previous research has confirmed that the cognitive dysfunction induced by HIRI is closely related to dysbiosis of the gut microbiota. This research aims to investigate the mechanisms underlying this complication.

METHODS: C57BL/6 mice underwent hepatic ischemia experimentally through the occlusion of the left hepatic artery and portal vein. To assess the HDAC2-ACSS2 axis, gut microbiota transplantation. Enzyme-linked immunosorbent assay and LC/MS short-chain fatty acid detection were utilized.

RESULTS: The findings indicated a notable decline in ACSS2 expression in the hippocampus of mice experiencing hepatic ischemia-reperfusion injury, emphasizing the compromised acetate metabolism in this particular area. Furthermore, the cognitive impairment phenotype and the dysregulation of the HDAC2-ACSS2 axis could also be transmitted to germ-free mice via fecal microbial transplantation. Enzyme-linked immunosorbent assay revealed reduced Acetyl-coenzyme A (acetyl-CoA) and Acetylated lysine levels in the hippocampus.

CONCLUSION: These findings suggest that acetate metabolism is impaired in the hippocampus of HIRI-induced cognitive impairment mice and related to dysbiosis, leading to compromised histone acetylation.

RevDate: 2024-02-11

Jiang Y, Wang X, Chen J, et al (2024)

Repeated (S)-ketamine administration ameliorates the spatial working memory impairment in mice with chronic pain: role of the gut microbiota-brain axis.

Gut microbes, 16(1):2310603.

Chronic pain is commonly linked with diminished working memory. This study explores the impact of the anesthetic (S)-ketamine on spatial working memory in a chronic constriction injury (CCI) mouse model, focusing on gut microbiome. We found that multiple doses of (S)-ketamine, unlike a single dose, counteracted the reduced spontaneous alteration percentage (%SA) in the Y-maze spatial working memory test, without affecting mechanical or thermal pain sensitivity. Additionally, repeated (S)-ketamine treatments improved the abnormal composition of the gut microbiome (β-diversity), as indicated by fecal 16S rRNA analysis, and increased levels of butyrate, a key gut - brain axis mediator. Protein analysis showed that these treatments also corrected the upregulated histone deacetylase 2 (HDAC2) and downregulated brain-derived neurotrophic factor (BDNF) in the hippocampi of CCI mice. Remarkably, fecal microbiota transplantation from mice treated repeatedly with (S)-ketamine to CCI mice restored %SA and hippocampal BDNF levels in CCI mice. Butyrate supplementation alone also improved %SA, BDNF, and HDAC2 levels in CCI mice. Furthermore, the TrkB receptor antagonist ANA-12 negated the beneficial effects of repeated (S)-ketamine on spatial working memory impairment in CCI mice. These results indicate that repeated (S)-ketamine administration ameliorates spatial working memory impairment in CCI mice, mediated by a gut microbiota - brain axis, primarily through the enhancement of hippocampal BDNF - TrkB signaling by butyrate.

RevDate: 2024-02-08

Lin Q, Kuypers M, Baglaenko Y, et al (2024)

The intestinal microbiota modulates the transcriptional landscape of iNKT cells at steady-state and following antigen exposure.

Mucosal immunology pii:S1933-0219(24)00005-9 [Epub ahead of print].

Invariant Natural Killer T (iNKT) cells are unconventional T cells that respond to microbe-derived glycolipid antigens. iNKT cells exert fast innate effector functions that regulate immune responses in a variety of contexts, including during infection, cancer, or inflammation. The roles these unconventional T cells play in intestinal inflammation remain poorly defined and vary based on the disease model and species. Our previous work suggested that the gut microbiota influenced iNKT cell functions during dextran sulfate sodium-induced colitis in mice. In this study, we show that iNKT cell homeostasis and response following activation are altered in germ-free mice. Using prenatal fecal transplant in specific pathogen-free mice, we show that the transcriptional signatures of iNKT cells at steady state and following αGC-mediated activation in vivo are modulated by the microbiota. Our data suggest that iNKT cells sense the microbiota at homeostasis independently of their TCR. Finally, iNKT cell transcriptional signatures are different in male and female mice. Collectively, our findings suggest that sex and the intestinal microbiota are important factors that regulate iNKT cell homeostasis and responses. A deeper understanding of microbiota-iNKT cell interactions and the impact of sex could improve the development of iNKT cell-based immunotherapies.

RevDate: 2024-02-08

Zhan K, Wu H, Xu Y, et al (2024)

The function of the gut microbiota-bile acid-TGR5 axis in diarrhea-predominant irritable bowel syndrome.

mSystems [Epub ahead of print].

Imbalanced gut microbiota (GM) and abnormal fecal bile acid (BA) are thought to be the key factors for diarrhea-predominant irritable bowel syndrome (IBS-D), but the underlying mechanism remains unclear. Herein, we explore the influence of the GM-BA-Takeda G-protein-coupled receptor 5 (TGR5) axis on IBS-D. Twenty-five IBS-D patients and fifteen healthy controls were recruited to perform BA-related metabolic and metagenomic analyses. Further, the microbiota-humanized IBS-D rat model was established by fecal microbial transplantation (FMT) to investigate the GM-BA-TGR5 axis effects on the colonic barrier and visceral hypersensitivity (VH) in IBS-D. Finally, we used chenodeoxycholic acid (CDCA), an important BA screened out by metabolome, to evaluate whether it affected diarrhea and VH via the TGR5 pathway. Clinical research showed that GM associated with bile salt hydrolase (BSH) activity such as Bacteroides ovatus was markedly reduced in the GM of IBS-D, accompanied by elevated total and primary BA levels. Moreover, we found that CDCA not only was increased as the most important primary BA in IBS-D patients but also could induce VH through upregulating TGR5 in the colon and ileum of normal rats. TGR5 inhibitor could reverse the phenotype, depression-like behaviors, pathological change, and level of fecal BSH in a microbiota-humanized IBS-D rat model. Our findings proved that human-associated FMT could successfully induce the IBS-D rat model, and the imbalanced GM-BA-TGR5 axis may promote colonic mucosal barrier dysfunction and enhance VH in IBS-D. IMPORTANCE Visceral hypersensitivity and intestinal mucosal barrier damage are important factors that cause abnormal brain-gut interaction in diarrhea-predominant irritable bowel syndrome (IBS-D). Recently, it was found that the imbalance of the gut microbiota-bile acid axis is closely related to them. Therefore, understanding the structure and function of the gut microbiota and bile acids and the underlying mechanisms by which they shape visceral hypersensitivity and mucosal barrier damage in IBS-D is critical. An examination of intestinal feces from IBS-D patients revealed that alterations in gut microbiota and bile acid metabolism underlie IBS-D and symptom onset. We also expanded beyond existing knowledge of well-studied gut microbiota and bile acid and found that Bacteroides ovatus and chenodeoxycholic acid may be potential bacteria and bile acid involved in the pathogenesis of IBS-D. Moreover, our data integration reveals the influence of the microbiota-bile acid-TGR5 axis on barrier function and visceral hypersensitivity.

RevDate: 2024-02-10

Kesh K, Tao J, Ghosh N, et al (2024)

Prescription opioids induced microbial dysbiosis worsens severity of chronic pancreatitis and drives pain hypersensitivity.

Gut microbes, 16(1):2310291.

Opioids, such as morphine and oxycodone, are widely used for pain management associated with chronic pancreatitis (CP); however, their impact on the progression and pain sensitivity of CP has never been evaluated. This report investigates the impact of opioid use on the severity of CP, pain sensitivity, and the gut microbiome. C57BL/6 mice were divided into control, CP, CP with morphine/oxycodone, and either morphine or oxycodone alone groups. CP was induced by administration of caerulein (50ug/kg/h, i.p. hourly x7, twice a week for 10 weeks). The mouse-to-pancreas weight ratio, histology, and Sirius red staining were performed to measure CP severity. Tail flick and paw pressure assays were used to measure thermal and mechanical pain. DNA was extracted from the fecal samples and subjected to whole-genome shotgun sequencing. Germ-free mice were used to validate the role of gut microbiome in sensitizing acute pancreatic inflammation. Opioid treatment exacerbates CP by increasing pancreatic necrosis, fibrosis, and immune-cell infiltration. Opioid-treated CP mice exhibited enhanced pain hypersensitivity and showed distinct clustering of the gut microbiome compared to untreated CP mice, with severely compromised gut barrier integrity. Fecal microbiota transplantation (FMT) from opioid-treated CP mice into germ-free mice resulted in pancreatic inflammation in response to a suboptimal caerulein dose. Together, these analyses revealed that opioids worsen the severity of CP and induce significant alterations in pain sensitivity and the gut microbiome in a caerulein CP mouse model. Microbial dysbiosis plays an important role in sensitizing the host to pancreatic inflammation.

RevDate: 2024-02-08

Gray SM, Moss AD, Herzog JW, et al (2024)

Mouse Adaptation of Human Inflammatory Bowel Diseases Microbiota Enhances Colonization Efficiency and Alters Microbiome Aggressiveness Depending on Recipient Colonic Inflammatory Environment.

bioRxiv : the preprint server for biology pii:2024.01.23.576862.

Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10 [-/-] mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10 [-/-] mice. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10 [-/-] host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10 [-/-] mice than the distinct microbiota reassembled in non-inflamed WT hosts. Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer.

RevDate: 2024-02-08

Bauer KC, Trehan R, Ruf B, et al (2024)

The Gut Microbiome Controls Liver Tumors via the Vagus Nerve.

bioRxiv : the preprint server for biology pii:2024.01.23.576951.

Liver cancer ranks amongst the deadliest cancers. Nerves have emerged as an understudied regulator of tumor progression. The parasympathetic vagus nerve influences systemic immunity via acetylcholine (ACh). Whether cholinergic neuroimmune interactions influence hepatocellular carcinoma (HCC) remains uncertain. Liver denervation via hepatic vagotomy (HV) significantly reduced liver tumor burden, while pharmacological enhancement of parasympathetic tone promoted tumor growth. Cholinergic disruption in Rag1KO mice revealed that cholinergic regulation requires adaptive immunity. Further scRNA-seq and in vitro studies indicated that vagal ACh dampens CD8+ T cell activity via muscarinic ACh receptor (AChR) CHRM3. Depletion of CD8+ T cells abrogated HV outcomes and selective deletion of Chrm3 on CD8 [+] T cells inhibited liver tumor growth. Beyond tumor-specific outcomes, vagotomy improved cancer-associated fatigue and anxiety-like behavior. As microbiota transplantation from HCC donors was sufficient to impair behavior, we investigated putative microbiota-neuroimmune crosstalk. Tumor, rather than vagotomy, robustly altered fecal bacterial composition, increasing Desulfovibrionales and Clostridial taxa. Strikingly, in tumor-free mice, vagotomy permitted HCC-associated microbiota to activate hepatic CD8+ T cells. These findings reveal that gut bacteria influence behavior and liver anti-tumor immunity via a dynamic and pharmaceutically targetable, vagus-liver axis.

RevDate: 2024-02-09
CmpDate: 2024-02-09

She J, Tuerhongjiang G, Guo M, et al (2024)

Statins aggravate insulin resistance through reduced blood glucagon-like peptide-1 levels in a microbiota-dependent manner.

Cell metabolism, 36(2):408-421.e5.

Statins are currently the most common cholesterol-lowering drug, but the underlying mechanism of statin-induced hyperglycemia is unclear. To investigate whether the gut microbiome and its metabolites contribute to statin-associated glucose intolerance, we recruited 30 patients with atorvastatin and 10 controls, followed up for 16 weeks, and found a decreased abundance of the genus Clostridium in feces and altered serum and fecal bile acid profiles among patients with atorvastatin therapy. Animal experiments validated that statin could induce glucose intolerance, and transplantation of Clostridium sp. and supplementation of ursodeoxycholic acid (UDCA) could ameliorate statin-induced glucose intolerance. Furthermore, oral UDCA administration in humans alleviated the glucose intolerance without impairing the lipid-lowering effect. Our study demonstrated that the statin-induced hyperglycemic effect was attributed to the Clostridium sp.-bile acids axis and provided important insights into adjuvant therapy of UDCA to lower the adverse risk of statin therapy.

RevDate: 2024-02-09
CmpDate: 2024-02-09

Barko P, Nguyen-Edquilang J, Williams DA, et al (2024)

Fecal microbiome composition and diversity of cryopreserved canine stool at different duration and storage conditions.

PloS one, 19(2):e0294730 pii:PONE-D-23-13936.

Fresh-frozen stool banks intended for humans with gastrointestinal and metabolic disorders have been recently established and there are ongoing efforts to establish the first veterinary fresh-frozen stool bank. Fresh frozen stored feces provide an advantage of increased availability and accessibility to high-quality optimal donor fecal material. The stability of frozen canine feces regarding fecal microbiome composition and diversity has not been reported in dogs, providing the basis for this study. We hypothesized that fecal microbial composition and diversity of healthy dogs would remain stable when stored at -20°C and -80°C for up to 12 months compared to baseline samples evaluated before freezing. Stool samples were collected from 20 apparently healthy dogs, manually homogenized, cryopreserved in 20% glycerol and aliquoted, frozen in liquid nitrogen and stored at -20°C or -80°C for 3, 6, 9, and 12 months. At baseline and after period of storage, aliquots were thawed and treated with propidium monoazide before fecal DNA extraction. Following long-read 16S-rRNA amplicon sequencing, bacterial community composition and diversity were compared among treatment groups. We demonstrated that fresh-frozen canine stools collected from 20 apparently healthy dogs could be stored for up to 12 months at -80°C with minimal change in microbial community composition and diversity and that storage at -80°C is superior to storage at -20°C. We also found that differences between dogs had the largest effect on community composition and diversity. Relative abundances of certain bacterial taxa, including those known to be short-chain fatty acid producers, varied significantly with specific storage temperatures and duration. Further work is required to ascertain whether fecal donor material that differs in bacterial community composition and diversity across storage conditions and duration could lead to differences in clinical efficacy for specific clinical indications of fecal microbiota transplantation.

RevDate: 2024-02-07

Prayag PS, Patwardhan SA, Ajapuje PS, et al (2024)

Fecal Microbiota Transplantation for Clostridium difficile-associated Diarrhea in Hematopoietic Stem Cell Transplant Recipients: A Single-center Experience from a Tertiary Center in India.

Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine, 28(2):106-110.

OBJECTIVES: Fecal microbiota transplantation (FMT) is an emerging option for recurrent or refractory Clostridium difficile-associated diarrhea (CDAD). We describe a single-center experience of FMT in hematopoietic stem cell transplant (HSCT) recipients with CDAD in India.

METHODS: A prospective observational study of HSCT recipients with CDAD who received FMT in our center.

RESULTS: A total of 13 patients were included. All the patients were allogenic HSCT recipients; FMT was performed in seven patients due to refractory CDAD, in five patients due to the presence of both CDAD and graft vs host disease (GVHD), and in 1 patient due to recurrent CDAD. The approach to FMT was colonoscopic in 10 (77%) patients. Only one patient reported bacteremia and one patient had candidemia, both of which were unrelated to FMT. Of the 10 patients who had complete resolution of CDAD, only one patient presented with a recurrence of CDAD within 8 weeks post-FMT.

CONCLUSION: This is the first study from India using FMT as a therapeutic modality for CDAD in the setting of HSCT. Here we demonstrate that FMT in India is an effective option, especially when patients have refractory CDAD, recurrent CDAD, or both GVHD and CDAD. Further studies should explore the efficacy and feasibility of FMT in India.

HOW TO CITE THIS ARTICLE: Prayag PS, Patwardhan SA, Ajapuje PS, Melinkeri S, Gadhikar H, Palnitkar S, et al. Fecal Microbiota Transplantation for Clostridium difficile-associated Diarrhea in Hematopoietic Stem Cell Transplant Recipients: A Single-center Experience from a Tertiary Center in India. Indian J Crit Care Med 2024;28(2):106-110.

RevDate: 2024-02-07

Gopal PB (2024)

Lurking Danger: Emerging Evidence.

Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine, 28(2):93-94.

How to cite this article: Gopal PB. Lurking Danger: Emerging Evidence. Indian J Crit Care Med 2024;28(2):93-94.

RevDate: 2024-02-08
CmpDate: 2024-02-08

Wolstenholme JT, Duong NK, Brocato ER, et al (2024)

Gut-Liver-Brain Axis and Alcohol Use Disorder: Treatment Potential of Fecal Microbiota Transplantation.

Alcohol research : current reviews, 44(1):01 pii:arcr-44-1-1.

PURPOSE: Chronic alcohol use is a major cause of liver damage and death. In the United States, multiple factors have led to low utilization of pharmacotherapy for alcohol use disorder (AUD), including lack of provider knowledge and comfort in prescribing medications for AUD. Alcohol consumption has direct effects on the gut microbiota, altering the diversity of bacteria and leading to bacterial overgrowth. Growing evidence suggests that alcohol's effects on the gut microbiome may contribute to increased alcohol consumption and progression of alcohol-associated liver disease (ALD). This article reviews human and preclinical studies investigating the role of fecal microbiota transplantation (FMT) in ameliorating alcohol-associated alterations to the liver, gut, and brain resulting in altered behavior; it also discusses the therapeutic potential of FMT.

SEARCH METHODS: For this narrative review, a literature search was conducted in September 2022 of PubMed, Web of Science Core Collection, and Google Scholar to identify studies published between January 2012 and September 2022. Search terms used included "fecal microbiota transplantation" and "alcohol."

SEARCH RESULTS: Most results of the literature search were review articles or articles on nonalcoholic fatty liver disease; these were excluded. Of the remaining empirical manuscripts, very few described clinical or preclinical studies that were directly investigating the effects of FMT on alcohol drinking or related behaviors. Ultimately, 16 studies were included in the review.

DISCUSSION AND CONCLUSIONS: The literature search identified only a few studies that were directly investigating the effect of FMT on ALD or alcohol drinking and related behaviors. Largely proof-of-concept studies, these findings demonstrate that alcohol can alter the gut microbiome and that the microbiome can be transferred between humans and rodents to alter affective behaviors frequently associated with increased alcohol use. Other studies have shown promise of FMT or other probiotic supplementation in alleviating some of the symptoms associated with ALD and drinking. These results show that the implementation of FMT as a therapeutic approach is still in the investigatory stages.

RevDate: 2024-02-07

Feng P, Xue X, Bukhari I, et al (2024)

Gut microbiota and its therapeutic implications in tumor microenvironment interactions.

Frontiers in microbiology, 15:1287077.

The development of cancer is not just the growth and proliferation of a single transformed cell, but its tumor microenvironment (TME) also coevolves with it, which is primarily involved in tumor initiation, development, metastasis, and therapeutic responses. Recent years, TME has been emerged as a potential target for cancer diagnosis and treatment. However, the clinical efficacy of treatments targeting the TME, especially its specific components, remains insufficient. In parallel, the gut microbiome is an essential TME component that is crucial in cancer immunotherapy. Thus, assessing and constructing frameworks between the gut microbiota and the TME can significantly enhance the exploration of effective treatment strategies for various tumors. In this review the role of the gut microbiota in human cancers, including its function and relationship with various tumors was summarized. In addition, the interaction between the gut microbiota and the TME as well as its potential applications in cancer therapeutics was described. Furthermore, it was summarized that fecal microbiota transplantation, dietary adjustments, and synthetic biology to introduce gut microbiota-based medical technologies for cancer treatment. This review provides a comprehensive summary for uncovering the mechanism underlying the effects of the gut microbiota on the TME and lays a foundation for the development of personalized medicine in further studies.

RevDate: 2024-02-08
CmpDate: 2024-02-08

Yu X, Ou J, Wang L, et al (2024)

Gut microbiota modulate CD8[+] T cell immunity in gastric cancer through Butyrate/GPR109A/HOPX.

Gut microbes, 16(1):2307542.

The gut microbiota and Short-chain fatty acids (SCFAs) can influence the progression of diseases, yet the role of these factors on gastric cancer (GC) remains uncertain. In this work, the analysis of the gut microbiota composition and SCFA content in the blood and feces of both healthy individuals and GC patients indicated that significant reductions in the abundance of intestinal bacteria involved in SCFA production were observed in GC patients compared with the controls. ABX mice transplanted with fecal microbiota from GC patients developed more tumors during the induction of GC and had lower levels of butyric acid. Supplementation of butyrate during the induction of gastric cancer along with H. pylori and N-methyl-N-nitrosourea (MNU) in WT in GPR109A[-/-]mice resulted in fewer tumors and more IFN-γ[+] CD8[+] T cells, but this effect was significantly weakened after knockout of GPR109A. Furthermore, In vitro GC cells and co-cultured CD8[+] T cells or CAR-Claudin 18.2[+] CD8[+] T cells, as well as in vivo tumor-bearing studies, have indicated that butyrate enhanced the killing function of CD8[+] T cells or CAR-Claudin 18.2[+] CD8[+] T cells against GC cells through G protein-coupled receptor 109A (GPR109A) and homologous domain protein homologous box (HOPX). Together, these data highlighted that the restoration of gut microbial butyrate enhanced CD8[+] T cell cytotoxicity via GPR109A/HOPX, thus inhibiting GC carcinogenesis, which suggests a novel theoretical foundation for GC management against GC.

RevDate: 2024-02-06

Martini S, Zaccaria T, Gasbarrini A, et al (2024)

Fecal microbiota transplantation before liver transplant in patient colonized with New Delhi metallo-beta-lactamase: Are we ready for a sequential approach?.

RevDate: 2024-02-07

He H, He H, Mo L, et al (2024)

Gut microbiota regulate stress resistance by influencing microglia-neuron interactions in the hippocampus.

Brain, behavior, & immunity - health, 36:100729.

Communication among the brain, gut and microbiota in the gut is known to affect the susceptibility to stress, but the mechanisms involved are unclear. Here we demonstrated that stress resistance in mice was associated with more abundant Lactobacillus and Akkermansia in the gut, but less abundant Bacteroides, Alloprevotella, Helicobacter, Lachnoclostridium, Blautia, Roseburia, Colidextibacter and Lachnospiraceae NK4A136. Stress-sensitive animals showed higher permeability and stronger immune responses in their colon, as well as higher levels of pro-inflammatory cytokines in serum. Their hippocampus also showed more extensive microglial activation, abnormal interactions between microglia and neurons, and lower synaptic plasticity. Transplanting fecal microbiota from stress-sensitive mice into naïve ones perturbed microglia-neuron interactions and impaired synaptic plasticity in the hippocampus, translating to more depression-like behavior after stress exposure. Conversely, transplanting fecal microbiota from stress-resistant mice into naïve ones protected microglia from activation and preserved synaptic plasticity in the hippocampus, leading to less depression-like behavior after stress exposure. These results suggested that gut microbiota may influence resilience to chronic psychological stress by regulating microglia-neuron interactions in the hippocampus.

RevDate: 2024-02-06

Chowdhury M, Raj Chaudhary N, Kaur P, et al (2024)

Different Strategies Targeting Gut Microbiota for the Management of Several Disorders: A Sustainable Approach.

Infectious disorders drug targets pii:IDDT-EPUB-137391 [Epub ahead of print].

BACKGROUND: A potential limelight is flashed on the Gut Microbiota (GM) in the human body, which confers additional psychological as well as physiological attributes to health. Other than just occupying a wide portion of the gastrointestinal tract, it also plays numerous functions in the systems of the body. Gut Microbiota is largely responsible for a considerably vast array of conditions such as obesity, diabetes ,other metabolic disorders, and cardiovascular disorders. Strategies targeting the gut microbiota have been proposed as a promising approach for the management of these disorders.

OBJECTIVE: This review aims to summarize the different strategies targeting the gut microbiota for the management of several disorders and to highlight the importance of a sustainable approach.

METHODS: A comprehensive literature search was conducted using various databases between 2008 and 2022 that focused on the use of prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, dietary interventions, and antibiotics.

RESULTS: Different strategies targeting the gut microbiota for the management of several disorders were identified, including probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and dietary interventions. Modification in diet and lifestyle, allowing favorable microbiota growth in the stomach, intake of prebiotics and probiotics, and fecal microbiota transplantation are amongst the widely accepted recent approaches allowing the application of GM in the field of treatment.

CONCLUSION: Although considerable steps in enhancing and understanding the mechanism of treatment with the help of gut microbiota are under progress, much diversified and elaborate research must be conducted in order to enhance and implement the use of GM with high effectiveness.

RevDate: 2024-02-07
CmpDate: 2024-02-07

Xing JH, Niu TM, Zou BS, et al (2024)

Gut microbiota-derived LCA mediates the protective effect of PEDV infection in piglets.

Microbiome, 12(1):20.

BACKGROUND: The gut microbiota is a critical factor in the regulation of host health, but the relationship between the differential resistance of hosts to pathogens and the interaction of gut microbes is not yet clear. Herein, we investigated the potential correlation between the gut microbiota of piglets and their disease resistance using single-cell transcriptomics, 16S amplicon sequencing, metagenomics, and untargeted metabolomics.

RESULTS: Porcine epidemic diarrhea virus (PEDV) infection leads to significant changes in the gut microbiota of piglets. Notably, Landrace pigs lose their resistance quickly after being infected with PEDV, but transplanting the fecal microbiota of Min pigs to Landrace pigs alleviated the infection status. Macrogenomic and animal protection models identified Lactobacillus reuteri and Lactobacillus amylovorus in the gut microbiota as playing an anti-infective role. Moreover, metabolomic screening of the secondary bile acids' deoxycholic acid (DCA) and lithocholic acid (LCA) correlated significantly with Lactobacillus reuteri and Lactobacillus amylovorus, but only LCA exerted a protective function in the animal model. In addition, LCA supplementation altered the distribution of intestinal T-cell populations and resulted in significantly enriched CD8[+] CTLs, and in vivo and in vitro experiments showed that LCA increased SLA-I expression in porcine intestinal epithelial cells via FXR receptors, thereby recruiting CD8[+] CTLs to exert antiviral effects.

CONCLUSIONS: Overall, our findings indicate that the diversity of gut microbiota influences the development of the disease, and manipulating Lactobacillus reuteri and Lactobacillus amylovorus, as well as LCA, represents a promising strategy to improve PEDV infection in piglets. Video Abstract.

RevDate: 2024-02-06

Ritz NL, Draper LA, Bastiaanssen TFS, et al (2024)

The gut virome is associated with stress-induced changes in behaviour and immune responses in mice.

Nature microbiology, 9(2):359-376.

The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.

RevDate: 2024-02-07
CmpDate: 2024-02-07

Prakash A, Rubin N, Staley C, et al (2024)

Effect of ginger supplementation on the fecal microbiome in subjects with prior colorectal adenoma.

Scientific reports, 14(1):2988.

Ginger has been associated with a decreased incidence of colorectal cancer (CRC) through reduction in inflammatory pathways and inhibition of tumor growth. Recent pre-clinical models have implicated changes in the gut microbiome as a possible mediator of the ginger effect on CRC. We hypothesized that, in adults previously diagnosed with a colorectal adenoma, ginger supplementation would alter the fecal microbiome in the direction consistent with its CRC-inhibitory effect. Sixty-eight adults were randomized to take either ginger or placebo daily for 6 weeks, with a 6-week washout and longitudinal stool collection throughout. We performed 16S rRNA sequencing and evaluated changes in overall microbial diversity and the relative abundances of pre-specified CRC-associated taxa using mixed-effects logistic regression. Ginger supplementation showed no significant effect on microbial community structure through alpha or beta diversity. Of 10 pre-specified CRC-associated taxa, there were significant decreases in the relative abundances of the genera Akkermansia (p < 0.001), Bacteroides (p = 0.018), and Ruminococcus (p = 0.013) after 6-week treatment with ginger compared to placebo. Ginger supplementation led to decreased abundances of Akkermansia and Bacteroides, which suggests that ginger may have an inhibitory effect on CRC-associated taxa. Overall, ginger supplementation appears to have a limited effect on gut microbiome in patients with colorectal adenomas.

RevDate: 2024-02-05

Qu L, Ma X, F Wang (2024)

The roles of gut microbiome and metabolites associated with skin photoaging in mice by intestinal flora sequencing and metabolomics.

Life sciences pii:S0024-3205(24)00076-6 [Epub ahead of print].

Photoaging of skin, a chronic disease, can produce the appearance changes and cancer lesions of skin. Therefore, it is of great significance to investigate the mechanisms and explore effective methods to treat the disorder. Gut microbiota and intestinal metabolisms have critical roles in a variety of diseases. However, their roles on photoaging of skin were not well tested. In the present work, the results showed that compared with control group, the levels of MDA, SOD and CAT associated with oxidative stress, the levels of COL I, CER, and HA associated with skin function, and the mRNA levels of IL-1β, IL-6, TNF-α associated with inflammation after long-term exposure to ultraviolet radiation in mice were significantly changed. Skin pathological tissue was also seriously damaged. The protein levels of AQP3 and FLG were significantly decreased. Ultraviolet exposure also promoted skin photoaging by activating TNFR1/TRAF2-mediated MAPK pathway, in which the protein levels of P38/P-P38, c-FOS/P-c-FOS, MMP1, TNFR1 and TRAF2 were significantly increased in model mice compared with control group. In fecal microbiota transplantation (FMT) experiment, we found that the intestinal microbiome of control mice alleviated skin photoaging via adjusting the protein levels of P38/P-P38, c-FOS/P-c-FOS, MMP1, TNFR1 and TRAF2. 16S rRNA sequencing found that 1639 intestinal bacteria were found, in which 15 bacteria including norank_f_Ruminococcaceae, Lachnospirac -eae_NK4A136_group, Lachnoclostridium, etc., were significantly different at the genus level. Untargeted GC-TOF/MS and UHPLC-MS/MS metabolomics showed 72 and 188 metabolites including taurine, ornithine, L-arginine, L-histidine, sucrose with significant differences compared with control group. Then, amino acid targeting assay showed 10 amino acids including L-ornithine, L-arginine and L-citrulline with higher levels in control group compared with model group. In addition, we also found that the variation of Lachnoclostridium abundance may regulate L-arginine metabolism to affect skin photoaging. Some intestinal bacteria and metabolites including amino acids may be closely related to skin photoaging, which should provide new methods to treat skin photoaging in the future.

RevDate: 2024-02-05

Diaz-Marugan L, Rutsch A, Kaindl AM, et al (2024)

The impact of microbiota and ketogenic diet interventions in the management of drug-resistant epilepsy.

Acta physiologica (Oxford, England) [Epub ahead of print].

AIM: Drug-resistant epilepsy (DRE) is a neurological disorder characterized by uncontrolled seizures. It affects between 10%-40% of the patients with epilepsy worldwide. Drug-resistant patients have been reported to have a different microbiota composition compared to drug-sensitive patients and healthy controls. Importantly, fecal microbiota transplantations (FMTs), probiotic and dietary interventions have been shown to be able to reduce seizure frequency and improve the quality of life in drug-resistant patients. The classic ketogenic diet (KD) and its modifications may reduce seizures in DRE in some patients, whereas in others they do not. The mechanisms mediating the dietary effects remain elusive, although it is known that gut microbes play an important role in transmitting dietary effects to the host. Indeed, specific commensal microbes differ even between responders and non-responders to KD treatment.

METHODS: In this narrative mini-review, we summarize what is known about the gut microbiota changes and ketogenic diets with special focus on patients with DRE.

RESULTS AND CONCLUSIONS: By highlighting unanswered questions and by suggesting future research directions, we map the route towards future improvement of successful DRE therapy.

RevDate: 2024-02-06
CmpDate: 2024-02-06

Yuan XY, Chen YS, Z Liu (2024)

Relationship among Parkinson's disease, constipation, microbes, and microbiological therapy.

World journal of gastroenterology, 30(3):225-237.

This comprehensive review elucidates the complex interplay between gut microbiota and constipation in Parkinson's disease (PD), a prevalent non-motor symptom contributing significantly to patients' morbidity. A marked alteration in the gut microbiota, predominantly an increase in the abundance of Proteobacteria and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, although safe, have failed to effectively alleviate symptoms, thereby necessitating the development of novel therapeutic strategies. Microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold therapeutic potential. While prebiotics improve bowel movements, probiotics are effective in enhancing stool consistency and alleviating abdominal discomfort. FMT shows potential for significantly alleviating constipation symptoms by restoring gut microbiota balance in patients with PD. Despite promising developments, the causal relationship between changes in gut microbiota and PD-related constipation remains elusive, highlighting the need for further research in this expanding field.

RevDate: 2024-02-05

Shah YR, Ali H, Tiwari A, et al (2024)

Role of fecal microbiota transplant in management of hepatic encephalopathy: Current trends and future directions.

World journal of hepatology, 16(1):17-32.

Fecal microbiota transplantation (FMT) offers a potential treatment avenue for hepatic encephalopathy (HE) by leveraging beneficial bacterial displacement to restore a balanced gut microbiome. The prevalence of HE varies with liver disease severity and comorbidities. HE pathogenesis involves ammonia toxicity, gut-brain communication disruption, and inflammation. FMT aims to restore gut microbiota balance, addressing these factors. FMT's efficacy has been explored in various conditions, including HE. Studies suggest that FMT can modulate gut microbiota, reduce ammonia levels, and alleviate inflammation. FMT has shown promise in alcohol-associated, hepatitis B and C-associated, and non-alcoholic fatty liver disease. Benefits include improved liver function, cognitive function, and the slowing of disease progression. However, larger, controlled studies are needed to validate its effectiveness in these contexts. Studies have shown cognitive improvements through FMT, with potential benefits in cirrhotic patients. Notably, trials have demonstrated reduced serious adverse events and cognitive enhancements in FMT arms compared to the standard of care. Although evidence is promising, challenges remain: Limited patient numbers, varied dosages, administration routes, and donor profiles. Further large-scale, controlled trials are essential to establish standardized guidelines and ensure FMT's clinical applications and efficacy. While FMT holds potential for HE management, ongoing research is needed to address these challenges, optimize protocols, and expand its availability as a therapeutic option for diverse hepatic conditions.

RevDate: 2024-02-05

Huang H, Jiang J, Wang X, et al (2024)

Exposure to prescribed medication in early life and impacts on gut microbiota and disease development.

EClinicalMedicine, 68:102428 pii:S2589-5370(24)00007-5.

The gut microbiota during early life plays a crucial role in infant development. This microbial-host interaction is also essential for metabolism, immunity, and overall human health in later life. Early-life pharmaceutical exposure, mainly referring to exposure during pregnancy, childbirth, and infancy, may change the structure and function of gut microbiota and affect later human health. In this Review, we describe how healthy gut microbiota is established in early life. We summarise the commonly prescribed medications during early life, including antibiotics, acid suppressant medications and other medications such as antidepressants, analgesics and steroid hormones, and discuss how these medication-induced changes in gut microbiota are involved in the pathological process of diseases, including infections, inflammatory bowel disease, metabolic diseases, allergic diseases and neurodevelopmental disorders. Finally, we review some critical methods such as dietary therapy, probiotics, prebiotics, faecal microbiota transplantation, genetically engineered phages, and vagus nerve stimulation in early life, aiming to provide a new strategy for the prevention of adverse health outcomes caused by prescribed medications exposure in early life.

RevDate: 2024-02-03

Zheng YZ, Chen QR, Yang HM, et al (2024)

Modulation of gut microbiota by crude mulberry polysaccharide attenuates knee osteoarthritis progression in rats.

International journal of biological macromolecules pii:S0141-8130(24)00739-6 [Epub ahead of print].

Mulberry (Morus alba L.), a kind of common fruits widely cultivated worldwide, has been proven various biological activities. However, its potential role in the progression of knee osteoarthritis (KOA) remains unclear. This study aims to investigate the potential protective effects of crude polysaccharide extracted from mulberry fruit, referred to as a complex blend of polysaccharides and other unidentified extracted impurities, on KOA progression. The KOA rats were established by injection of 1 mg sodium monoiodoacetate into knee, and administrated with crude mulberry polysaccharide (Mup) by gastric gavage for 4 weeks. Furthermore, intestinal bacteria clearance assay (IBCA) and fecal microbiota transplantation were conducted for the evaluation of the effect of gut microbiota (GM) on KOA. Our findings demonstrated that Mup, particularly at a dosage of 200 mg/kg, effectively improved abnormal gait patterns, reduced the level of inflammation, mitigated subchondral bone loss, restored compromised joint surfaces, alleviated cartilage destruction, and positively modulated the dysregulated profile of GM in KOA rats. Moreover, IBCA compromised the protective effects of Mup, while transplantation of fecal bacteria from Mup-treated rats facilitated KOA recovery. Collectively, our study suggested that Mup had the potential to ameliorate the progression of KOA, potentially through its modulation of GM profile.

RevDate: 2024-02-03

Yu K, Song Y, Wang N, et al (2024)

Exposure of Danio rerio to environmental sulfamethoxazole may contribute to neurobehavioral abnormalities via gut microbiome disturbance.

The Science of the total environment pii:S0048-9697(24)00683-1 [Epub ahead of print].

The neurotoxic effects and mechanisms of low-dose and long-term sulfamethoxazole (SMZ) exposure remain unknown. This study exposed zebrafish to environmental SMZ concentrations and observed behavioral outcomes. SMZ exposure increased hyperactivity and altered the transcript levels of 17 genes associated with neurological function. It impaired intestinal function by reducing the number of intestinal goblet cells and lipid content. Metabolomic results indicated that the contents of several lipids and amino acids in the gut were altered, which might affect the expression levels of neurological function-related genes. Metagenomic results demonstrated that SMZ exposure substantially altered the composition of the gut microbiome. Zebrafish receiving a transplanted fecal microbiome from the SMZ group were also found to exhibit abnormal behavior, suggesting that the gut microbiome is an important target for SMZ exposure-induced neurobehavioral abnormalities. Multi-omics correlation analysis revealed that gut micrometabolic function was related to differential gut metabolite levels, which may affect neurological function through the gut-brain-axis. Reduced abundance of Lefsonia and Microbacterium was strongly correlated with intestinal metabolic function and may be the key bacterial genera in neurobehavioral changes. This study confirms for the first time that SMZ-induced neurotoxicity in zebrafish is closely mediated by alterations in the gut microbiome.

RevDate: 2024-02-05
CmpDate: 2024-02-05

Natarelli N, Aflatooni S, Boby A, et al (2024)

The Gastrointestinal Microbiome and Immune Checkpoint Inhibitors: A Review of Human Interventional Studies Among Melanoma Patients.

Journal of drugs in dermatology : JDD, 23(2):78-84.

Immune checkpoint inhibitors (ICI) are widely utilized for the treatment of malignant melanoma. Interestingly, gastrointestinal microbiome composition has emerged as a predictive biomarker of immunotherapy outcomes. This review seeks to assess the effect of microbiota-modulatory interventions on the clinical and immunological response of metastatic melanoma treated with ICIs. A systematic search was performed to retrieve studies and cases involving any microbiota-modulating intervention. Three studies assessed the effect of fecal microbiota transplantation (FMT) on ICI efficacy, and one case report assessed its effect on clearance of ICI-associated colitis. Overall, 37.5% of melanoma patients who had been previously refractory to ICI immunotherapy demonstrated complete or partial response following FMT and subsequent immunotherapy. 65% of immunotherapy-na&iuml;ve melanoma patients demonstrated an objective response. No severe FMT-associated adverse events were reported, and FMT depicted efficacy in the remission of ICI-associated colitis. The results suggest that FMT may be a safe and moderately effective microbiota-modulating intervention to improve the efficacy of therapy in ICI-treated melanoma patients. Large, randomized, controlled trials are needed to determine optimal FMT donors and assess other microbiota-modulating interventions, such as pre- and probiotics, in melanoma patients.&nbsp; J Drugs Dermatol. 2024;23(2):78-84.&nbsp; &nbsp;&nbsp; doi:10.36849/JDD.7674.

RevDate: 2024-02-02

Linnehan BK, Kodera SM, Allard SM, et al (2024)

Evaluation of the safety and efficacy of fecal microbiota transplantations in bottlenose dolphins (Tursiops truncatus) using metagenomic sequencing.

Journal of applied microbiology pii:7596562 [Epub ahead of print].

AIMS: Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the FMT's efficacy in four recipient dolphins.

METHODS AND RESULTS: Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity.

CONCLUSION: The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.

RevDate: 2024-02-05
CmpDate: 2024-02-05

Eberhart T, Stanley FU, Ricci L, et al (2024)

ACOD1 deficiency offers protection in a mouse model of diet-induced obesity by maintaining a healthy gut microbiota.

Cell death & disease, 15(2):105.

Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.

RevDate: 2024-02-01

Yan M, Zhao Y, Man S, et al (2024)

Diosgenin as a substitute for cholesterol alleviates NAFLD by affecting CYP7A1 and NPC1L1-related pathway.

Phytomedicine : international journal of phytotherapy and phytopharmacology, 125:155299 pii:S0944-7113(23)00657-8 [Epub ahead of print].

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) rapidly becomes the leading cause of end-stage liver disease or liver transplantation. Nowadays, there has no approved drug for NAFLD treatment. Diosgenin as the structural analogue of cholesterol attenuates hypercholesterolemia by inhibiting cholesterol metabolism, which is an important pathogenesis in NAFLD progression. However, there has been no few report concerning its effects on NAFLD so far.

METHODS: Using a high-fat diet & 10% fructose-feeding mice, we evaluated the anti-NAFLD effects of diosgenin. Transcriptome sequencing, LC/MS analysis, molecular docking simulation, molecular dynamics simulations and Luci fluorescent reporter gene analysis were used to evaluate pathways related to cholesterol metabolism.

RESULTS: Diosgenin treatment ameliorated hepatic dysfunction and inhibited NAFLD formation including lipid accumulation, inflammation aggregation and fibrosis formation through regulating cholesterol metabolism. For the first time, diosgenin was structurally similar to cholesterol, down-regulated expression of CYP7A1 and regulated cholesterol metabolism in the liver (p < 0.01) and further affecting bile acids like CDCA, CA and TCA in the liver and feces. Besides, diosgenin decreased expression of NPC1L1 and suppressed cholesterol transport (p < 0.05). Molecular docking and molecular dynamics further proved that diosgenin was more strongly bound to CYP7A1. Luci fluorescent reporter gene analysis revealed that diosgenin concentration-dependently inhibited the enzymes activity of CYP7A1.

CONCLUSION: Our findings demonstrated that diosgenin was identified as a specific regulator of cholesterol metabolism, which pave way for the design of novel clinical therapeutic strategies.

RevDate: 2024-02-01

Kirk D, Costeira R, Visconti A, et al (2024)

Bacteriophages, gut bacteria, and microbial pathways interplay in cardiometabolic health.

Cell reports, 43(2):113728 pii:S2211-1247(24)00056-1 [Epub ahead of print].

Cardiometabolic diseases are leading causes of mortality in Western countries. Well-established risk factors include host genetics, lifestyle, diet, and the gut microbiome. Moreover, gut bacterial communities and their activities can be altered by bacteriophages (also known simply as phages), bacteria-infecting viruses, making these biological entities key regulators of human cardiometabolic health. The manipulation of bacterial populations by phages enables the possibility of using phages in the treatment of cardiometabolic diseases through phage therapy and fecal viral transplants. First, however, a deeper understanding of the role of the phageome in cardiometabolic diseases is required. In this review, we first introduce the phageome as a component of the gut microbiome and discuss fecal viral transplants and phage therapy in relation to cardiometabolic diseases. We then summarize the current state of phageome research in cardiometabolic diseases and propose how the phageome might indirectly influence cardiometabolic health through gut bacteria and their metabolites.

RevDate: 2024-02-05

Zhao H, Li W, Zhou X, et al (2024)

C-X-C Motif Chemokine Ligand 1 Promotes Colitis by Modulating the Gut Microbiota.

Journal of innate immunity, 16(1):33-44.

INTRODUCTION: C-X-C motif chemokine ligand 1 (CXCL1) is a potent neutrophil chemoattractant that plays a pivotal role in recruiting neutrophils during inflammatory conditions. This study explored the role of CXCL1 in modulating the gut microbiota, influencing neutrophil infiltration, and contributing to the development of colitis.

METHODS: We employed quantitative PCR to assess CXCL1 expression in colon samples. A mouse model of dextran sulfate sodium (DSS)-induced colitis was utilized to explore the progression of colitis in wild-type (WT) and CXCL1-deficient (CXCL1-/-) mice.

RESULTS: Colitis attenuation was evident in CXCL1-/- mice. Significant alterations were observed in the gut microbiome, as revealed by 16S rRNA gene sequencing. Furthermore, CXCL1-/- mice exhibited reduced gut permeability and diminished endotoxin levels in peripheral blood following DSS treatment compared to WT mice. In response to DSS treatment, WT mice showed a clear increase in neutrophil infiltration, while CXCL1-/- mice exhibited lower levels of infiltration. Fecal microbiota transplantation (FMT) using stools from CXCL1-/- mice alleviated DSS-induced colitis. Interestingly, FMT from patients with colitis increased CXCL1 and Ly6G expression in the colons of gut-sterilized mice. Clinical data analysis revealed elevated CXCL1 and CD15 expression in patients with colitis, with a positive correlation between the severity of colitis and the expression of CXCL1 and CD15.

CONCLUSION: These findings shed light on the pivotal role of CXCL1 in promoting colitis by modulating the gut microbiota.

RevDate: 2024-02-01

Zhang Z, Huang J, Li C, et al (2024)

The gut microbiota contributes to the infection of bovine viral diarrhea virus in mice.

Journal of virology [Epub ahead of print].

Bovine viral diarrhea virus (BVDV) is prevalent worldwide and causes significant economic losses. Gut microbiota is a large microbial community and has a variety of biological functions. However, whether there is a correlation between gut microbiota and BVDV infection and what kind of relation between them have not been reported. Here, we found that gut microbiota composition changed in normal mice after infecting with BVDV, but mainly the low abundance microbe was affected. Interestingly, BVDV infection significantly reduced the diversity of gut microbiota and changed its composition in gut microbiota-dysbiosis mice. Furthermore, compared with normal mice of BVDV infection, there were more viral loads in the duodenum, jejunum, spleen, and liver of the gut microbiota-dysbiosis mice. However, feces microbiota transplantation (FMT) reversed these effects. The data above indicated that the dysbiosis of gut microbiota was a key factor in the high infection rate of BVDV. It is found that the IFN-I signal was involved by investigating the underlying mechanisms. The inhibition of the proliferation and increase in the apoptosis of peripheral blood lymphocytes (PBL) were also observed. However, FMT treatment reversed these changes by regulating PI3K/Akt, ERK, and Caspase-9/Caspase-3 pathways. Furthermore, the involvement of butyrate in the pathogenesis of BVDV was also further confirmed. Our results showed for the first time that gut microbiota acts as a key endogenous defense mechanism against BVDV infection; moreover, targeting regulation of gut microbiota structure and abundance may serve as a new strategy to prevent and control the disease.IMPORTANCEWhether the high infection rate of BVDV is related to gut microbiota has not been reported. In addition, most studies on BVDV focus on in vitro experiments, which limits the study of its prevention and control strategy and its pathogenic mechanism. In this study, we successfully confirmed the causal relationship between gut microbiota and BVDV infection as well as the potential molecular mechanism based on a mouse model of BVDV infection and a mouse model of gut microbiota dysbiosis. Meanwhile, a mouse model which is more susceptible to BVDV provided in this study lays an important foundation for further research on prevention and control strategy of BVDV and its pathogenesis. In addition, the antiviral effect of butyrate, the metabolites of butyrate-producing bacteria, has been further revealed. Overall, our findings provide a promising prevention and control strategy to treat this infectious disease which is distributed worldwide.

RevDate: 2024-02-03

Kragsnaes MS, Jensen JRB, Nilsson AC, et al (2024)

Dynamics of inflammation-associated plasma proteins following faecal microbiota transplantation in patients with psoriatic arthritis and healthy controls: exploratory findings from the FLORA trial.

RMD open, 10(1):.

OBJECTIVES: The gut microbiota can mediate both pro and anti-inflammatory responses. In patients with psoriatic arthritis (PsA), we investigated the impact of faecal microbiota transplantation (FMT), relative to sham transplantation, on 92 inflammation-associated plasma proteins.

METHODS: This study relates to the FLORA trial cohort, where 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate treatment, were included in a 26-week, double-blind, randomised, sham-controlled trial. Participants were allocated to receive either one gastroscopic-guided healthy donor FMT (n=15) or sham (n=16). Patient plasma samples were collected at baseline, week 4, 12 and 26 while samples from 31 age-matched and sex-matched healthy controls (HC) were collected at baseline. Samples were analysed using proximity extension assay technology (Olink Target-96 Inflammation panel).

RESULTS: Levels of 26 proteins differed significantly between PsA and HC pre-FMT (adjusted p<0.05), of which 10 proteins were elevated in PsA: IL-6, CCL20, CCL19, CDCP1, FGF-21, HGF, interferon-γ (IFN-γ), IL-18R1, monocyte chemotactic protein 3, and IL-2. In the FMT group, levels of 12 proteins changed significantly across all timepoints (tumour necrosis factor (TNF), CDCP1, IFN-γ, TWEAK, signalling lymphocytic activation molecule (SLAMF1), CD8A, CD5, Flt3L, CCL25, FGF-23, CD6, caspase-8). Significant differences in protein levels between FMT and sham-treated patients were observed for TNF (p=0.002), IFN-γ (p=0.011), stem cell factor (p=0.024), matrix metalloproteinase-1 (p=0.038), and SLAMF1 (p=0.042). FMT had the largest positive effect on IFN-γ, Axin-1 and CCL25 and the largest negative effect on CCL19 and IL-6.

CONCLUSIONS: Patients with active PsA have a distinct immunological plasma protein signature compared with HC pre-FMT. FMT affects several of these disease markers, including sustained elevation of IFN-γ.

TRIAL REGISTRATION NUMBER: NCT03058900.

RevDate: 2024-01-31

Gilbert BTP, Tadeo RYT, Lamacchia C, et al (2024)

Gut microbiome and intestinal inflammation in preclinical stages of rheumatoid arthritis.

RMD open, 10(1): pii:rmdopen-2023-003589.

BACKGROUND: Faecal Prevotellaceae, and other microbes, have been associated with rheumatoid arthritis (RA) and preclinical RA. We have performed a quantitative microbiome profiling study in preclinical stages of RA.

METHODS: First-degree relatives of patients with RA (RA-FDRs) from the SCREEN-RA cohort were categorised into four groups: controls, healthy asymptomatic RA-FDRs; high genetic risk, asymptomatic RA-FDRs with two copies of the shared epitope; autoimmunity, asymptomatic RA-FDRs with RA-associated autoimmunity; and symptomatic, clinically suspect arthralgias or untreated new-onset RA.Faecal samples were collected and frozen. 16S sequencing was performed, processed with DADA2 pipeline and Silva database. Cell counts (cytometry) and faecal calprotectin (enzyme-linked immunosorbent assay, ELISA) were also obtained. Microbial community analyses were conducted using non-parametric tests, such as permutational multivariate analysis of variance (PERMANOVA), Wilcoxon and Kruskal-Wallis, or Aldex2.

RESULTS: A total of 371 individuals were included and categorised according to their preclinical stage of the disease. Groups had similar age, gender and body mass index. We found no significant differences in the quantitative microbiome profiles by preclinical stages (PERMANOVA, R2=0.00798, p=0.56) and, in particular, no group differences in Prevotellaceae abundance. Results were similar when using relative microbiome profiling data (PERMANOVA, R2=0.0073, p=0.83) or Aldex2 on 16S sequence counts. Regarding faecal calprotectin, we found no differences between groups (p=0.3).

CONCLUSIONS: We could not identify microbiome profiles associated with preclinical stages of RA. Only in a subgroup of individuals with the most pronounced phenotypes did we modestly retrieve the previously reported associations.

RevDate: 2024-01-31

Wei J, Wang G, Lai M, et al (2024)

Faecal Microbiota Transplantation Alleviates Ferroptosis after Ischaemic Stroke.

Neuroscience pii:S0306-4522(24)00037-X [Epub ahead of print].

Ischaemic stroke can induce changes in the abundance of gut microbiota constituents, and the outcome of stroke may also be influenced by the gut microbiota. This study aimed to determine whether gut microbiota transplantation could rescue changes in the gut microbiota and reduce ferroptosis after stroke in rats. Male Sprague-Dawley rats (6 weeks of age) were subjected to ischaemic stroke by middle cerebral artery occlusion (MCAO). Fecal samples were collected for 16S ribosomal RNA (rRNA) sequencing to analyze the effects of FMT on the gut microbiota. Neurological deficits were evaluated using the Longa score. triphenyl tetrazolium chloride (TTC) staining was performed in the brain, and kits were used to measure malondialdehyde (MDA), iron, and glutathione (GSH) levels in the ipsilateral brain of rats. Western blotting was used to detect the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), and the transferrin receptor 2 (TFR2) in the ipsilateral brain of rats. Stroke induced significant changes in the gut microbiota, and FMT ameliorated these changes. TTC staining results showed that FMT reduced cerebral infarct volume. In addition, FMT diminished MDA and iron levels and elevated GSH levels in the ipsilateral brain. Western blot analysis showed that FMT increased GPX4 and SLC7A11 protein expression and decreased TFR2 protein expression in the ipsilateral brain after stroke. FMT can reverse gut microbiota dysbiosis, reduce cerebellar infarct volume, and decrease ferroptosis after stroke.

RevDate: 2024-01-31

Dong L, Tang Y, Wen S, et al (2024)

Fecal Microbiota Transplantation Alleviates Allergic Rhinitis via CD4[+] T Cell Modulation Through Gut Microbiota Restoration.

Inflammation [Epub ahead of print].

Allergic rhinitis (AR) is an allergic condition of the upper respiratory tract with a complex pathogenesis, including epithelial barrier disruption, immune regulation, and gut microbiota, which is not yet fully understood. Gut microbiota is closely linked to allergic diseases, including AR. Fecal microbiota transplantation (FMT) has recently been recognized as a potentially effective therapy for allergic diseases. However, the efficacy and mechanism of action of FMT in AR remain unknown. Herein, we aimed to observe the implications of gut microbiota on epithelial barrier function and T cell homeostasis, as well as the effect of FMT in AR, using the ovalbumin (OVA)-induced AR mice. The intestinal microbiota of recipient mice was cleared using an antibiotic cocktail; thereafter, FMT was performed. Subsequently, the nasal symptom scores and histopathological features of colon and nasal mucosa tissues of mice were monitored, and serum OVA-sIgE and cytokines of IL-4, IFNγ, IL-17A, and IL-10 cytokine concentrations were examined. Thereafter, tight junction protein and CD4[+] T cell-related transcription factor and cytokine expressions were observed in the colon and nasal mucosa, and changes in the expression of PI3K/AKT/mTOR and NFκB signaling pathway were detected by WB assay in each group. Fecal DNA was extracted from the four mice groups for high-throughput 16S rRNA sequencing. FMT ameliorated nasal symptoms and reduced nasal mucosal inflammation in AR mice. Moreover, according to 16S rRNA sequencing, FMT restored the disordered gut microbiota in AR mice. Following FMT, ZO-1 and claudin-1 and Th1/Th2/Th17-related transcription factor and cytokine expressions were upregulated, whereas Treg cell-related Foxp3 and IL-10 expressions were downregulated. Mechanistic studies have revealed that FMT also inhibited PI3K/AKT/mTOR and NF-κB pathway protein phosphorylation in AR mouse tissues. FMT alleviates allergic inflammation in AR by repairing the epithelial barrier and modulating CD4[+] T cell balance and exerts anti-inflammatory effects through the PI3K/AKT/mTOR and NF-κB signaling pathways. Moreover, gut microbiota disorders are involved in AR pathogenesis. Disturbed gut microbiota causes an altered immune-inflammatory state in mice and increases susceptibility to AR. This study suggested the regulatory role of the gut-nose axis in the pathogenesis of AR is an emerging field, which provides novel directions and ideas for the treatment of AR.

RevDate: 2024-01-31

Ma L, Ge Y, Brown J, et al (2024)

Dietary tryptophan and genetic susceptibility expand gut microbiota that promote systemic autoimmune activation.

bioRxiv : the preprint server for biology pii:2024.01.16.575942.

Tryptophan modulates disease activity and the composition of microbiota in the B6. Sle1.Sle2.Sle3 (TC) mouse model of lupus. To directly test the effect of tryptophan on the gut microbiome, we transplanted fecal samples from TC and B6 control mice into germ-free or antibiotic-treated non-autoimmune B6 mice that were fed with a high or low tryptophan diet. The recipient mice with TC microbiota and high tryptophan diet had higher levels of immune activation, autoantibody production and intestinal inflammation. A bloom of Ruminococcus gnavus (Rg), a bacterium associated with disease flares in lupus patients, only emerged in the recipients of TC microbiota fed with high tryptophan. Rg depletion in TC mice decreased autoantibody production and increased the frequency of regulatory T cells. Conversely, TC mice colonized with Rg showed higher autoimmune activation. Overall, these results suggest that the interplay of genetic and tryptophan can influence the pathogenesis of lupus through the gut microbiota.

RevDate: 2024-02-01

Xu TC, Liu Y, Yu Z, et al (2024)

Gut-targeted therapies for type 2 diabetes mellitus: A review.

World journal of clinical cases, 12(1):1-8.

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia and insulin resistance. The global prevalence of T2DM has reached epidemic proportions, affecting approximately 463 million adults worldwide in 2019. Current treatments for T2DM include lifestyle modifications, oral antidiabetic agents, and insulin therapy. However, these therapies may carry side effects and fail to achieve optimal glycemic control in some patients. Therefore, there is a growing interest in the role of gut microbiota and more gut-targeted therapies in the management of T2DM. The gut microbiota, which refers to the community of microorganisms that inhabit the human gut, has been shown to play a crucial role in the regulation of glucose metabolism and insulin sensitivity. Alterations in gut microbiota composition and diversity have been observed in T2DM patients, with a reduction in beneficial bacteria and an increase in pathogenic bacteria. This dysbiosis may contribute to the pathogenesis of the disease by promoting inflammation and impairing gut barrier function. Several gut-targeted therapies have been developed to modulate the gut microbiota and improve glycemic control in T2DM. One potential approach is the use of probiotics, which are live microorganisms that confer health benefits to the host when administered in adequate amounts. Several randomized controlled trials have demonstrated that certain probiotics, such as Lactobacillus and Bifidobacterium species, can improve glycemic control and insulin sensitivity in T2DM patients. Mechanisms may include the production of short-chain fatty acids, the improvement of gut barrier function, and the reduction of inflammation. Another gut-targeted therapy is fecal microbiota transplantation (FMT), which involves the transfer of fecal material from a healthy donor to a recipient. FMT has been used successfully in the treatment of Clostridioides difficile infection and is now being investigated as a potential therapy for T2DM. A recent randomized controlled trial showed that FMT from lean donors improved glucose metabolism and insulin sensitivity in T2DM patients with obesity. However, FMT carries potential risks, including transmission of infectious agents and alterations in the recipient's gut microbiota that may be undesirable. In addition to probiotics and FMT, other gut-targeted therapies are being investigated for the management of T2DM, such as prebiotics, synbiotics, and postbiotics. Prebiotics are dietary fibers that promote the growth of beneficial gut bacteria, while synbiotics combine probiotics and prebiotics. Postbiotics refer to the metabolic products of probiotics that may have beneficial effects on the host. The NIH SPARC program, or the Stimulating Peripheral Activity to Relieve Conditions, is a research initiative aimed at developing new therapies for a variety of health conditions, including T2DM. The SPARC program focuses on using electrical stimulation to activate peripheral nerves and organs, in order to regulate glucose levels in the body. The goal of this approach is to develop targeted, non-invasive therapies that can help patients better manage their diabetes. One promising area of research within the SPARC program is the use of electrical stimulation to activate the vagus nerve, which plays an important role in regulating glucose metabolism. Studies have shown that vagus nerve stimulation can improve insulin sensitivity and lower blood glucose levels in patients with T2DM. Gut-targeted therapies, such as probiotics and FMT, have shown potential for improving glycemic control and insulin sensitivity in T2DM patients. However, further research is needed to determine the optimal dose, duration, and safety of these therapies.

RevDate: 2024-02-01

Huang T, Lv Y, Wang W, et al (2024)

Case Report: Fecal Microbiota Transplantation for the Treatment of Generalized Eczema Occurring After COVID-19 Vaccination.

Clinical, cosmetic and investigational dermatology, 17:229-235.

Adverse skin reactions caused by the COVID-19 vaccine have attracted considerable attention. As we all know, the development mechanism of some skin diseases is related to the gut and skin microbiome. A 78-year-old male patient who received the COVID-19 vaccine developed generalized eczema with multiple dense black patches over the body, a widespread rash, erosion, and scabs on his limbs, as well as facial edema. The patient experienced recurrent flare-ups after conventional treatment, but then recovered well without recurrence after undergoing three fecal microbial transplantation (FMT) treatments. This rare case is reported for the first time in this study. This report demonstrates the possible potential of FMT in targeting refractory skin diseases, such as eczema, as well as diseases associated with gut microbiota disturbance after vaccination.

RevDate: 2024-01-30

Bahmani M, Mehrtabar S, Jafarizadeh A, et al (2024)

The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies.

Current pharmaceutical biotechnology pii:CPB-EPUB-138111 [Epub ahead of print].

Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.

RevDate: 2024-01-31
CmpDate: 2024-01-31

Wetzel S, Müller A, Kohnert E, et al (2023)

Longitudinal dynamics of gut bacteriome and mycobiome interactions pre- and post-visceral surgery in Crohn's disease.

Frontiers in cellular and infection microbiology, 13:1275405.

INTRODUCTION: Alterations of the gut microbiome are involved in the pathogenesis of Crohn's disease (CD). The role of fungi in this context is unclear. This study aimed to determine postoperative changes in the bacterial and fungal gut communities of CD patients undergoing intestinal resection, and to evaluate interactions between the bacteriome and mycobiome and their impact on the patients' outcome.

METHODS: We report a subgroup analysis of a prospective cohort study, focusing on 10 CD patients whose fecal samples were collected for bacterial 16S rRNA and fungal ITS2 genes next-generation sequencing the day before surgery and on the 5th or 6th postoperative day.

RESULTS: No significant differences in bacterial and fungal diversity were observed between preoperative and postoperative stool samples. By in-depth analysis, significant postoperative abundance changes of bacteria and fungi and 17 interkingdom correlations were detected. Network analysis identified 13 microbial clusters in the perioperative gut communities, revealing symbiotic and competitive interactions. Relevant factors were gender, age, BMI, lifestyle habits (smoking, alcohol consumption) and surgical technique. Postoperative abundance changes and identified clusters were associated with clinical outcomes (length of hospital stay, complications) and levels of inflammatory markers.

CONCLUSIONS: Our findings highlight the importance of dissecting the interactions of gut bacterial and fungal communities in CD patients and their potential influence on postoperative and disease outcomes.

RevDate: 2024-01-31

Li H, Lv N, Li D, et al (2023)

Tongbian decoction restores intestinal microbiota and activates 5-hydroxytryptamine signaling: implication in slow transit constipation.

Frontiers in microbiology, 14:1296163.

INTRODUCTION: Slow transit constipation (STC) is a type of functional constipation. The detailed mechanism of STC, for which there is currently no effective treatment, is unknown as of yet. Tongbian decoction (TBD), a traditional Chinese medicinal formula, is commonly used to treat STC in clinical settings. However, the potential impact of TBD on the management of STC via modulation of the gut microbiota remains unclear.

METHODS: Pseudo-germ-free rats were constructed after 6 days of treatment with bacitracin, neomycin, and streptomycin (abbreviated as ABX forthwith). Based on the successful construction of pseudo-germ-free rats, the STC model (ABX + STC) was induced using loperamide hydrochloride. After successful modeling, based on the different sources of donor rat microbiota, the ABX + STC rats were randomly divided into three groups: Control → ABX + STC, STC → ABX + STC, and STC + TBD → ABX + STC for fecal microbiota transplant (FMT). Body weight, fecal water content, and charcoal power propelling rate of the rats were recorded. Intestinal microbiota was detected by 16S rRNA sequencing, and the 5-hydroxytryptamine (5-HT) signaling pathway was examined by western blots, immunofluorescence, and immunohistochemical analysis.

RESULTS: After treatment with fecal bacterial solutions derived from rats treated with Tongbian decoction (TBD), there was an increase in body weight, fecal water content, and the rate of charcoal propulsion in the rats. Additionally, activation of the 5-hydroxytryptamine (5-HT) signaling pathway was observed. The 16S rRNA sequencing results showed that the fecal bacterial solution from TBD-treated rats affected the intestinal microbiota of STC rats by increasing the proliferation of beneficial bacteria and suppressing the expansion of harmful bacteria.

CONCLUSION: Our study showed that TBD alleviated constipation in STC rats by modulating the structure of the intestinal microbiota.

RevDate: 2024-01-31

Sinnathamby ES, Mason JW, Flanagan CJ, et al (2023)

Clostridioides difficile Infection: A Clinical Review of Pathogenesis, Clinical Considerations, and Treatment Strategies.

Cureus, 15(12):e51167.

BACKGROUND: Clostridioides difficile infection (CDI) is a common nosocomial infection. Risk factors for developing CDI include prior hospitalization, being older than 65 years old, antibiotic use, and chronic disease. It is linked with diarrhea and colitis and can vary in severity. It is a major cause of increased morbidity and mortality among hospitalized patients. However, community-acquired CDI is also increasing. Proper diagnosis and determination of severity are crucial for the treatment of CDI. Depending on how severe the CDI is, the patient may endorse different symptoms and physical exam findings. The severity of CDI will determine how aggressively it is treated. Management and treatment: Laboratory studies can be helpful in the diagnosis of CDI. In this regard, common labs include complete blood count, stool assays, and, in certain cases, radiography and endoscopy. Mild-to-moderate colitis is treated with antibiotics, but severe colitis requires a different approach, which may include surgery. Several alternative therapies for CDI exist and have shown promising results. This review will touch upon these therapies, which include fecal transplants, intravenous immunoglobulin, and the use of cholestyramine and tigecycline.

CONCLUSION: Prevention of CDI can be achieved by proper hygiene, vaccinations, and detecting the infection early. Proper hygiene is indeed noted to be one of the best ways to prevent CDI in the hospital setting. Overprescribing antibiotics is also another huge reason why CDI occurs. Proper prescription of antibiotics can also help reduce the chances of acquiring CDI.

RevDate: 2024-01-31
CmpDate: 2024-01-30

Sabbaghian M, Gheitasi H, Shekarchi AA, et al (2024)

The mysterious anelloviruses: investigating its role in human diseases.

BMC microbiology, 24(1):40.

Anelloviruses (AVs) that infect the human population are members of the Anelloviridae family. They are widely distributed in human populations worldwide. Torque teno virus (TTV) was the first virus of this family to be identified and is estimated to be found in the serum of 80-90% of the human population. Sometime after the identification of TTV, Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) were also identified and classified in this family. Since identifying these viruses, have been detected in various types of biological fluids of the human body, including blood and urine, as well as vital organs such as the liver and kidney. They can be transmitted from person to person through blood transfusions, fecal-oral contact, and possibly sexual intercourse. Recent studies on these newly introduced viruses show that although they are not directly related to human disease, they may be indirectly involved in initiating or exacerbating some human population-related diseases and viral infections. Among these diseases, we can mention various types of cancers, immune system diseases, viral infections, hepatitis, and AIDS. Also, they likely use the microRNAs (miRNAs) they encode to fulfill this cooperative role. Also, in recent years, the role of proliferation and their viral load, especially TTV, has been highlighted to indicate the immune system status of immunocompromised people or people who undergo organ transplants. Here, we review the possible role of these viruses in diseases that target humans and highlight them as important viruses that require further study. This review can provide new insights to researchers.

RevDate: 2024-01-28

Ren P, Yue H, Tang Q, et al (2024)

Astaxanthin exerts an adjunctive anti-cancer effect through the modulation of gut microbiota and mucosal immunity.

International immunopharmacology, 128:111553 pii:S1567-5769(24)00071-7 [Epub ahead of print].

This study aimed to investigate the function of gut microbiota in astaxanthin's adjuvant anticancer effects. Our prior research demonstrated that astaxanthin enhanced the antitumor effects of sorafenib by enhancing the body's antitumor immune response; astaxanthin also regulated the intestinal flora composition of tumor-bearing mice. However, it is presently unknown whether this beneficial effect is dependent on the gut microbiota. We first used broad-spectrum antibiotics to eradicate gut microbiota of tumor-bearing mice, followed by the transplantation of fecal microbiota. The results of this study indicate that the beneficial effects of astaxanthin when combined with molecular targeting are dependent on the presence of intestinal microbiota. Astaxanthin facilitates the infiltration of CD8+ T lymphocytes into the tumor microenvironment and increases Granzyme B production by modulating the intestinal flora. Therefore, it strengthens the body's anti-tumor immune response and synergistically boosts the therapeutic efficacy of drugs. Astaxanthin stimulates the production of cuprocytes and mucus in the intestines by promoting the proliferation of Akkermansia. In addition, astaxanthin enhances the intestinal mucosal immunological function. Our research supports the unique ability of astaxanthin to sustain intestinal flora homeostasis and its function as a dietary immune booster for individuals with tumors.

RevDate: 2024-01-30

Liu M, Ma J, Xu J, et al (2024)

Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides.

International journal of biological macromolecules, 261(Pt 1):129696 pii:S0141-8130(24)00499-9 [Epub ahead of print].

Infancy is a critical period in the maturation of the gut microbiota and a phase of susceptibility to gut microbiota dysbiosis. Early disturbances in the gut microbiota can have long-lasting effects on host physiology, including intestinal injury and diarrhea. Fecal microbiota transplantation (FMT) can remodel gut microbiota and may be an effective way to treat infant diarrhea. However, limited research has been conducted on the mechanisms of infant diarrhea and the regulation of gut microbiota balance through FMT, primarily due to ethical challenges in testing on human infants. Our study demonstrated that elevated Lipopolysaccharides (LPS) levels in piglets with diarrhea were associated with colon microbiota dysbiosis induced by early weaning. Additionally, LPS upregulated NLRP3 levels by activating TLR4 and inducing ROS production, resulting in pyroptosis, disruption of the intestinal barrier, bacterial translocation, and subsequent inflammation, ultimately leading to diarrhea in piglets. Through microbiota regulation, FMT modulated β-PBD-2 secretion in the colon by increasing butyric acid levels. This modulation alleviated gut microbiota dysbiosis, reduced LPS levels, attenuated oxidative stress and pyroptosis, inhibited the inflammatory response, maintained the integrity of the intestinal barrier, and ultimately reduced diarrhea in piglets caused by colitis. These findings present a novel perspective on the pathogenesis, pathophysiology, prevention, and treatment of diarrhea diseases, underscoring the significance of the interaction between FMT and the gut microbiota as a critical strategy for treating diarrhea and intestinal diseases in infants and farm animals.

RevDate: 2024-01-31
CmpDate: 2024-01-31

Thiele Orberg E, Meedt E, Hiergeist A, et al (2024)

Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation.

Nature cancer, 5(1):187-208.

The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.

RevDate: 2024-01-27

Hu L, Feng X, Lan Y, et al (2024)

Co-exposure with cadmium elevates the toxicity of microplastics: Trojan horse effect from the perspective of intestinal barrier.

Journal of hazardous materials, 466:133587 pii:S0304-3894(24)00166-3 [Epub ahead of print].

Microplastics (MPs) have been shown to adsorb heavy metals and serve as vehicles for their environmental transport. To date, insufficient studies have focused on enterohepatic injury in mice co-exposed to both MPs and cadmium (Cd). Here, we report that Cd adsorption increased the surface roughness and decreased the monodispersity of PS-MPs. Furthermore, exposure to both PS-MPs and Cd resulted in a more severe toxic effect compared to single exposure, with decreased body weight gain, shortened colon length, and increased colonic and hepatic inflammatory response observed. This can be attributed to an elevated accumulation of Cd resulting from increased gut permeability, coupled with the superimposed effects of oxidative stress. In addition, using 16 S sequencing and fecal microbiota transplantation, it was demonstrated that gut microbiota dysbiosis plays an essential role in the synergistic toxicity induced by PS-MPs and Cd in mice. This study showed that combined exposure to MPs and Cd induced more severe intestinal and liver damage in mice compared to individual exposure, and provided a new perspective for a more systematic risk assessment process related to MPs exposure.

RevDate: 2024-01-29
CmpDate: 2024-01-29

Czarnik W, Fularski P, Gajewska A, et al (2024)

The Role of Intestinal Microbiota and Diet as Modulating Factors in the Course of Alzheimer's and Parkinson's Diseases.

Nutrients, 16(2):.

Many researchers propose manipulating microbiota to prevent and treat related diseases. The brain-gut axis is an object that remains the target of modern research, and it is not without reason that many researchers enrich it with microbiota and diet in its name. Numerous connections and mutual correlations have become the basis for seeking answers to many questions related to pathology as well as human physiology. Disorders of this homeostasis as well as dysbiosis itself accompany neurodegenerative diseases such as Alzheimer's and Parkinson's. Heavily dependent on external factors, modulation of the gut microbiome represents an opportunity to advance the treatment of neurodegenerative diseases. Probiotic interventions, synbiotic interventions, or fecal transplantation can undoubtedly support the biotherapeutic process. A special role is played by diet, which provides metabolites that directly affect the body and the microbiota. A holistic view of the human organism is therefore essential.

RevDate: 2024-01-29

Gurung B, Stricklin M, S Wang (2024)

Gut Microbiota-Gut Metabolites and Clostridioides difficile Infection: Approaching Sustainable Solutions for Therapy.

Metabolites, 14(1):.

Clostridioides difficile (C. difficile) infection (CDI) is the most common hospital-acquired infection. With the combination of a high rate of antibiotic resistance and recurrence, it has proven to be a debilitating public health threat. Current treatments for CDI include antibiotics and fecal microbiota transplantation, which contribute to recurrent CDIs and potential risks. Therefore, there is an ongoing need to develop new preventative treatment strategies for CDI. Notably, gut microbiota dysbiosis is the primary risk factor for CDI and provides a promising target for developing novel CDI therapy approaches. Along with gut microbiota dysbiosis, a reduction in important gut metabolites like secondary bile acids and short-chain fatty acids (SCFAs) were also seen in patients suffering from CDI. In this review study, we investigated the roles and mechanisms of gut microbiota and gut microbiota-derived gut metabolites, especially secondary bile acids and SCFAs in CDI pathogenesis. Moreover, specific signatures of gut microbiota and gut metabolites, as well as different factors that can modulate the gut microbiota, were also discussed, indicating that gut microbiota modulators like probiotics and prebiotics can be a potential therapeutic strategy for CDI as they can help restore gut microbiota and produce gut metabolites necessary for a healthy gut. The understanding of the associations between gut microbiota-gut metabolites and CDI will allow for developing precise and sustainable approaches, distinct from antibiotics and fecal transplant, for mitigating CDI and other gut microbiota dysbiosis-related diseases.

RevDate: 2024-01-28

Suswał K, Tomaszewski M, Romaniuk A, et al (2023)

Gut-Lung Axis in Focus: Deciphering the Impact of Gut Microbiota on Pulmonary Arterial Hypertension.

Journal of personalized medicine, 14(1):.

Recent advancements in the understanding of pulmonary arterial hypertension (PAH) have highlighted the significant role of the gut microbiota (GM) in its pathogenesis. This comprehensive review delves into the intricate relationship between the GM and PAH, emphasizing the influence of gut microbial composition and the critical metabolites produced. We particularly focus on the dynamic interaction between the gut and lung, examining how microbial dysbiosis contributes to PAH development through inflammation, altered immune responses, and changes in the gut-lung axis. Noteworthy findings include variations in the ratios of key bacterial groups such as Firmicutes and Bacteroidetes in PAH and the pivotal roles of metabolites like trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and serotonin in the disease's progression. Additionally, the review elucidates potential diagnostic biomarkers and novel therapeutic approaches, including the use of probiotics and fecal microbiota transplantation, which leverage the gut microbiota for managing PAH. This review encapsulates the current state of research in this field, offering insights into the potential of gut microbiota modulation as a promising strategy in PAH diagnosing and treatment.

RevDate: 2024-01-28

Rojas CA, Entrolezo Z, Jarett JK, et al (2024)

Microbiome Responses to Oral Fecal Microbiota Transplantation in a Cohort of Domestic Dogs.

Veterinary sciences, 11(1):.

Fecal microbiota transplants (FMTs) have been successful at treating digestive and skin conditions in dogs. The degree to which the microbiome is impacted by FMT in a cohort of dogs has not been thoroughly investigated. Using 16S rRNA gene sequencing, we document the changes in the microbiome of fifty-four dogs that took capsules of lyophilized fecal material for their chronic diarrhea, vomiting, or constipation. We found that the relative abundances of five bacterial genera (Butyricicoccus, Faecalibacterium, Fusobacterium, Megamonas, and Sutterella) were higher after FMT than before FMT. Fecal microbiome alpha- and beta-diversity were correlated with kibble and raw food consumption, and prior antibiotic use. On average, 18% of the stool donor's bacterial amplicon sequence variants (ASVs) engrafted in the FMT recipient, with certain bacterial taxa like Bacteroides spp., Fusobacterium spp., and Lachnoclostridium spp. engrafting more frequently than others. Lastly, analyses indicated that the degree of overlap between the donor bacteria and the community of microbes already established in the FMT recipient likely impacts engraftment. Collectively, our work provides further insight into the microbiome and engraftment dynamics of dogs before and after taking oral FMTs.

RevDate: 2024-01-28

Wang L, Xu A, Wang J, et al (2023)

The effect and mechanism of Fushen Granule on gut microbiome in the prevention and treatment of chronic renal failure.

Frontiers in cellular and infection microbiology, 13:1334213.

BACKGROUND: Fushen Granule is an improved granule based on the classic formula Fushen Formula, which is used for the treatment of peritoneal dialysis-related intestinal dysfunction in patients with end-stage renal disease. However, the effect and mechanism of this granule on the prevention and treatment of chronic renal failure have not been fully elucidated.

METHODS: A 5/6 nephrectomy model of CRF was induced and Fushen Granule was administered at low and high doses to observe its effects on renal function, D-lactate, serum endotoxin, and intestinal-derived metabolic toxins. The 16SrRNA sequencing method was used to analyze the abundance and structure of the intestinal flora of CRF rats. A FMT assay was also used to evaluate the effects of transplantation of Fushen Granule fecal bacteria on renal-related functional parameters and metabolic toxins in CRF rats.

RESULTS: Gavage administration of Fushen Granule at low and high doses down-regulated creatinine, urea nitrogen, 24-h urine microalbumin, D-lactate, endotoxin, and the intestinal-derived toxins indophenol sulphateand p-cresol sulphate in CRF rats. Compared with the sham-operated group in the same period, CRF rats had a decreased abundance of the firmicutes phylum and an increased abundance of the bacteroidetes phylum at the phylum level, and a decreasing trend of the lactobacillus genus at the genus level. Fushen Granule intervention increased the abundance of the firmicutes phylum, decreased the abundance of the bacteroidetes phylum, and increased the abundance of the lactobacillus genus. The transplantation of Fushen Granule fecal bacteria significantly reduced creatinine(Cr), blood urea nitrogen(Bun), uric acid(UA), 24-h urinary microalbumin, D-lactate, serum endotoxin, and enterogenic metabolic toxins in CRF rats. Compared with the sham-operated group, the transplantation of Fushen Granule fecal bacteria modulated the Firmicutes and Bacteroidetes phyla and the Lactobacillus genus.

CONCLUSION: Fushen Granule improved renal function and intestinal barrier function by regulating intestinal flora, inhibiting renal fibrosis, and delaying the progression of chronic renal failure.

RevDate: 2024-01-25

Zhang YD, Shi DD, Liao BB, et al (2024)

Human microbiota from drug-naive patients with obsessive-compulsive disorder drives behavioral symptoms and neuroinflammation via succinic acid in mice.

Molecular psychiatry [Epub ahead of print].

Emerging evidence suggests that the gut microbiota is closely related to psychiatric disorders. However, little is known about the role of the gut microbiota in the development of obsessive-compulsive disorder (OCD). Here, to investigate the contribution of gut microbiota to the pathogenesis of OCD, we transplanted fecal microbiota from first-episode, drug-naive OCD patients or demographically matched healthy individuals into antibiotic-treated specific pathogen-free (SPF) mice and showed that colonization with OCD microbiota is sufficient to induce core behavioral deficits, including abnormal anxiety-like and compulsive-like behaviors. The fecal microbiota was analyzed using 16 S rRNA full-length sequencing, and the results demonstrated a clear separation of the fecal microbiota of mice colonized with OCD and control microbiota. Notably, microbiota from OCD-colonized mice resulted in injured neuronal morphology and function in the mPFC, with inflammation in the mPFC and colon. Unbiased metabolomic analyses of the serum and mPFC region revealed the accumulation of succinic acid (SA) in OCD-colonized mice. SA impeded neuronal activity and induced an inflammatory response in both the colon and mPFC, impacting intestinal permeability and brain function, which act as vital signal mediators in gut microbiota-brain-immune crosstalk. Manipulations of dimethyl malonate (DM) have been reported to exert neuroprotective effects by suppressing the oxidation of accumulated succinic acid, attenuating the downstream inflammatory response and neuronal damage, and can help to partly improve abnormal behavior and reduce neuroinflammation and intestinal inflammation in OCD-colonized mice. We propose that the gut microbiota likely regulates brain function and behaviors in mice via succinic acid signaling, which contributes to the pathophysiology of OCD through gut-brain crosstalk and may provide new insights into the treatment of this disorder.

RevDate: 2024-01-25

Do Nascimento J, Ladeiro MP, Bonnard I, et al (2024)

Assessing viral freshwater hazard using a toxicokinetic model and Dreissena polymorpha.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(24)00134-9 [Epub ahead of print].

The detection all pathogenic enteric viruses in water is expensive, time-consuming, and limited by numerous technical difficulties. Consequently, using reliable indicators such as F-specific RNA phages (FRNAPH) can be well adapted to assess the risk of viral contamination of fecal origin in surface waters. However, the variability of results inherent to the water matrix makes it difficult to use them routinely and to interpret viral risk. Spatial and temporal variability of surface waters can lead to underestimate this risk, in particular in the case of low loading. The use of bivalve molluscs as accumulating systems appears as a promising alternative, as recently highlighted with the freshwater mussel Dreissena polymorpha, but its capacity to accumulate and depurate FRNAPH needs to be better understood and described. The purpose of this study is to characterise the kinetics of accumulation and elimination of infectious FRNAPH by D. polymorpha in laboratory conditions, formalised by a toxico-kinetic (TK) mechanistic model. Accumulation and depuration experiments were performed at a laboratory scale to determine the relationship between the concentration of infectious FRNAPH in water and the concentration accumulated by D. polymorpha. The mussels accumulated infectious FRNAPH (3-5.4 × 10[4] PFU/g) in a fast and concentration-dependent way in only 48 h, as already recently demonstrated. The second exposure demonstrated that the kinetics of infectious FRNAPH depuration by D. polymorpha was independent to the exposure dose, with a T90 (time required to depurate 90 % of the accumulated concentration) of approximately 6 days. These results highlight the capacities of D. polymorpha to detect and reflect the viral pollution in an integrative way and over time, which is not possible with point water sampling. Different TK models were fitted based on the concentrations measured in the digestive tissues (DT) of D. polymorpha. The model has been developed to formalise the kinetics of phage accumulation in mussels tissues through the simultaneous estimation of accumulation and depuration rates. This model showed that accumulation depended on the exposure concentration, while depuration did not. Standardized D. polymorpha could be easily transplanted to the environment to predict viral concentrations using the TK model defined in the present study to predict the level of contamination of bodies of water on the basis of the level of phages accumulated by the organisms. It will be also provide a better understanding of the dynamics of the virus in continental waters at different time and spatial scales, and thereby contribute to the protection of freshwater resources.

RevDate: 2024-01-26

Wu J, Deng X, Sun Y, et al (2024)

Aged oolong tea alleviates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and its metabolites.

Food chemistry: X, 21:101102.

In this study, the mechanism of aged oolong tea (AOT) to alleviate colitis was investigated in terms of microbiome, metabolome, and fecal microbiota transplantation (FMT). AOT storage period could alleviate colitis in mice and there were some differences in AOT between storage periods, especially AOT-10. AOT improves UC by modulating oxidative stress and inflammatory factors and upregulating intestinal tight junction protein expression (Occludin, Claudin-1, ZO-1 and MUC2), which is associated with the recovery of gut microbiota. FMT and targeted metabolomics further demonstrate that the anti-inflammatory effects of AOT can reshape the gut microbiota through faecal bacterial transfer. Anti-inflammatory effects are exerted through the stimulation of metabolic pathways associated with amino acid, fatty acid and bile acid metabolites. Importantly, the study identified key bacteria (e.g., Sutterella, Clostridiaceae_Clostridium, Mucispirillum, Oscillospira and Ruminococcus) for the development and remission of inflammation. Conclusively, AOT may have great potential in the future adjuvant treatment of colitis.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )