Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Fecal Transplantation

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 10 Feb 2025 at 01:46 Created: 

Fecal Transplantation

Fecal Transplantion is a procedure in which fecal matter is collected from a tested donor, mixed with a saline or other solution, strained, and placed in a patient, by colonoscopy, endoscopy, sigmoidoscopy, or enema. The theory behind the procedure is that a normal gut microbial ecosystem is required for good health and that sometimes a benefucuial ecosystem can be destroyed, perhaps by antibiotics, allowing other bacteria, specifically Clostridium difficile to over-populate the colon, causing debilitating, sometimes fatal diarrhea. C. diff. is on the rise throughout the world. The CDC reports that approximately 347,000 people in the U.S. alone were diagnosed with this infection in 2012. Of those, at least 14,000 died. Fecal transplant has also had promising results with many other digestive or auto-immune diseases, including Irritable Bowel Syndrome, Crohn's Disease, and Ulcerative Colitis. It has also been used around the world to treat other conditions, although more research in other areas is needed. Fecal transplant was first documented in 4th century China, where the treatment was known as yellow soup.

Created with PubMed® Query: ( "(fecal OR faecal) (transplant OR transplantation)" OR "fecal microbiota transplant" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2025-02-05

Anonymous (2025)

Correction to: A Randomized Controlled Trial of Efficacy and Safety of Fecal Microbiota Transplant for Preventing Recurrent Clostridioides difficile Infection.

Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 80(1):242-243.

RevDate: 2025-02-05

Ding Q, Xue J, Li N, et al (2025)

Fecal microbiota transplantation alleviates radiation enteritis by modulating gut microbiota and metabolite profiles.

Biomolecules & biomedicine [Epub ahead of print].

This study investigates the safety and underlying mechanisms of fecal microbiota transplantation (FMT) in treating radiation enteritis (RE). A rat model of RE was established with six groups: NC, RT, H-FMT, modified FMT (M-FMT), L-FMT, and BTAC. The therapeutic effects of FMT were assessed using the Disease Activity Index (DAI), histological analysis, and biochemical tests, including ink-propelling, xylitol exclusion, and enzyme-linked immunosorbent assay (ELISA). Gut microbiota alterations and fecal metabolism were analyzed via 16S rDNA sequencing and targeted metabolomics. The results demonstrated that FMT, particularly in the M-FMT group, effectively alleviated RE by reducing DAI scores, histological damage, and inflammatory markers while enhancing enzyme activity, superoxide dismutase (SOD) levels, and intestinal absorption. FMT also modulated gut microbiota composition, increasing beneficial species, such as Blautia wexlerae and Romboutsia timonensis while decreasing Enterococcus ratti. Metabolomics analysis revealed that FMT influenced niacin, nicotinamide, and starch metabolism, with notable changes in pantothenic acid and fatty acid levels. Spearman correlation analysis further indicated that these microbial shifts were associated with improved metabolic profiles. Overall, FMT mitigates RE by regulating gut microbiota and metabolites, with pantothenic acid and fatty acids emerging as potential therapeutic targets. Further research is needed to explore the underlying mechanisms in greater detail.

RevDate: 2025-02-06

Song Q, Zhang K, Li S, et al (2025)

Trichosanthes kirilowii Maxim. Polysaccharide attenuates diabetes through the synergistic impact of lipid metabolism and modulating gut microbiota.

Current research in food science, 10:100977.

Polysaccharide, a chain of sugars bound by glycosidic bonds, have a wide range of physiological activities, including hypoglycemic activity. In present study, we established T2DM mice models to explore the effects and mechanism of Trichosanthes kirilowii Maxim polysaccharide (TMSP1) on high-fat diet/streptozotocin (HF-STZ) induced diabetes mice. The results showed that high-fat diet significantly increased the oral glucose tolerance test (OGTT), viscera index, oxidative stress, impaired glucose tolerance, decreased body weight, immune response and short-chain fatty acid (SCFAs) content, and disrupted the balance of intestinal flora structure. However, after 6 weeks of TMSP1 intervention decreased lipid accumulation, ameliorated gut microbiota dysbiosis by increasing SCFAs-producing bacteria and mitigated intestinal inflammation and oxidative stress. Moreover, TMSP1 significantly restored the integrity of the intestinal epithelial barrier and mucus barrier. The results of fecal microbiota transplantation confirmed that TMSP1 exerted hypoglycemic effect through regulating intestinal flora to a certain extent. Collectively, the findings revealed TMSP1 intervention inhibits hyperglycemia by improving gut microbiota disorder, lipid metabolism, and inflammation. Hence, TMSP1 may be an effective measure to ameliorate HF-STZ induced diabetes.

RevDate: 2025-02-07
CmpDate: 2025-02-05

Lin Z, Feng Y, Wang J, et al (2025)

Microbiota governs host chenodeoxycholic acid glucuronidation to ameliorate bile acid disorder induced diarrhea.

Microbiome, 13(1):36.

BACKGROUND: Disorder in bile acid (BA) metabolism is known to be an important factor contributing to diarrhea. However, the pathogenesis of BA disorder-induced diarrhea remains unclear.

METHODS: The colonic BA pool and microbiota between health piglets and BA disorder-induced diarrheal piglets were compared. Fecal microbiota transplantation and various cell experiments further indicated that chenodeoxycholic acid (CDCA) metabolic disorder produced CDCA-3β-glucuronide, which is the main cause of BA disorder diarrhea. Non-targeted metabolomics uncovered the inhibition of the BA glucuronidation by Lactobacillus reuteri (L. reuteri) is through deriving indole-3-carbinol (I3C). In vitro, important gene involved in the reduction of BA disorder induced-diarrhea were screened by RNA transcriptomics sequencing, and activation pathway of FXR-SIRT1-LKB1 to alleviate BA disorder diarrhea and P53-mediated apoptosis were proposed in vitro by multifarious siRNA interference, CO-IP, immunofluorescence, and so on, which mechanism was also verified in a variety of mouse models.

RESULTS: Here, we reveal for the first time that core microbiota derived I3C represses gut epithelium glucuronidation, particularly 3β-glucuronic CDCA production, which reaction is mediated by host UDP glucuronosyltransferase family 1 member A4 (UGT1A4) and necessary of BA disorder induced diarrhea. Mechanistically, L. reuteri derived I3C activates aryl hydrocarbon receptor to decrease UGT1A4 transcription and CDCA-3β-glucuronide content, thereby upregulating FXR-SIRT1-LKB1 signal. LKB1 binds with P53 based on protein interaction, ultimately resists to apoptosis and diarrhea. Moreover, I3C assists CDCA to attain the ameliorative effects of FXR activation in BA disorder diarrhea, through reversion of abnormal metabolism pathway, improving the outcomes of CDCA supplement.

CONCLUSION: These findings uncover the crucial interplay between gut epithelial cells and microbes, highlighting UGT1A4-mediated conversion of CDCA-3β-glucuronide as a key target for ameliorating BA disorder-induced diarrhea. Video Abstract.

RevDate: 2025-02-08
CmpDate: 2025-02-08

Ju C, Liu R, Ma Y, et al (2025)

Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury.

Ageing research reviews, 104:102648.

Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life. Neuron axonal disconnection and substantial apoptotic events following SCI result in signal transmission loss, profoundly impacting various organ and systems, including the gastrointestinal tract. Dysbiosis can lead to severe bowel dysfunction in patients, substantially lowering their quality of life and significantly reducing life expectancy of them. Therefore, researches focusing on the restoration of the gut microbiota hold promise for potential therapeutic strategies aimed at rehabilitation after SCI. In this paper, we explore the regulatory roles that dietary fiber, short-chain fatty acids (SCFAs), probiotics, and microbiota transplantation play in patients with SCI, summarize the potential mechanisms of post-SCI dysbiosis, and discuss possible strategies to enhance long-term survival of SCI patients. We aim to provide potential insights for future research aimed at ameliorating dysbiosis in SCI patients.

RevDate: 2025-02-05

Ashiqueali SA, Hayslip N, Chaudhari DS, et al (2025)

Fecal microbiota transplant from long-living Ames dwarf mice alters the microbial composition and biomarkers of liver health in normal mice.

GeroScience [Epub ahead of print].

Aging is associated with intestinal dysbiosis, a condition characterized by diminished microbial biodiversity and inflammation. This leads to increased vulnerability to extraintestinal manifestations such as autoimmune, metabolic, and neurodegenerative conditions thereby accelerating mortality. As such, modulation of the gut microbiome is a promising way to extend healthspan. In this study, we explore the effects of fecal microbiota transplant (FMT) from long-living Ames dwarf donors to their normal littermates, and vice versa, on the recipient gut microbiota and liver transcriptome. Importantly, our previous studies highlight differences between the microbiome of Ames dwarf mice relative to their normal siblings, potentially contributing to their extended lifespan and remarkable healthspan. Our findings demonstrate that FMT from Ames dwarf mice to normal mice significantly alters the recipient's gut microbiota, potentially reprogramming bacterial functions related to healthy aging, and changes the liver transcriptome, indicating improved metabolic health. Particularly, the microbiome of Ames dwarf mice, characterized by a higher abundance of beneficial bacterial families such as Peptococcaceae, Oscillospiraceae, and Lachnospiraceae, appears to play a crucial role in modulating these effects. Alongside, our mRNA sequencing and RT-PCR validation reveals that FMT may contribute to the significant downregulation of p21, Elovl3, and Insig2, genes involved with cellular senescence and liver metabolic pathways. Our data suggest a regulatory axis exists between the gut and liver, highlighting the potential of microbiome-targeted therapies in promoting healthy aging. Future research should focus on functional validation of altered microbial communities and explore the underlying biomolecular pathways that confer geroprotection.

RevDate: 2025-02-04

Lou F, Yan L, Luo S, et al (2025)

Dysbiotic oral microbiota-derived kynurenine, induced by chronic restraint stress, promotes head and neck squamous cell carcinoma by enhancing CD8[+] T cell exhaustion.

Gut pii:gutjnl-2024-333479 [Epub ahead of print].

BACKGROUND: Chronic restraint stress (CRS) is a tumour-promoting factor. However, the underlying mechanism is unknown.

OBJECTIVE: We aimed to investigate whether CRS promotes head and neck squamous cell carcinoma (HNSCC) by altering the oral microbiota and related metabolites and whether kynurenine (Kyn) promotes HNSCC by modulating CD8[+] T cells.

DESIGN: 4-nitroquinoline-1-oxide (4NQO)-treated mice were exposed to CRS. Germ-free mice treated with 4NQO received oral microbiota transplants from either CRS or control mouse donors. 16S rRNA gene sequencing and liquid chromatography-mass spectrometry were performed on mouse saliva, faecal and plasma samples to investigate alterations in their microbiota and metabolites. The effects of Kyn on HNSCC were studied using the 4NQO-induced HNSCC mouse model.

RESULTS: Mice subjected to CRS demonstrated a higher incidence of HNSCC and oral microbial dysbiosis than CRS-free control mice. Pseudomonas and Veillonella species were enriched while certain oral bacteria, including Corynebacterium and Staphylococcus species, were depleted with CRS exposure. Furthermore, CRS-altered oral microbiota promoted HNSCC formation, caused oral and gut barrier dysfunction, and induced a host metabolome shift with increased plasma Kyn in germ-free mice exposed to 4NQO treatment. Under stress conditions, we also found that Kyn activated aryl hydrocarbon receptor (AhR) nuclear translocation and deubiquitination in tumour-reactive CD8[+] T cells, thereby promoting HNSCC tumourigenesis.

CONCLUSION: CRS-induced oral microbiota dysbiosis plays a protumourigenic role in HNSCC and can influence host metabolism. Mechanistically, under stress conditions, Kyn promotes CD8[+] T cell exhaustion and HNSCC tumourigenesis through stabilising AhR by its deubiquitination.

RevDate: 2025-02-06
CmpDate: 2025-02-04

Men J, Li H, Cui C, et al (2025)

Fecal bacteria transplantation replicates aerobic exercise to reshape the gut microbiota in mice to inhibit high-fat diet-induced atherosclerosis.

PloS one, 20(2):e0314698.

Aerobic exercise exerts a significant impact on the gut microbiota imbalance and atherosclerosis induced by a high-fat diet. However, whether fecal microbiota transplantation, based on aerobic exercise, can improve atherosclerosis progression remains unexplored. In this study, we utilized male C57 mice to establish models of aerobic exercise and atherosclerosis, followed by fecal microbiota transplantation(Fig 1a). Firstly, we analyzed the body weight, somatotype, adipocyte area, and aortic HE images of the model mice. Our findings revealed that high-fat diet -induced atherosclerosis mice exhibited elevated lipid accumulation, larger adipocyte area, and more severe atherosclerosis progression. Additionally, we assessed plasma lipid levels, inflammatory factors, and gut microbiota composition in each group of mice. high-fat diet -induced atherosclerosis mice displayed dyslipidemia along with inflammatory responses and reduced gut microbiota diversity as well as abundance of beneficial bacteria. Subsequently performing fecal microbiota transplantation demonstrated that high-fat diet -induced atherosclerosis mice experienced weight loss accompanied by reduced lipid accumulation while normalizing their gut microbiota profile; furthermore it significantly improved blood lipids and inflammation markers thereby exhibiting notable anti- atherosclerosis effects. The findings suggest that aerobic exercise can modify gut microbiota composition and improve high-fat diet-induced atherosclerosis(Fig 1b). Moreover, these beneficial effects can be effectively transmitted through fecal microbiota transplantation, offering a promising therapeutic approach for managing atherosclerosis.

RevDate: 2025-02-04

Rahman R, Fouhse JM, Ju T, et al (2025)

The impact of wild-boar-derived microbiota transplantation on piglet microbiota, metabolite profile, and gut proinflammatory cytokine production differs from sow-derived microbiota.

Applied and environmental microbiology [Epub ahead of print].

Colonization of co-evolved, species-specific microbes in early life plays a crucial role in gastrointestinal development and immune function. This study hypothesized that modern pig production practices have resulted in the loss of co-evolved species and critical symbiotic host-microbe interactions. To test this, we reintroduced microbes from wild boars (WB) into conventional piglets to explore their colonization dynamics and effects on gut microbial communities, metabolite profiles, and immune responses. At postnatal day (PND) 21, 48 piglets were assigned to four treatment groups: (i) WB-derived mixed microbial community (MMC), (ii) sow-derived MMC, (iii) a combination of WB and sow MMC (Mix), or (iv) Control (PBS). Post-transplantation analyses at PND 48 revealed distinct microbial communities in WB-inoculated piglets compared with Controls, with trends toward differentiation from Sow but not Mix groups. WB-derived microbes were more successful in colonizing piglets, particularly in the Mix group, where they competed with Sow-derived microbes. WB group cecal digesta enriched with Lactobacillus helveticus, Lactobacillus mucosae, and Lactobacillus pontis. Cecal metabolite analysis showed that WB piglets were enriched in histamine, acetyl-ornithine, ornithine, citrulline, and other metabolites, with higher histamine levels linked to Lactobacillus abundance. WB piglets exhibited lower cecal IL-1β and IL-6 levels compared with Control and Sow groups, whereas the Mix group showed reduced IFN-γ, IL-2, and IL-6 compared with the Sow group. No differences in weight gain, fecal scores, or plasma cytokines were observed, indicating no adverse effects. These findings support that missing WB microbes effectively colonize domestic piglets and may positively impact metabolite production and immune responses.IMPORTANCEThis study addresses the growing concern over losing co-evolved, species-specific microbes in modern agricultural practices, particularly in pig production. The implementation of strict biosecurity measures and widespread antibiotic use in conventional farming systems may disrupt crucial host-microbe interactions that are essential for gastrointestinal development and immune function. Our research demonstrates that by reintroducing wild boar-derived microbes into domestic piglets, these microbes can successfully colonize the gut, influence microbial community composition, and alter metabolite profiles and immune responses without causing adverse effects. These findings also suggest that these native microbes can fill an intestinal niche, positively impacting immune activation. This research lays the groundwork for future strategies to enhance livestock health and performance by restoring natural microbial populations that produce immune-modulating metabolites.

RevDate: 2025-02-05

Hemachandra S, Rathnayake SN, Jayamaha AA, et al (2025)

Fecal Microbiota Transplantation as an Alternative Method in the Treatment of Obesity.

Cureus, 17(1):e76858.

Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for various health conditions, particularly obesity and metabolic disorders. This review examines the mechanisms underlying FMT, including its role in restoring gut microbiota diversity and enhancing immunomodulatory functions, which are essential for maintaining overall health. Recent studies indicate that FMT can significantly improve body weight and metabolic parameters, suggesting its potential as an alternative or complementary treatment to current obesity therapies. However, the effectiveness of FMT depends on several factors, including the composition of the donor microbiota, recipient characteristics, and concomitant medications or dietary interventions. Despite its great promise, challenges such as standardized protocols, donor screening, and the need for a deeper understanding of gut microbiota dynamics remain key hurdles. Future research should focus on elucidating the specific microbial compositions necessary for optimal therapeutic outcomes and exploring personalized FMT approaches tailored to individual patient profiles. This evolving field presents exciting opportunities for innovative strategies in obesity treatment, warranting further investigation and clinical application.

RevDate: 2025-02-04

Kappel SS, Sangild PT, Zachariassen G, et al (2025)

Protein and energy digestibility in preterm infants fed fortified human milk.

Journal of pediatric gastroenterology and nutrition [Epub ahead of print].

OBJECTIVES: The objective of the present study is to determine whether the apparent nutrient digestibility differs between very preterm infants fortified with bovine colostrum (BC) compared to those fortified with a conventional fortifier (CF), building on previous findings that BC was associated with looser stools and reduced need for laxatives in very preterm infants (VPI).

METHODS: We conducted a 24-h digestibility balance study in 10 VPIs to assess the retention of protein, energy, and wet-weight following the intake of fortified human milk and collection of faecal excretions. Infants (n = 5) were matched by gestational age and birthweight.

RESULTS: In the 10 infants, the mean gestational age and birthweight were 28 ± 1 weeks and 899 ± 182 g, respectively. Infants fortified with BC had a higher faecal energy loss compared with infants fortified with CF (BC: 178 [range 111-205] vs. CF: 153 [96-235] kJ/kg, p < 0.05). No differences (p > 0.05) were found for wet-weight intake (421 [360-427] vs. 494 [328-500] kJ/kg), relative absorption of protein (60 [33-75] vs. 50 [33-75]%) or absolute protein absorption (249 [159-310) vs. 281 [210-347]).

CONCLUSION: Nutrient absorption was similar between groups although higher energy loss indicates reduced overall digestibility of BC versus CF, however, with a large variation within each group. Studies on more infants are required to confirm these results. A 24-h digestibility balance study can successfully be used to assess nutrient and energy retention in preterm infants.

RevDate: 2025-02-03

Tay SW, AHL Low (2025)

Is faecal microbiota transplantation ready for prime time in systemic sclerosis?.

The Lancet. Rheumatology pii:S2665-9913(24)00376-X [Epub ahead of print].

RevDate: 2025-02-06
CmpDate: 2025-02-06

Pitashny M, Kesten I, Shlon D, et al (2025)

The Future of Microbiome Therapeutics.

Drugs, 85(2):117-125.

The human microbiome exerts profound influence over various biological processes within the body. Unlike many host determinants, it represents a readily accessible target for manipulation to promote health benefits. However, existing commercial microbiome-directed products often exhibit low efficacy. Advancements in technology are paving the way for the development of novel microbiome therapeutics, across a wide range of indications. In this narrative review, we provide an overview of state-of-the-art technologies in late-stage development, examining their advantages and limitations. By covering a spectrum, from fecal-derived products to live biotherapeutics, phage therapy, and synthetic biology, we illuminate the path toward the future of microbiome therapeutics.

RevDate: 2025-02-03

Fretheim H, Barua I, Bakland G, et al (2025)

Faecal microbiota transplantation in patients with systemic sclerosis and lower gastrointestinal tract symptoms in Norway (ReSScue): a phase 2, randomised, double-blind, placebo-controlled trial.

The Lancet. Rheumatology pii:S2665-9913(24)00334-5 [Epub ahead of print].

BACKGROUND: Gastrointestinal tract involvement is highly prevalent in systemic sclerosis, with few treatment options. We assessed the efficacy and safety of faecal microbiota transplantation using standardised anaerobic cultivated human intestinal microbiome (ACHIM) as a novel treatment option for patients with systemic sclerosis and symptomatic lower gastrointestinal tract involvement.

METHODS: In this phase 2, randomised, double-blind, placebo-controlled trial done at four university hospitals in Norway, we enrolled adults aged 18-85 years with systemic sclerosis and moderate-to-severe lower gastrointestinal tract symptoms (bloating or diarrhoea). Participants were randomly assigned 1:1 to intestinal infusions of placebo or ACHIM at weeks 0 and 2, stratified by worst symptom (bloating or diarrhoea). The primary endpoint was change in worst lower gastrointestinal tract symptom (bloating or diarrhoea) from week 0 to week 12, measured using the University of California Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract 2.0 scoring system in the intention-to-treat population. Safety was assessed at weeks 0, 2, 4, 6, and 12 in all participants who received at least one infusion. A person with lived experience of systemic sclerosis was involved in the study planning and conduct. This trial was registered at ClinicalTrials.gov, NCT04300426.

FINDINGS: Between Sept 24, 2020, and Jan 14, 2022, 67 participants were enrolled and randomly allocated to placebo (n=34) or ACHIM (n=33). Mean age was 58·91 years (SD 11·59). 62 (93%) of 67 participants were women, five (7%) were men, and 50 (75%) were anti-centromere antibody positive. Change in worst lower gastrointestinal tract symptom from week 0 to week 12 did not differ between participants who received ACHIM (-0·13, 95% CI -0·37 to 0·11) and participants who received placebo (-0·33, -0·57 to -0·09; average marginal effect 0·20, 95% CI -0·12 to 0·52; p=0·22). Adverse events, mostly mild and short-lived gastrointestinal tract symptoms, were reported by 16 (48%) of 33 participants in the ACHIM group and 19 (56%) of 34 in the placebo group. During gastroscopy, one participant had a duodenal perforation.

INTERPRETATION: Faecal microbiota transplantation with ACHIM was well tolerated in participants with systemic sclerosis but did not result in an improvement in lower gastrointestinal tract symptoms.

FUNDING: KLINBEFORSK.

TRANSLATION: For the Norwegian translation of the abstract see Supplementary Materials section.

RevDate: 2025-02-03

Chaki T, Horiguchi Y, Tachibana S, et al (2025)

Gut Microbiota Influences Developmental Anesthetic Neurotoxicity in Neonatal Rats.

Anesthesia and analgesia pii:00000539-990000000-01140 [Epub ahead of print].

BACKGROUND: Anesthetic exposure during childhood is significantly associated with impairment of neurodevelopmental outcomes; however, the causal relationship and detailed mechanism of developmental anesthetic neurotoxicity remain unclear. Gut microbiota produces various metabolites and influences the brain function and development of the host. This relationship is referred to as the gut-brain axis. Gut microbiota may influence developmental anesthetic neurotoxicity caused by sevoflurane exposure. This study investigated the effect of changes in the composition of gut microbiota after fecal microbiota transplantation on spatial learning disability caused by developmental anesthetic neurotoxicity in neonatal rats.

METHODS: Neonatal rats were allocated into the Control (n = 10) and Sevo (n = 10) groups in Experiment 1 and the Sevo (n = 20) and Sevo+FMT (n = 20) groups in Experiment 2, according to the randomly allocated mothers' group. The rats in Sevo and Sevo+FMT groups were exposed to 2.1% sevoflurane for 2 hours on postnatal days 7 to 13. Neonatal rats in the Sevo+FMT group received fecal microbiota transplantation immediately after sevoflurane exposure on postnatal days 7 to 13. The samples for fecal microbiota transplantation were obtained from nonanesthetized healthy adult rats. Behavioral tests, including Open field, Y-maze, Morris water maze, and reversal Morris water maze tests, were performed to evaluate spatial learning ability on postnatal days 26 to 39.

RESULTS: Experiment 1 revealed that sevoflurane exposure significantly altered the gut microbiota composition. The relative abundance of Roseburia (effect value: 1.01) and Bacteroides genus (effect value: 1.03) increased significantly after sevoflurane exposure, whereas that of Lactobacillus (effect value: -1.20) decreased significantly. Experiment 2 revealed that fecal microbiota transplantation improved latency to target (mean ± SEM; Sevo group: 9.7 ± 8.2 seconds vs, Sevo+FMT group: 2.7 ± 2.4 seconds, d=1.16, 95% confidence interval: -12.7 to -1.3 seconds, P = .019) and target zone crossing times (Sevo group: 2.4 ± 1.6 vs, Sevo+FMT group: 5.4 ± 1.4, d=1.99, 95% confidence interval: 2.0-5.0, P < .001) in the reversal Morris water maze test. Microbiota analysis revealed that the α-diversity of gut microbiota increased after fecal microbiota transplantation. Similarly, the relative abundance of the Firmicutes phylum (effect value: 1.44), Ruminococcus genus (effect value: 1.69), and butyrate-producing bacteria increased after fecal microbiota transplantation. Furthermore, fecal microbiota transplantation increased the fecal concentration of butyrate and induced histone acetylation and the mRNA expression of brain-derived neurotrophic factor in the hippocampus, thereby suppressing neuroinflammation and neuronal apoptosis.

CONCLUSIONS: The alternation of gut microbiota after fecal microbiota transplantation influenced spatial learning ability in neonatal rats with developmental anesthetic neurotoxicity. Modulation of the gut microbiota may be an effective prophylaxis for developmental anesthetic neurotoxicity in children.

RevDate: 2025-02-04
CmpDate: 2025-02-03

Yu C, Sun R, Yang W, et al (2025)

Exercise ameliorates osteopenia in mice via intestinal microbial-mediated bile acid metabolism pathway.

Theranostics, 15(5):1741-1759.

Rationale: Physical exercise is essential for skeletal integrity and bone health. The gut microbiome, as a pivotal modulator of overall physiologic states, is closely associated with skeletal homeostasis and bone metabolism. However, the potential role of intestinal microbiota in the exercise-mediated bone gain remains unclear. Methods: We conducted microbiota depletion and fecal microbiota transplantation (FMT) in ovariectomy (OVX) mice and aged mice to investigate whether the transfer of gut ecological traits could confer the exercise-induced bone protective effects. The study analyzed the gut microbiota and metabolic profiles via 16S rRNA gene sequencing and LC-MS untargeted metabolomics to identify key microbial communities and metabolites responsible for bone protection. Transcriptome sequencing and RNA interference were employed to explore the molecular mechanisms. Results: We found that gut microbiota depletion hindered the osteogenic benefits of exercise, and FMT from exercised osteoporotic mice effectively mitigated osteopenia. Comprehensive profiling of the microbiome and metabolome revealed that the exercise-matched FMT reshaped intestinal microecology and metabolic landscape. Notably, alterations in bile acid metabolism, specifically the enrichment of taurine and ursodeoxycholic acid, mediated the protective effects on bone mass. Mechanistically, FMT from exercised mice activated the apelin signaling pathway and restored the bone-fat balance in recipient MSCs. Conclusion: Our study underscored the important role of the microbiota-metabolic axis in the exercise-mediated bone gain, heralding a potential breakthrough in the treatment of osteoporosis.

RevDate: 2025-02-04
CmpDate: 2025-02-03

Hou W, Cao Y, Wang J, et al (2025)

Single-cell nanocapsules of gut microbiota facilitate fecal microbiota transplantation.

Theranostics, 15(5):2069-2084.

Rationale: Fecal microbiota transplantation (FMT) is advantageous for treating intractable diseases via the microbiota-gut-organ axis. However, invasive administration of gut microbiota via nasal feeding tubes limits the widespread application of FMT. Here, we attempted to develop a novel strategy to deliver gut microbiota using nanocapsules. Methods: Single-cell nanocapsules were fabricated within 1 h by layer-by-layer assembly of silk fibroin and phosphatidylcholine to generate a protective nanoshell on the cell surface of complicated microbiota. The physical properties of the microbiota nanocapsules were analyzed. The protective effects of nanocapsules on the gastrointestinal tract were analyzed both in vitro and in vivo. The efficacy of FMT assisted by single-cell nanocapsules (NanoFMT) was evaluated using the inflammatory response, gut microbiota balance, and histopathological analysis in animal model. Results: The nanocapsules achieved a good coating ratio for a single type of microbe and complex microbiota, resulting in a remarkable increase in the survival rate of microbes in the gastrointestinal tract. NanoFMT improved the diversity and abundance of the gut microbiota better than common FMT in germ-free mice. Moreover, NanoFMT alleviated intestinal inflammation and positively reversed the microbiota balance in a mouse model of colitis compared with common FMT, assisted by the inherent anti-inflammatory effects of silk fibroin and phosphatidylcholine. Conclusions: Considering its rapid preparation, convenient delivery, and perfect therapeutic effect, we anticipate that NanoFMT may be a promising clinical candidate for next-generation FMT treatment.

RevDate: 2025-02-04

Zhao B, Zhou H, Lin K, et al (2025)

Antimicrobial peptide DP7 alleviates dextran sulfate sodium (DSS)-induced colitis via modifying gut microbiota and regulating intestinal barrier function.

MedComm, 6(2):e70085.

Inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), represent a growing global health concern. Restoring the balance of the gut microbiota, a crucial factor in intestinal health, offers potential for treating IBD. DP7, a novel antimicrobial peptide with potent antibacterial activity, was investigated for its anti-inflammatory effects in a dextran sulfate sodium (DSS)-induced UC mouse model. DP7 significantly ameliorated key disease parameters, including disease activity index, weight loss, and shortened colon length, while preserving colonic epithelial integrity and reducing inflammatory infiltration. Further analysis revealed potential targets of DP7, highlighting the significant role of Muribaculaceae bacteria during inflammatory states. To further explore the role of the gut microbiota in DP7's efficacy, fecal microbiota transplantation (FMT) was performed using feces from DP7-treated mice. FMT successfully ameliorated colitis in recipient mice, providing further evidence for the crucial role of the gut microbiome in IBD treatment and DP7's ability to modulate the gut microbiota for therapeutic benefit. Moreover, our findings suggest that DP7's modulation of the immune system is intricately linked to the complex microbial environment. Our findings demonstrate that DP7 effectively mitigates inflammation, attenuates barrier dysfunction, and shapes the gut microbiota, suggesting its potential as a therapeutic agent for UC.

RevDate: 2025-02-03

Gray SM, Wood MC, Mulkeen SC, et al (2025)

Dietary protein source mediates colitis pathogenesis through bacterial modulation of bile acids.

bioRxiv : the preprint server for biology pii:2025.01.24.634824.

Evidence-based dietary recommendations for individuals with inflammatory bowel diseases (IBD) are limited. Red meat consumption is associated with increased IBD incidence and relapse in patients, suggesting that switching to a plant-based diet may limit gut inflammation. However, the mechanisms underlying the differential effects of these diets remain poorly understood. Feeding diets containing plant- or animal-derived proteins to murine colitis models revealed that mice given a beef protein (BP) diet exhibited the most severe colitis, while mice fed pea protein (PP) developed mild inflammation. The colitis-promoting effects of BP were microbially-mediated as determined by bacterial elimination or depletion and microbiota transplant studies. In the absence of colitis, BP-feeding reduced abundance of Lactobacillus johnsonii and Turicibacter sanguinis and expanded Akkermansia muciniphila , which localized to the mucus in association with decreased mucus thickness and quality. BP-fed mice had elevated primary and conjugated fecal bile acids (BAs), and taurocholic acid administration to PP-fed mice worsened colitis. Dietary psyllium protected against BP-mediated inflammation, restored BA-modulating commensals and normalized BA ratios. Collectively, these data suggest that the protein component of red meat may be responsible, in part, for the colitis-promoting effects of this food source and provide insight into dietary factors that may influence IBD severity.

RevDate: 2025-02-05
CmpDate: 2025-02-03

Gazzaniga FS, DL Kasper (2025)

The gut microbiome and cancer response to immune checkpoint inhibitors.

The Journal of clinical investigation, 135(3):.

Immune checkpoint inhibitors (ICIs) are widely used for cancer immunotherapy, yet only a fraction of patients respond. Remarkably, gut bacteria impact the efficacy of ICIs in fighting tumors outside of the gut. Certain strains of commensal gut bacteria promote antitumor responses to ICIs in a variety of preclinical mouse tumor models. Patients with cancer who respond to ICIs have a different microbiome compared with that of patients who don't respond. Fecal microbiota transplants (FMTs) from patients into mice phenocopy the patient tumor responses: FMTs from responders promote response to ICIs, whereas FMTs from nonresponders do not promote a response. In patients, FMTs from patients who have had a complete response to ICIs can overcome resistance in patients who progress on treatment. However, the responses to FMTs are variable. Though emerging studies indicate that gut bacteria can promote antitumor immunity in the absence of ICIs, this Review will focus on studies that demonstrate relationships between the gut microbiome and response to ICIs. We will explore studies investigating which bacteria promote response to ICIs in preclinical models, which bacteria are associated with response in patients with cancer receiving ICIs, the mechanisms by which gut bacteria promote antitumor immunity, and how microbiome-based therapies can be translated to the clinic.

RevDate: 2025-02-05
CmpDate: 2025-02-03

Si W, Zhao X, Li R, et al (2025)

Lactobacillus rhamnosus GG induces STING-dependent IL-10 in intestinal monocytes and alleviates inflammatory colitis in mice.

The Journal of clinical investigation, 135(3):.

Preclinical and clinical observations indicate that the probiotic Lactobacillus rhamnosus GG (LGG) can modulate colonic inflammation. However, the underlying mechanisms have not been explored in depth. Here, we demonstrate that oral administration of live LGG alleviated inflammatory colitis by increasing IL-10 expression in intestinal Ly6C+ monocytes. Mechanistically, LGG induced IL-10 production via the stimulator of IFN genes (STING)/TBK1/NF-κB (RELA) signaling pathway in intestinal Ly6C+ monocytes, enhancing their immune-suppressive function. Elevated IL-10 subsequently activated IL-10 signaling in Ly6C+ monocytes, resulting in an IL-10-based autocrine regulatory loop and inhibition of proinflammatory cytokine production. Furthermore, LGG shifted the gut microbial community and its metabolic functions, leading to intestinal immune responses against colitis. Fecal microbiota transplantation from LGG-colonized mice alleviated immune checkpoint blockade-associated colitis. Our findings highlight the importance of STING signaling in IL-10-dependent antiinflammatory immunity and establish an empirical basis for developing oral administration of live LGG as an efficient and safe therapeutic strategy against inflammatory colitis.

RevDate: 2025-02-05
CmpDate: 2025-02-05

Feuerstadt P, Chopra T, Knapple W, et al (2025)

PUNCH CD3-OLS: A Phase 3 Prospective Observational Cohort Study to Evaluate the Safety and Efficacy of Fecal Microbiota, Live-jslm (REBYOTA) in Adults With Recurrent Clostridioides difficile Infection.

Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 80(1):43-51.

BACKGROUND: The aim of this study was to evaluate the safety and efficacy of fecal microbiota, live-jslm (RBL; REBYOTA)-the first single-dose, broad consortia microbiota-based live biotherapeutic approved by the US Food and Drug Administration for preventing recurrent Clostridioides difficile infection (rCDI) in adults following standard-of-care (SOC) antibiotic treatment.

METHODS: PUNCH CD3-OLS was a prospective, phase 3, open-label study, conducted across the US and Canada. Participants were aged ≥18 years with documented rCDI and confirmed use of SOC antibiotics. Participants with comorbidities including inflammatory bowel disease and mild-to-moderate immunocompromising conditions could be enrolled. A single dose of RBL was rectally administered within 24-72 hours of antibiotic completion. The primary endpoint was the number of participants with RBL- or administration-related treatment-emergent adverse events (TEAEs). Secondary endpoints included treatment success and sustained clinical response, at 8 weeks and 6 months after RBL administration, respectively.

RESULTS: Overall, 793 participants were enrolled, of whom 697 received RBL. TEAEs through 8 weeks after administration were reported by 47.3% of participants; most events were mild or moderate gastrointestinal disorders. Serious TEAEs were reported by 3.9% of participants. The treatment success rate at 8 weeks was 73.8%; in participants who achieved treatment success, the sustained clinical response rate at 6 months was 91.0%. Safety and efficacy rates were similar across demographic and baseline characteristic subgroups.

CONCLUSIONS: RBL was safe and efficacious in participants with rCDI and common comorbidities. This is the largest microbiota-based live biotherapeutic study to date, and findings support use of RBL to prevent rCDI in a broad patient population.

CLINICAL TRIALS REGISTRATION: NCT03931941.

RevDate: 2025-02-01
CmpDate: 2025-02-01

McGann C, Phyu R, Bittinger K, et al (2025)

Role of the Microbiome in Neonatal Infection: Pathogenesis and Implications for Management.

Clinics in perinatology, 52(1):147-166.

The human microbiome refers to the collective genome of microorganisms, including bacteria, fungi, and viruses residing on human body surfaces that are in contact with the environment. Together these communities protect against invasive infections. Conversely, when disrupted, the microbiome can be the source of pathogens causing invasive infection. Interventions to manipulate it via probiotics, antibiotics, and fecal transplantation are available. The risk benefit of these interventions remains unclear. In this review, the authors discuss evidence linking the gut microbiome to neonatal sepsis and also discuss the challenges for translating this knowledge into better clinical care.

RevDate: 2025-01-31

Rafie E, Zugman M, Pal SK, et al (2025)

What Is the Role of Fecal Microbiota Transplantation in Immunotherapy Trials? Current Perspectives and Future Directions.

European urology focus pii:S2405-4569(24)00268-2 [Epub ahead of print].

Immune checkpoint inhibitors (ICIs) are rapidly transforming the treatment landscape of genitourinary and other immunogenic malignancies. Despite these advances, biomarkers for the prediction of ICI response remain to be established. The gut microbiome has been identified as a modulator of immune regulation and a potential regulator of response to ICIs. Fecal microbiota transplantation (FMT) has emerged as a potential novel therapeutic tool to enhance ICI response, as demonstrated in several trials, spanning across genitourinary malignancies as well as others. While safety and clinical potential of FMT have been demonstrated, FMT parameters including optimal treatment regimens, bowel preparation protocols, patient selection, and donor-host compatibility need to be defined. Furthermore, targeted interventions including probiotic supplementation represent promising therapeutic avenues meriting further study.

RevDate: 2025-01-31

Zhu W, Hu Y, Shi Y, et al (2025)

Sleep deprivation accelerates Parkinson's disease via modulating gut microbiota associated microglial activation and oxidative stress.

Microbiological research, 293:128077 pii:S0944-5013(25)00033-3 [Epub ahead of print].

The interplay between Parkinson's disease (PD) and sleep disturbances suggests that sleep problems constitute a risk factor for PD progression, but the underlying mechanisms remain unclear. Microglial activation and oxidative stress are considered to play an important role in the pathogenesis of aging and neurodegenerative diseases. We hypothesized that sleep deprivation (SD) could exacerbate PD progression via modulating microglial activation and oxidative stress. To test this hypothesis, we established a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), then subjected the mice to SD. A battery of behavioral tests, including rotarod, pole, adhesive removal, and open field tests, were used to assess motor function. Our study showed that SD exacerbated motor deficits, loss of tyrosine hydroxylase (TH), microglial activation and oxidative stress damage in PD model mice. Fecal microbiota transplantation experiments revealed that SD mediated PD progression, microglial activation and oxidative stress via the gut microbiota. 16S rRNA sequencing analysis indicated that SD increased the abundances of bacteria such as Bacteroidaceae, while decreasing the abundances of bacteria including Lactobacillus. Non-targeted metabolomic analysis of gut microbiota-derived metabolites revealed that SD significantly increased the production of adenosine (ADO), a purine metabolite. Probiotic supplementation reversed the effects of SD on motor deficits, dopaminergic neuron loss, microglial activation and oxidative stress damage in PD mice; it also decreased SD-induced ADO production. Administration of Adenosine A2A receptor (A2AR) inhibitors, Istradefylline (Ist), attenuated the roles of SD and ADO in promoting microglial activation, oxidative stress and PD progression. Taken together, our findings indicate that SD accelerates PD progression via regulating microbiota associated microglial activation and oxidative stress, suggesting that efforts to improve sleep quality can be used to prevent and treat PD.

RevDate: 2025-01-31

Zeng X, Sun L, Xie H, et al (2025)

Lactobacillus johnsonii Generates Cyclo(pro-trp) and Promotes Intestinal Ca[2+] Absorption to Alleviate CKD-SHPT.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

Patients with chronic kidney disease (CKD) are at a high risk of developing secondary hyperparathyroidism (SHPT), which may cause organ dysfunction and increase patient mortality. The main clinical interventions for CKD-SHPT involve calcium supplements to boost absorption, but ineffective for some patients, and the reasons remain unclear. Here, CKD mice are divided into high and low groups based on intact parathyroid hormone (iPTH) levels. The high group exhibits significant changes in gut microbes, including a decrease in Lactobacillus, an increase in parathyroid hyperplasia, and a decrease in intestinal calcium. Fecal microbiota transplantation and L. johnsonii colonization indicate a link between gut microbes and CKD-SHPT. Clinically, higher L. johnsonii levels are correlated with milder hyperparathyroidism CKD-SHPT. The receiver operating characteristic (ROC) curve for L. johnsonii abundance and surgical risk is 0.81, with the calibration curve confirming predictive accuracy, and decision curve analysis revealing good clinical applicability. In vivo and in vitro experiments show that cyclo(pro-trp) enhance calcium inflow and lower iPTH levels in intestinal epithelial cells via a calcium-sensing receptor and transient receptor potential vanilloid 4 pathways. This study identified the crucial role of L. johnsonii in CKD-SHPT, unveiling a new mechanism for calcium imbalance and offering novel strategies for SHPT treatment and drug development.

RevDate: 2025-01-31

Byrd DA, Damerell V, Gomez Morales MF, et al (2025)

The gut microbiome is associated with disease-free survival in stage I-III colorectal cancer patients.

International journal of cancer [Epub ahead of print].

Colorectal cancer (CRC) is the second overall leading cause of cancer death in the United States, with recurrence being a frequent cause of mortality. Approaches to improve disease-free survival (DFS) are urgently needed. The gut microbiome, reflected in fecal samples, is likely mechanistically linked to CRC progression and may serve as a non-invasive biomarker. Accordingly, we leveraged baseline fecal samples from N = 166 stage I-III CRC patients in the ColoCare Study, a prospective cohort of newly diagnosed CRC patients. We sequenced the V3 and V4 regions of the 16S rRNA gene to characterize fecal bacteria. We calculated estimates of alpha diversity, beta diversity, and a priori- and exploratory-selected bacterial presence/absence and relative abundance. Associations of microbial metrics with DFS were estimated using multivariable Cox proportional hazards models. We found that alpha diversity was strongly associated with improved DFS, most strongly among rectal cancer patients (Shannon HRrectum = 0.40 95% CI = 0.19, 0.87; p = .02). Overall microbiome composition differences (beta diversity), as characterized by principal coordinate axes, were statistically significantly associated with DFS. Peptostreptococcus was statistically significantly associated with worse DFS (HR = 1.62, 95% CI = 1.13, 2.31; p = .01 per 1-SD) and Order Clostridiales was associated with improved DFS (HR = 0.62, 95% CI = 0.43-0.88; p = .01 per 1-SD). In exploratory analyses, Coprococcus and Roseburia were strongly associated with improved DFS. Overall, higher bacterial diversity and multiple bacteria were strongly associated with DFS. Metagenomic sequencing to elucidate species, gene, and functional level details among larger, diverse patient populations are critically needed to support the microbiome as a biomarker of CRC outcomes.

RevDate: 2025-01-31

Tang X, Zeng T, Deng W, et al (2025)

Gut microbe-derived betulinic acid alleviates sepsis-induced acute liver injury by inhibiting macrophage NLRP3 inflammasome in mice.

mBio [Epub ahead of print].

UNLABELLED: Sepsis-induced acute liver injury (SALI) is a prevalent and life-threatening complication associated with sepsis. The gut microbiota plays a crucial role in the maintenance of health and the development of diseases. The impact of physical exercise on gut microbiota modulation has been well-documented. However, the potential impact of gut microbiome on exercise training-induced protection against SALI remains uncertain. Here, we discovered exercise training ameliorated SALI and systemic inflammation in septic mice. Notably, gut microbiota pre-depletion abolished the protective effects of exercise training in SALI mice. Fecal microbiota transplantation treatment revealed that exercise training-associated gut microbiota contributed to the beneficial effect of exercise training on SALI. Exercise training modulated the metabolism of Ligilactobacillus and enriched betulinic acid (BA) levels in mice. Functionally, BA treatment conferred protection against SALI by inhibiting the hepatic inflammatory response in mice. BA bound and inactivated hnRNPA2B1, thus suppressing NLRP3 inflammasome activation in macrophages. Collectively, this study reveals gut microbiota is involved in the protective effects of exercise training against SALI, and gut microbiota-derived BA inhibits the hepatic inflammatory response via the hnRNPA2B1-NLRP3 axis, providing a potential therapeutic strategy for SALI.

IMPORTANCE: Sepsis is characterized by a dysregulated immune response to an infection that leads to multiple organ dysfunction. The occurrence of acute liver injury is frequently observed during the initial stage of sepsis and is directly linked to mortality in the intensive care unit. The preventive effect of physical exercise on SALI is well recognized, yet the underlying mechanism remains poorly elucidated. Exercise training alters the gut microbiome in mice, increasing the abundance of Ligilactobacillus and promoting the generation of BA. Additionally, BA supplementation can suppress the NLRP3 inflammasome activation in macrophages by directly binding to hnRNPA2B1, thereby mitigating SALI. These results highlight the beneficial role of gut microbiota-derived BA in inhibiting the hepatic inflammatory response, which represents a crucial stride toward implementing microbiome-based therapeutic strategies for the clinical management of sepsis.

RevDate: 2025-02-02
CmpDate: 2025-01-31

Abdel-Raoof Fouda M, Abdel-Wahhab M, Abdelkader AE, et al (2025)

Effect of gut microbiota changes on cytokines IL-10 and IL-17 levels in liver transplantation patients.

BMC infectious diseases, 25(1):140.

BACKGROUND: Liver transplantation (LT) is a critical intervention for individuals with end-stage liver disease; yet, post-transplant problems, especially infections, graft rejection, and chronic liver disease, are often linked to systemic inflammation. Cytokines, small signaling molecules, significantly influence immune responses during and post-liver transplantation. Nonetheless, the intricate relationships among cytokines, immune responses, and the gut microbiota, especially gut dysbiosis, are still inadequately comprehended. Thus, this study aims to identify the gut microbiota (GM) and determine their relationship to cytokines (IL-17 and IL-10) in LT patients, due to their importance in enhancing the recovery rate.

RESULT: The research included 31 liver transplant (LT) patients from the Gastroenterology Surgical Center at Mansoura University, resulting in the collection of 174 stool and blood samples from all participants. Fourteen bacterial species have been identified in samples collected at three intervals: one week before, one week post, and two weeks post LT. A change in gut microbiota composition was noted, characterized by a rise in potentially pathogenic bacteria such as Enterococci and Enterobacteriaceae (including Escherichia coli and Klebsiella) and a reduction in beneficial bacteria such as Bacteroidetes and Firmicutes. The examination of patient demographic and clinical data revealed no significant correlations between sex, age, or diagnostic categories and gut microbiota composition. The findings of the Multivariate Analysis of Variance (MANOVA) indicated a substantial effect of gut microbiota composition on cytokine levels (IL-10 and IL-17), with all tests producing p-values of 0.001. The assessment of cytokine levels indicated fluctuating variations at several time points following surgery. IL-10 levels in the GM groups exhibited a statistically significant elevation during the second week post-surgery (p = 0.036), suggesting a potential recovery-related anti-inflammatory response. In contrast, IL-17 levels rose in the NI group over time, indicating a transition to a pro-inflammatory condition.

CONCLUSION: This study emphasizes the pivotal role of the gut microbiota in regulating immune responses following transplantation.

RevDate: 2025-01-31

Renk H, Schoppmeier U, Müller J, et al (2024)

Oxygenation and intestinal perfusion and its association with perturbations of the early life gut microbiota composition of children with congenital heart disease.

Frontiers in microbiology, 15:1468842.

BACKGROUND: Early life gut microbiota is known to shape the immune system and has a crucial role in immune homeostasis. Only little is known about composition and dynamics of the intestinal microbiota in infants with congenital heart disease (CHD) and potential influencing factors.

METHODS: We evaluated the intestinal microbial composition of neonates with CHD (n = 13) compared to healthy controls (HC, n = 30). Fecal samples were analyzed by shotgun metagenomics. Different approaches of statistical modeling were applied to assess the impact of influencing factors on variation in species composition. Unsupervised hierarchical clustering of the microbial composition of neonates with CHD was used to detect associations of distinct clusters with intestinal tissue oxygenation and perfusion parameters, obtained by the "oxygen to see" (O2C) method.

RESULTS: Overall, neonates with CHD showed an intestinal core microbiota dominated by the genera Enterococcus (27%) and Staphylococcus (20%). Furthermore, a lower abundance of the genera Bacteroides (8% vs. 14%), Parabacteroides (1% vs. 3%), Bifidobacterium (4% vs. 12%), and Escherichia (8% vs. 23%) was observed in CHD compared to HCs. CHD patients that were born by vaginal delivery showed a lower fraction of the genera Bacteroides (15% vs. 21%) and Bifidobacterium (7% vs. 22%) compared to HCs and in those born by cesarean section, these genera were not found at all. In infants with CHD, we found a significant impact of oxygen saturation (SpO2) on relative abundances of the intestinal core microbiota by multivariate analysis of variance (F[8,2] = 24.9, p = 0.04). Statistical modeling suggested a large proportional shift from a microbiota dominated by the genus Streptococcus (50%) in conditions with low SpO2 towards the genus Enterococcus (61%) in conditions with high SpO2. We identified three distinct compositional microbial clusters, corresponding neonates differed significantly in intestinal blood flow and global gut perfusion.

CONCLUSION: Early life differences in gut microbiota of CHD neonates versus HCs are possibly linked to oxygen levels. Delivery method may affect microbiota stability. However, further studies are needed to assess the effect of potential interventions including probiotics or fecal transplants on early life microbiota perturbations in neonates with CHD.

RevDate: 2025-01-29

Wang S, Yan K, Dong Y, et al (2025)

The influence of microplastics on hypertension-associated cardiovascular injury via the modulation of gut microbiota.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(25)00133-2 [Epub ahead of print].

Microplastics (MPs) have been found to interfere with the gut microbiota and compromise the integrity of the gut barrier. Excessive exposure to MPs markedly elevates the risk of cardiovascular disease, yet their influence on hypertension remains elusive, calling for investigation into their potential impacts on blood pressure (BP) regulation. In the present study, an increase in the concentration of MPs was observed in the fecal samples of individuals suffering from hypertension, as compared to the controls. Oral administration of MPs led to obvious increases in systolic, diastolic and mean BP levels in mice. MPs were associated with promoting myocardial hypertrophy, fibrosis, and cardiac remodeling through alterations in gut microbial composition, such as Prevotella and Coprobacillus, or fecal metabolites Betaine and Glycyrrhetinic acid. The hypertensive damage mediated by MPs was significantly mitigated by the high-fiber diet or antibiotics that targeted the gut microbiota. Notablely, fecal microbiota transplantation from mice treated with MPs led to an increase in systolic BP levels and the development of cardiac dysfunction. Our findings offer valuable insights into the complex interplay between MPs and the gut microbiome in the context of hypertension, and suggest potential strategies for reducing the vascular and cardiac injury caused by MPs.

RevDate: 2025-01-29
CmpDate: 2025-01-29

Stallmach A (2025)

[The gastrointestinal microbiome - vision and mission].

Deutsche medizinische Wochenschrift (1946), 150(4):157-162.

The gastrointestinal microbiome influences physiological functions and is altered in a variety of diseases. The causality of "dysbiosis" in the pathogenesis is not always proven; association studies are often involved. Patients with IBD, bacteria, fungi, bacteriophages, and archaea show disease-typical patterns associated with metabolome disturbances. Fecal microbiome transfer (FMT) for treating various diseases is the subject of numerous clinical studies. Currently, recurrent Clostridioides difficile infection (rCDI) is the only confirmed indication recommended in medical guidelines. In Germany, the FMT is subject to the Medicines Act and may only be carried out as part of individual healing attempts or clinical studies. For patient safety, repeated donor screening, ideally with the construction of a chair bench, is necessary. This significantly limits the nationwide availability of the FMT in Germany. Microbiota-based therapeutics prepared from the stool of tested donors have recently been approved by the US Food and Drug Administration (FDA) for the prevention of rCDI. More microbiome-based medicines can be expected in the future.

RevDate: 2025-01-29
CmpDate: 2025-01-29

Weirauch T, MJGT Vehreschild (2025)

[Nosocomial gastrointestinal infections and Clostridioides difficile].

Deutsche medizinische Wochenschrift (1946), 150(4):149-156.

German surveillance data from 2022 reported a prevalence of nosocomial infections among hospitalized patients of 5,2%. Clostridioides-difficile-infections (CDI) are the most frequent cause of nosocomial diarrhea. They are usually caused by antibiotic exposure and the subsequent changes in the gut microbiota. Clinical manifestation ranges from asymptomatic colonization over moderate diarrhea to severe pseudomembranous colitis. According to the current German Gastrointestinal Infection Guidelines, fidaxomicin is the preferred treatment option for CDI, especially in patients at high risk of recurrence or those already suffering from recurrence. Vancomycin can also be used as an alternative for initial CDI treatment. Fecal microbiota transplantation is considered a treatment approach for patients with multiple recurrences.

RevDate: 2025-01-29
CmpDate: 2025-01-29

Carroll A, Bell MJ, Bleach ECL, et al (2025)

Impact of dairy calf management practices on the intestinal tract microbiome pre-weaning.

Journal of medical microbiology, 74(1):.

Introduction. Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves.Discussion. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life. The colonization of the calf intestinal microbiome dynamically changes from birth, increasing microbial richness and diversity until weaning, where further dynamic and drastic microbiome change occurs. In dairy calves, neonatal microbiome development prior to weaning is influenced by direct and indirect factors, some of which could be considered stressors, such as maternal interaction, environment, diet, husbandry and weaning practices. The specific impact of these can dictate intestinal microbial colonization, with potential lifelong consequences.Conclusion. Evidence suggests the potential detrimental effect that sudden changes and stress may have on calf health and growth due to management and husbandry practices, and the importance of establishing a stable yet diverse intestinal microbiome population at an early age is essential for calf success. The possibility of improving the health of calves through intestinal microbiome modulation and using alternative strategies including probiotic use, faecal microbiota transplantation and novel approaches of microbiome tracking should be considered to support animal health and sustainability of dairy production systems.

RevDate: 2025-01-29

Zheng Y, Yu Y, Chen M, et al (2025)

Abdominal LIPUS Stimulation Prevents Cognitive Decline in Hind Limb Unloaded Mice by Regulating Gut Microbiota.

Molecular neurobiology [Epub ahead of print].

Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation. So we wondered if abdominal LIPUS stimulation can have a positive impact on weightlessness induced cognitive decline by reducing intestinal dysfunction. The findings revealed that the hind limb unloaded mice exhibited evident disruption in intestinal structure and gut microbial homeostasis, along with impairment in their learning and memory capabilities. However, 4-week abdominal LIPUS treatment improved intestinal function in hind limb unloaded mice, characterized by upregulation of tight junction proteins ZO-1 and Occludin expression in the colon, increased diversity and abundance of intestinal microbiota, decreased serum lipopolysaccharide (LPS), and increased short chain fatty acids in colon contents. The hind limb unloaded mice treated with LIPUS exhibited heightened activity levels, improved exploratory tendencies, and significantly enhanced learning and memory faculties, and elevated expression of neuroadaptation-related proteins such as PSD95, GAP43, P-CREB, BDNF, and its receptor TRKB in the hippocampus. Furthermore, the hind limb unloaded mice receiving fecal transplants from the mice whose abdomens were irradiated with LIPUS displayed enhanced cognitive abilities and improved intestinal structure, akin to the outcomes observed in hind limb unloaded mice who received LIPUS abdominal treatment directly. The above results indicate that LIPUS enhances intestinal structure and microbiota, which helps alleviate cognitive impairment caused by weightlessness. LIPUS could be a potential strategy to simultaneously improve gut dysfunction and cognitive decline in astronauts or bedridden patients.

RevDate: 2025-02-03
CmpDate: 2025-02-03

Pribyl AL, Hugenholtz P, MA Cooper (2025)

A decade of advances in human gut microbiome-derived biotherapeutics.

Nature microbiology, 10(2):301-312.

Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use. Next-generation therapies based on readily culturable and as-yet-unculturable colonic bacterial species (with the latter estimated to comprise 63% of all detected species) have not yet progressed to pivotal phase 3 trials. This reflects the many challenges involved in developing a new class of drugs in an evolving field. Here we discuss the evolution of the live biotherapeutics field over the past decade, from the development of first-generation products to the emergence of rationally designed second- and third-generation live biotherapeutics. Finally, we present our outlook for the future of this field.

RevDate: 2025-01-31

Zhu W, Dykstra K, Zhang L, et al (2021)

Gut Microbiome as Potential Therapeutics in Multiple Sclerosis.

Current treatment options in neurology, 23(11):.

PURPOSE OF REVIEW: The gut microbiome is an emerging arena to investigate multiple sclerosis (MS) pathogenesis and potential therapeutics. In this review, we summarize the available data and postulate the feasibilities of potential MS therapeutic approaches that modulate the gut microbiome.

RECENT FINDINGS: Growing evidence indicates dysbiosis in the gut bacterial ecosystem in MS. Diet and other interventions produce biologically significant changes in the gut bacterial communities and functions, can potentially regulate the immune system, and benefit people with MS. While well-conducted investigations of the therapeutic mechanisms for targeting gut microbiome in animal models and humans remain limited, promising connections between various mechanisms of gut microbiome regulation and beneficial effects on MS outcomes are emerging.

SUMMARY: To date, studies examining the microbiome-based therapies in MS remain limited in number and follow-up duration. There is a clear need to determine the long-term efficacy and safety of these approaches, and to identify their underlying mechanisms of actions.

RevDate: 2025-01-28

Qin L, Fan B, Zhou Y, et al (2025)

Targeted Gut Microbiome Therapy: Applications and Prospects of Probiotics, Fecal Microbiota Transplantation and Natural Products in the Management of Type 2 Diabetes.

Pharmacological research pii:S1043-6618(25)00050-7 [Epub ahead of print].

Type 2 diabetes mellitus (T2DM) is considered as one of the most pressing public health challenges worldwide. Studies have shown significant differences in the gut microbiota between healthy individuals and T2DM patients, suggesting that gut microorganisms may play a key role in the onset and progression of T2DM. This review systematically summarizes the relationship between gut microbiota and T2DM, and explores the mechanisms through which gut microorganisms may alleviate T2DM. Additionally, it evaluates the potential of probiotics, fecal microbiota transplantation (FMT)/virome transplantation (FVT), and natural products in modulating gut microbiota to treat T2DM. Although existing studies have suggested that these interventions may delay or even halt the progression of T2DM, most research remained limited to animal models and observational clinical studies, with a lack of high-quality clinical data. This has led to an imbalance between theoretical research and clinical application. Although some studies have explored the regulatory role of the gut virome on the gut microbiota, research in this area remains in its early stages. Based on these current studies, future research should be focused on large-scale, long-term clinical studies and further investigation on the potential role of the gut virome in T2DM. In conclusion, this review aims to summarize the current evidence and explore the applications of gut microbiota in T2DM treatment, as well as providing recommendations for further investigation in this field.

RevDate: 2025-01-29
CmpDate: 2025-01-28

Scher JU, Nayak R, JC Clemente (2025)

Microbiome research in autoimmune and immune-mediated inflammatory diseases: lessons, advances and unmet needs.

Annals of the rheumatic diseases, 84(1):9-13.

The increasing prevalence of autoimmune and immune-mediated diseases (AIMDs) underscores the need to understand environmental factors that contribute to their pathogenesis, with the microbiome emerging as a key player. Despite significant advancements in understanding how the microbiome influences physiological and inflammatory responses, translating these findings into clinical practice remains challenging. This viewpoint reviews the progress and obstacles in microbiome research related to AIMDs, examining molecular techniques that enhance our understanding of microbial contributions to disease. We discuss significant discoveries linking specific taxa and metabolites to diseases such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis, highlighting the role of gut dysbiosis and host-microbiome interactions. Furthermore, we explore the potential of microbiome-based therapeutics, including faecal microbiota transplantation and pharmacomicrobiomics, while addressing the challenges of identifying robust microbial targets. We advocate for integrative, transdisease studies and emphasise the need for diverse cohort research to generalise findings across populations. Understanding the microbiome's role in AIMDs will pave the way for personalised medicine and innovative therapeutic strategies.

RevDate: 2025-01-28

Pezeshki B, Abdulabbas HT, Alturki AD, et al (2025)

Synergistic Interactions Between Probiotics and Anticancer Drugs: Mechanisms, Benefits, and Challenges.

Probiotics and antimicrobial proteins [Epub ahead of print].

Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy. Probiotics employ various mechanisms to inhibit cancer initiation and progression. These include colonizing and protecting the gastrointestinal tract (GIT), producing metabolites, inducing apoptosis and autophagy, exerting anti-inflammatory properties, preventing metastasis, enhancing the effectiveness of immune checkpoint inhibitors (ICIs), promoting cancer-specific T cell infiltration, arresting the cell cycle, and exhibiting direct or indirect synergistic effects with anticancer drugs. Additionally, probiotics have been shown to activate tumor suppressor genes and inhibit pro-inflammatory transcription factors. They also increase reactive oxygen species production within cancer cells. Synergistic interactions between probiotics and various anticancer drugs, such as cisplatin, cyclophosphamide, 5-fluorouracil, trastuzumab, nivolumab, ipilimumab, apatinib, gemcitabine, tamoxifen, sorafenib, celecoxib and irinotecan have been observed. The combination of probiotics with anticancer drugs holds promise in overcoming drug resistance, reducing recurrence, minimizing side effects, and lowering treatment costs. In addition, fecal microbiota transplantation (FMT) and prebiotics supplementation has increased cytotoxic T cells within tumors. However, probiotics may leave some adverse effects such as risk of infection and gastrointestinal effects, antagonistic effects with drugs, and different responses among patients. These findings highlight insights for considering specific strains and engineered probiotic applications, preferred doses and timing of treatment, and personalized therapies to enhance the efficacy of cancer therapy. Accordingly, targeted interventions and guidelines establishment needs extensive randomized controlled trials as probiotic-based cancer therapy has not been approved by Food and Drug Administration (FDA).

RevDate: 2025-01-31
CmpDate: 2025-01-28

An L, Li S, Chang Z, et al (2025)

Gut microbiota modulation via fecal microbiota transplantation mitigates hyperoxaluria and calcium oxalate crystal depositions induced by high oxalate diet.

Gut microbes, 17(1):2457490.

Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis. However, the underlying mechanisms involving gut microbiota and metabolite disruptions in secondary hyperoxaluria remain poorly understood. Here, we investigated the therapeutic efficacy of fecal microbiota transplantation (FMT) sourced from healthy rats fed with standard pellet diet against urinary oxalate excretion, renal damage and calcium oxalate (CaOx) crystal depositions via using hyperoxaluria rat models. We observed dose-dependent increases in urinary oxalate excretion and CaOx crystal depositions due to hyperoxaluria, accompanied by significant reductions in gut microbiota diversity characterized by shifts in Ruminococcaceae_UCG-014 and Parasutterella composition. Metabolomic analysis validated these findings, revealing substantial decreases in key metabolites associated with these microbial groups. Transplanting microbes from healthy rats effectively reduced HDOx-induced urinary oxalate excretion and CaOx crystal depositions meanwhile restoring Ruminococcaceae_UCG-014 and Parasutterella populations and their associated metabolites. Furthermore, FMT treatment could significantly decrease the urinary oxalate excretion and CaOx crystal depositions in rat kidneys via, at least in part, upregulating the expressions of intestinal barrier proteins and oxalate transporters in the intestine. In conclusion, our study emphasizes the effectiveness of FMT in countering HDOx-induced hyperoxaluria by restoring gut microbiota and related metabolites. These findings provide insights on the complex connection between secondary hyperoxaluria caused by high dietary oxalate and disruptions in gut microbiota, offering promising avenues for targeted therapeutic strategies.

RevDate: 2025-01-27

Misselwitz B, D Haller (2025)

[The intestinal microbiota in inflammatory bowel diseases].

Innere Medizin (Heidelberg, Germany) [Epub ahead of print].

BACKGROUND: The intestinal microbiota comprises all living microorganisms in the gastrointestinal tract and is crucial for its function. Clinical observations and laboratory findings confirm a central role of the microbiota in chronic inflammatory bowel diseases (IBD). However, many mechanistic details remain unclear.

OBJECTIVES: Changes in the microbiota and the causal relationship with the pathogenesis of IBD are described and current and future diagnostic and therapeutic options are discussed.

MATERIALS AND METHODS: Narrative review.

RESULTS: The intestinal microbiota is altered in composition, diversity, and function in IBD patients, but specific (universal) IBD-defining bacteria have not been identified. The healthy microbiota has numerous anti-inflammatory functions such as the production of short-chain fatty acids or competition with pathogens. In contrast, the IBD microbiota promotes inflammation through the destruction of the intestinal barrier and direct interaction with the immune system. The balance between pro- and anti-inflammatory effects of the microbiota appears to be crucial for the development of intestinal inflammation. Microbiota-based IBD diagnostics show promise but are not yet ready for clinical use. Probiotics and fecal microbiota transplantation have clinical effects, especially in ulcerative colitis, but the potential of microbiota-based therapies is far from being fully realized.

CONCLUSION: IBD dysbiosis remains undefined so far. It is unclear how the many parallel pro- and anti-inflammatory mechanisms contribute to IBD pathogenesis. An inadequate mechanistic understanding hinders the development of microbiota-based diagnostics and therapies.

RevDate: 2025-01-27

Vázquez-Cuesta S, Olmedo M, Kestler M, et al (2025)

Prospective analysis of biomarkers associated with successful faecal microbiota transplantation in recurrent Clostridioides difficile Infection.

Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases pii:S1198-743X(25)00034-5 [Epub ahead of print].

OBJECTIVES: Faecal microbiota transplantation (FMT) is an established treatment for recurrent Clostridioides difficile infection (R-CDI). This study aimed to identify calprotectin and microbiome characteristics as potential biomarkers of FMT success.

METHODS: We conducted a prospective study of patients who underwent oral FMT (single dose of 4-5 capsules) for R-CDI (January 2018 to December 2022). Samples were collected at three time points: at CDI diagnosis, within 24 hours prior to FMT administration, and 30 days post-FMT. Calprotectin levels were assessed and the V4 region of the 16S rRNA gene was sequenced to analyse the microbiota composition. Sequencing data analysis and statistical analysis were performed using MOTHUR and R.

RESULTS: Ninety-seven patients underwent FMT (totalling 105 procedures). A total of 221 samples were processed, including 21 donor samples, 24 capsule contents, and 176 patient faecal samples (39 at diagnosis, 63 pre-FMT, and 74 post-FMT). FMT achieved an overall success rate of 85.1% (86/101 cases). The abundance of Bacteroides, Ruminococcus, Megamonas, and certain Prevotella operational taxonomic units (OTUs) was significantly higher in capsules associated with 100% success compared to less effective capsules. FMT engraftment was observed in 95% of patients with favourable outcomes versus 62% of those with recurrences (p = 0.006). Additionally, a negative correlation was found between calprotectin levels and specific microbial genera, suggesting an association with successful outcomes.

CONCLUSIONS: This study highlights differences in the evolution of faecal microbiota, bacterial engraftment, and inflammation markers (e.g., calprotectin) between patients with varying FMT outcomes. Potential biomarkers for successful FMT were identified, providing valuable insights for optimizing FMT strategies.

RevDate: 2025-01-30

Ren P, Liu M, Wei B, et al (2025)

Fucoidan exerts antitumor effects by regulating gut microbiota and tryptophan metabolism.

International journal of biological macromolecules, 300:140334 pii:S0141-8130(25)00883-9 [Epub ahead of print].

Fucoidan, a water-soluble polysaccharide derived from marine organisms, has garnered significant attention for its ability to regulate gut microbiota and its anti-tumor properties. However, the existence of a correlation between the anti-tumor effect of fucoidan and its regulation of the gut microbiota remains unknown. In pursuit of this objective, we culled the gut microbiota of mice with broad-spectrum antibiotics to generate pseudo-sterile tumor-bearing mice. Subsequently, fecal microbial transplants were introduced into the pseudo-sterile tumor-bearing mice. The antitumor effects of fucoidan were found to be dependent on the gut microbiota. Fucoidan promoted the proliferation of Akkermansia, Bifidobacterium and Lactobacillus, which have immunomodulatory effects. Furthermore, through regulation of gut microbiota, fucoidan influenced the metabolic process of tryptophan and facilitated its conversion to indole-3-acetic acid. In addition, fucoidan decreased the kynurenine/tryptophan ratio in serum, increased the proportion of CD8+ T cells, and suppressed the expression level of IDO1 in tumor tissues. Our results confirm that fucoidan enhances anti-tumor immune responses and subsequently exhibits anti-tumor effects by modulating the gut microbiota. Our research contributes to the comprehension of the mechanism of anti-tumor effects of fucoidan and facilitates the development of fucoidan as a dietary supplement for cancer patients.

RevDate: 2025-01-31
CmpDate: 2025-01-31

Vaughn BP, Khoruts A, M Fischer (2025)

Diagnosis and Management of Clostridioides difficile in Inflammatory Bowel Disease.

The American journal of gastroenterology, 120(2):313-319.

Patients with inflammatory bowel disease (IBD) have an increased risk of Clostridioides difficile infection (CDI), which can lead to worse IBD outcomes. The diagnosis of CDI in patients with IBD is complicated by higher C. difficile colonization rates and shared clinical symptoms of intestinal inflammation. Traditional risk factors for CDI, such as antibiotic exposure, may be lacking in patients with IBD because of underlying intestinal microbiota dysbiosis. Although CDI disproportionately affects people with IBD, patients with IBD are typically excluded from CDI clinical trials creating a knowledge gap in the diagnosis and management of these 2 diseases. This narrative review aims to provide a comprehensive overview of the diagnosis, treatment, and prevention of CDI in patients with IBD. Distinguishing CDI from C. difficile colonization in the setting of an IBD exacerbation is important to avoid treatment delays. When CDI is diagnosed, extended courses of anti- C. difficile antibiotics may lead to better CDI outcomes. Regardless of a diagnosis of CDI, the presence of C. difficile in a patient with IBD should prompt a disease assessment of the underlying IBD. Microbiota-based therapies and bezlotoxumab seem to be effective in preventing CDI recurrence in patients with IBD. Patients with IBD should be considered at high risk of CDI recurrence and evaluated for a preventative strategy when diagnosed with CDI. Ultimately, the comanagement of CDI in a patient with IBD requires a nuanced, patient-specific approach to distinguish CDI from C. difficile colonization, prevent CDI recurrence, and manage the underlying IBD.

RevDate: 2025-01-27
CmpDate: 2025-01-27

Kayal M, B Boland (2025)

Approach to Therapy for Chronic Pouchitis.

Annual review of medicine, 76(1):167-173.

Chronic pouchitis (CP) occurs in approximately 20% of patients with ulcerative colitis after total proctocolectomy with ileal pouch anal anastomosis and is categorized as antibiotic dependent, antibiotic refractory, or Crohn's disease-like. The management of CP is challenging because of limited evidence and few randomized controlled trials. In this review, we discuss the medical management of CP and its supporting data delineated by type of therapy.

RevDate: 2025-01-27

Martin Fuentes A (2025)

The role of the microbiome in skin cancer development and treatment.

Current opinion in oncology pii:00001622-990000000-00232 [Epub ahead of print].

PURPOSE OF REVIEW: Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs).

RECENT FINDINGS: The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions. Beneficial strains like Bifidobacterium and Lactobacillus have shown potential in supporting anti-PD-1 and anti-CTLA-4 therapies by promoting T-cell activation and immune surveillance. Evidence from preclinical and clinical studies, including fecal microbiota transplantation (FMT), highlights improved response rates in patients with microbiota-rich profiles. Notably, certain bacterial metabolites, such as inosine, contribute to enhanced antitumor activity by stimulating IFN-γ in CD8+ T cells.

SUMMARY: Understanding the interplay between microbiota and skin cancer treatment opens promising avenues for adjunctive therapies. Probiotic and prebiotic interventions, FMT, and microbiota modulation are emerging as complementary strategies to improve immunotherapy outcomes and address treatment resistance in melanoma and NMSC.

RevDate: 2025-01-27

Chatterjee J, Qi X, Mu R, et al (2025)

Intestinal Bacteroides drives glioma progression by regulating CD8+ T cell tumor infiltration.

Neuro-oncology pii:7983917 [Epub ahead of print].

BACKGROUND: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.

METHODS: Nf1-mutant mice genetically engineered to develop optic pathway gliomas (Nf1OPG mice) by 3 months of age were reared under germ-free (GF) conditions, treated with specific cocktails of antibiotics, or given fecal matter transplants (FMTs). Intestinal microbial species were identified by 16S genotyping. Neutralizing TGFβ antibodies were delivered systemically, while in vitro experiments used isolated murine microglia and T cells. Single cell RNA sequencing analysis was performed using established methods.

RESULTS: Nf1 OPG mice raised in a GF environment or postnatally treated with vancomycin did not harbor optic gliomas or exhibit OPG-induced retinal nerve fiber layer thinning, which was reversed following conventionally raised mouse FMT or colonization with Bacteroides species. Moreover, this intestinal microbiota-regulated gliomagenesis was mediated by circulating TGFβ, such that systemic TGFβ neutralization reduced Nf1-OPG growth. TGFβ was shown to act on tumor-associated monocytes to induce Ccl3 expression and recruit CD8+ T cells necessary for glioma growth.

CONCLUSIONS: Taken together, these findings establish, for the first time, a mechanistic relationship between Bacteroides in the intestinal microbiome and NF1-LGG pathobiology, suggesting both future predictive risk assessment strategies and therapeutic opportunities.

RevDate: 2025-01-27

Weagley J, Makimaa H, Cárdenas LAC, et al (2025)

Dynamics of Bacterial and Viral Transmission in Experimental Microbiota Transplantation.

bioRxiv : the preprint server for biology pii:2025.01.15.633206.

Mouse models are vital tools for discerning the relative contributions of host and microbial genetics to disease, often requiring the transplantation of microbiota between different mouse strains. Transfer methods include antibiotic treatment of recipients and colonization using either co-housing with donors or the transplantation of fecal or cecal donor material. However, the efficiency and dynamics of these methods in reconstituting recipients with donor microbes is not well understood. We thus directly compared co-housing, fecal transplantation, and cecal transplantation methods. Donor mice from Taconic Biosciences, possessing distinct microbial communities, served as the microbial source for recipient mice from Jackson Laboratories, which were treated with antibiotics to disrupt their native microbiota. We monitored microbial populations longitudinally over the course of antibiotics treatment and reconstitution using 16S rRNA gene sequencing, quantitative PCR, and shotgun sequencing of viral-like particles. As expected, antibiotic treatment rapidly depleted microbial biomass and diversity, with slow and incomplete natural recovery of the microbiota in non-transplanted control mice. While all transfer methods reconstituted recipient mice with donor microbiota, co-housing achieved this more rapidly for both bacterial and viral communities. This study provides valuable insights into microbial transfer methods, enhancing reproducibility and informing best practices for microbiota transplantation in mouse models.

RevDate: 2025-01-26

Attiq A (2025)

Early-Life Antibiotic Exposures: Paving the Pathway for Dysbiosis-Induced Disorders.

European journal of pharmacology pii:S0014-2999(25)00051-2 [Epub ahead of print].

Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells. Given the potential consequences of antibiotic therapy on gut microbiota equilibrium, there is a need for prudent antibiotic use to mitigate associated risks. Observational studies have linked increased antibiotic usage to various pathogenic conditions, including obesity, inflammatory bowel disease, anxiety-like effects, asthma, and pulmonary carcinogenesis. Addressing dysbiosis incidence requires proactive measures, including prophylactic use of β-lactamase drugs (SYN-004, SYN-006, and SYN-007), hydrolysing the β-lactam in the proximal GIT for maintaining intestinal flora homeostasis. Prebiotic and probiotic supplementations are crucial in restoring intestinal flora equilibrium by competing with pathogenic bacteria for nutritional resources and adhesion sites, reducing luminal pH, neutralising toxins, and producing antimicrobial agents. Faecal microbiota transplantation (FMT) shows promise in restoring gut microbiota composition. Rational antibiotic use is essential to preserve microflora and improve patient compliance with antibiotic regimens by mitigating associated side effects. Given the significant implications on gut microbiota composition, concerted intervention strategies must be pursued to rectify and reverse the occurrence of antibiotic-induced dysbiosis. Here, antibiotics-induced microbiota dysbiosis mechanisms and their systemic implications are reviewed. Moreover, proposed interventions to mitigate the impact on gut microflora are also discussed herein.

RevDate: 2025-01-28
CmpDate: 2025-01-25

Reddi S, Senyshyn L, Ebadi M, et al (2025)

Fecal microbiota transplantation to prevent acute graft-versus-host disease: pre-planned interim analysis of donor effect.

Nature communications, 16(1):1034.

Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase. The primary and key secondary endpoints were microbiota engraftment and severe aGVHD, respectively. Three cohorts of patients (20 total) received FMT, each from a different donor. FMT was safe and effective in restoring microbiota diversity and commensal species. Microbiota engraftment, determined from shotgun sequencing data, correlated with larger microbiota compositional shifts toward donor and better clinical outcomes. Donor 3 yielded a median engraftment rate of 66%, higher than donors 1 (P = 0.02) and 2 (P = 0.03) in multivariable analysis. Three patients developed severe aGVHD; all 3 had received FMT from donor 1. Donor 3 was selected as the sole donor for the randomized phase. Our findings suggest a clinically relevant donor effect and demonstrate feasibility of evidence-based donor selection. FMT is a holistic microbiota restoration approach that can be performed as a precision therapeutic. ClinicalTrials.gov identifier NCT06026371.

RevDate: 2025-01-25

Jin J, Cai X, Rao P, et al (2025)

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best practice & research. Clinical rheumatology pii:S1521-6942(25)00003-8 [Epub ahead of print].

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility. Dysbiosis-driven metabolic disruptions, including alterations in short-chain fatty acids and bile acids, further exacerbate immune dysregulation and systemic inflammation. Emerging therapeutic strategies-probiotics, microbial metabolites, fecal microbiota transplantation, and antibiotics-offer innovative avenues for restoring microbial balance and mitigating disease progression. By integrating microbiota-targeted approaches with existing treatments, this review highlights the potential to revolutionize RA management through precision medicine and underscores the need for further research to harness the microbiota's therapeutic potential.

RevDate: 2025-01-25

Qin N, Liu H, Wang X, et al (2025)

Sargassum fusiforme polysaccharides protect mice against Citrobacter rodentium infection via intestinal microbiota-driven microRNA-92a-3p-induced Muc2 production.

International journal of biological macromolecules pii:S0141-8130(25)00820-7 [Epub ahead of print].

Sargassum fusiforme, widely consumed in Asian countries, has been proven to have various biological activities. However, the impacts and mechanisms of Sargassum fusiforme polysaccharides (SFPs) on intestinal bacterial infection are not yet fully understood. Our findings indicate that SFPs pretreatment ameliorates intestinal inflammation by reducing C. rodentium colonization, increasing colon length and levels of IL-10 and IL-22, decreasing IL-1β, IL-6, TNF-α, and IL-17 levels, inhibiting colonic crypt elongation and hyperplasia, and enhancing the intestinal mucosal barrier. The protective effects against intestinal bacterial infection are linked to enhanced clearance of C. rodentium and improvements in the intestinal mucosal barrier and C. rodentium-induced intestinal microbiota dysbiosis. Fecal microbiota transplantation experiments were conducted to evaluate the functional impact of microbiota induced by SFPs. The results suggest that intestinal microbiota modified by SFPs effectively countered C. rodentium infection. In addition, our study identified that miRNA-92a-3p is partially complementary to the 3'-UTR of the Notch1 gene, thereby repressing the Notch1-Hes1 signaling pathway and enhancing Muc2 secretion. Taken together, these findings reveal that SFPs protect mice from C. rodentium infection by activating the miR-92a-3p/Notch1-Hes1 regulatory axis driven by the intestinal microbiota, which stimulates Muc2 production to maintain intestinal barrier homeostasis.

RevDate: 2025-01-25

Huang P, Di L, Cui S, et al (2025)

Postoperative delirium after cardiac surgery associated with perioperative gut microbiota dysbiosis: Evidence from human and antibiotic-treated mouse model.

Anaesthesia, critical care & pain medicine pii:S2352-5568(25)00016-5 [Epub ahead of print].

BACKGROUND: Research links gut microbiota to postoperative delirium (POD) through the gut-brain axis. However, changes in gut microbiota and fecal short-chain fatty acids (SCFAs) in POD patients during the perioperative period and their association with POD are unclear.

METHODS: We conducted a nested case-control study among patients undergoing off-pump coronary artery bypass grafting, focusing on POD as the main outcome. POD patients were matched 1:1 with non-POD patients based on sociodemographic characteristics, health, and diet. Fecal samples were collected pre- and post-surgery to assess gut microbiota and SCFA changes. Postoperative fecal samples were transplanted into antibiotic-treated mice to evaluate delirium-like behavior and neuroinflammation.

RESULTS: Out of 120 patients, 60 were matched. Before surgery, gut microbiota in both groups was similar. After surgery, POD patients had lower alpha diversity and distinct microbiota compared to non-POD patients. LEfSe analysis showed POD was linked to increased opportunistic pathogens (Enterococcus) and decreased SCFA producers (Bacteroides, Ruminococcus, etc.). SCFAs were significantly reduced in POD patients and negatively correlated with delirium severity and plasma inflammation. Mice receiving fecal transplants from POD patients exhibited delirium-like behavior and neuroinflammation.

CONCLUSIONS: Postoperative delirium is associated with gut microbiota dysbiosis, marked by an increase in opportunistic pathogens and a decrease in SCFA-producing genera.

REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300070477.

RevDate: 2025-01-25

Xiao Y, He X, Zhang H, et al (2025)

Washed microbiota transplantation effectively improves nutritional status in gastrointestinal disease-related malnourished children.

Nutrition (Burbank, Los Angeles County, Calif.), 132:112679 pii:S0899-9007(24)00328-9 [Epub ahead of print].

BACKGROUND AND AIM: Gut microbiota dysbiosis plays a critical role in malnutrition caused by food intolerance and intestinal inflammation in children, which needs to be addressed. We assessed the efficacy and safety of washed microbiota transplantation (WMT) for gastrointestinal disease-related malnourished children.

METHODS: This was a prospective observational study involving gastrointestinal disease-related malnourished pediatric patients who underwent WMT. The primary outcome was the clinical response rate at 3 mo post-WMT. Clinical response was defined as an improvement in the children's nutritional status of one level or more. The secondary outcomes were changes in gastrointestinal symptoms, laboratory nutritional indicators, and adverse events during the WMT procedure.

RESULTS: 29 patients undergoing 74 WMTs were included for analysis. In total, 48.3% (14/29) of patients achieved clinical response post-WMT. Gastrointestinal symptoms, including diarrhea, mucous stool, abdominal pain, abdominal distention, and hematochezia, were significantly relieved post-WMT (all P < 0.05). Serum albumin and prealbumin levels were increased significantly post-WMT (P = 0.028 and 0.028, respectively). Eight self-limiting and transient adverse events, including diarrhea, abdominal pain, and abdominal distension, occurred after WMT.

CONCLUSION: This study indicated that WMT might be effective and safe for improving nutritional status and gastrointestinal symptoms in gastrointestinal disease-related malnourished children at 3-mo follow-up. WMT was expected to be a new therapeutic option for these patients.

RevDate: 2025-01-28

Ortiz-Islas E, Montes P, Rodríguez-Pérez CE, et al (2025)

Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy.

Pharmaceutics, 17(1):.

Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored. Here, we review novel approaches inspired by advanced knowledge of the underlying pathophysiological mechanisms of the disease. Among the therapeutic alternatives, immunotherapy stands out, employing monoclonal antibodies to specifically target and eliminate toxic proteins implicated in AD. Additionally, the use of medicinal plants is examined, as their synergistic effects among components may confer neuroprotective properties. The modulation of the gut microbiota is also addressed as a peripheral strategy that could influence neuroinflammatory and degenerative processes in the brain. Furthermore, the therapeutic potential of emerging approaches, such as the use of microRNAs to regulate key cellular processes and nanotherapy, which enables precise drug delivery to the central nervous system, is analyzed. Despite promising advances in these strategies, the incidence of Alzheimer's disease continues to rise. Therefore, it is proposed that achieving effective treatment in the future may require the integration of combined approaches, maximizing the synergistic effects of different therapeutic interventions.

RevDate: 2025-01-27
CmpDate: 2025-01-25

Almonajjed MB, Wardeh M, Atlagh A, et al (2025)

Impact of Microbiota on Irritable Bowel Syndrome Pathogenesis and Management: A Narrative Review.

Medicina (Kaunas, Lithuania), 61(1):.

Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disorder, affecting 3-5% of the global population and significantly impacting patients' quality of life and healthcare resources. Alongside physical symptoms such as abdominal pain and altered bowel habits, many individuals experience psychological comorbidities, including anxiety and depression. Recent research has highlighted the critical role of the gut microbiota in IBS, with dysbiosis, characterized by an imbalance in microbial diversity, frequently observed in patients. The gut-brain axis, a bidirectional communication network between the gut and central nervous system, plays a central role in the development of IBS symptoms. Although interventions such as probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) have demonstrated potential in modulating the gut microbiota and alleviating symptoms, their efficacy remains an area of ongoing investigation. This review examines the interactions between the gut microbiota, immune system, and brain, emphasizing the need for personalized therapeutic strategies. Future research should aim to identify reliable microbiota-based biomarkers for IBS and refine microbiome-targeted therapies to enhance patient outcomes.

RevDate: 2025-01-27

Onisiforou A, Charalambous EG, P Zanos (2025)

Shattering the Amyloid Illusion: The Microbial Enigma of Alzheimer's Disease Pathogenesis-From Gut Microbiota and Viruses to Brain Biofilms.

Microorganisms, 13(1):.

For decades, Alzheimer's Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to rethink our approach to AD treatment. Emerging evidence points to microbial infections as environmental factors in AD pathoetiology. Although a definitive causal link remains unestablished, the collective evidence is compelling. This review explores unconventional perspectives and emerging paradigms regarding microbial involvement in AD pathogenesis, emphasizing the gut-brain axis, brain biofilms, the oral microbiome, and viral infections. Transgenic mouse models show that gut microbiota dysregulation precedes brain Aβ accumulation, emphasizing gut-brain signaling pathways. Viral infections like Herpes Simplex Virus Type 1 (HSV-1) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may lead to AD by modulating host processes like the immune system. Aβ peptide's antimicrobial function as a response to microbial infection might inadvertently promote AD. We discuss potential microbiome-based therapies as promising strategies for managing and potentially preventing AD progression. Fecal microbiota transplantation (FMT) restores gut microbial balance, reduces Aβ accumulation, and improves cognition in preclinical models. Probiotics and prebiotics reduce neuroinflammation and Aβ plaques, while antiviral therapies targeting HSV-1 and vaccines like the shingles vaccine show potential to mitigate AD pathology. Developing effective treatments requires standardized methods to identify and measure microbial infections in AD patients, enabling personalized therapies that address individual microbial contributions to AD pathogenesis. Further research is needed to clarify the interactions between microbes and Aβ, explore bacterial and viral interplay, and understand their broader effects on host processes to translate these insights into clinical interventions.

RevDate: 2025-01-27
CmpDate: 2025-01-25

Gabrielli M, Zileri Dal Verme L, Zocco MA, et al (2024)

The Role of the Gastrointestinal Microbiota in Parkinson's Disease.

Biomolecules, 15(1):.

BACKGROUND/OBJECTIVES: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons leading to debilitating motor and non-motor symptoms. Beyond its well-known neurological features, emerging evidence underscores the pivotal role of the gut-brain axis and gastrointestinal microbiota in PD pathogenesis. Dysbiosis has been strongly linked to PD and is associated with increased intestinal permeability, chronic inflammation, and the production of neurotoxic metabolites that may exacerbate neuronal damage.

METHODS: This review delves into the complex interplay between PD and dysbiosis, shedding light on two peculiar subsets of dysbiosis, Helicobacter pylori infection and small-intestinal bacterial overgrowth. These conditions may not only contribute to PD progression but also influence therapeutic responses such as L-dopa efficacy.

CONCLUSIONS: The potential to modulate gut microbiota through probiotics, prebiotics, and synbiotics; fecal microbiota transplantation; and antibiotics represents a promising frontier for innovative PD treatments. Despite this potential, the current evidence is limited by small sample sizes and methodological variability across studies. Rigorous, large-scale, randomized placebo-controlled trials with standardized treatments in terms of composition, dosage, and duration are urgently needed to validate these findings and pave the way for microbiota-based therapeutic strategies in PD management.

RevDate: 2025-01-27

Morado F, N Nanda (2024)

A Review of Therapies for Clostridioides difficile Infection.

Antibiotics (Basel, Switzerland), 14(1):.

Clostridioides difficile is an urgent public health threat that affects approximately half a million patients annually in the United States. Despite concerted efforts aimed at the prevention of Clostridioides difficile infection (CDI), it remains a leading cause of healthcare-associated infections. CDI is associated with significant clinical, social, and economic burdens. Therefore, it is imperative to provide optimal and timely therapy for CDI. We conducted a systematic literature review and offer treatment recommendations based on available evidence for the treatment and prevention of CDI.

RevDate: 2025-01-27

Radoš L, Golčić M, I Mikolašević (2025)

The Relationship Between the Modulation of Intestinal Microbiota and the Response to Immunotherapy in Patients with Cancer.

Biomedicines, 13(1):.

The intestinal microbiota is an important part of the human body, and its composition can affect the effectiveness of immunotherapy. In the last few years, the modulation of intestinal microbiota in order to improve the effectiveness of immunotherapy has become a current topic in the scientific community, but there is a lack of research in this area. In this review, the goal was to analyze the current relevant literature related to the modulation of intestinal microbiota and the effectiveness of immunotherapy in the treatment of cancer. The effects of antibiotics, probiotics, diet, and fecal microbial transplantation were analyzed separately. It was concluded that the use of antibiotics, especially broad-spectrum types or larger quantities, causes dysbiosis of the intestinal microbiota, which can reduce the effectiveness of immunotherapy. While dysbiosis could be repaired by probiotics and thus improve the effectiveness of immunotherapy, the use of commercial probiotics without evidence of intestinal dysbiosis has not yet been sufficiently tested to confirm its safety for cancer for immunotherapy-treated cancer patients. A diet consisting of sufficient amounts of fiber, as well as a diet with higher salt content positively correlates with the success of immunotherapy. Fecal transplantation is a safe and realistic adjuvant option for the treatment of cancer patients with immunotherapy, but more clinical trials are necessary. Modulating the microbiota composition indeed changes the effectiveness of immunotherapy, but in the future, more human studies should be organized to precisely determine the types and procedures of microbiota modulation.

RevDate: 2025-01-27

Li W, Gao W, Yan S, et al (2024)

Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease.

Biomedicines, 13(1):.

The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.

RevDate: 2025-01-24

Wang X, Zhao D, Bi D, et al (2025)

Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era.

Science bulletin pii:S2095-9273(25)00053-2 [Epub ahead of print].

With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases. Still, controversies persist regarding its active constituents, mechanism of action, scheme of treatment evaluation, indications, and contraindications. In this review, we investigated the efficacy of FMT in addressing gastrointestinal and extraintestinal conditions, drawing from follow-up data on over 8000 patients. We systematically addressed the controversies surrounding FMT's clinical application. We delved into key issues such as its technical nature, evaluation methods, microbial restoration mechanisms, and impact on the host-microbiota interactions. Additionally, we explored the potential colonization patterns of FMT-engrafted new microbiota throughout the entire intestine and elucidated the specific pathways through which the new microbiota modulates host immunity, metabolism, and genome.

RevDate: 2025-01-24

Sutanto H, Elisa E, Rachma B, et al (2025)

Gut Microbiome Modulation in Allergy Treatment: The Role of Fecal Microbiota Transplantation.

The American journal of medicine pii:S0002-9343(25)00033-6 [Epub ahead of print].

The prevalence of allergic diseases has been rising, paralleling lifestyle changes and environmental exposures that have altered human microbiome composition. This review article examines the intricate relationship between the gut microbiome and allergic diseases, emphasizing the potential of fecal microbiota transplantation as a promising novel treatment approach. It explains how reduced microbial exposure in modern societies contributes to immune dysregulation and the increasing incidence of allergies. The discussion also addresses immune homeostasis and its modulation by the gut microbiome, highlighting the shift from eubiosis to dysbiosis in allergic conditions. Furthermore, this article reviews existing studies and emerging research on the role of fecal microbiota transplantation in restoring microbial balance, providing insights into its mechanisms, efficacy, and safety.

RevDate: 2025-01-24
CmpDate: 2025-01-24

Chen S, Zhang D, Li D, et al (2025)

Microbiome characterization of patients with Crohn disease and the use of fecal microbiota transplantation: A review.

Medicine, 104(4):e41262.

Inflammatory bowel disease is a chronic inflammatory condition predominantly affecting the intestines, encompassing both ulcerative colitis and Crohn disease (CD). As one of the most common gastrointestinal disorders, CD's pathogenesis is closely linked with the intestinal microbiota. Recently, fecal microbiota transplantation (FMT) has gained attention as a potential treatment for CD, with the effective reestablishment of intestinal microecology considered a crucial mechanism of FMT therapy. This article synthesizes the findings of population-based cohort studies to enhance our understanding of gut microbial characteristics in patients with CD. It delves into the roles of "beneficial" and "pathogenic" bacteria in CD's development. This article systematically reviews and compares data on clinical response rates, remission rates, adverse events, and shifts in bacterial microbiota. Among these studies, gut microbiome analysis was conducted in only 7, and a single study examined the metabolome. Overall, FMT has demonstrated a partial restoration of typical CD-associated microbiological alterations, leading to increased α-diversity in responders and a moderate shift in patient microbiota toward the donor profile. Several factors, including donor selection, delivery route, microbial state (fresh or frozen), and recipient condition, are identified as pivotal in influencing FMT's effectiveness. Future prospective clinical studies with larger patient cohorts and improved methodologies are imperative. In addition, standardization of FMT procedures, coupled with advanced genomic techniques such as macroproteomics and culture genomics, is necessary. These advancements will further clarify the bacterial microbiota alterations that significantly contribute to FMT's therapeutic effects in CD treatment, as well as elucidate the underlying mechanisms of action.

RevDate: 2025-01-24

Yang CJ, Peng YS, Sung PC, et al (2025)

Protocol for oral fecal gavage to reshape the gut microbiota in mice.

STAR protocols, 6(1):103585 pii:S2666-1667(24)00750-0 [Epub ahead of print].

Fecal microbiota transplantation (FMT) is clinically applied, while oral FMT (oral fecal gavage [OFG]) is preferred for experimental mice. Here, we present a protocol for OFG in antibiotic-pretreated mice, demonstrating the progressive, time-dependent evolution of the gut microbiota in the recipients. We describe steps for fecal sample collection and preparation procedures, oral gavage, and monitoring gut microbiota changes. This protocol serves as a general guide for reshaping the gut microbiota in recipient mice for various experimental applications. For complete details on the use and execution of this protocol, please refer to Yang et al.[1].

RevDate: 2025-01-24
CmpDate: 2025-01-24

Lau RI, Su Q, SC Ng (2025)

Long COVID and gut microbiome: insights into pathogenesis and therapeutics.

Gut microbes, 17(1):2457495.

Post-acute coronavirus disease 2019 syndrome (PACS), following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19), is typically characterized by long-term debilitating symptoms affecting multiple organs and systems. Unfortunately, there is currently a lack of effective treatment strategies. Altered gut microbiome has been proposed as one of the plausible mechanisms involved in the pathogenesis of PACS; extensive studies have emerged to bridge the gap between the persistent symptoms and the dysbiosis of gut microbiome. Recent clinical trials have indicated that gut microbiome modulation using probiotics, prebiotics, and fecal microbiota transplantation (FMT) led to improvements in multiple symptoms related to PACS, including fatigue, memory loss, difficulty in concentration, gastrointestinal upset, and disturbances in sleep and mood. In this review, we highlight the latest evidence on the key microbial alterations observed in PACS, as well as the use of microbiome-based therapeutics in managing PACS symptoms. These novel findings altogether shed light on the treatment of PACS and other chronic conditions.

RevDate: 2025-01-24
CmpDate: 2025-01-24

Zhao X, Qiu Y, Liang L, et al (2025)

Interkingdom signaling between gastrointestinal hormones and the gut microbiome.

Gut microbes, 17(1):2456592.

The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.

RevDate: 2025-01-25

Gandhi DN, Pande DN, Harikrishna A, et al (2024)

Beyond the Brain: Attention Deficit/Hyperactivity Disorder and the Gut-Brain Axis.

Cureus, 16(12):e76291.

Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental condition, predominantly affecting children, characterized by inattention, hyperactivity, and impulsivity. A growing body of evidence has highlighted the potential influence of the gut microbiota on the onset and presentation of ADHD symptoms. The gut microbiota, a diverse microbial ecosystem residing within the gastrointestinal tract, exerts multiple effects on systemic physiology, including immune modulation, metabolic regulation, and neuronal signalling. The bidirectional gut-brain axis serves as a conduit for communication between gut microbes and the central nervous system, implicating its disruption in neurodevelopmental disorders such as ADHD. This comprehensive literature review aims to shed light on how alterations in the gut microbiota influence the development and manifestation of ADHD symptoms. Examining potential mechanisms involving gut microbial metabolites and their impact on neurotransmitter modulation, neuro-endocrine signalling and neuroinflammation, we dissect the intricate interplay shaping ADHD pathology. Insights into these complex interactions hold promise for personalized therapeutic interventions aimed at modulating the gut microbiota to ameliorate ADHD symptoms. Discussions encompass dietary interventions, faecal microbiota-targeted therapies, and emerging probiotic approaches, underscoring their potential as adjunctive or alternative strategies in managing ADHD. Further research elucidating the precise mechanisms driving these interactions may pave the way for targeted and personalized interventions for individuals grappling with ADHD.

RevDate: 2025-01-23

Szajewska H (2025)

An Overview of Early-Life Gut Microbiota Modulation Strategies.

Annals of nutrition & metabolism pii:000541492 [Epub ahead of print].

BACKGROUND: The gut microbiota, or microbiome, is essential for human health. Early-life factors such as delivery mode, diet, and antibiotic use shape its composition, impacting both short- and long-term health outcomes. Dysbiosis, or alterations in the gut microbiota, is linked to conditions such as allergies, asthma, obesity, diabetes, inflammatory bowel disease, and necrotizing enterocolitis in preterm infants.

SUMMARY: This article reviews current strategies to influence the early-life gut microbiome and their potential health impacts. It also briefly summarizes guidelines on using biotics for gastrointestinal and allergic diseases in children. Key strategies include vaginal or fecal microbiota transplantation for cesarean-born infants, breastfeeding, and biotic-supplemented formulas. While vaginal microbial transfer and maternal fecal microbiota transplantation show short-term benefits, further research is needed to determine long-term safety and efficacy. Breast milk, rich in human milk oligosaccharides, promotes a healthy microbiota and offers protection against infections. Biotic-supplemented formulas can improve the gut microbiota in formula-fed infants and show clinical effects, though each biotic must be evaluated separately. Probiotics given as dietary supplements outside of infant formulas show promise for treating gastrointestinal disorders but require further investigation.

RevDate: 2025-01-24

Shen Y, Gao Y, Yang G, et al (2024)

Anti-colorectal cancer effect of total minor ginsenosides produced by lactobacilli transformation of major ginsenosides by inducing apoptosis and regulating gut microbiota.

Frontiers in pharmacology, 15:1496346.

OBJECTIVE: Minor ginsenosides have demonstrated promising anticancer effects in previous reports. Total minor ginsenosides (TMG) were obtained through the fermentation of major ginsenosides with Lactiplantibacillus plantarum, and potential anticancer effects of TMGs on the mouse colon cancer cell line CT26.WT, in vitro and in vivo, were investigated.

MATERIALS AND METHODS: We employed the Cell Counting Kit-8 (CCK-8), TdT-mediated dUTP nick end labeling (TUNEL), and Western blot analysis in vitro to explore the anti-proliferative and pro-apoptotic functions of TMG in CT26.WT cells. In vivo, a xenograft model was established by subcutaneously injecting mice with CT26.WT cells and administering a dose of 100 mg/kg/day TMG to the tumor-bearing mice. The level of apoptosis and expression of various proteins in the tumor tissues were detected by immunohistochemistry and Western blot. High-throughput 16S rRNA sequencing was used to determine the alterations in the gut microbiota.

RESULTS: In vitro studies demonstrated that TMG significantly inhibited proliferation and promoted apoptosis in CT26.WT cells. Interestingly, TMG induced apoptosis in CT26.WT cells by affecting the Bax/Bcl-2/caspase-3 pathway. Furthermore, the result of the transplanted tumor model indicated that TMG substantially enhanced the activities of Bax and caspase-3, reduced the activity of Bcl-2, and suppressed the expression of Raf/MEK/ERK protein levels. Fecal analysis revealed that TMG reconstructed the gut microbiota in colorectal cancer-affected mice by augmenting the abundance of the advantageous bacterium Lactobacillus and decreasing the abundance of the harmful bacterium Proteus.

CONCLUSION: TMG can exhibit potent anti-colorectal cancer effects through diverse apoptotic mechanisms, with their mode of action closely related to the regulation of gut microbiota.

RevDate: 2025-01-24

Wu R, Mai Z, Song X, et al (2024)

Hotspots and research trends of gut microbiome in polycystic ovary syndrome: a bibliometric analysis (2012-2023).

Frontiers in microbiology, 15:1524521.

INTRODUCTION: Polycystic ovary syndrome (PCOS) is a common gynecological condition affecting individuals of reproductive age and is linked to the gut microbiome. This study aimed to identify the hotspots and research trends within the domain of the gut microbiome in PCOS through bibliometric analysis.

METHODS: Utilizing bibliometric techniques, we examined the literature on the gut microbiome in PCOS from the Web of Science Core Collection spanning the period from 2012 to 2023. Analytical tools such as CiteSpace, VOSviewer, and Bibliometric R packages were employed to evaluate various metrics, including countries/regions, institutions, authors, co-cited authors, authors' H-index, journals, co-references, and keywords.

RESULTS: A total of 191 publications were identified in the field of gut microbiome in PCOS, with an increase in annual publications from 2018 to 2023. People's Republic of China was the most productive country, followed by the United States of America (USA), India. Shanghai Jiao Tong University, Fudan University, and Beijing University of Chinese Medicine were the top three most publications institutions. Thackray VG was identified as the most prolific author, holding the highest H-index, while Liu R received the highest total number of citations. The journal "Frontiers in Endocrinology" published the most articles in this domain. The most frequently co-cited reference was authored by Qi XY. The analysis of keyword burst detection identified "bile acids" (2021-2023) as the leading frontier keyword. Additionally, "gut dysbiosis," "phenotypes," "adolescents," "metabolomics," "metabolites," "fecal microbiota transplantation," and "IL-22" have emerged as the primary keywords reflecting recent research trends.

CONCLUSION: This bibliometric analysis explores how the gut microbiome influences endocrine and metabolic disorders related to PCOS, emphasizing its role in the development of PCOS and treatments targeting the gut microbiome. The findings serve as a valuable resource for researchers, enabling them to identify critical hotspots and emerging areas of investigation in this field.

RevDate: 2025-01-25
CmpDate: 2025-01-23

Fan X, Li J, Gao Y, et al (2025)

The mechanism of enterogenous toxin methylmalonic acid aggravating calcium-phosphorus metabolic disorder in uremic rats by regulating the Wnt/β-catenin pathway.

Molecular medicine (Cambridge, Mass.), 31(1):19.

BACKGROUND: Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway.

METHODS: The UR rat model was established by 5/6 nephrectomy. The fecal bacteria of UR rats were transplanted into Sham rats. Sham rats were injected with exogenous MMA or Salinomycin (SAL). Pathological changes in renal/colon tissues were analyzed. MMA concentration, levels of renal function indicators, serum inflammatory factors, Ca[2+]/P[3+], and parathyroid hormone, intestinal flora structure, fecal metabolic profile, intestinal permeability, and glomerular filtration rate (GFR) were assessed. Additionally, rat glomerular podocytes were cultured, with cell viability and apoptosis measured.

RESULTS: Intestinal flora richness and diversity in UR rats were decreased, along with unbalanced flora structure. Among the screened 133 secondary differential metabolites, the MMA concentration rose, showing the most significant difference. UR rat fecal transplantation caused elevated MMA concentration in the serum and renal tissues of Sham rats. The intestinal flora metabolite MMA or exogenous MMA promoted intestinal barrier impairment, increased intestinal permeability, induced glomerular podocyte loss, and reduced GFR, causing calcium-phosphorus metabolic disorder. The intestinal flora metabolite MMA or exogenous MMA induced inflammatory responses and facilitated glomerular podocyte apoptosis by activating the Wnt/β-catenin pathway, which could be counteracted by repressing the Wnt/β-catenin pathway.

CONCLUSIONS: Enterogenous toxin MMA impelled intestinal barrier impairment in UR rats, enhanced intestinal permeability, and activated the Wnt/β-catenin pathway to induce glomerular podocyte loss and reduce GFR, thus aggravating calcium-phosphorus metabolic disorder.

RevDate: 2025-01-22

Hua D, Yang Q, Li X, et al (2025)

The combination of Clostridium butyricum and Akkermansia muciniphila mitigates DSS-induced colitis and attenuates colitis-associated tumorigenesis by modulating gut microbiota and reducing CD8[+] T cells in mice.

mSystems [Epub ahead of print].

UNLABELLED: The gut microbiota is closely associated with inflammatory bowel disease (IBD) and colorectal cancer (CRC). Probiotics such as Clostridium butyricum (CB) or Akkermansia muciniphila (AKK) have the potential to treat inflammatory bowel disease (IBD) or colorectal cancer (CRC). However, research on the combined therapeutic effects and immunomodulatory mechanisms of CB and AKK in treating IBD or CRC has never been studied. This study evaluates the potential of co-administration of CB and AKK in treating DSS/AOM-induced IBD and colitis-associated CRC. Our results indicate that compared to mono-administration, the co-administration of CB and AKK not only significantly alleviates symptoms such as weight loss, colon shortening, and increased Disease Activity Index in IBD mice but also regulates the gut microbiota composition and effectively suppresses colonic inflammatory responses. In the colitis-associated CRC mice model, a combination of CB and AKK significantly alleviates weight loss and markedly reduces inflammatory infiltration of macrophages and cytotoxic T lymphocytes (CTLs) in the colon, thereby regulating anti-tumor immunity and inhibiting the occurrence of inflammation-induced CRC. In addition, we found that the combined probiotic therapy of CB and AKK can enhance the sensitivity of colitis-associated CRC mice to the immune checkpoint inhibitor anti-mouse PD-L1 (aPD-L1), significantly improving the anti-tumor efficacy of immunotherapy and the survival rate of colitis-associated CRC mice. Furthermore, fecal microbiota transplantation therapy showed that transplanting feces from CRC mice treated with the co-administration of CB and AKK into other CRC mice alleviated the tumor loads in the colon and significantly extended their survival rate. Our study suggests that the combined use of two probiotics, CB and AKK, can not only alleviate chronic intestinal inflammation but also inhibit the progression to CRC. This may be a natural and relatively safe method to support the gut microbiota and enhance the host's immunity against cancer.

IMPORTANCE: Our study suggests that the combined administration of CB and AKK probiotics, as opposed to a single probiotic strain, holds considerable promise in preventing the advancement of IBD to CRC. This synergistic effect is attributed to the ability of this probiotic combination to more effectively modulate the gut microbiota, curb inflammatory reactions, bolster the efficacy of immunotherapeutic approaches, and optimize treatment results via fecal microbiota transplantation.

RevDate: 2025-01-22

Liu W, Wang J, Yang H, et al (2025)

The Metabolite Indole-3-Acetic Acid of Bacteroides Ovatus Improves Atherosclerosis by Restoring the Polarisation Balance of M1/M2 Macrophages and Inhibiting Inflammation.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

Emerging research has highlighted the significant role of the gut microbiota in atherosclerosis (AS), with microbiota-targeted interventions offering promising therapeutic potential. A central component of this process is gut-derived metabolites, which play a crucial role in mediating the distal functioning of the microbiota. In this study, a comprehensive microbiome-metabolite analysis using fecal and serum samples from patients with atherosclerotic cardiovascular disease and volunteers with risk factors for coronary heart disease and culture histology is performed, and identified the core strain Bacteroides ovatus (B. ovatus). Fecal microbiota transplantation experiments further demonstrated that the gut microbiota significantly influences AS progression, with B. ovatus alone exerting effects comparable to volunteer feces from volunteers. Notably, B. ovatus alleviated AS primarily by restoring the intestinal barrier and enhancing bile acid metabolism, particularly through the production of indole-3-acetic acid (IAA), a tryptophan-derived metabolite. IAA inhibited the TLR4/MyD88/NF-κB pathway in M1 macrophages, promoted M2 macrophage polarisation, and restored the M1/M2 polarisation balance, ultimately reducing aortic inflammation. These findings clarify the mechanistic interplay between the gut microbiota and AS, providing the first evidence that B. ovatus, a second-generation probiotic, can improve bile acid metabolism and reduce inflammation, offering a theoretical foundation for future AS therapeutic applications involving this strain.

RevDate: 2025-01-23
CmpDate: 2025-01-22

Lim MY, Hong S, YD Nam (2024)

Understanding the role of the gut microbiome in solid tumor responses to immune checkpoint inhibitors for personalized therapeutic strategies: a review.

Frontiers in immunology, 15:1512683.

Immunotherapy, especially immune checkpoint inhibitor (ICI) therapy, has yielded remarkable outcomes for some patients with solid cancers, but others do not respond to these treatments. Recent research has identified the gut microbiota as a key modulator of immune responses, suggesting that its composition is closely linked to responses to ICI therapy in cancer treatment. As a result, the gut microbiome is gaining attention as a potential biomarker for predicting individual responses to ICI therapy and as a target for enhancing treatment efficacy. In this review, we discuss key findings from human observational studies assessing the effect of antibiotic use prior to ICI therapy on outcomes and identifying specific gut bacteria associated with favorable and unfavorable responses. Moreover, we review studies investigating the possibility of patient outcome prediction using machine learning models based on gut microbiome data before starting ICI therapy and clinical trials exploring whether gut microbiota modulation, for example via fecal microbiota transplantation or live biotherapeutic products, can improve results of ICI therapy in patients with cancer. We also briefly discuss the mechanisms through which the gut microbial-derived products influence immunotherapy effectiveness. Further research is necessary to fully understand the complex interactions between the host, gut microbiota, and immunotherapy and to develop personalized strategies that optimize responses to ICI therapy.

RevDate: 2025-01-23

Correa Lopes B, Turck J, Tolbert MK, et al (2024)

Prolonged storage reduces viability of Peptacetobacter (Clostridium) hiranonis and core intestinal bacteria in fecal microbiota transplantation preparations for dogs.

Frontiers in microbiology, 15:1502452.

INTRODUCTION: Fecal microbiota transplantation (FMT) has been described useful as an adjunct treatment for chronic enteropathy in dogs. Different protocols can be used to prepare and store FMT preparations, however, the effect of these methods on microbial viability is unknown. We aimed (1) to assess the viability of several core intestinal bacterial species by qPCR and (2) to assess Peptacetobacter (Clostridium) hiranonis viability through culture to further characterize bacterial viability in different protocols for FMT preparations.

METHODS: Bacterial abundances were assessed in feces from six healthy dogs by qPCR after propidium monoazide (PMA-qPCR) treatment for selective quantitation of viable bacteria. Conservation methods tested included lyophilization (stored at 4°C and at -20°C) and freezing with glycerol-saline solution (12.5%) and without any cryoprotectant (stored at -20°C). Additionally, the abundance of P. hiranonis was quantified using bacterial culture.

RESULTS: Using PMA-qPCR, the viability of Faecalibacterium, Escherichia coli, Streptococcus, Blautia, Fusobacterium, and P. hiranonis was reduced in lyophilized fecal samples kept at 4°C and -20°C up to 6 months (p < 0.05). In frozen feces without cryoprotectant, only Streptococcus and E. coli were not significantly reduced for up to 3 months (p > 0.05). Lastly, no differences were observed in the viability of those species in glycerol-preserved samples up to 6 months (p > 0.05). When using culture to evaluate the viability of P. hiranonis, we observed that P. hiranonis abundance was lower in lyophilized samples kept at 4°C than -20°C; and P. hiranonis abundance was higher in glycerol-preserved samples for up to 6 months than in samples preserved without glycerol for up to 3 months. Moreover, the highest abundance of P. hiranonis was observed in glycerol-preserved feces. After 3 months, P. hiranonis was undetectable by culture in 83% (5/6) of the frozen samples without glycerol.

DISCUSSION: While the lyophilization procedure initially reduced P. hiranonis abundance, P. hiranonis viability was stable thereafter for up to 6 months at -20°C. The higher bacterial viability detected in fecal samples preserved with glycerol confirms the use of this cryoprotectant as a reliable method to keep bacteria alive in the presence of fecal matrix for FMT purposes.

RevDate: 2025-01-21
CmpDate: 2025-01-22

Ye J, Shi R, Wu X, et al (2025)

Stevioside mitigates metabolic dysregulation in offspring induced by maternal high-fat diet: the role of gut microbiota-driven thermogenesis.

Gut microbes, 17(1):2452241.

Maternal obesity poses a significant threat to the metabolic profiles of offspring. Microorganisms acquired from the mother early in life critically affect the host's metabolic functions. Natural non-nutritive sweeteners, particularly stevioside (STV), play a crucial role in reducing obesity and affecting gut microbiota composition. Based on this, we hypothesized that maternal STV supplementation could improve the health of mothers and offspring by altering their gut microbiota. Our study found that maternal STV supplementation reduced obesity during pregnancy, decreased abnormal lipid accumulation in offspring mice caused by maternal obesity, and modified the gut microbiota of both dams and offspring, notably increasing the abundance of Lactobacillus apodemi (L. apodemi). Co-housing and fecal microbiota transplant experiments confirmed that gut microbiota mediated the effects of STV on metabolic disorders. Furthermore, treatment with L. apodemi alone replicated the beneficial effects of STV, which were associated with increased thermogenesis. In summary, maternal STV supplementation could alleviate lipid metabolic disorders in offspring by enhancing L. apodemi levels and promoting thermogenic activity, potentially involving changes in bile acid metabolism pathways.

RevDate: 2025-01-21

Liu H, Yang S, Zhang Q, et al (2025)

S-ketamine alleviates morphine-induced hyperalgesia via decreasing the gut Enterobacteriaceae levels: Comparison with R-ketamine.

Neuroscience pii:S0306-4522(25)00024-7 [Epub ahead of print].

BACKGROUND: Opioid-induced hyperalgesia (OIH) is a serious complication during the pain treatment. Ketamine has been commonly reported to treat OIH, but the mechanisms remain unclear. Gut microbiota is recently recognized as one of the important mechanisms underlying the occurrence and treatment of OIH. However, whether ketamine enantiomers could alleviate OIH through gut microbiota that still needs to be clarified.

METHODS: The OIH model was established by morphine injection for 3 consecutive days, followed by hierarchical clustering analysis of behavioral results into susceptible or resilient group. Broad-spectrum antibiotic cocktail (ABx) was used to eradicated the gut microbiota of mice. Subsequently, fecal microbiota transplantation (FMT) was performed. S- or R-ketamine was administered as pretreatment 30 min before morphine injection. Fecal samples were collected for 16S rRNA gene sequencing after completion of all behavioral tests.

RESULTS: Approximately 60% of the mice developed OIH after morphine exposure with abnormal locomotion and anxiety-like behaviors. Pseudo germ-free mice treated with ABx did not develop hyperalgesia, whereas pseudo germ-free mice that received fecal microbiota transplantation from OIH mice developed hyperalgesia. Interestingly, S-ketamine but not R-ketamine rescued mice from OIH. The principal co-ordinates analysis (PCoA) suggested that the distribution of gut microbiota differed among the groups. Importantly, levels of Enterobacteriaceae were increased in OIH susceptible group, while decreased after S-ketamine treatment.

CONCLUSION: S-ketamine but not R-ketamine was able to alleviate morphine-induced OIH, and this mechanism is probably related to decreasing the levels of gut Enterobacteriaceae.

RevDate: 2025-01-21
CmpDate: 2025-01-21

Aristizábal AM, Montaña LP, Gutiérrez J, et al (2024)

Intra-mesenteric steroids for steroid-refractory graft-versus-host disease in pediatric patients: A safe option.

Biomedica : revista del Instituto Nacional de Salud, 44(Sp. 2):63-71.

INTRODUCTION: Graft-versus-host disease is a serious complication after hematopoietic stem cell transplantation and is a major cause of death post-transplantation. Approximately 50% of acute graft-versus-host disease patients do not respond to systemic steroids and their prognosis is poor regardless of the treatment. This study describes our experience with pediatric patients diagnosed with steroid-refractory graft-versus-host disease who received intra-mesenteric steroid treatment.

OBJECTIVE: To determine the outcomes of intra-mesenteric steroid use in the management of pediatric patients diagnosed with refractory graft-versus-host disease.

MATERIALS AND METHODS: The study included patients under 18 years old with allogeneic hematopoietic stem cell transplantation who underwent intra-mesenteric steroid injection for resistant gastrointestinal graft-versus-host disease between January, 2016, and December, 2021. Methylprednisolone was administered via intra-arterial injection through the celiac trunk and the superior and inferior mesenteric arteries.

RESULTS: We collected data on 21 patients: nine (90%) responded with a subjective decrease in fecal output and a reduction in bilirubin and transaminases. Seven patients required a second intra-mesenteric injection and presented a complete response in 85% of the cases. Only one patient experienced local complications after the procedure. Twelve patients (57%) died with one death due to acute graft-versus-host disease.

CONCLUSION: Reports in the adult population have shown an approximately 50% response rate with few complications, making it a second-line management standard. As far as we know, this is the largest pediatric cohort reported in Latin America. Our findings suggest that intra-mesenteric steroid administration for managing hepatic and gastrointestinal graftversus-host disease may be considered an early adjuvant treatment in patients with steroidrefractory graft-versus-host disease.

RevDate: 2025-01-21

Wu X, Wei J, Ran W, et al (2025)

The Gut Microbiota-Xanthurenic Acid-Aromatic Hydrocarbon Receptor Axis Mediates the Anticolitic Effects of Trilobatin.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

Current treatments for ulcerative colitis (UC) remain limited, highlighting the need for novel therapeutic strategies. Trilobatin (TLB), a naturally derived food additive, exhibits potential anti-inflammatory properties. In this study, a dextran sulfate sodium (DSS)-induced animal model is used to investigate the effects of TLB on UC. It is found TLB significantly alleviates DSS-induced UC in mice, as evidenced by a reduction in the disease activity index, an increase in colon length, improvement in histopathological lesions. Furthermore, TLB treatment results in a decrease in proinflammatory cytokines and an increase in anti-inflammatory cytokines. TLB mitigates UC by modulating the intestinal microbiota, particularly Akkermansia, which enhances tryptophan metabolism and upregulates the production of xanthurenic acid (XANA). To confirm the role of TLB-induced microbiota changes, experiments are performed with pseudogerm-free mice and fecal transplantation. It is also identified XANA as a key metabolite that mediates TLB's protective effects. Both TLB and XANA markedly activate the aromatic hydrocarbon receptor (AhR). Administration of an AhR antagonist abrogates their protective effects, thereby confirming the involvement of AhR in the underlying mechanism. In conclusion, the study reveals a novel mechanism through which TLB alleviates UC by correcting microbiota imbalances, regulating tryptophan metabolism, enhancing XANA production, and activating AhR.

RevDate: 2025-01-22

Song Y, Liu S, Zhang L, et al (2024)

The effect of gut microbiome-targeted therapies in nonalcoholic fatty liver disease: a systematic review and network meta-analysis.

Frontiers in nutrition, 11:1470185.

BACKGROUND: The incidence of NAFLD is increasing. Preclinical evidences indicate that modulation of the gut microbiome could be a promising target in nonalcoholic fatty liver disease.

METHOD: A systematic review and network meta-analysis was conducted to compare the effect of probiotics, synbiotics, prebiotics, fecal microbiota transplant, and antibiotics on the liver-enzyme, metabolic effects and liver-specific in patients with NAFLD. The randomized controlled trails (RCTs), limited to English language were searched from database such as Pubmed, Embase, Web of science and Cochrane Library from inception to November 2024. Review Manager 5.3 was used to to draw a Cochrane bias risk. Inconsistency test and publication-bias were assessed by Stata 14.0. Random effect model was used to assemble direct and indirect evidences. The effects of the intervention were presented as mean differences with 95% confidence interval.

RESULTS: A total of 1921 patients from 37 RCTs were eventually included in our study. 23 RCTs evaluated probiotics, 10 RCTs evaluated synbiotics, 4 RCTs evaluated prebiotics, 3 RCTs evaluated FMT and one RCT evaluated antibiotics. Probiotics and synbiotics were associated with a significantly reduction in alanine aminotransferase [ALT, (MD: -5.09; 95%CI: -9.79, -0.39), (MD: -7.38, 95CI%: -11.94, -2.82)] and liver stiffness measurement by elastograph [LSM, (MD: -0.37;95%CI: -0.49, -0.25), (MD: -1.00;95%CI: -1.59, -0.41)]. In addition to, synbiotics was superior to probiotics in reducing LSM. Synbiotics was associated with a significant reduction of Controlled Attenuation Parameter [CAP, (MD: -39.34; 95%CI: -74.73, -3.95)]. Both probiotics and synbiotics were associated with a significant reduction of aspartate transaminase [AST, (MD: -7.81; 95%CI: -15.49, -0.12), (MD: -13.32; 95%CI: -23, -3.64)]. Probiotics and Allogenic FMT was associated with a significant reduction of Homeostatic Model Assessment for Insulin Resistance [HOMA-IR, (MD: -0.7, 95%CI: -1.26, -0.15), (MD: -1.8, 95%CI: -3.53, - 0.07)]. Probiotics was associated with a significant reduction of body mass index [BMI, MD: -1.84, 95%CI: -3.35, -0.33].

CONCLUSION: The supplement of synbiotics and probiotics maybe a promising way to improve liver-enzyme, LSM, and steatosis in patients with NAFLD. More randomized controlled trials are needed to determine the efficacy of FMT and antibiotics on NAFLD. And the incidence of adverse events of MTTs should be further explored.

https://www.crd.york.ac.uk/prospero/, CRD42023450093.

RevDate: 2025-01-20

Ni M, Fan Y, Liu Y, et al (2025)

Epigenetic phase variation in the gut microbiome enhances bacterial adaptation.

bioRxiv : the preprint server for biology.

The human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A central strategy for genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePV have been well characterized in human pathogens' antigenic variation and virulence factor production. However, the role of ePV in facilitating adaptation within the human microbiome remains poorly understood. Here, we comprehensively cataloged genome-wide and site-specific ePV in human infant and adult gut microbiomes. First, using long-read metagenomic sequencing, we detected genome-wide ePV mediated by complex structural variations of DNA methyltransferases, highlighting the ones associated with antibiotics or fecal microbiota transplantation. Second, we analyzed an extensive collection of public short-read metagenomic sequencing datasets, uncovering a greater prevalence of genome-wide ePV in the human gut microbiome. Third, we quantitatively detected site-specific ePVs using single-molecule methylation analysis to identify dynamic variations associated with antibiotic treatment or probiotic engraftment. Finally, we performed an in-depth assessment of an Akkermansia muciniphila isolate from an infant, highlighting that ePV can regulate gene expression and enhance the bacterial adaptive capacity by employing a bet-hedging strategy to increase tolerance to differing antibiotics. Our findings indicate that epigenetic modifications are a common and broad strategy used by bacteria in the human gut to adapt to their environment.

RevDate: 2025-01-20

Liu C, Wong PY, Barua N, et al (2025)

From Clinical to Benchside: Lacticaseibacillus and Faecalibacterium Are Positively Associated With Muscle Health and Alleviate Age-Related Muscle Disorder.

Aging cell [Epub ahead of print].

Sarcopenia is an age-related muscle disorder that increases risks of adverse clinical outcomes, but its treatments are still limited. Gut microbiota is potentially associated with sarcopenia, and its role is still unclear. To investigate the role of gut microbiota in sarcopenia, we first compared gut microbiota and metabolites composition in old participants with or without sarcopenia. Fecal microbiota transplantation (FMT) from human donors to antibiotic-treated recipient mice was then performed. Specific probiotics and their mechanisms to treat aged mice were identified. Old people with sarcopenia had different microbial composition and metabolites, including Paraprevotella, Lachnospira, short-chain fatty acids, and purine. After FMT, mice receiving microbes from people with sarcopenia displayed lower muscle mass and strength compared with those receiving microbes from non-sarcopenic donors. Lacticaseibacillus rhamnosus (LR) and Faecalibacterium prausnitzii (FP) were positively related to muscle health of old people, and enhanced muscle mass and function of aged mice. Transcriptomics showed that genes related to tricarboxylic acid cycle (TCA) were enriched after treatments. Metabolic analysis showed increased substrates of TCA cycle in both LR and FP supernatants. Muscle mitochondria density, ATP content, NAD[+]/NADH, mitochondrial dynamics and biogenesis proteins, as well as colon tight junction proteins of aged mice were improved by both probiotics. LR and the combination of two probiotics also benefit intestinal immune health by reducing CD8[+] IFNγ[+] T cells. Gut microbiota dysbiosis is a pathogenesis of sarcopenia, and muscle-related probiotics could alleviate age-related muscle disorders mainly through mitochondria improvement. Further clinical translation is warranted.

RevDate: 2025-01-19

Cheng CK, Ye L, Wang Y, et al (2025)

Exercised gut microbiota improves vascular and metabolic abnormalities in sedentary diabetic mice through gut‒vascular connection.

Journal of sport and health science pii:S2095-2546(25)00004-3 [Epub ahead of print].

BACKGROUND: Exercise elicits cardiometabolic benefits, reducing the risks of cardiovascular diseases and type 2 diabetes. This study aimed to investigate the vascular and metabolic effects of gut microbiota from exercise-trained donors on sedentary mice with type 2 diabetes and the potential mechanism.

METHODS: Leptin receptor-deficient diabetic (db/db) and nondiabetic (db/m[+]) mice underwent running treadmill exercise for 8 weeks, during which fecal microbiota transplantation (FMT) was parallelly performed from exercise-trained to sedentary diabetic (db/db) mice. Endothelial function, glucose homeostasis, physical performance, and vascular signaling of recipient mice were assessed. Vascular and intestinal stresses, including inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, were investigated. RNA sequencing analysis on mouse aortic and intestinal tissues was performed. Gut microbiota profiles of recipient mice were evaluated by metagenomic sequencing.

RESULTS: Chronic exercise improved vascular and metabolic abnormalities in donor mice. Likewise, FMT from exercised donors retarded body weight gain and slightly improved grip strength and rotarod performance in recipient mice. Exercise-associated FMT enhanced endothelial function in different arteries, suppressed vascular and intestinal stresses, and improved glucose homeostasis in recipient mice, with noted microRNA-181b upregulation in aortas and intestines. Altered gut microbiota profiles and gut-derived factors (e.g., short-chain fatty acids and glucagon-like peptide-1) as well as improved intestinal integrity shall contribute to the cardiometabolic benefits, implying a gut‒vascular connection.

CONCLUSION: This proof-of-concept study indicates that exercised microbiota confers cardiometabolic benefits on sedentary db/db mice, extending the beneficial mechanism of exercise through gut‒vascular communication. The findings open up new therapeutic opportunities for cardiometabolic diseases and shed light on the development of exercise mimetics by targeting the gut microbiota.

RevDate: 2025-01-19

Zhang Y, Hao R, Chen J, et al (2025)

Gut-Derived Ursodeoxycholic Acid from Saponins of Quinoa Regulated Colitis via Inhibiting the TLR4/NF-κB Pathway.

Journal of agricultural and food chemistry [Epub ahead of print].

Alteration of the gut microbiota and its metabolites plays a key role in the development of inflammatory bowel disease (IBD). Here, we investigated the mechanism of saponins, a byproduct from quinoa (SQ) processing, in regulating IBD. SQ ameliorated gut microbiota dysbiosis revealed by 16S rRNA sequencing and improved colonic antioxidant activities and barrier integrity in dextran sulfate sodium (DSS)-treated mice. Broad-spectrum antibiotics further proved that the gut-protective effects of SQ were mediated by gut microbiota. Next, fecal microbiota transplantation (FMT) of SQ-induced gut microbiota/metabolites to inoculate DSS-treated mice alleviated colitis significantly. Untargeted metabolomics and lipidomics revealed that ursodeoxycholic acid (UDCA) was enriched as a microbial metabolite after SQ supplementation. UDCA was then found to attenuate DSS-induced colitis in vivo by targeting the TLR4/NF-κB pathway, which was also verified in a Caco-2 cell model treated with a TLR4 agonist/antagonist. Overall, our findings established that gut microbiota-UDCA-TLR4/NF-κB signaling plays a key role in mediating the protective effects of SQ.

RevDate: 2025-01-19

Du X, Liu L, Yang L, et al (2025)

Cumulative experience meets modern science: Remarkable effects of TongXieYaoFang formula on facilitating intestinal mucosal healing and secretory function.

Journal of ethnopharmacology, 341:119370 pii:S0378-8741(25)00053-4 [Epub ahead of print].

TongXieYaoFang (TXYF), a classical formula used in Traditional Chinese Medicine, is renowned for its efficacy in treating chronic abdominal pain and diarrhoea. Modern research suggests that fundamental relief from these symptoms depends on complete intestinal mucosal healing, which normalises gut secretory functions. Consensus between traditional and modern medical theories indicates that TXYF is particularly suitable for treating the remission phase of ulcerative colitis (UC). Unfortunately, its potential in the remission phase has not received sufficient attention, and its use has been largely limited to a supportive role during the acute phase.

AIM OF THE STUDY: This study aimed to elucidate the efficacy of TXYF in promoting intestinal mucosal healing and enhancing gut secretory function during the non-acute damage phase, as well as to identify the underlying mechanisms contributing to its effects.

METHODS: A mouse model of dextran sulphate sodium salt (DSS)-induced colitis was optimised to specifically evaluate the effects of TXYF on mucosal healing during the repair phase. The effects of TXYF on murine colon function were assessed by measuring faecal pellet count and water content, and further evaluated through immunohistochemical analyses. The underlying mechanisms of action of TXYF were elucidated using mouse intestinal organoid cultures, intestinal stem cell (ISCs) transplantation, immunofluorescence, and western blotting. Active components of TXYF were identified via LC-MS/MS analysis and integrated with network pharmacology for bioinformatics assessment.

RESULTS: TXYF significantly promoted mucosal healing, as reflected by reduced disease activity scores, increased colon length, enhanced epithelial proliferation, and decreased histological damage. Furthermore, TXYF enhanced the recovery of critical intestinal functions, including barrier integrity, absorption, secretion, and motility. Notably, the improvement in the secretory function was particularly pronounced. Mechanistically, these therapeutic effects were mediated by the upregulation of the Atonal homolog 1/SAM pointed domain containing ETS transcription factor/Mucin 2 pathway, which facilitates the differentiation and maturation of ISCs into goblet cells, thereby contributing to both mucosal repair and enhanced secretory function.

CONCLUSIONS: Our study demonstrated that TXYF significantly promotes intestinal mucosal healing and enhances secretory function. These findings offer a solid basis for exploring the potential applications of TXYF in UC management during the remission phase.

RevDate: 2025-01-22
CmpDate: 2025-01-22

Wang D, Jiang Y, Jiang J, et al (2025)

Gut microbial GABA imbalance emerges as a metabolic signature in mild autism spectrum disorder linked to overrepresented Escherichia.

Cell reports. Medicine, 6(1):101919.

Gut microbiota (GM) alterations have been implicated in autism spectrum disorder (ASD), yet the specific functional architecture remains elusive. Here, employing multi-omics approaches, we investigate stool samples from two distinct cohorts comprising 203 children with mild ASD or typical development. In our screening cohort, regression-based analysis for metabolomic profiling identifies an elevated γ-aminobutyric acid (GABA) to glutamate (Glu) ratio as a metabolic signature of ASD, independent of age and gender. In the validating cohort, we affirm the GABA/Glu ratio as an ASD diagnostic indicator after adjusting for geography, age, gender, and specific food-consuming frequency. Integrated analysis of metabolomics, 16S rRNA sequencing, and metagenomics reveals a correlation between overrepresented Escherichia and disrupted GABA metabolism. Furthermore, we observe social behavioral impairments in weaning mice transplanted with E. coli, suggesting a potential link to ASD symptomatology. Collectively, these findings provide insights into potential diagnostic and therapeutic strategies aimed at evaluating and restoring gut microbial neurotransmitter homeostasis.

RevDate: 2025-01-18

Song Y, Cui Y, Zhong Y, et al (2025)

Fecal microbiota transplantation combined with inulin promotes the development and function of early immune organs in chicks.

Journal of biotechnology pii:S0168-1656(25)00012-4 [Epub ahead of print].

Modern management of chicks hinders the vertical transmission of intestinal microbiota, which is closely related to immunity. Inulin is a substrate that can be utilized by the microbiota. This study aimed to determine whether fecal microbiota transplantation (FMT) combined with inulin played a "1+1>2" role in enhancing the development and function of immune organs. Chicks were treated with 1% inulin and/or fecal microbiota suspension on days 1-6. The growth performance, immune organ development, and immune indicators were evaluated on days 7, 14, and 21. Results showed that the combination of FMT and inulin significantly increased the immune organ index on day 7 and promoted the morphological structure and the expression of proliferating cell nuclear antigen (PCNA) in immune organs on days 7, 14, and 21. Each treatment increased the gene expression of interferon-gamma (IFN-γ), interleukin-4 (IL-4), interleukin-2 (IL-2), B cell-activating factor receptor (BAFFR), B cell linker (BLNK), C-X-C Motif Chemokine Ligand 12 (CXCL12), C-X-C Motif Chemokine Receptor 4 (CXCR4), and Biotin (Bu-1) to varying degrees. FMT combined with inulin significantly increased the expression of IgA-positive cells on days 7 and 14. In conclusion, the synergistic effect of FMT and inulin had beneficial impacts on the development and function of immune organs.

RevDate: 2025-01-18

Zhu Z, Zuo S, Zhu Z, et al (2025)

THSWD upregulates the LTF/AMPK/mTOR/Becn1 axis and promotes lysosomal autophagy in hepatocellular carcinoma cells by regulating gut flora and metabolic reprogramming.

International immunopharmacology, 148:114091 pii:S1567-5769(25)00080-3 [Epub ahead of print].

THSWD has the effect of reducing inflammation, improving microcirculation, and regulating immune status in patients with hepatocellular carcinoma. Regardless of its clear therapeutic effect, the underlying mechanism of action against hepatocellular carcinoma is not clear. To identify critical gut microbiota and its associated metabolites related to THSWD inhibition against hepatocellular carcinoma progression, we assessed the microbe-dependent anti-hepatocellular carcinoma effects of THSWD through 16 s rRNA gene sequencing, fecal microbial transplantation and antibiotic treatment. Metabolic analyses, transcriptomic analyses, and molecular experiments were performed to explore how THSWD modulates the gut microbiota against hepatocellular carcinoma progression. As confirmed by in vivo and in vitro assays, THSWD reduced tumour growth rate and promoted apoptosis in hepatocellular carcinoma cells in hepatocellular carcinoma model mice, and liver and kidney indexes were detected and confirmed the safety of THSWD. Transcriptomic analysis revealed that the targets of THSWD were significantly enriched in multiple lysosomal autophagy signalling pathways, suggesting that lysosomal autophagy is probably associated with THSWD's therapeutic effect. Based on the integrated data analysis, THSWD delays hepatocellular carcinoma progression by increasing the intestinal microbiota Duncaniella and augmenting the metabolite glabrol, and the joint analysis of metabolic and genomic data suggests that this metabolite is associated with lysosomal autophagy, and cellular experiments confirmed that the The differential metabolite glabrol induces apoptosis in hepatocellular carcinoma cells by triggering the lysosomal autophagy-mediated apoptosis signalling pathway. Supplementation with glabrol metabolites up regulates the LTF/AMPK/mTOR/Beclin1 axis and promotes hepatocellular carcinoma cells with lysosomal autophagy and induced apoptosis in hepatocellular carcinoma cells.

RevDate: 2025-01-18
CmpDate: 2025-01-18

Lin A, Jiang A, Huang L, et al (2025)

From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy.

Gut microbes, 17(1):2452277.

The integration of fecal microbiota transplantation (FMT) with immune checkpoint inhibitors (ICIs) presents a promising approach for enhancing cancer treatment efficacy and overcoming therapeutic resistance. This review critically examines the controversial effects of FMT on ICIs outcomes and elucidates the underlying mechanisms. We investigate how FMT modulates gut microbiota composition, microbial metabolite profiles, and the tumor microenvironment, thereby influencing ICIs effectiveness. Key factors influencing FMT efficacy, including donor selection criteria, recipient characteristics, and administration protocols, are comprehensively discussed. The review delineates strategies for optimizing FMT formulations and systematically monitoring post-transplant microbiome dynamics. Through a comprehensive synthesis of evidence from clinical trials and preclinical studies, we elucidate the potential benefits and challenges of combining FMT with ICIs across diverse cancer types. While some studies report improved outcomes, others indicate no benefit or potential adverse effects, emphasizing the complexity of host-microbiome interactions in cancer immunotherapy. We outline critical research directions, encompassing the need for large-scale, multi-center randomized controlled trials, in-depth microbial ecology studies, and the integration of multi-omics approaches with artificial intelligence. Regulatory and ethical challenges are critically addressed, underscoring the imperative for standardized protocols and rigorous long-term safety assessments. This comprehensive review seeks to guide future research endeavors and clinical applications of FMT-ICIs combination therapy, with the potential to improve cancer patient outcomes while ensuring both safety and efficacy. As this rapidly evolving field advances, maintaining a judicious balance between openness to innovation and cautious scrutiny is crucial for realizing the full potential of microbiome modulation in cancer immunotherapy.

RevDate: 2025-01-18
CmpDate: 2025-01-18

Zhang R, Sun X, Lu H, et al (2025)

Akkermansia muciniphila Mediated the Preventive Effect of Disulfiram on Acute Liver Injury via PI3K/Akt Pathway.

Microbial biotechnology, 18(1):e70083.

Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear. We utilised bacterial 16S rRNA gene profiling, antimicrobial treatments, and faecal microbiota transplantation tests to explore whether DSF therapy for ALI is dependent on gut microbiota. Our findings indicate that DSF primarily restores intestinal microbiome balance by modulating the abundance of Akkermansia muciniphila (A. muciniphila), leading to significant alleviation of ALI symptoms in a gut microbiota dependent manner. We also found that A. muciniphila can promote the activation of PI3K/Akt pathway, correct the Bcl-2/Bax ratio, and further inhibit hepatocyte apoptosis. In conclusion, DSF ameliorates ALI by modulating the intestinal microbiome and activating the PI3K/AKT pathway through A. muciniphila.

RevDate: 2025-01-17

Elyas S, Barata P, U Vaishampayan (2025)

Clinical Applications of Microbiome in Renal Cell Carcinoma.

European urology focus pii:S2405-4569(24)00264-5 [Epub ahead of print].

Advancements in microbiome research reveal its impact on cancer treatment outcomes, particularly in renal cell carcinoma (RCC). While immune checkpoint inhibitors (ICIs) have improved survival in metastatic RCC, composition of the gut microbiome has the potential to influence their efficacy. Antibiotic-induced microbiome disruptions correlate with diminished outcomes, while strains such as Akkermansia muciniphila, Clostridium butyricum, and others enhance immune responses and progression-free survival. Some prebiotics such as inulin gel can alter the gut flora to overcome the resistant strains occurring in response to immune therapy. This mini-review explores microbiome-targeted interventions, such as pre/probiotics and fecal microbiota transplantation, for overcoming ICI resistance. Although promising, prospective randomized trials are needed to standardize clinical applications and optimize microbiome-targeted treatments. The standard use of gut-modulating therapy cannot be recommended at present outside of clinical trials. A double-blind placebo-controlled randomized trial of ICI ± gut modulating therapy is being planned in frontline therapy of advanced RCC (BIOFRONT trial by the Southwest Oncology Group).

RevDate: 2025-01-17

Vinterberg JE, Oddsdottir J, Nye M, et al (2025)

Management of Recurrent Clostridioides difficile Infection (rCDI): A Systematic Literature Review to Assess the Feasibility of Indirect Treatment Comparison (ITC).

Infectious diseases and therapy [Epub ahead of print].

Recurrent Clostridioides difficile infection (rCDI) is a major cause of increased morbidity, mortality, and healthcare costs. Fecal-microbiota-based therapies are recommended for rCDI on completion of standard-of-care (SoC) antibiotics to prevent further recurrence: these therapies include conventional fecal-microbiota transplantation and the US Food and Drug Administration-approved therapies REBYOTA® (RBL) and VOWST Oral Spores™ (VOS). As an alternative to microbiota-based therapies, bezlotoxumab, a monoclonal antibody, is used as adjuvant to SoC antibiotics to prevent rCDI. There are no head-to-head clinical trials comparing different microbiota-based therapies or bezlotoxumab for rCDI. To address this gap, we conducted a systematic literature review to identify clinical trials on rCDI treatments and assess the feasibility of using them to conduct an indirect treatment comparison (ITC). The feasibility analysis determined that trial heterogeneity, particularly relating to inclusion criteria, may significantly compromise ITC and prevent cross-trial comparisons. Our analysis underlines the need to adopt standardized protocols to ensure comparability across trials.

RevDate: 2025-01-17

Berry P, S Khanna (2025)

The evolving landscape of live biotherapeutics in the treatment of Clostridioides difficile infection.

Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology [Epub ahead of print].

Clostridioides difficile (C. difficile) infection (CDI) is common after antibiotic exposure and presents significant morbidity, mortality and healthcare costs worldwide. The rising incidence of recurrent CDI, driven by hypervirulent strains, widespread antibiotic use and increased community transmission, has led to an urgent need for novel therapeutic strategies. Conventional antibiotic treatments, although effective, face limitations due to rising antibiotic resistance and high recurrence rates, which can reach up to 60% after multiple infections. This has prompted exploration of alternative therapies such as fecal microbiota-based therapies, including fecal microbiota transplantation (FMT) and live biotherapeutics (LBPs), which demonstrate superior efficacy in preventing recurrence. They are aimed at restoring the gut microbiota. Fecal microbiota, live-jslm and fecal microbiota spores, live-brpk have been approved by the U.S. Food and Drug Administration in individuals aged 18 years or older for recurrent CDI after standard antimicrobial treatment. They have demonstrated high efficacy and a favorable safety profile in clinical trials. Another LBP under study includes VE-303, which is not derived from human donor stool. This review provides a comprehensive overview of the current therapeutic landscape for CDI, including its epidemiology, pathophysiology, risk factors, diagnostic modalities and treatment strategies. The review delves into the emerging role of live biotherapeutics, with a particular focus on fecal microbiota-based therapies. We explore their development, mechanisms of action, clinical applications and potential to revolutionize CDI management.

RevDate: 2025-01-17

Shi L, Duan Y, Fang N, et al (2025)

Lactobacillus gasseri prevents ibrutinib-associated atrial fibrillation through butyrate.

Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology pii:7959062 [Epub ahead of print].

Ibrutinib, a widely used anti-cancer drug, is known to significantly increase the susceptibility to atrial fibrillation (AF). While it is recognized that drugs can reshape the gut microbiota, influencing both therapeutic effectiveness and adverse events, the role of gut microbiota in ibrutinib-induced AF remains largely unexplored. Utilizing 16S rRNA gene sequencing, fecal microbiota transplantation, metabonomics, electrophysiological examination, and molecular biology methodologies, we sought to validate the hypothesis that gut microbiota dysbiosis promotes ibrutinib-associated AF and to elucidate the underlying mechanisms. We found that ibrutinib administration predisposes rats to AF. Interestingly, ibrutinib-associated microbial transplantation conferred increased susceptibility to AF in rats. Notably, ibrutinib induced a significantly decrease in the abundance of Lactobacillus gasseri (L. gasseri), and oral supplementation of L. gasseri or its metabolite, butyrate, effectively prevented rats from ibrutinib-induced AF. Mechanistically, butyrate inhibits the generation of reactive oxygen species (ROS), thereby ameliorating atrial structural remodeling. Furthermore, we demonstrated that ibrutinib inhibited the growth of L. gasseri by disrupting the intestinal barrier integrity. Collectively, our findings provide compelling experimental evidence supporting the potential efficacy of targeting gut microbes in preventing ibrutinib-associated AF, opening new avenues for therapeutic interventions.

RevDate: 2025-01-21
CmpDate: 2025-01-21

Menon R, Bhattarai SK, Crossette E, et al (2025)

Multi-omic profiling a defined bacterial consortium for treatment of recurrent Clostridioides difficile infection.

Nature medicine, 31(1):223-234.

Donor-derived fecal microbiota treatments are efficacious in preventing recurrent Clostridioides difficile infection (rCDI), but they have inherently variable quality attributes, are difficult to scale and harbor the risk of pathogen transfer. In contrast, VE303 is a defined consortium of eight purified, clonal bacterial strains developed for prevention of rCDI. In the phase 2 CONSORTIUM study, high-dose VE303 was well tolerated and reduced the odds of rCDI by more than 80% compared to placebo. VE303 organisms robustly colonized the gut in the high-dose group and were among the top taxa associated with non-recurrence. Multi-omic modeling identified antibiotic history, baseline stool metabolites and serum cytokines as predictors of both on-study CDI recurrence and VE303 colonization. VE303 potentiated early recovery of the host microbiome and metabolites with increases in short-chain fatty acids, secondary bile acids and bile salt hydrolase genes after antibiotic treatment for CDI, which is considered important to prevent CDI recurrences. These results support the idea that VE303 promotes efficacy in rCDI through multiple mechanisms.

RevDate: 2025-01-16

Wang Q, Ji J, Xiao S, et al (2025)

Explore Alteration of Lung and Gut Microbiota in a Murine Model of OVA-Induced Asthma Treated by CpG Oligodeoxynucleotides.

Journal of inflammation research, 18:445-461.

AIM: We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy.

METHODS: HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups.

RESULTS: (1) Histopathologically, both lung and intestinal tissue in asthmatic mice exhibited significant structural damage and inflammatory response, whereas the structure of both lung and intestinal tissue approached normal levels, accompanied by a notable improvement in the inflammatory response after CpG-ODN treatment. (2) In the specific microbiota composition analysis, bacterial dysbiosis observed in the asthmatic mice, accompanied by enrichment of Proteobacteria found to cause lung and intestinal epithelial damage and inflammatory reaction. After CpG-ODN administration, bacterial dysbiosis was improved, and a notable enrichment of beneficial bacteria, indicating a novel microecology. Meanwhile Oscillospira and Clostridium were identified as two biomarkers of the CpG-ODN treatment. (3) Heatmap analysis revealed significant correlations among lung, small intestine, and colon microbiota.

CONCLUSION: CpG-ODN treatment can ameliorate OVA-induced asthma in mice. One side, preserving the structural integrity of the lung and intestine, safeguarding the mucosal physical barrier, the other side, improving the dysbiosis of lung and gut microbiota in asthmatic mice. Beneficial bacteria and metabolites take up microecological advantages, regulate immune cells and participate in the mucosal immune response to protect the immune barrier. Meanwhile, Oscillospira and Clostridium as biomarkers for CpG-ODN treatment, has reference significance for exploring precise Fecal microbiota transplantation treatment for asthma.

RevDate: 2025-01-15

Shekhar S, Schwarzer M, Dhariwal A, et al (2025)

Nasal microbiota transplantation: a gateway to novel treatments.

Trends in microbiology pii:S0966-842X(24)00326-3 [Epub ahead of print].

Two recent studies have highlighted the potential of nasal microbiota transplantation (NMT) to treat chronic rhinosinusitis (CRS). Here we evaluate these findings and propose that lessons from fecal microbiota transplantation (FMT) could guide NMT development, with possible implications for combating antimicrobial resistance in respiratory infections.

RevDate: 2025-01-18
CmpDate: 2025-01-15

Ren M, Xia Y, Pan H, et al (2025)

Duodenal-jejunal bypass ameliorates MASLD in rats by regulating gut microbiota and bile acid metabolism through FXR pathways.

Hepatology communications, 9(2):.

BACKGROUND: Although bariatric and metabolic surgical methods, including duodenal-jejunal bypass (DJB), were shown to improve metabolic dysfunction-associated steatotic liver disease (MASLD) in clinical trials and experimental rodent models, their underlying mechanisms remain unclear. The present study therefore evaluated the therapeutic effects and mechanisms of action of DJB in rats with MASLD.

METHODS: Rats with MASLD were randomly assigned to undergo DJB or sham surgery. Rats were orally administered a broad-spectrum antibiotic cocktail (Abx) or underwent fecal microbiota transplantation to assess the role of gut microbiota in DJB-induced improvement of MASLD. Gut microbiota were profiled by 16S rRNA gene sequencing and metagenomic sequencing, and bile acids (BAs) were analyzed by BA-targeted metabolomics.

RESULTS: DJB alleviated hepatic steatosis and insulin resistance in rats with diet-induced MASLD. Abx depletion of bacteria abrogated the ameliorating effects of DJB on MASLD. Fecal microbiota transplantation from rats that underwent DJB improved MASLD in high-fat diet-fed recipients by reshaping the gut microbiota, especially by significantly reducing the abundance of Clostridium. This, in turn, suppressed secondary BA biosynthesis and activated the hepatic BA receptor, farnesoid X receptor. Inhibition of farnesoid X receptor attenuated the ameliorative effects of post-DJB microbiota on MASLD.

CONCLUSIONS: DJB ameliorates MASLD by regulating gut microbiota and BA metabolism through hepatic farnesoid X receptor pathways.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 28 JUL 2024 )