Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biofilm

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 18 Apr 2021 at 06:50 Created: 

Biofilm

Wikipedia: Biofilm A biofilm is any group of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPS). The EPS components are produced by the cells within the biofilm and are typically a polymeric conglomeration of extracellular DNA, proteins, and polysaccharides. Because they have three-dimensional structure and represent a community lifestyle for microorganisms, biofilms are frequently described metaphorically as cities for microbes. Biofilms may form on living or non-living surfaces and can be prevalent in natural, industrial and hospital settings. The microbial cells growing in a biofilm are physiologically distinct from planktonic cells of the same organism, which, by contrast, are single-cells that may float or swim in a liquid medium. Biofilms can be present on the teeth of most animals as dental plaque, where they may cause tooth decay and gum disease. Microbes form a biofilm in response to many factors, which may include cellular recognition of specific or non-specific attachment sites on a surface, nutritional cues, or in some cases, by exposure of planktonic cells to sub-inhibitory concentrations of antibiotics. When a cell switches to the biofilm mode of growth, it undergoes a phenotypic shift in behavior in which large suites of genes are differentially regulated.

Created with PubMed® Query: biofilm[title] NOT 28392838[PMID] NOT 31293528[PMID] NOT 29372251[PMID] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2021-04-17

Han F, Zhang M, Liu Z, et al (2021)

Dynamic characteristics of microbial community and soluble microbial products in partial nitrification biofilm system developed from marine sediments treating high salinity wastewater.

Journal of environmental management, 290:112586 pii:S0301-4797(21)00648-4 [Epub ahead of print].

High salinity wastewater generally resulted in microorganism death and low treatment efficiency of nutrient in conventional activity sludge system. Marine sediments, containing a huge amount of natural salt-tolerant microorganisms, provide a feasible option for the rapid construction of halophilic biological treatment system. However, the dynamic of native microorganisms and the fate of soluble microbial products (SMP) in halophilic biofilm system developed from marine sediments needs to be further studied. In this study, a partial nitrification system was successfully established by inoculation of marine sediments in sequential batch biofilm reactor. Satisfactory chemical oxygen demand (COD) and NH4+-N removal efficiency (95% and 99%) and nitrite accumulation rate (NAR) (>90%) was achieved for treatment of synthetic seawater blackwater. High cell surface hydrophobicity (CSH) and proteins to polysaccharide ratio of extracellular polymeric substance (EPS) were beneficial to the initial biofilm formation. High-throughput sequencing results revealed Nitrosomonas halophila was the sole ammonia oxidizing bacteria (AOB). Thauera and Paracoccus were the main denitrifying bacteria in three biofilm samples. Excitation emission matrix (EEM) spectroscopy coupled with parallel factor analysis (PARAFAC) clarified that proteins were significantly degraded than the other two components (humic-like and fulvic acid-like substance). This study will provide a feasible approach for developing halophilic biological treatment system and present an in-depth insight of the dynamic characteristics of SMP in partial nitrification biofilm system.

RevDate: 2021-04-17

Wasa A, Land JG, Gorthy R, et al (2021)

Antimicrobial and biofilm-disrupting nanostructured TiO2 coating demonstrating photoactivity and dark activity.

FEMS microbiology letters pii:6232155 [Epub ahead of print].

Antimicrobial materials are tools used to reduce the transmission of infectious microorganisms. Photo-illuminated titania (TiO2) is a known antimicrobial material. Used as a coating on door handles and similar surfaces, it may reduce viability and colonization by pathogens and limit their spread. We tested the survival of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Saccharomyces cerevisiae on a nano-structured TiO2-based thin film, called 'NsARC', and on stainless steel under a variety of light wavelengths and intensities. There was significantly less survival (P<0.001) of all the organisms tested on NsARC compared to inert uncoated stainless steel under all conditions. NsARC was active in the dark and possible mechanisms for this are suggested. NsARC inhibited biofilm formation as confirmed by scanning electron microscopy. These results suggest that NsARC can be used as a self-cleaning and self-sterilizing antimicrobial surface coating for the prevention and reduction in the spread of potentially infectious microbes.

RevDate: 2021-04-17

Gorodylova N, Michel C, Seron A, et al (2021)

Modified zeolite-supported biofilm in service of pesticide biodegradation.

Environmental science and pollution research international [Epub ahead of print].

The development of biofilms on modified natural zeolites was investigated with purpose to obtain biocomposites with biodegradation activity towards pesticides MCPA (2-methyl-4-chlorophenoxyacetic acid) and glyphosate (N-(phosphonomethyl)glycine) for potential application in bioaugmentation of polluted agricultural soils. Microbial communities were selected from agricultural pesticide-contaminated soil/water samples and enriched on the basis of their ability to biodegrade the pesticides. In order to enhance affinity of microbial communities to the support material, the natural mineral zeolite was modified by nontoxic environmentally friendly cations (Li+, Na+, K+, NH4+, H+, Mg2+, Ca2+, Fe3+) by methods preserving its structure and characterised using powder XRD, surface area measurement and chemical composition analysis. Kinetics of pesticide degradation by the biocomposites was studied in liquid media. Results showed that according to zeolite modifications, the microbial activity and biodiversity changed. The best biodegradation rate of MCPA and glyphosate reached 0.12-0.13 mg/h with half-life of 16-18 h, which is considerably quicker than observed in natural environment. However, in some cases, biodegradation activity towards pesticides was lost which was connected to unfavourable zeolite modification and accumulation of toxic metabolites. High-throughput sequencing on the 16S rRNA genes of the biofilm communities highlighted the selection of bacteria genera known to metabolise MCPA (Aminobacter, Cupriavidus, Novosphingobium, Pseudomonas, Rhodococcus, Sphingobium and Sphingopyxis) and glyphosate (Pseudomonas). Altogether, results suggested that zeolites do not only have a passive role of biofilm support but also have protective and nutrient-supportive functions that consequently increase biodiversity of the pesticide degraders growing in the biofilm and influence the pesticide biodegradation rate.

RevDate: 2021-04-17

Dos Santos CED, Costa RB, Rabelo CABS, et al (2021)

Hacking biofilm developed in a structured-bed reactor (SBRRIA) with integrated processes of nitrogen and organic matter removal.

Bioprocess and biosystems engineering [Epub ahead of print].

Biomass samples from a structured-bed reactor subjected to recirculation and intermittent aeration (SBRRIA) were analyzed to investigate the bacterial community shift along with the changes in the C/N ratio. The C/N ratios tested were 7.6 ± 1.0 (LNC) and 2.9 ± 0.4 (HNC). The massive sequencing analyses revealed that the microbial community adjusted itself to different organic and nitrogenous applied loads, with no harm to reactor performance regarding COD and Total-N removal. Under LNC, conventional nitrification and heterotrophic denitrification steered the process, as indicated by the detection of microorganisms affiliated with Nitrosomonadaceae, Nitrospiraceae, and Rhodocyclaceae families. However, under HNC, the C/N ratio strongly affected the microbial community, resulting in the prevalence of members of Saprospiraceae, Chitinophagaceae, Xanthomonadaceae, Comamonadaceae, Bacillaceae, and Planctomycetaceae. These families include bacteria capable of using organic matter derived from cell lysis, ammonia-oxidizers under low DO, heterotrophic nitrifiers-aerobic denitrifiers, and non-isolated strains of Anammox. The DO profile confirmed that the stratification in aerobic, anoxic, and anaerobic zones enabled the establishment of different nitrogen degradation pathways, including the Anammox.

RevDate: 2021-04-17

Beebout CJ, Sominsky LA, Eberly AR, et al (2021)

Cytochrome bd promotes Escherichia coli biofilm antibiotic tolerance by regulating accumulation of noxious chemicals.

NPJ biofilms and microbiomes, 7(1):35.

Nutrient gradients in biofilms cause bacteria to organize into metabolically versatile communities capable of withstanding threats from external agents including bacteriophages, phagocytes, and antibiotics. We previously determined that oxygen availability spatially organizes respiration in uropathogenic Escherichia coli biofilms, and that the high-affinity respiratory quinol oxidase cytochrome bd is necessary for extracellular matrix production and biofilm development. In this study we investigate the physiologic consequences of cytochrome bd deficiency in biofilms and determine that loss of cytochrome bd induces a biofilm-specific increase in expression of general diffusion porins, leading to elevated outer membrane permeability. In addition, loss of cytochrome bd impedes the proton mediated efflux of noxious chemicals by diminishing respiratory flux. As a result, loss of cytochrome bd enhances cellular accumulation of noxious chemicals and increases biofilm susceptibility to antibiotics. These results identify an undescribed link between E. coli biofilm respiration and stress tolerance, while suggesting the possibility of inhibiting cytochrome bd as an antibiofilm therapeutic approach.

RevDate: 2021-04-16

Dewake N, Ma X, Sato K, et al (2021)

β-Glycyrrhetinic acid inhibits the bacterial growth and biofilm formation by supragingival plaque commensals.

Microbiology and immunology [Epub ahead of print].

β-Glycyrrhetinic acid (BGA) is a natural antibacterial agent. Previous studies reported that BGA has antibacterial effects against several bacteria. In this study, we evaluated the effects of BGA on the regulation of supragingival plaque bacteria. First, the minimum inhibitory concentrations (MICs) of BGA against oral bacteria were measured. Next, minimum concentrations for inhibition of biofilm formation were evaluated against Streptococcus mutans and Streptococcus sobrinus, possessing insoluble glucan synthesis abilities. MICs of biofilm formation by these bacteria ranged from 1/8 to 2x MIC. Furthermore, the inhibition effects of BGA against the coaggregation of Porphyromonas gingivalis and Streptococcus gordonii were evaluated. BGA at 32 or 64 μg/mL inhibited the coaggregation of these bacteria after a 30-min incubation. Lastly, the inhibition effects of BGA against human supragingival plaque bacteria were evaluated. Human supragingival plaque samples were obtained from 12 healthy donors. The inhibition effects of BGA against biofilm formation by these plaque bacteria were evaluated. Of 12 samples, the biofilm formation by eleven was significantly attenuated by 128 to 256 μg/mL of BGA. The number of colony forming units in these biofilms was also significantly attenuated. In conclusion, we revealed that BGA inhibits the growth and biofilm formation of bacteria, furthermore, the same effect was confirmed with supragingival plaque bacteria. BGA is one of a good candidate for a natural agent that prevents the outbreak and progression of periodontal disease because it suppresses not only the growth and biofilm formation of bacteria, but also the coaggregation of P. gingivalis with plaque bacteria. This article is protected by copyright. All rights reserved.

RevDate: 2021-04-17

Sun Y, Jiang W, Zhang M, et al (2021)

The Inhibitory Effects of Ficin on Streptococcus mutans Biofilm Formation.

BioMed research international, 2021:6692328.

To investigate the effects of ficin on biofilm formation of conditionally cariogenic Streptococcus mutans (S. mutans). Biomass and metabolic activity of biofilm were assessed using crystal violet assay, colony-forming unit (CFU) counting, and MTT assay. Extracellular polysaccharide (EPS) synthesis was displayed by SEM imaging, bacteria/EPS staining, and anthrone method while acid production was revealed by lactic acid assay. Growth curve and live/dead bacterial staining were conducted to monitor bacterial growth state in both planktonic and biofilm form. Total protein and extracellular proteins of S. mutans biofilm were analyzed by protein/bacterial staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), severally. qRT-PCR was conducted to detect acid production, acid tolerance, and biofilm formation associated genes. Crystal violet assay, CFU counting, and MTT assay showed that the suppression effect of ficin on S. mutans biofilm formation was concentration dependent. 4 mg/mL ficin had significant inhibitory effect on S. mutans biofilm formation including biomass, metabolic activity, EPS synthesis, and lactic acid production (p < 0.05). The growth curves from 0 mg/mL to 4 mg/mL ficin were aligned with each other. There was no significant difference among different ficin groups in terms of live/dead bacterial staining result (p > 0.05). Protein/bacterial staining outcome indicated that ficin inhibit both total protein and biofilm formation during the biofilm development. There were more relatively small molecular weight protein bands in extracellular proteins of 4 mg/mL ficin group when compared with the control. Generally, ficin could inhibit biofilm formation and reduce cariogenic virulence of S. mutans effectively in vitro; thus, it could be a potential anticaries agent.

RevDate: 2021-04-16

Panariello BHD, Kindler JK, Spolnik KJ, et al (2021)

Use of electromagnetic stimulation on an Enterococcus faecalis biofilm on root canal treated teeth in vitro.

Scientific reports, 11(1):8306.

Root canal disinfection is of utmost importance in the success of the treatment, thus, a novel method for achieving root canal disinfection by electromagnetic waves, creating a synergistic reaction via electric and thermal energy, was created. To study electromagnetic stimulation (EMS) for the disinfection of root canal in vitro, single rooted teeth were instrumented with a 45.05 Wave One Gold reciprocating file. Specimens were sterilized and inoculated with Enterococcus faecalis ATCC 29,212, which grew for 15 days to form an established biofilm. Samples were treated with 6% sodium hypochlorite (NaOCl), 1.5% NaOCl 1.5% NaOCl with EMS, 0.9% saline with EMS or 0.9% saline. After treatments, the colony forming units (CFU) was determined. Data was analyzed by Wilcoxon Rank Sums Test (α = 0.05). One sample per group was scored and split for confocal laser scanning microscopy imaging. There was a significant effect with the use of NaOCl with or without EMS versus 0.9% saline with or without EMS (p = 0.012 and 0.003, respectively). CFUs were lower when using 0.9% saline with EMS versus 0.9% saline alone (p = 0.002). Confocal imaging confirmed CFU findings. EMS with saline has an antibiofilm effect against E. faecalis and can potentially be applied for endodontic disinfection.

RevDate: 2021-04-16

Vyas HKN, McArthur JD, ML Sanderson-Smith (2021)

An optimised GAS-pharyngeal cell biofilm model.

Scientific reports, 11(1):8200.

Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.

RevDate: 2021-04-16

Duong TH, Park JW, SK Maeng (2021)

Assessment of organic carbon migration and biofilm formation potential on polymeric tubes in contact with water.

Journal of hazardous materials, 411:125095.

Biofilm formation has been frequently identified as a pathway of nosocomial infection in polymeric tubes used for patients of all ages. Biofilm formation on tube surfaces can lead to hygienic failure and cause diarrhea, stomach pain, inflammation, and digestive system disease. This study investigated the influence of polymeric tube materials in contact with water on the biomass formation potential and migration potential of microbially available carbon from plasticizers using a BioMig test. The thermoplastic elastomer tube, which is reusable, leached a relatively low amount of assimilable organic carbon to water. In contrast, the assimilable organic carbon migration potential of polyurethane was the most significant, 6-fold greater than that of the thermoplastic elastomer. Moreover, the same materials (e.g., silicone) produced via different manufacturing processes showed significant differences in migration behaviors. The potential biomass formation observed in polyurethane was approximately 7 × 109 cells cm-2 for both Aeromonas hydrophila and Escherichia coli strains. This study highlights the importance of choosing the correct material characteristics of polymeric tubes in contact with water to protect them from bacterial contamination. Therefore, manufacturers can use the BioMig test to evaluate and produce more hygienic and biostable tubes.

RevDate: 2021-04-15

D'Agostino A, Tana F, Ettorre A, et al (2021)

Mesoporous zirconia surfaces with anti-biofilm properties for dental implants.

Biomedical materials (Bristol, England) [Epub ahead of print].

Cytocompatible bioactive surface treatments conferring antibacterial properties to osseointegrated dental implants are highly requested to prevent bacteria-related peri-implantitis. Here we focus on a newly designed family of mesoporous coatings based on zirconia (ZrO2) microstructure doped with gallium (Ga), exploiting its antibacterial and pro-osseo-integrative properties. The ZrO2 films were obtained via sol-gel synthesis route using Pluronic F127 as templating agent, while Ga doping was gained by introducing gallium nitrate hydrate. Chemical characterization by means of XPS and GDOES confirmed the effective incorporation of Ga. Then, coatings morphological and structural analysis were carried out by TEM and SAED unveiling an effective stabilization of both the mesoporous structure and the tetragonal ZrO2 phase. Specimens' cytocompatibility was confirmed towards gingival fibroblast and osteoblasts progenitors cultivated directly onto the coatings showing comparable metabolic activity and morphology in respect to controls cultivated on polystyrene. The presence of Ga significantly reduced the metabolic activity of the adhered oral pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in comparison to untreated bulk zirconia (p<0.05); on the opposite, Ga ions did not significantly reduce the metabolism of the oral commensal Streptococcus salivarius (p>0.05) thus suggesting for a selective anti-pathogens activity. Finally, the coatings' ability to preserve cells from bacterial infection was proved in a co-culture method where cells and bacteria were cultivated in the same environment: the presence of Ga determined a significant reduction of the bacteria viability while allowing at the same time for cells proliferation. In conclusion, the here developed coatings not only demonstrated to satisfy the requested antibacterial and cytocompatibility properties, but also being promising candidates for the improvement of implantable devices in the field of implant dentistry.

RevDate: 2021-04-15

Del Pozo JL (2021)

Novel treatment dynamics for biofilm-related infections.

Expert review of anti-infective therapy [Epub ahead of print].

INTRODUCTION: : As a result of progress in medical care, a huge number of medical devices are used in the treatment of human diseases. In turn, biofilm-related infection has become a growing threat due to the tolerance of biofilms to antimicrobials, a problem magnified by the development of antimicrobial resistance worldwide. As a result, successful treatment of biofilm-disease using only antimicrobials is problematic.

AREAS COVERED: : We summarize some alternative approaches to classic antimicrobials for the treatment of biofilm disease. This review is not intended to be exhaustive but to give a clinical picture of alternatives to antimicrobial agents to manage biofilm disease. We highlight those strategies that may be closer to application in clinical practice.

EXPERT OPINION: : There are a number of outstanding challenges in the development of novel antibiofilm therapies. Screening for effective antibiofilm compounds requires models relevant to all clinical scenarios. Although in vitro research of anti-biofilm strategies has progressed significantly over the past decade, there is a lack of in vivo research. In addition, the complexity of biofilm biology makes it difficult to develop a compound that is likely to provide the single 'magic bullet'. The multifaceted nature of biofilms imposes the need for multi-targeted or combinatorial therapies.

RevDate: 2021-04-15

Astrada A, Nakagami G, Minematsu T, et al (2021)

Concurrent validity of biofilm detection by wound blotting on hard-to-heal wounds.

Journal of wound care, 30(Sup4):S4-S13.

OBJECTIVE: Wound biofilms delay healing of hard-to-heal wounds. Convenient biofilm identification tools for clinical settings are currently not available, hindering biofilm-based wound management. Wound blotting with biofilm staining is a potential tool for biofilm detection, owing to its convenience. Although predictive validity of wound blotting has been established, it is necessary to confirm its concurrent validity. Furthermore, current staining systems employing ruthenium red have some disadvantages for clinical use. This study aimed to evaluate the usability of alcian blue as a substitute for ruthenium red.

METHOD: Both in vitro and in vivo clinical samples were used to investigate validity and usability.

RESULTS: The in vitro study showed that proteins and extracellular DNA in biofilms did not affect staining ability of ruthenium red and alcian blue in the detection of biofilms. In the in vivo study, using a wound biofilm model with Pseudomonas aeruginosa, the staining sensitivity of ruthenium red was 88.9% and 100% for alcian blue, with correlation coefficients of signal intensities with native polyacrylamide gel electrophoresis (PAGE) of r=0.67 (p=0.035) and r=0.67 (p=0.036) for ruthenium red and alcian blue, respectively. Results from clinical samples were r=0.75 (p=0.001) for ruthenium red and r=0.77 (p<0.001) for alcian blue. The sensitivities of wound blotting staining by ruthenium red and alcian blue were very high and had a good correlation with native PAGE analysis.

CONCLUSION: Because the alcian blue procedure is more convenient than the ruthenium red procedure, wound blotting with alcian blue staining would be a promising tool to guide clinicians in delivering biofilm-based wound management.

RevDate: 2021-04-16

Ford N, Fisher G, Prindle A, et al (2021)

A Two-Dimensional Model of Potassium Signaling and Oscillatory Growth in a Biofilm.

Bulletin of mathematical biology, 83(5):60.

Biofilms are complex communities of bacteria that exhibit a variety of collective behaviors. These behaviors improve their ability to survive in many different environments. One of these collective behaviors seen in Bacillus subtilis is the ability for starving cells to stop the growth of other cells using potassium signaling and voltage changes. This signaling produces an oscillatory growth pattern so that during periods of low growth the nutrients diffuse deeper into the biofilm and reach the nutrient-starved, interior regions of the biomass. In this paper, we develop a mathematical model to describe this oscillatory behavior, and we use this model to develop a two-dimensional simulation that reproduces many of the important features seen in the experimental data. This simulation allows us to examine the spatial patterning of the oscillatory behavior to better understand the relationships between the various regions of the biofilm. Studying the spatial components of the metabolic and voltage oscillations could allow for the development of new control techniques for biofilms with complex shapes.

RevDate: 2021-04-15

Sedlmayer F, Woischnig AK, Unterreiner V, et al (2021)

5-Fluorouracil blocks quorum-sensing of biofilm-embedded methicillin-resistant Staphylococcus aureus in mice.

Nucleic acids research pii:6226675 [Epub ahead of print].

Antibiotic-resistant pathogens often escape antimicrobial treatment by forming protective biofilms in response to quorum-sensing communication via diffusible autoinducers. Biofilm formation by the nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA) is triggered by the quorum-sensor autoinducer-2 (AI-2), whose biosynthesis is mediated by methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) and S-ribosylhomocysteine lyase (LuxS). Here, we present a high-throughput screening platform for small-molecular inhibitors of either enzyme. This platform employs a cell-based assay to report non-toxic, bioavailable and cell-penetrating inhibitors of AI-2 production, utilizing engineered human cells programmed to constitutively secrete AI-2 by tapping into the endogenous methylation cycle via ectopic expression of codon-optimized MTAN and LuxS. Screening of a library of over 5000 commercial compounds yielded 66 hits, including the FDA-licensed cytostatic anti-cancer drug 5-fluorouracil (5-FU). Secondary screening and validation studies showed that 5-FU is a potent quorum-quencher, inhibiting AI-2 production and release by MRSA, Staphylococcus epidermidis, Escherichia coli and Vibrio harveyi. 5-FU efficiently reduced adherence and blocked biofilm formation of MRSA in vitro at an order-of-magnitude-lower concentration than that clinically relevant for anti-cancer therapy. Furthermore, 5-FU reestablished antibiotic susceptibility and enabled daptomycin-mediated prevention and clearance of MRSA infection in a mouse model of human implant-associated infection.

RevDate: 2021-04-15

Bridges AA, BL Bassler (2021)

Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals.

eLife, 10: pii:65487 [Epub ahead of print].

The global pathogen Vibrio cholerae undergoes cycles of biofilm formation and dispersal in the environment and the human host. Little is understood about biofilm dispersal. Here, we show that MbaA, a periplasmic polyamine sensor, and PotD1, a polyamine importer, regulate V. cholerae biofilm dispersal. Spermidine, a commonly produced polyamine, drives V. cholerae dispersal, whereas norspermidine, an uncommon polyamine produced by vibrios, inhibits dispersal. Spermidine and norspermidine differ by one methylene group. Both polyamines control dispersal via MbaA detection in the periplasm and subsequent signal relay. Our results suggest that dispersal fails in the absence of PotD1 because endogenously produced norspermidine is not reimported, periplasmic norspermidine accumulates, and it stimulates MbaA signaling. These results suggest that V. cholerae uses MbaA to monitor environmental polyamines, blends of which potentially provide information about numbers of 'self' and 'other'. This information is used to dictate whether or not to disperse from biofilms.

RevDate: 2021-04-14

Malishev R, Salinas N, Gibson J, et al (2021)

Inhibition of Staphylococcus aureus biofilm-forming functional amyloid by molecular tweezers.

Cell chemical biology pii:S2451-9456(21)00152-5 [Epub ahead of print].

Biofilms are rigid and largely impenetrable three-dimensional matrices constituting virulence determinants of various pathogenic bacteria. Here, we demonstrate that molecular tweezers, unique supramolecular artificial receptors, modulate biofilm formation of Staphylococcus aureus. In particular, the tweezers affect the structural and assembly properties of phenol-soluble modulin α1 (PSMα1), a biofilm-scaffolding functional amyloid peptide secreted by S. aureus. The data reveal that CLR01, a diphosphate tweezer, exhibits significant S. aureus biofilm inhibition and disrupts PSMα1 self-assembly and fibrillation, likely through inclusion of lysine side chains of the peptide. In comparison, different peptide binding occurs in the case of CLR05, a tweezer containing methylenecarboxylate units, which exhibits lower affinity for the lysine residues yet disrupts S. aureus biofilm more strongly than CLR01. Our study points to a possible role for molecular tweezers as potent biofilm inhibitors and antibacterial agents, particularly against untreatable biofilm-forming and PSM-producing bacteria, such as methicillin-resistant S. aureus.

RevDate: 2021-04-14

Zhang D, Wang F, Yu Y, et al (2021)

Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm.

Applied microbiology and biotechnology [Epub ahead of print].

Biofilms are a form of microbial community that can be beneficial for industrial fermentation because of their remarkable environmental resistance. However, the mechanism of biofilm formation in Saccharomyces cerevisiae remains to be fully explored, and this may enable improved industrial applications for this organism. Although quorum-sensing (QS) molecules are known to be involved in bacteria biofilm formation, few studies have been undertaken with these in fungi. 2-phenylethanol (2-PE) is considered a QS molecule in S. cerevisiae. Here, we found that exogenous 2-PE could stimulate biofilm formation at low cell concentrations. ARO8p and ARO9p are responsible for the synthesis of 2-PE and were crucial to the formation of biofilm. Deletion of the ARO8 and ARO9 genes reduced the content of 2-PE in the early stage of fermentation, reduced ethanol yield and decreased biofilm formation. The expression of FLOp, which is involved in cell adhesion, and the content of extracellular polysaccharides of mutant strains ΔARO8 and ΔARO9 were also significantly reduced. These findings indicate that the production of 2-PE had a positive effect on biofilm formation in S. cerevisiae, thereby providing further key details for studying the formation of biofilm mechanism in the future. KEY POINTS: • Quorum-sensing molecule 2-PE positively affects biofilm formation in S. cerevisiae. • 2-PE synthetic genes ARO8 and ARO9 deletion reduced extracellular polysaccharide. • ARO8 and ARO9 deletion reduced the gene expression of the FLO family.

RevDate: 2021-04-14

Barraud N, Létoffé S, Beloin C, et al (2021)

Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress.

NPJ biofilms and microbiomes, 7(1):34.

Communities of bacteria called biofilms are characterized by reduced diffusion, steep oxygen, and redox gradients and specific properties compared to individualized planktonic bacteria. In this study, we investigated whether signaling via nitrosylation of protein cysteine thiols (S-nitrosylation), regulating a wide range of functions in eukaryotes, could also specifically occur in biofilms and contribute to bacterial adaptation to this widespread lifestyle. We used a redox proteomic approach to compare cysteine S-nitrosylation in aerobic and anaerobic biofilm and planktonic Escherichia coli cultures and we identified proteins with biofilm-specific S-nitrosylation status. Using bacterial genetics and various phenotypic screens, we showed that impairing S-nitrosylation in proteins involved in redox homeostasis and amino acid synthesis such as OxyR, KatG, and GltD altered important biofilm properties, including motility, biofilm maturation, or resistance to oxidative stress. Our study therefore revealed that S-nitrosylation constitutes a physiological basis underlying functions critical for E. coli adaptation to the biofilm environment.

RevDate: 2021-04-15

Zhang H, Li X, An Z, et al (2021)

Treatment of polyacrylamide-polluted wastewater using a revolving algae biofilm reactor: Pollutant removal performance and microbial community characterization.

Bioresource technology, 332:125132 pii:S0960-8524(21)00471-5 [Epub ahead of print].

Industries such as oil mining face challenges in the treatment of polyacrylamide (PAM)-containing wastewater produced during petroleum extraction. The feasibility of using revolving algae biofilm (RAB) reactors to treat PAM-contaminated wastewater for simultaneous removal of carbon and nitrogen was evaluated. The presence or absence of external nitrogen sources had a significant impact on the treatment effect of the RAB system. With the additional N source, the PAM, COD, TOC, and TN removal rates were 64.1 ± 2.0, 58 ± 1.5, 34.5 ± 1.5, and 85 ± 6.0%, respectively. High-throughput sequencing showed that the biofilms on RAB reactors contained a variety of bacteria, cyanobacteria, and green algae, degrading PAM through various mechanisms. The results of infrared spectroscopy analysis indicate that the product of these processes was carboxylic acid. Based on these results, it was concluded that RAB systems can be effectively applied to the treatment of polymer-containing wastewater.

RevDate: 2021-04-13

Long M, Long X, Zheng CW, et al (2021)

Para-Chlorophenol (4-CP) Removal by a Palladium-Coated Biofilm: Coupling Catalytic Dechlorination and Microbial Mineralization via Denitrification.

Environmental science & technology [Epub ahead of print].

Rapid dechlorination and full mineralization of para-chlorophenol (4-CP), a toxic contaminant, are unfulfilled goals in water treatment. Means to achieve both goals stem from the novel concept of coupling catalysis by palladium nanoparticles (PdNPs) with biodegradation in a biofilm. Here, we demonstrate that a synergistic version of the hydrogen (H2)-based membrane biofilm reactor (MBfR) enabled simultaneous removals of 4-CP and cocontaminating nitrate. In situ generation of PdNPs within the MBfR biofilm led to rapid 4-CP reductive dechlorination, with >90% selectivity to more bioavailable cyclohexanone. Then, the biofilm mineralized the cyclohexanone by utilizing it as a supplementary electron donor to accelerate nitrate reduction. Long-term operation of the Pd-MBfR enriched the microbial community in cyclohexanone degraders within Clostridium, Chryseobacterium, and Brachymonas. In addition, the PdNP played an important role in accelerating nitrite reduction; while NO3- reduction to NO2- was entirely accomplished by bacteria, NO2- reduction to N2 was catalyzed by PdNPs and bacterial reductases. This study documents a promising option for efficient and complete remediation of halogenated organics and nitrate by the combined action of PdNP and bacterial catalysis.

RevDate: 2021-04-16

Yassein AS, Hassan MM, RB Elamary (2021)

Prevalence of lipase producer Aspergillus niger in nuts and anti-biofilm efficacy of its crude lipase against some human pathogenic bacteria.

Scientific reports, 11(1):7981.

Nuts are the natural source of healthy lipids, proteins, and omega-3. They are susceptible to fungal and mycotoxins contamination because of their high nutritional value. Twenty-five species comprising 12 genera were isolated from 80 samples of dried fruits and nuts using the dilution plate method. Peanut recorded the highest level of contamination followed by coconut; almond and raisin were the lowest. Aspergillus was the most prevalent genus and A. niger, was the most dominant species. The morphological identification of the selected A. niger isolates as they were detected in high frequency of occurrence was confirmed by using 18SrRNA sequence. Ochratoxin biosynthesis gene Aopks was detected in the tested isolates. Lipase production by the selected A. niger isolates was determined with enzyme activity index (EAI) ranging from 2.02 to 3.28. A. niger-26 was the highest lipase producer with enzyme activity of 0.6 ± 0.1 U/ml by the trimetric method. Lip2 gene was also detected in the tested isolates. Finally, the antibacterial and antibiofilm efficiency of crude lipase against some human pathogens was monitored. Results exhibited great antibacterial efficacy with minimum bactericidal concentration (MBC) of 20 to 40 µl/100 µl against Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, and Methicillin-resistant Staphylococcus aureus (MRSA). Interestingly, significant anti-biofilm efficacy with inhibition percentages of 95.3, 74.9, 77.1 and 93.6% was observed against the tested pathogens, respectively.

RevDate: 2021-04-16

Provenzani R, San-Martin-Galindo P, Hassan G, et al (2021)

Multisubstituted pyrimidines effectively inhibit bacterial growth and biofilm formation of Staphylococcus aureus.

Scientific reports, 11(1):7931.

Biofilms are multicellular communities of microorganisms that generally attach to surfaces in a self-produced matrix. Unlike planktonic cells, biofilms can withstand conventional antibiotics, causing significant challenges in the healthcare system. Currently, new chemical entities are urgently needed to develop novel anti-biofilm agents. In this study, we designed and synthesized a set of 2,4,5,6-tetrasubstituted pyrimidines and assessed their antibacterial activity against planktonic cells and biofilms formed by Staphylococcus aureus. Compounds 9e, 10d, and 10e displayed potent activity for inhibiting the onset of biofilm formation as well as for killing pre-formed biofilms of S. aureus ATCC 25923 and Newman strains, with half-maximal inhibitory concentration (IC50) values ranging from 11.6 to 62.0 µM. These pyrimidines, at 100 µM, not only decreased the number of viable bacteria within the pre-formed biofilm by 2-3 log10 but also reduced the amount of total biomass by 30-50%. Furthermore, these compounds were effective against planktonic cells with minimum inhibitory concentration (MIC) values lower than 60 µM for both staphylococcal strains. Compound 10d inhibited the growth of S. aureus ATCC 25923 in a concentration-dependent manner and displayed a bactericidal anti-staphylococcal activity. Taken together, our study highlights the value of multisubstituted pyrimidines to develop novel anti-biofilm agents.

RevDate: 2021-04-13

Martínez-Méndez R, Camacho-Hernández DA, Sulvarán-Guel E, et al (2021)

A trigger phosphodiesterase modulates the global c-di-GMP pool, motility and biofilm formation in Vibrio parahaemolyticus.

Journal of bacteriology pii:JB.00046-21 [Epub ahead of print].

Vibrio parahaemolyticus cells transit from free swimming to surface adapted lifestyles, such as swarming colonies and three-dimensional biofilms. These transitions are regulated by sensory modules and regulatory networks that involve the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP). In this work, we show that a previously uncharacterized c-di-GMP phosphodiesterase (VP1881) from V. parahaemolyticus plays an important role in modulating the c-di-GMP pool. We found that the product of VP1881 promotes its own expression when the levels of c-di-GMP are low or when the phosphodiesterase is catalytically inactive. This behavior has been observed in a class of c-di-GMP receptors called Trigger phosphodiesterases, hence we named the product of VP1881 TpdA, for Trigger phosphodiesterase A. The absence of tpdA showed a negative effect on swimming motility while its overexpression from an IPTG inducible promoter showed a positive effect on both swimming and swarming motility, and a negative effect on biofilm formation. Changes in TpdA abundance altered the expression of representative polar and lateral flagellar genes as well as the biofilm related gene cpsA Our results also revealed that autoactivation of the native P tpdA promoter is sufficient to alter c-di-GMP signaling responses such as swarming and biofilm formation in V. parahaemolyticus, an observation that could have important implications in the dynamics of these social behaviors.IMPORTANCEC-di-GMP trigger phosphodiesterases (PDEs) could play a key role in controlling the heterogeneity of biofilm-matrix composition, a property that endows characteristics that are potentially relevant for sustaining integrity and functionality of biofilms in a variety of natural environments. Trigger PDEs are not always easy to identify based on their sequence, hence not many examples of these type of signaling proteins have been reported in the literature. Here we report on the identification of a novel trigger PDE in V. parahaemolyticus and provide evidence suggesting that its autoactivation could play an important role in the progression of swarming motility and biofilm formation, multicellular behaviors that are important for the survival and dissemination of this environmental pathogen.

RevDate: 2021-04-15

PLOS Pathogens Staff (2021)

Correction: Enhanced biofilm and extracellular matrix production by chronic carriage versus acute isolates of Salmonella Typhi.

PLoS pathogens, 17(4):e1009512 pii:PPATHOGENS-D-21-00687.

[This corrects the article DOI: 10.1371/journal.ppat.1009209.].

RevDate: 2021-04-13

Hamada M, Yamaguchi T, Sato A, et al (2021)

Increased Incidence and Plasma-Biofilm Formation Ability of SCCmec Type IV Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated From Patients With Bacteremia.

Frontiers in cellular and infection microbiology, 11:602833.

In Japan, Staphylococcal cassette chromosome mec (SCCmec) type IV methicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prominent cause of bacteremia, but the virulence of most of these strains is unclear. We aimed to investigate the relationship between the molecular characteristics and the ability to form biofilms in the presence of blood plasma (plasma-biofilms) of MRSA strains isolated from bloodstream infections. In this study, the molecular characteristics and biofilms of MRSA strains isolated from blood cultures between 2015 and 2017 were analyzed by PCR-based assays, crystal violet staining, and confocal reflection microscopy methods. Among the 90 MRSA isolates, the detection rate of SCCmec type II clones decreased from 60.7 to 20.6%. The SCCmec type IV clone replaced the SCCmec type II clone as the dominant clone, with a detection rate increasing from 32.1 to 73.5%. The plasma-biofilm formation ability of the SCCmec type IV clone was higher than the SCCmec type II clone and even higher in strains harboring the cna or arcA genes. Plasma-biofilms, mainly composed of proteins, were formed quickly and strongly. Our study demonstrated the increased plasma-biofilm formation ability of SCCmec type IV strains.

RevDate: 2021-04-13

Günther F, Blessing B, Dapunt U, et al (2021)

Ability of chlorhexidine, octenidine, polyhexanide and chloroxylenol to inhibit metabolism of biofilm-forming clinical multidrug-resistant organisms.

Journal of infection prevention, 22(1):12-18.

Purpose: This in vitro study was designed to determine if standard antiseptics used for skin and environmental surface cleansing can disrupt the metabolic activity (as a measure of viability) of multidrug-resistant gram-negative bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus isolates within their native biofilms.

Methods: Sixty clinical isolates of multidrug-resistant bacteria were selected for testing in different chlorhexidine gluconate, octenidine, polyhexanide and chloroxylenol concentrations. Metabolic inhibition of biofilm for each clinical isolate was analysed using a biofilm viability assay.

Results: Chlorhexidine gluconate (mean = 83.8% ± 9.8%) and octenidine (mean = 84.5% ± 6.8%) showed the greatest efficacy against biofilms of the tested microorganisms, with the greatest efficacies against MRSA. The antiseptics demonstrated the least efficacy against biofilms of Pseudomonas aeruginosa.

Conclusion: Chlorhexidine gluconate and octenidine showed the greatest level of bacterial metabolic inhibition and were statistically equivalent. Polyhexanide was more effective than chloroxylenol, but both were inferior to chlorhexidine gluconate and octenidine against the tested organisms.

RevDate: 2021-04-13

Fu W, Liu Y, Liu F, et al (2021)

A Novel Autoantibody Induced by Bacterial Biofilm Conserved Components Aggravates Lupus Nephritis.

Frontiers in immunology, 12:656090.

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with multiple autoantibody production and often affects the kidneys, known as lupus nephritis. However, the mechanism underlying lupus nephritis development is unclear. Biofilms that protect bacteria from stress are ubiquitous in almost every environment. Here, we identified that a conserved peptide (HU1) derived from DNABII proteins, one of major bacterial biofilm components, was specifically recognized by sera from about 47% patients with SLE. Moreover, the serum anti-HU1 levels showed a significant positive correlation with lupus nephritis occurrence. Presence of antibodies against HU1 in pristane-induced mice aggravated lupus nephritis, although these antibodies also attenuated bacterial biofilm formation. We further identified that antibodies against HU1 cross-recognized protein disulfide isomerase (P4HB) located on the renal cell surface and inhibited the activities of this enzyme. Our findings reveal a novel mechanism underlying the development of lupus nephritis triggered by bacterial biofilms.

RevDate: 2021-04-13

Evariste L, Braylé P, Mouchet F, et al (2021)

Graphene-Based Nanomaterials Modulate Internal Biofilm Interactions and Microbial Diversity.

Frontiers in microbiology, 12:623853.

Graphene-based nanomaterials (GBMs), such as graphene oxide (GO) and reduced graphene oxide (rGO), possess unique properties triggering high expectations for the development of new technological applications and are forecasted to be produced at industrial-scale. This raises the question of potential adverse outcomes on living organisms and especially toward microorganisms constituting the basis of the trophic chain in ecosystems. However, investigations on GBMs toxicity were performed on various microorganisms using single species that are helpful to determine toxicity mechanisms but fail to predict the consequences of the observed effects at a larger organization scale. Thus, this study focuses on the ecotoxicological assessment of GO and rGO toward a biofilm composed of the diatom Nitzschia palea associated to a bacterial consortium. After 48 and 144 h of exposure to these GBMs at 0, 0.1, 1, and 10 mg.L-1, their effects on the diatom physiology, the structure, and the metabolism of bacterial communities were measured through the use of flow cytometry, 16S amplicon sequencing, and Biolog ecoplates, respectively. The exposure to both of these GBMs stimulated the diatom growth. Besides, GO exerted strong bacterial growth inhibition as from 1 mg.L-1, influenced the taxonomic composition of diatom-associated bacterial consortium, and increased transiently the bacterial activity related to carbon cycling, with weak toxicity toward the diatom. On the contrary, rGO was shown to exert a weaker toxicity toward the bacterial consortium, whereas it influenced more strongly the diatom physiology. When compared to the results from the literature using single species tests, our study suggests that diatoms benefited from diatom-bacteria interactions and that the biofilm was able to maintain or recover its carbon-related metabolic activities when exposed to GBMs.

RevDate: 2021-04-11

Hemmingsen LM, Giordani B, Pettersen AK, et al (2021)

Liposomes-in-chitosan hydrogel boosts potential of chlorhexidine in biofilm eradication in vitro.

Carbohydrate polymers, 262:117939.

Successful treatment of skin infections requires eradication of biofilms found in up to 90 % of all chronic wounds, causing delayed healing and increased morbidity. We hypothesized that chitosan hydrogel boosts the activity of liposomally-associated membrane active antimicrobials (MAA) and could potentially improve bacterial and biofilm eradication. Therefore, liposomes (∼300 nm) bearing chlorhexidine (CHX; ∼50 μg/mg lipid) as a model MAA were incorporated into chitosan hydrogel. The novel CHX-liposomes-in-hydrogel formulation was optimized for skin therapy. It significantly inhibited the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced macrophage and almost completely reduced biofilm formation. Moreover, it reduced Staphylococcus aureus and Pseudomonas aeruginosa adherent bacterial cells in biofilm by 64.2-98.1 %. Chitosan hydrogel boosted the anti-inflammatory and antimicrobial properties of CHX.

RevDate: 2021-04-10

Shivaee A, Rajabi S, Farahani HE, et al (2021)

Effect of sub-lethal doses of nisin on Staphylococcus aureus toxin production and biofilm formation.

Toxicon : official journal of the International Society on Toxinology pii:S0041-0101(21)00097-0 [Epub ahead of print].

Staphylococcus aureus is one of the commonest food-borne pathogens that can cause gastroenteritis owing to having several enterotoxins. Also, biofilm formation can complicate infections caused by this microorganism. Nisin is a safe food bio preservative which is usually used as an agent to prevent pathogen growth; however, it is important to identify the exact impact of nisin on the growth of S. aureus and to determine the suitable concentration needed for elimination of this pathogen in food. In this study, after MIC determination of nisin against S. aureus ATCC 29213, this strain was treated with sub-MIC (1/2) of nisin (4 μg/ml) and transcript levels of toxin-encoding (hla, SEA, SEB, and SED) and biofilm-associated (fnb, ebpS, eno, and icaA) genes were determined using Quantitative Real-time PCR at 2, 8, and 24 h post exposure. All toxin genes were down-regulated following exposure to sub-MIC of nisin, whereas biofilm-associated genes were up-regulated. The expression levels of fnb and icaA in S. aureus were highest after 8 h (4.5-fold and 6.8-fold increase, respectively), while the expression levels of eno and ebpS genes were highest after 2 h (3.3 and 4.5-fold increase, respectively). According to these results, although transcriptional levels of toxin genes were reduced, sub-MIC concentrations of nisin could trigger the expression of biofilm-associated genes in S. aureus. This can further lead to bacteriocin tolerance such that even its higher concentrations cannot kill bacterial cells after exposure to sub-lethal doses. Therefore, it is pivotal to add appropriate concentrations of nisin to food products for preservation purposes.

RevDate: 2021-04-10

Chen M, Yu N, Chen Y, et al (2021)

Anaerobic semi-fixed bed biofilm reactor (An-SFB-BR) for treatment of high concentration p-nitrophenol wastewater under shock loading conditions.

Biodegradation [Epub ahead of print].

P-nitrophenol (PNP or 4-NP) has been widely used as a biorefractory raw material in chemical industry, whereas been highly concerned for its characteristics of mutagenic/carcinogenic activity and food chain bioaccumulation. In this study, an anaerobic semi-fixed bed biofilm reactor (An-SFB-BR) was constructed and used to treat PNP wastewater which discharged from chemical industries. Experimental results revealed that the An-SFB-BR was successfully cultivated with the gradually increasing of influent PNP from 0 to 540 mg/L (gradually increased 10 mg/L every time in stage II and 30-50 mg/L for stage III), with the observation of an average removal efficiency of 98% for PNP and 80% for chemical oxygen demand (COD), also a biogas production and biogas production rate of 2.1 L/(L·d) and 0.57 m3/kg-COD, respectively. Finally, the conversion rate of P-aminophenol (PAP), the primary intermediate of PNP reached 80% after An-SFB-BR biodegradation. A relatively stable pH was maintained throughout the entire process, and insignificant VFA accumulation. The reactor exhibited a strong toxic shock resistance, and 16S rRNA sequencing results demonstrated that the dominant microbial community changed slightly with the gradually increasing of PNP concentration, which guaranteed the PNP removal efficiency.

RevDate: 2021-04-15

Etayash H, Haney EF, REW Hancock (2021)

Assessing biofilm inhibition and immunomodulatory activity of small amounts of synthetic host defense peptides synthesized using SPOT-array technology.

Nature protocols, 16(4):1850-1870.

Peptides are promising drug candidates because of their diversity, biocompatibility and spectrum of activities. Here, we describe a protocol for high-throughput screening of SPOT-peptide arrays to assess the antibiofilm, antimicrobial and immunomodulatory activities of synthetic peptides. It is a Protocol Extension of our previous Nature Protocols article, which describes the synthesis of SPOT-peptide arrays and assays for screening antimicrobial activity. This latest protocol allows the simultaneous assessment of hundreds of synthetic host defense peptides to define their overall activity profiles and identify candidate sequences that are suitable for further characterization and development as anti-infectives. When coupled with the SPOT-array technology for peptide synthesis, the described procedures are rapid, inexpensive and straightforward for peptide library screening. The protocols can be implemented in most microbiology or immunology research laboratories without the need for specialists. The time to complete each step ranges between 1 and 4 h with overnight pauses, and datasets related to the antibiofilm and immunomodulatory activities of a large set of peptide sequences can be generated in a few days.

RevDate: 2021-04-13

Brill FHH, Hambach J, Utpatel C, et al (2021)

Biofilm reduction potential of 0.02% polyhexanide irrigation solution in several types of urethral catheters.

BMC urology, 21(1):58.

BACKGROUND: Long-term use of urethral catheters is associated with high risk of urinary tract infection (UTI) and blockage. Microbial biofilms are a common cause of catheter blockage, reducing their lifetime and significantly increasing morbidity of UTIs. A 0.02% polyhexanide irrigation solution developed for routine mechanical rinsing shows potential for bacterial decolonization of urethral catheters and has the potential to reduce or prevent biofilm formation.

METHODS: Using an in vitro assay with standard market-leading types of catheters artificially contaminated with clinically relevant bacteria, assays were carried out to evaluate the biofilm reduction and prevention potential of a 0.02% polyhexanide solution versus no intervention (standard approach) and irrigation with saline solution (NaCl 0.9%). The efficiency of decolonization was measured through microbial plate count and membrane filtration.

RESULTS: Irrigation using a 0.02% polyhexanide solution is suitable for the decolonization of a variety of transurethral catheters. The effect observed is significant compared to irrigation with 0.9% saline solution (p = 0.002) or no treatment (p = 0.011). No significant difference was found between irrigation with 0.9% saline solution and no treatment (p = 0.74).

CONCLUSIONS: A 0.02% polyhexanide solution is able to reduce bacterial biofilm from catheters artificially contaminated with clinically relevant bacteria in vitro. The data shows a reduction of the viability of thick bacterial biofilms in a variety of commercially available urinary catheters made from silicone, latex-free silicone, hydrogel-coated silicone and PVC. Further research is required to evaluate the long-term tolerability and efficacy of polyhexanide in clinical practice.

RevDate: 2021-04-09

Li K, Liu Z, Liu X, et al (2021)

An anti-biofilm material: polysaccharides prevent the precipitation reaction of silver ions and chloride ions and lead to the synthesis of nano silver chloride.

Nanotechnology [Epub ahead of print].

The formation of biofilm is one of the causes of bacterial pathogenicity and drug resistance. Recent studies have reported a variety of anti-biofilm materials and achieved good results. However, it is still very important to develop some materials with wider application scenarios or higher biofilm resistance. In this study, a new method to rapid synthesize nano silver chloride with anti-biofilm activity is proposed. The bacterial extracellular polysaccharides are used to adsorb silver ions and chloride ions and inhibit the generation of silver chloride precipitation, and then the mixed solution is induced by ultraviolet light to quickly synthesize nano silver chloride in situ. This method is generalizable. A variety of polysaccharides can be used to synthesize nano silver chloride. The novel complex was characterized by XRD, UV-Vis and TEM methods, and further tested the bactericidal ability and anti-biofilm activity. the results showed that our novel nano sliver chloride could effectively destroy the bacteria in biofilm at a bio-safe concentration. In view of the high stability of nano sliver chloride, we propose that the novel material has the potential as a long-term antibacterial material.

RevDate: 2021-04-09

Pourhajibagher M, Rahimi-Esboei B, Ahmadi H, et al (2021)

The anti-biofilm capability of nano-emodin-mediated sonodynamic therapy on multi-species biofilms produced by burn wound bacterial strains.

Photodiagnosis and photodynamic therapy pii:S1572-1000(21)00114-9 [Epub ahead of print].

BACKGROUND: Management of burn wound infections (BWIs) as an important health problem is especially difficult due to the rapid emergence of multidrug-resistant microorganisms. This study aimed to explore the anti-biofilm efficacy of sonodynamic therapy (SDT) using nano-emodin (N-EMO) against multi-species bacterial biofilms containing Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii.

METHODS: Following synthesis and confirmation of N-EMO as a sonosensitizer, the anti-biofilm efficacy of SDT against multi-species bacterial biofilms was determined using minimum inhibitory concentrations (MIC), minimum biofilm inhibitory concentration (MBIC), and minimal biofilm eradication concentration (MBEC) of N-EMO. The reduction of multi-species bacterial biofilms was then evaluated following the treatments using Log reduction and crystal violet (CV) assays. In addition, the expression profiling of abaI, agrA, and lasI genes using SDT with sub-MIC, sub-MBIC, and sub-MBEC of N-EMO was assessed.

RESULTS: Successful synthesis of N-EMO was confirmed through several characterization tests. As the results demonstrated, the MIC value of N-EMO for the multi-species bacterial suspension was 0.15 × 10-4 g/L, as well as, the MBEC value of N-EMO was 2.5 × 10-4 g/L, approximately 4-fold higher than that of MBIC (0.62 × 10-4 g/L). According to the CV assay, there were 57.8%, 71.0%, and 81.5% reduction in the biofilm of multi-species bacterial growth following SDT using 1/128 MBEC, 1/16 MBIC, and 1/2 MIC of N-EMO, respectively. Log reductions analysis demonstrated that 1/2 MIC of N-EMO was more potent in inhibiting the biofilm growth of multi-species test bacteria by 5.725 ± 0.12 (99.9993%). In this study, N-EMO-mediated SDT could obviously downregulate the gene expression of virulence factors (P < 0.05). The gene expression of lasI, agrA, and abaI were downregulated about 2.5-, 3.6-, and 5.5-fold; and 3.0-, 5.2-, and 7.4-fold following SDT with sub-MBIC and sub-MBEC of N-EMO, respectively.

CONCLUSION: These results highlight the potential of N-EMO-mediated SDT in inhibition of biofilm formation, degradation of formed biofilms, and reduction of virulence factor associated with biofilms of multi-species bacterial biofilms in BWIs.

RevDate: 2021-04-14

Manasherob R, Mooney JA, Lowenberg DW, et al (2021)

Tolerant Small-colony Variants Form Prior to Resistance Within a Staphylococcus aureus Biofilm Based on Antibiotic Selective Pressure.

Clinical orthopaedics and related research pii:00003086-990000000-00248 [Epub ahead of print].

BACKGROUND: The treatment of periprosthetic joint infection (PJI) is focused on the surgical or chemical removal of biofilm. Antibiotics in isolation are typically ineffective against PJI. Bacteria survive after antibiotic administration because of antibiotic tolerance, resistance, and persistence that arise in the resident bacteria of a biofilm. Small-colony variants are typically slow-growing bacterial subpopulations that arise after antibiotic exposure and are associated with persistent and chronic infections such as PJI. The role of biofilm-mediated antibiotic tolerance in the emergence of antibiotic resistance remains poorly defined experimentally.

QUESTIONS/PURPOSES: We asked: (1) Does prior antibiotic exposure affect how Staphylococcus aureus survives within a developing biofilm when exposed to an antibiotic that penetrates biofilm, like rifampicin? (2) Does exposure to an antibiotic with poor biofilm penetration, such as vancomycin, affect how S. aureus survives within a developing biofilm? (3) Do small-colony variants emerge from antibiotic-tolerant or-resistant bacteria in a S. aureus biofilm?

METHODS: We used a porous membrane as an in vitro implant model to grow luminescent S. aureus biofilms and simultaneously track microcolony expansion. We evaluated the impact of tolerance on the development of resistance by comparing rifampicin (an antibiotic that penetrates S. aureus biofilm) with vancomycin (an antibiotic that penetrates biofilm poorly). We performed viability counting after membrane dissociation to discriminate among tolerant, resistant, and persistent bacteria. Biofilm quantification and small-colony morphologies were confirmed using scanning electron microscopy. Because of experimental variability induced by the starting bacterial inoculum, relative changes were compared since absolute values may not have been statistically comparable.

RESULTS: Antibiotic-naïve S. aureus placed under the selective pressure of rifampicin initially survived within an emerging biofilm by using tolerance given that biofilm resident cell viability revealed 1.0 x 108 CFU , of which 7.5 x 106 CFU were attributed to the emergence of resistance and 9.3 x 107 CFU of which were attributed to the development of tolerance. Previous exposure of S. aureus to rifampicin obviated tolerance-mediate survival when rifampicin resistance was present, since the number of viable biofilm resident cells (9.5 x 109 CFU) nearly equaled the number of rifampicin-resistant bacteria (1.1 x 1010 CFU). Bacteria exposed to an antibiotic with poor biofilm penetration, like vancomycin, survive within an emerging biofilm by using tolerance as well because the biofilm resident cell viability for vancomycin-naïve (1.6 x 1010 CFU) and vancomycin-resistant (1.0 x 1010 CFU) S. aureus could not be accounted for by emergence of resistance. Adding rifampicin to vancomycin resulted in a nearly 500-fold reduction in vancomycin-tolerant bacteria from 1.5 x 1010 CFU to 3.3 x 107 CFU. Small-colony variant S. aureus emerged within the tolerant bacterial population within 24 hours of biofilm-penetrating antibiotic administration. Scanning electron microscopy before membrane dissociation confirmed the presence of small, uniform cells with biofilm-related microstructures when unexposed to rifampicin as well as large, misshapen, lysed cells with a small-colony variant morphology [29, 41, 42, 63] and a lack of biofilm-related microstructures when exposed to rifampicin. This visually confirmed the rapid emergence of small-colony variants within the sessile niche of a developing biofilm when exposed to an antibiotic that exerted selective pressure.

CONCLUSION: Tolerance explains why surgical and nonsurgical modalities that rely on antibiotics to "treat" residual microscopic biofilm may fail over time. The differential emergence of resistance based on biofilm penetration may explain why some suppressive antibiotic therapies that do not penetrate biofilm well may rely on bacterial control while limiting the emergence of resistance. However, this strategy fails to address the tolerant bacterial niche that harbors persistent bacteria with a small-colony variant morphology.

CLINICAL RELEVANCE: Our work establishes biofilm-mediated antibiotic tolerance as a neglected feature of bacterial communities that prevents the effective treatment of PJI.

RevDate: 2021-04-12
CmpDate: 2021-04-12

Li XW, Wang YF, Jiang WT, et al (2021)

[Effects of antimicrobial peptide GH12 on the morphology and composition of cariogenic three-species biofilm].

Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 39(2):188-194.

OBJECTIVES: To evaluate the effects of antimicrobial peptide GH12 designed de novo on the structure, morphology, and composition of a cariogenic three-species biofilm.

METHODS: The cariogenic three-species biofilm consis-ted of the cariogenic Streptococcus mutans (S. mutans) and commensal bacteria Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii). The biofilm was treated using GH12 (2, 4, and 8 mg·L-1), and untreated biofilm was used as the control. Changes in the morphology and structure of the three-species biofilm were evaluated through crystal violet staining, scanning electron microscopy (SEM), and fluorescent in situ hybridization (FISH). Moreover, S. mutans in the biofilm was selectively cultured, and its colony-forming units were counted.

RESULTS: The biomass and density of the cariogenic three-species biofilm treated with GH12 decreased compared with those of the control. The number of S. mutans decreased gradually and eventually became undetectable, whereas the number of S. gordonii and S. sanguinis increased and became predominant in the biofilm.

CONCLUSIONS: GH12 can reduce the number of S. mutans within the cariogenic three-species biofilm, destroys its integrity, and consequently makes the biofilm easy to remove.

RevDate: 2021-04-10

Vijay K, Kiran GS, Divya S, et al (2021)

Fatty Acid Methyl Esters From the Coral-Associated Bacterium Pseudomonas aeruginosa Inhibit Virulence and Biofilm Phenotypes in Multidrug Resistant Staphylococcus aureus: An in vitro Approach.

Frontiers in microbiology, 12:631853.

In an attempt to study the antibacterial, antivirulence and antibiofilm potentials of bacteria residing the tissue and surface mucus layers of the pristine corals, we screened a total of 43 distinct bacterial morphotypes from the coral Favites sp. Among the isolates, Pseudomonas aeruginosa strain CBMGL12 with showed antibacterial, antivirulence and antibiofilm activity against multidrug resistant pathogenic strains of Staphylococcus aureus (reference strain: MTCC96; community-acquired methicillin resistant strain: CA-MRSA). Extracellular products (ECP) from the coral-associated bacterium P. aeruginosa were solvent extracted, fractionated by chromatographic techniques such as silica column and HPLC-UV with concomitant bioassays guiding the fractionation of metabolites. Identification of bioactive chemical moieties was performed by FT-IR analysis, GC-MS/MS equipped with NIST library, 1H and 13C NMR spectral studies. We report the differential production of extracellular and cell-associated virulence and biofilm phenotypes in multi-drug resistant strains of S. aureus, post-treatment with the ECP containing aromatic fatty acid methyl esters (FAME) such as methyl benzoate and methyl phenyl acetate produced by a coral-associated bacterium. In conclusion, this study has identified antibacterial, antibiofilm and antivirulent FAME from the coral-associated P. aeruginosa for its ability to attenuate virulence and biofilms phenotypes in multi-drug resistant pathogenic strains of S. aureus.

RevDate: 2021-04-15

D'Ugo E, Bertuccini L, Spadaro F, et al (2021)

Electrogenic and hydrocarbonoclastic biofilm at the oil-water interface as microbial responses to oil spill.

Water research, 197:117092 pii:S0043-1354(21)00290-6 [Epub ahead of print].

The oil-water interface formed during an oil spill represents a challenging environment for pelagic communities living in aquatic ecosystems. At this anoxic barrier, we report the formation of a microbial hydrocarbonoclastic biofilm capable of electron transfer along the water column. This biofilm generated a membrane of surface-active compounds that allowed the spontaneous separation of electrical charges, causing the establishment of an anodic and a cathodic region and, as a result, the spontaneous creation of a liquid microbial fuel cell. Such floating biofilm was connected to the water column underneath by floating filaments that could contribute to oxygen reduction at distance. The filaments revealed an unusual lipid content induced by anoxic conditions, with prominent ultrastructural features similar to myelin found in oligodendrocytes of the vertebrate nervous system. Furthermore, these filaments showed an interesting cross-reactivity towards different epitopes of the myelin basic protein (MBP) and Claudin 11 (O4) of human oligodendrocytes. The presence of a network of filaments similar to myelin suggests the probable existence of evolutionary connections between very distant organisms. Collectively these results suggest a possible mechanism for how lake microbial communities can adapt to oil spills while offering an interesting starting point for technological developments of liquid microbial fuel cells related to the study of hydrocarbon-water interfaces. The data that support the findings of this study are openly available in figshare at https://figshare.com/s/72bc73ae14011dc7920d.

RevDate: 2021-04-09

Olubisose ET, Ajayi A, Adeleye AI, et al (2021)

Molecular and phenotypic characterization of efflux pump and biofilm in multi-drug resistant non-typhoidal Salmonella Serovars isolated from food animals and handlers in Lagos Nigeria.

One health outlook, 3:2.

Background: Multidrug resistance efflux pumps and biofilm formation are mechanisms by which bacteria can evade the actions of many antimicrobials. Antibiotic resistant non-typhoidal Salmonella serovars have become wide spread causing infections that result in high morbidity and mortality globally. The aim of this study was to evaluate the efflux pump activity and biofilm forming capability of multidrug resistant non-typhoidal Salmonella (NTS) serovars isolated from food handlers and animals (cattle, chicken and sheep) in Lagos.

Methods: Forty eight NTS serovars were subjected to antibiotic susceptibility testing by the disc diffusion method and phenotypic characterization of biofilm formation was done by tissue culture plate method. Phenotypic evaluation of efflux pump activity was done by the ethidium bromide cartwheel method and genes encoding biofilm formation and efflux pump activity were determined by PCR.

Results: All 48 Salmonella isolates displayed resistance to one or more classes of test antibiotics with 100% resistance to amoxicillin-clavulanic acid. Phenotypically, 28 (58.3%) of the isolates exhibited efflux pump activity. However, genotypically, 7 (14.6%) of the isolates harboured acrA, acrB and tolC, 8 (16.7%) harboured acrA, acrD and tolC while 33 (68.8%) possessed acrA, acrB, acrD and tolC. All (100%) the isolates phenotypically had the ability to form biofilm with 23 (47.9%), 24 (50.0%), 1 (2.1%) categorized as strong (SBF), moderate (MBF) and weak (WBF) biofilm formers respectively but csgA gene was detected in only 23 (47.9%) of them. Antibiotic resistance frequency was significant (p < 0.05) in SBF and MBF and efflux pump activity was detected in 6, 21, and 1 SBF, MBF and WBF respectively.

Conclusion: These data suggest that Salmonella serovars isolated from different food animals and humans possess active efflux pumps and biofilm forming potential which has an interplay in antibiotic resistance. There is need for prudent use of antibiotics in veterinary medicine and scrupulous hygiene practice to prevent the transmission of multidrug resistant Salmonella species within the food chain.

RevDate: 2021-04-09

Marincola G, Jaschkowitz G, Kieninger AK, et al (2021)

Plasmid-Chromosome Crosstalk in Staphylococcus aureus: A Horizontally Acquired Transcription Regulator Controls Polysaccharide Intercellular Adhesin-Mediated Biofilm Formation.

Frontiers in cellular and infection microbiology, 11:660702.

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.

RevDate: 2021-04-11

Tanaka T, Yahata Y, Handa K, et al (2021)

An experimental intraradicular biofilm model in the pig for evaluating irrigation techniques.

BMC oral health, 21(1):177.

BACKGROUND: We established an in vivo intraradicular biofilm model of apical periodontitis in pigs in which we compared the efficacy of different irrigant activation techniques for biofilm removal.

METHODS: Twenty roots from the deciduous mandibular second premolar of 5 male pigs were used. After pulpectomy, canals were left open for 2 weeks and then sealed for 4 weeks to enable the development of an intracanal biofilm. The intraradicular biofilms was evaluated using SEM and bacterial 16S rRNA gene-sequencing. To investigate the efficacy of biofilm removal, root canal irrigations were performed using conventional needle, passive ultrasonic, subsonic, or laser-activated irrigation. Real-time PCR was conducted to quantitate the remaining biofilm components. Statistical analysis was performed using ANOVA followed by a Tukey kramer post-hoc test with α = 0.05.

RESULTS: The pulp exposure model was effective in inducing apical periodontitis and SEM analysis revealed a multi-layer biofilm formation inside the root canal. 16S rRNA sequence analysis identified Firmicutes, Bacteroidetes, and Fusobacteria as the predominant bacterial phyla components, which is similar to the microbiome profile seen in humans. None of the tested irrigation techniques completely eradicated the biofilm components from the root canal, but the subsonic and laser-activated irrigation methods produced the lowest bacterial counts (p < 0.05).

CONCLUSIONS: An experimental intraradicular biofilm model has been successfully established in pigs. Within the limitations of the study, subsonic or laser-activated irrigation demonstrated the best biofilm removal results in the pig system.

RevDate: 2021-04-07

Lingo DE, Shukla N, Osmani AH, et al (2021)

Aspergillus nidulans biofilm formation modifies cellular architecture and enables light-activated autophagy.

Molecular biology of the cell [Epub ahead of print].

After growing on surfaces, including those of medical and industrial importance, fungal biofilms self-generate internal microenvironments. We previously reported that gaseous microenvironments around founder Aspergillus nidulans cells change during biofilm formation causing microtubules (MTs) to disassemble under control of the hypoxic transcription factor SrbA. Here we investigate if biofilm formation might also promote changes to structures involved in exocytosis and endocytosis. During biofilm formation the ER remained intact but ER exit sites and the Golgi apparatus were modified as were endocytic actin patches. The biofilm driven changes required the SrbA hypoxic transcription factor and could be triggered by nitric oxide, further implicating gaseous regulation of biofilm cellular architecture. By tracking GFP-Atg8 dynamics, biofilm founder cells were also observed to undergo autophagy. Most notably, biofilm cells that had undergone autophagy were triggered into further autophagy by spinning disc confocal light. Our findings indicate that fungal biofilm formation modifies the secretory and endocytic apparatus and show biofilm cells can also undergo autophagy that is reactivated by light. The findings provide new insights into the changes occurring in fungal biofilm cell biology that potentially impact their unique characteristics, including antifungal drug resistance. [Media: see text].

RevDate: 2021-04-07

Mancera E, Nocedal I, Hammel S, et al (2021)

Evolution of the complex transcription network controlling biofilm formation in Candida species.

eLife, 10: pii:64682 [Epub ahead of print].

We examine how a complex transcription network composed of seven 'master' regulators and hundreds of target genes evolved over a span of approximately 70 million years. The network controls biofilm formation in several Candida species, a group of fungi that are present in humans both as constituents of the microbiota and as opportunistic pathogens. Using a variety of approaches, we observed two major types of changes that have occurred in the biofilm network since the four extant species we examined last shared a common ancestor. Master regulator 'substitutions' occurred over relatively long evolutionary times, resulting in different species having overlapping, but different sets of master regulators of biofilm formation. Second, massive changes in the connections between the master regulators and their target genes occurred over much shorter timescales. We believe this analysis is the first detailed, empirical description of how a complex transcription network has evolved.

RevDate: 2021-04-08

Gong J, Hu D, He J, et al (2021)

Effect of LongZhang Gargle on Dual-Species Biofilm of Candida albicans and Streptococcus mutans.

BioMed research international, 2021:6654793.

Bioactive natural products have become a hot spot for oral disease treatments. At the present study, LongZhang Gargle was investigated for its effects on single-species biofilms of Candida albicans and dual-species biofilms of Candida albicans and Streptococcus mutans. Two different models of single and dual-species biofilms were grown in YNBB medium under appropriate conditions. Biofilm biomass, biofilm architecture, and cell activity in biofilms were assessed using Crystal Violet Staining, MTT, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Significant reductions of biofilm biomass and fungus activity were obtained when treated with LongZhang Gargle at 2% (P < 0.05), 4% (P < 0.05), and 8% (P < 0.05) in single-species biofilms of C. albicans, and at 4% (P < 0.05) and 8% (P < 0.05) in double-species biofilms. Suppression of density, thickness, and the proportion of hyphae and fungal spores were obtained under SEM and CLSM. In conclusion, LongZhang Gargle affects single and dual-species biofilms by inhibiting biofilm biomass, cell activity, and formation of hyphae, but it does not affect the production of Extracellular polysaccharides (EPS). We speculate that LongZhang Gargle would be a promising natural drug, which can be used in treatment against C. albicans and S. mutans in oral diseases.

RevDate: 2021-04-07

Arnaouteli S, Bamford NC, Stanley-Wall NR, et al (2021)

Bacillus subtilis biofilm formation and social interactions.

Nature reviews. Microbiology [Epub ahead of print].

Biofilm formation is a process in which microbial cells aggregate to form collectives that are embedded in a self-produced extracellular matrix. Bacillus subtilis is a Gram-positive bacterium that is used to dissect the mechanisms controlling matrix production and the subsequent transition from a motile planktonic cell state to a sessile biofilm state. The collective nature of life in a biofilm allows emergent properties to manifest, and B. subtilis biofilms are linked with novel industrial uses as well as probiotic and biocontrol processes. In this Review, we outline the molecular details of the biofilm matrix and the regulatory pathways and external factors that control its production. We explore the beneficial outcomes associated with biofilms. Finally, we highlight major advances in our understanding of concepts of microbial evolution and community behaviour that have resulted from studies of the innate heterogeneity of biofilms.

RevDate: 2021-04-08

Guo S, Vance TDR, Zahiri H, et al (2021)

Structural Basis of Ligand Selectivity by a Bacterial Adhesin Lectin Involved in Multispecies Biofilm Formation.

mBio, 12(2):.

Carbohydrate recognition by lectins governs critical host-microbe interactions. MpPA14 (Marinomonas primoryensis PA14 domain) lectin is a domain of a 1.5-MDa adhesin responsible for a symbiotic bacterium-diatom interaction in Antarctica. Here, we show that MpPA14 binds various monosaccharides, with l-fucose and N-acetylglucosamine being the strongest ligands (dissociation constant [Kd ], ∼150 μM). High-resolution structures of MpPA14 with 15 different sugars bound elucidated the molecular basis for the lectin's apparent binding promiscuity but underlying selectivity. MpPA14 mediates strong Ca2+-dependent interactions with the 3,4-diols of l-fucopyranose and glucopyranoses, and it binds other sugars via their specific minor isomers. Thus, MpPA14 only binds polysaccharides like branched glucans and fucoidans with these free end groups. Consistent with our findings, adhesion of MpPA14 to diatom cells was selectively blocked by l-fucose, but not by N-acetyl galactosamine. The MpPA14 lectin homolog present in a Vibrio cholerae adhesin was produced and was shown to have the same sugar binding preferences as MpPA14. The pathogen's lectin was unable to effectively bind the diatom in the presence of fucose, thus demonstrating the antiadhesion strategy of blocking infection via ligand-based antagonists.IMPORTANCE Bacterial adhesins are key virulence factors that are essential for the pathogen-host interaction and biofilm formation that cause most infections. Many of the adhesin-driven cell-cell interactions are mediated by lectins. Our study reveals for the first time the molecular basis underlying the binding selectivity of a common bacterial adhesin lectin from the marine bacterium Marinomonas primoryensis, homologs of which are found in both environmental and pathogenic species. The lectin-ligand interactions illustrated at the atomic level guided the identification of a ligand that serves as an inhibitor to block bacterium-host adhesion. With conventional bactericidal antibiotics losing their potency due to resistance, our work gives critical insight into an antiadhesion strategy to treat bacterial infections.

RevDate: 2021-04-07

Öcal S, Özen S, Nemutlu E, et al (2021)

Salbutamol Delivered by Jet Nebulizer: Closed System Design and Impact of a Model Biofilm.

Respiratory care pii:respcare.08142 [Epub ahead of print].

BACKGROUND: Aerosol therapy is commonly used by intensivists during invasive mechanical ventilation. More information is needed to optimize outcomes. The first aim of this study was to assess the deposition of salbutamol on components of a closed mechanical ventilation system, both in the presence and absence of biofilm generated by Acinetobacter baumannii. The second aim was to evaluate the deposition of salbutamol, using a single dose and a double dose, delivered via a jet nebulizer placed between the flexible tube and the heat and moisture exchanger.

METHODS: A mechanical ventilator was connected to a standard system, and a jet nebulizer was placed between the heat and moisture exchanger and the flexible tube. Clinical isolates of A.baumanii were used to generate a biofilm layer on the endotracheal tube. Two amounts of salbutamol were delivered via the jet nebulizer. An analytical liquid chromatography tandem mass spectrometry method was developed to evaluate salbutamol deposition.

RESULTS: The presence of a biofilm on the endotracheal tube had no impact on salbutamol deposition (P = .83). There was no difference in surface deposition of salbutamol on component parts of the closed system in a comparison of a single dose and a double dose delivered via a jet nebulizer.

CONCLUSIONS: Our findings indicate that an A.baumannii biofilm had no impact on the extent of salbutamol deposition. Salbutamol deposition was comparatively low and could be delivered without removal of the heat and moisture exchanger.

RevDate: 2021-04-06

Suleman Ismail Abdalla S, Katas H, Chan JY, et al (2021)

Gelatin Hydrogels Loaded with Lactoferrin-Functionalized Bio-Nanosilver as a Potential Antibacterial and Anti-Biofilm Dressing for Infected Wounds: Synthesis, Characterization, and Deciphering of Cytotoxicity.

Molecular pharmaceutics [Epub ahead of print].

Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.

RevDate: 2021-04-06

Lee SW, Carnicelli J, Getya D, et al (2021)

Biofilm Removal by Reversible Shape Recovery of the Substrate.

ACS applied materials & interfaces [Epub ahead of print].

Bacteria can colonize essentially any surface and form antibiotic resistant biofilms, which are multicellular structures embedded in an extracellular matrix secreted by the attached cells. To develop better biofilm control technologies, we recently demonstrated that mature biofilms can be effectively removed through on-demand shape recovery of a shape memory polymer (SMP) composed of tert-butyl acrylate (tBA). It was further demonstrated that such a dynamic substratum can sensitize the detached biofilm cells to antibiotics. However, this SMP can undergo shape change only once, limiting its application in long-term biofilm control. This motivated the present study, which aimed to prove the concept that biofilm can be effectively removed by repeated on-demand shape recovery. Reversible shape memory polymers (rSMPs) containing poly(ε-caprolactone) diisocyanatoethyl dimethacrylate (PCLDIMA) of varying molecular masses and butyl acrylate (BA) as a linker were synthesized by using benzoyl peroxide (BPO) as a thermal initiator. By comparison of several combinations of PCLDIMA of different molecular masses, a 2:1 weight ratio mixture of 2000 and 15000 g/mol PCLDIMA was the most promising because it had a shape transition (at 36.7 °C) close to body temperature. The synthesized rSMP demonstrated good reversible shape recovery and up to 94.3 ± 1.0% removal of 48 h Pseudomonas aeruginosa PAO1 biofilm cells after three consecutive shape recovery cycles. Additionally, the detached biofilm cells were found to be 5.0 ± 1.2 times more susceptible to 50 μg/mL tobramycin than the static control.

RevDate: 2021-04-06

Chen P, Lang J, Donadt T, et al (2021)

Reduced Biofilm Formation at the Air-Liquid-Solid Interface via Introduction of Surfactants.

ACS biomaterials science & engineering [Epub ahead of print].

Reduced biofilm formation is highly desirable in applications ranging from transportation to separations and healthcare. Biofilms often form at the three-phase interface where air, liquid, and solid coexist due to the close proximity to nutrients and oxygen. Reducing biofilm formation at the triple interface presents challenges because of the conflicting requirements for hydrophobicity at the air-solid interface (for self-cleaning properties) and for hydrophilicity at the liquid-solid interface (for reduced foulant adhesion). Meeting those needs simultaneously likely entails a dynamic surface, capable of shifting the surface energy landscape in response to wetting conditions and thus enabling hydrophobicity in air and hydrophilicity in water. Here, we designed a facile approach to render existing surfaces resistant to biofilm formation at the triple interface. By adding trace amounts (∼0.1 mM) of surfactants, biofilm formation of Pseudomonas aeruginosa (known to form biofilm at the triple interface) was reduced on all surfaces tested, ranging from hydrophilic to hydrophobic, polar to nonpolar. That reduced fouling was not a result of the known antimicrobial effects. Instead, it was attributed to the surface-adsorbed surfactants that dynamically control surface energy at the triple interface. To further understand the effect of surfactant-surface interactions on biofilm reduction, we systematically varied the surfactant charge type and surface properties (surface energy and charge). Electrostatic interactions between surfactants and surfaces were identified as an influential factor when predicting the relative fouling reduction upon introduction of surfactants. Nevertheless, biofilm formation was reduced even on the charge-neutral, fluorinated surface made of poly(1H, 1H, 2H, 2H-perfluorodecyl acrylate) by more than 2-fold simply via adding 0.2 mM dodecyl trimethylammonium chloride or 0.3 mM sodium dodecyl sulfate. Given its robustness, this strategy is broadly applicable for reducing fouling on existing surfaces, which in turn improves the cost-effectiveness of membrane separations and mitigates contaminations and nosocomial infections in healthcare.

RevDate: 2021-04-09

Lima-Holanda AT, de Sousa ET, Nobre-Dos-Santos M, et al (2021)

The role of mechanical control of biofilm in the salivary pH after sucrose exposure in children with early childhood caries.

Scientific reports, 11(1):7496.

This quasi-experimental study sought to investigate if the mechanical control of biofilm (3-times-a-day) modifies the saliva's ability to buffer the oral environment after 20% sucrose rinse (SR20%) in children with early childhood caries (ECC). Here, SR20% reduced the saliva's pH in both groups and the mechanical control of biofilm had a greater effect on this parameter after SR20% in CF children. The mechanical control of biofilm evidenced a higher buffering capacity in CF children before SR20%, which was not observed after SR20%. Otherwise, the absence of mechanical control of biofilm showed that buffering capacity was comparable in the two groups before SR20%, whereas after SR20% the saliva's buffering capacity of CF children was higher than ECC children. When biofilm was mechanically controlled, carbonic anhydrase VI activity did not change after SR20% whereas the absence of mechanical control of biofilm reduced this enzyme activity after SR20%. In conclusion, the mechanical control of biofilm did not change saliva's ability to buffer the oral environment after SR20% in children with ECC. On the other hand, CF children appeared to regulate more effectively the saliva's pH than ECC children while the absence of mechanical control of biofilm mediated their pH-modifying ability after SR20%.

RevDate: 2021-04-15

Zhang M, Gao J, Fan Y, et al (2021)

Comparisons of nitrite accumulation, microbial behavior and nitrification kinetic in continuous stirred tank (ST) and plug flow (PF) moving bed biofilm reactors.

Chemosphere, 278:130410 pii:S0045-6535(21)00880-8 [Epub ahead of print].

Two types of continuous stirred tank moving bed biofilm reactors (ST-MBBR) and plug flow MBBR (PF-MBBR) were compared for nitrification. PF-MBBR showed strong shock resistance to temperature, and ammonium oxidation ratio (AOR) was 9.63% higher than that in the ST-MBBR, although the average biomass and biofilm thickness of ST-MBBR were 7.32-18.59%, 9.44-14.06% higher than those in the PF-MBBR. Meanwhile, a lower nitrite accumulation ratio (NAR) was observed (54.88%) in the PF-MBBR than the ST-MBBR (78.92%) due to different operation modes, and the divergence was demonstrated by the microbial quantitative analysis. Nitrification kinetics revealed that the temperature coefficient (θ) in the ST-MBBR (1.068) was much higher than that in the PF-MBBR (1.006-1.015), proving the contrasting nitrification performances caused by temperature shock. According to the Monod equation, the half-saturation coefficient (KN) in the ST-MBBR was 0.19 mg/L while it varied around 0.12-0.24 mg/L in the PF-MBBR, revealing various NH4+ affinity owing to different biofilm thickness and microbial composition. Finally, MBBR optimization related to operation mode, temperature, and free ammonium (FA) inhibition for nitrite accumulation was discussed.

RevDate: 2021-04-17

Merigo E, Bufflier P, Rocca JP, et al (2021)

Bactericidal effect of Er,Cr:YSGG laser irradiation on endodontic biofilm: An ex vivo study.

Journal of photochemistry and photobiology. B, Biology, 218:112185 pii:S1011-1344(21)00063-4 [Epub ahead of print].

AIM: This ex vivo study aimed to evaluate the of Er,Cr:YSGG laser effectiveness in the decontamination of an endodontic biofilm.

MATERIALS AND METHODS: Seventy-three single rooted human teeth, freshly were chosen. Each tooth was exposed to four associated species in an endodontic biofilm (Enterococcus faecalis, Streptococcus salivarius, Porphyromonas gingivalis, and Prevotella intermedia) and randomly allocated to one of the seven experimental groups. The group 1 (7 teeth) was used to finalize the reliable biofilm-forming technique. The groups 2 and 3 (15 teeth each group) were irradiated with two different Er;Cr:YSGG laser settings (0,75 W - 40 Hz and 4 W - 40 Hz, respectively). The groups 4 and 5 (15 teeth each group) were irrigated with two different solutions and laser irradiated with the same settings (1,5 W - 15 Hz). The group 6 (6 teeth) was the control group treated only with 4 ml 2,5% NaOCl irrigation during 60 s.

RESULTS: The observations of group 2 and 3 specimens showed the ripeness of the biofilm with the presence of Enterococcus faecalis and Streptococcus salivarius in chains but in group 3 thermal edge effects produced by the optic fiber in the canal walls were present. The group 4 specimens observation showed an average cleaning of the root canal walls while on the canal walls of group 5 samples the apical third presented several debris and smear layer and in the centre cracks and melting dentin of the radicular wall were observed.

CONCLUSION: In those experimental conditions, this study, demonstrated that Er,Cr:YSGG laser has a canals decontamination ability when associated to NaOCl irrigation.

RevDate: 2021-04-15

Acevedo Alonso V, Kaiser T, Babist R, et al (2021)

A multi-component model for granular activated carbon filters combining biofilm and adsorption kinetics.

Water research, 197:117079 pii:S0043-1354(21)00277-3 [Epub ahead of print].

Along with the rise of biological active granular activated carbon (bGAC) filtration as advanced treatment technology for wastewater treatment plant (WWTP) effluents, the mathematical representation of such systems is gaining increasing importance. This work introduces a model that describes the performance of bGAC-filters for Dissolved Organic Carbon (DOC) removal from a WWTP effluent. The DOC removal within bGAC-filters is accomplished by two mechanisms: adsorptive removal and biological transformation. An appropriate representation of the adsorptive removal requires the DOC to be divided into fictive fractions according to its adsorbability. Likewise, a further DOC classification according to its biodegradability is necessary. Modeling a bGAC-filter then becomes a multi-component adsorption problem, with the simultaneous occurrence of DOC degradation within a biofilm. For dealing with this modeling task, this work integrated the Ideal Adsorbed Solution (IAS) theory into a traditional biofilm model compatible with the Activated Sludge Model (ASM) Framework. For the description of the adsorption dynamics, a Freundlich isotherm for the equilibrium and a pseudo first order model for the kinetics were selected. The biofilm consisted of heterotrophic bacteria able to oxidize DOC using oxygen as electron acceptor. The correctness of the model was evaluated using experimental data from a pilot plant. The predicted DOC breakthrough curve satisfactorily fitted the experimental measurements for empty bed contact times (EBCT) of 6, 12, 24 and 33 min. Moreover, the model predicted the relationship between EBCT, DOC removal and bGAC-filter lifespan. The developed model is the first that combines multi-component adsorption and biofilm kinetics in a wastewater treatment context.

RevDate: 2021-04-05

Ganguly T, Peterson AM, Kajfasz JK, et al (2021)

Zinc Import Mediated by AdcABC is Critical for Colonization of the Dental Biofilm by Streptococcus mutans in an Animal Model.

Molecular oral microbiology [Epub ahead of print].

Trace metals are essential to all domains of life but toxic when found at high concentrations. While the importance of iron in host-pathogen interactions is firmly established, contemporary studies indicate that other trace metals, including manganese and zinc, are also critical to the infectious process. In this study, we sought to identify and characterize the zinc uptake system(s) of S. mutans, a keystone pathogen in dental caries and a causative agent of bacterial endocarditis. Different than other pathogenic bacteria, including several streptococci, that encode multiple zinc import systems, bioinformatic analysis indicated that the S. mutans core genome encodes a single, highly conserved, zinc importer commonly known as AdcABC. Inactivation of the genes coding for the metal-binding AdcA (ΔadcA) or both AdcC ATPase and AdcB permease (ΔadcCB) severely impaired the ability of S. mutans to grow under zinc-depleted conditions. Intracellular metal quantifications revealed that both mutants accumulated less zinc when grown in the presence of a sub-inhibitory concentration of a zinc-specific chelator. Notably, the ΔadcCB strain displayed a severe colonization defect in a rat oral infection model. Both Δadc strains were hypersensitive to high concentrations of manganese, showed reduced peroxide tolerance, and formed less biofilm in sucrose-containing media when cultivated in the presence of the lowest amount of zinc that support their growth, but not when zinc was supplied in excess. Collectively, this study identifies AdcABC as the major high affinity zinc importer of S. mutans and provides preliminary evidence that zinc is a growth-limiting factor within the dental biofilm.

RevDate: 2021-04-06

Raeder SB, Sandbakken ET, Nepal A, et al (2021)

Novel Peptides Targeting the β-Clamp Rapidly Kill Planktonic and Biofilm Staphylococcus epidermidis Both in vitro and in vivo.

Frontiers in microbiology, 12:631557.

Antimicrobial resistance is an increasing threat to global health and challenges the way we treat infections. Peptides containing the PCNA interacting motif APIM (APIM-peptides) were recently shown to bind to the bacterial PCNA homolog, the beta (β)-clamp, and to have both antibacterial and anti-mutagenic activities. In this study we explore the antibacterial effects of these peptides on Staphylococcus epidermidis, a bacterial species commonly found in prosthetic joint infections (PJI). Drug-resistant bacterial isolates from PJIs often lead to difficult-to-treat chronic infections. We show that APIM-peptides have a rapid bactericidal effect which when used at sublethal levels also increase the efficacy of gentamicin. In addition, APIM-peptides reduce development and eliminate already existing S. epidermidis biofilm. To study the potential use of APIM-peptides to prevent PJI, we used an in vivo bone graft model in rats where APIM-peptide, gentamicin, or a combination of the two was added to cement. The bone grafts containing cement with the combination was more effective than cement containing only gentamicin, which is the current standard of care. In summary, these results suggest that APIM-peptides can be a promising new drug candidate for anti-infective implant materials to use in the fight against resistant bacteria and chronic PJI.

RevDate: 2021-04-06
CmpDate: 2021-04-06

Kovalchuk VP, Nazarchuk OA, Burkot VM, et al (2021)

BIOFILM FORMING ACTIVITY OF NON-FERMENTING GRAM-NEGATIVE BACTERIA.

Wiadomosci lekarskie (Warsaw, Poland : 1960), 74(2):252-256.

OBJECTIVE: The aim: To study the influence of chemical, physical factors on the biofilm forming activity of P. aeruginosa, A. baumannii.

PATIENTS AND METHODS: Materials and methods: Biofilm forming activity of P. aeruginosa (10 isolates) and A. baumannii (10 isolates) was studied in nutrient media of different composition. There was used the method in 96-well crystalline violet staining plates with spectrophotometry (STAT FAX®4300, wavelength of 620 nm).

RESULTS: Results: Results showed that in standard medium (trypto-soy broth), strains of P. aeruginosa (90%) and A. baumannii (60%) obtained high biofilm forming activity. A. baumannii formed biofilms even in sterile water. Biofilm forming activity of urease positive P. aeruginosa increased in the medium with 1.0% urea. Both Acinetbacteria and Pseudomonas intensively produced their biofilms in the presence of 5% serum or sub-bacteriostatic concentrations of levofloxacin in the media. High concentrations of sodium chloride inhibited their biofilm activity.

CONCLUSION: Conclusions: Isolates of Acinetobacter and Pseudomonas obtain the protective biofilm-forming ability under such adverse environmental conditions as insufficient nutrients, high osmotic pressure, the presence of antibiotics but at high concentrations sodium chloride biofilm-formation is stimulated only in the first bacteria and suppressed in the second one.

RevDate: 2021-04-04

de Paula GS, Oliveira MC, Sales LS, et al (2021)

Antimicrobial photodynamic therapy mediated by methylene blue coupled to β-cyclodextrin reduces early colonizers microorganisms from the oral biofilm.

Photodiagnosis and photodynamic therapy pii:S1572-1000(21)00109-5 [Epub ahead of print].

OBJECTIVE: To test the effect of antimicrobial photodynamic therapy (A-PDT) on the oral biofilm formed with early colonizing microorganisms, using the photosensitizer methylene blue coupled with β-cyclodextrin nanoparticles and red light sources laser or LED (λ =660 nm).

METHODS: The groups were divided into (n = 3, in triplicate): C (negative control, 0.9% NaCl), CX (positive control, 0.2% chlorhexidine), P (Photosensitizer/Nanoparticle), L (Laser), LED (light-emitting diode), LP (Laser + Photosensitizer/Nanoparticle) and LEDP (LED + Photosensitizer/Nanoparticle). A multispecies biofilm composed ofS. gordonii, S. oralis, S. mitis, and S. sanguinis was grown in microplates containing BHI supplemented with 1% sucrose (w/v) for 24 h. Light irradiations were applied with a laser at 9 J for 90 s (320 J/cm2), or with LED, at 8.1 J for 90 s (8.1 J/cm2). The microbial reduction was assessed by counting viable biofilm microorganisms in selective culture media, before and after the treatments. Data normality was assessed by the Shapiro-Wilk test, and the results were submitted to Kruskal-Wallis analysis, followed by Dunn's test, with a significance level of 5%.

RESULTS: The groups LP and LEDP were able to significantly reduce the biofilm microorganism counts by as much as 4 log10 times compared to the negative control group (p < 0.05) and did not statistically differ from the positive control group (CX) (p > 0.05).

CONCLUSION: The A-PDT mediated by encapsulated β-cyclodextrin methylene blue irradiated by Laser or LED was effective in the microbial reduction of multispecies biofilm composed of early colonizing microorganisms.

RevDate: 2021-04-03

Singh KS, Kumar R, Chauhan A, et al (2021)

Knockout of MRA_1916 in Mycobacterium tuberculosis H37Ra affects its growth, biofilm formation, survival in macrophages and in mice.

Tuberculosis (Edinburgh, Scotland), 128:102079 pii:S1472-9792(21)00029-9 [Epub ahead of print].

Mycobacterium tuberculosis H37Ra (Mtb-Ra) ORF MRA_1916 is annotated as a D-amino acid oxidase (DAO). These enzymes perform conversion of d-amino acids to corresponding imino acids followed by conversion into α-keto-acids. In the present study Mtb-Ra recombinants with DAO knockout (KO) and knockout complemented with DAO over-expressing plasmid (KOC) were constructed. The growth studies showed loss of growth of KO in medium containing glycerol as a primary carbon source. Substituting glycerol with acetate or with FBS addition, restored the growth. Growth was also restored in complemented strain (KOC). KO showed increased permeability to hydrophilic dye EtBr and reduced biofilm formation. Also, its survival in macrophages was low. Phagosome maturation studies suggested enhanced colocalization of KO, compared to WT, with lysosomal marker cathepsin D. Also, an increased intensity of Rab5 and iNOS was observed in macrophages infected with KO, compared to WT and KOC. The in vivo survival studies showed no increase in CFU of KO. This is the first study to show functional relevance of DAO encoded by MRA_1916 for Mtb-Ra growth on glycerol, its permeability and biofilm formation. Also, this study clearly demonstrates that DAO deletion leads to Mtb-Ra failing to grow in macrophages and in mice.

RevDate: 2021-04-09

Huang J, Chu R, Chang T, et al (2021)

Modeling and improving arrayed microalgal biofilm attached culture system.

Bioresource technology, 331:124931 pii:S0960-8524(21)00270-4 [Epub ahead of print].

A microalgal biofilm-attached-system is an alternative cultivation method, that offers potential advantages of improved biomass productivity, efficient harvesting, and water saving. These biofilm systems have been widely tested and utilized for microalgal biomass production and wastewater treatment. This research a microalgal growth model for the biofilm attached culture system has been developed and experimentally validated, both, in single and arrayed biofilm systems. It has been shown that the model has the capability to accurately describe microalgae growth. Moreover, via the model simulation, it was observed that system structural parameters, light dilution rate, and light intensity significantly affected the culture performance. The limitations, and improvement aspects of the model, are also discussed in this study. To our knowledge, this is the first time that a mathematical model for an arrayed-biofilm-attached-system has been developed and validated. This model will certainly be helpful in the design, improvement, optimization, and evaluation of the biofilm-attached-systems.

RevDate: 2021-04-03

Zhang H, Gong W, Zeng W, et al (2021)

Bacterial-algae biofilm enhance MABR adapting a wider COD/N ratios wastewater: Performance and mechanism.

The Science of the total environment, 781:146663 pii:S0048-9697(21)01731-9 [Epub ahead of print].

Although membrane aerated biofilm reactor (MABR) is promising in nitrogen removal due to its counter-diffusion biofilms structure, it still cannot adapt a wider COD/N ratios wastewater. In this condition, expanding the MABR applicability range in different COD/N ratio wastewater is necessary. In this study, a bacterial-algae biofilm, instead of bacteria biofilm, supporting membrane aerated biofilm reactor (MABAR) was constructed, and the performance was compared to MABR. Results showed that the total nitrogen (TN) removal efficiency was promoted significantly in MABAR regardless of the COD/N ratio. Compared to MABR, effluent TN concentration in COD/N ratio of 2, 5, and 8 declined by 14.34 mg/L, 0.50 mg/L, and 12.10 mg/L, respectively. Nitrification inhibition test suggested that algae assimilation made an obvious contribution (at least 18.18 mg/L) to the NH4+-N removal in MABAR. Besides, redundancy analysis (RDA) indicates that MABAR has a negative correlation with Nitrospirae but is positively correlated with NH4+-N removal load. These results are consistent with the kinetics result that algae assimilation, instead of nitrification-denitrification, is responsible for the nitrogen removal in MABAR. Therefore, the change of nitrogen removal route further gave MABAR excellent adaptability and impact resistance to address wastewater with different COD/N ratios, which is conducive to its wide application.

RevDate: 2021-04-14

Li XY, Peng P, Wang WK, et al (2021)

Particle electrode materials dependent tetrabromobisphenol A degradation in three-dimensional biofilm electrode reactors.

Environmental research, 197:111089 pii:S0013-9351(21)00383-2 [Epub ahead of print].

The completely biological degradation of Tetrabromobisphenol A (TBBPA) contaminant is challenging. Bio-electrochemical systems are efficient to promote electrons transfer between microbes and pollutants to improve the degradation of refractory contaminants. In particular, three-dimensional biofilm electrode reactors (3DBERs), integrating the biofilm with particle electrodes, represent a novel bio-electrochemical technology with superior treatment performances. In this study, the electroactive biofilm is cultured and acclimated on two types of particle electrodes, granular activated carbon (GAC) and granular zeolite (GZ), to degrade the target pollutant TBBPA in 3DBERs. Compared to GZ, GAC materials are more favorable for biofilm formation in terms of high specific surface area and good conductivity. The genus of Thauera is efficiently enriched on both GAC and GZ particles, whose growth is promoted by the electricity. By applying 5 V voltage, TBBPA can be removed by over 95% in 120 min whether packing GAC or GZ particle electrodes in 3DBERs. The synergy of electricity and biofilm in TBBPA degradation was more significant in GAC packed 3DBER, because the improved microbial activity by electrical stimulation accelerates debromination rate and hence the decomposition of TBBPA. Applying electricity also promotes TBBPA degradation in GZ packed 3DBER mainly due to the enhanced electrochemical effects. Roles of particle electrode materials in TBBPA removal are distinguished in this work, bringing new insights into refractory wastewater treatment by 3DBERs.

RevDate: 2021-04-03

Wang K, Li X, Yang C, et al (2021)

A LysR family transcriptional regulator modulates biofilm formation and protease production in Burkholderia cenocepacia.

Applied and environmental microbiology pii:AEM.00202-21 [Epub ahead of print].

Quorum sensing (QS) signals are widely employed by bacteria to regulate biological functions in response to cell densities. Previous studies showed that Burkholderia cenocepacia mostly utilizes two types of QS systems, including the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) systems, to regulate biological functions. We demonstrated here that a LysR family transcriptional regulator Bcal3178 controls the QS-regulated phenotypes, including biofilm formation and protease production, in B. cenocepacia H111. Expression of Bcal3178 at transcriptional level was obviously down-regulated in both the AHL-deficient and BDSF-deficient mutant strains comparing to the wild-type H111 strain. It was further identified that Bcal3178 regulated target gene expression by directly binding to the promoter DNA regions. We also revealed that Bcal3178 was directly controlled by the AHL system regulator CepR. These results show that Bcal3178 is a new downstream component of the QS signaling network that modulates a subset of genes and functions co-regulated by the AHL and BDSF QS systems in B. cenocepaciaIMPORTANCEBurkholderia cenocepacia is an important opportunistic pathogen in humans, which utilizes the BDSF and AHL quorum sensing (QS) systems to regulate biological functions and virulence. We demonstrated here that a new downstream regulator Bcal3178 of the QS signaling network controls biofilm formation and protease production. Bcal3178 is a LysR family transcriptional regulator modulated by both the BDSF and AHL QS systems. Furthermore, Bcal3178 controls many target genes which are regulated by the QS systems in B. cenocepacia Collectively, our findings depict a novel molecular mechanism with which QS systems regulate some target gene expression and biological functions by modulating the expression level of a LysR family transcriptional regulator in B. cenocepacia.

RevDate: 2021-04-03

Martínez-Serna IV, Magdaleno MO, Cepeda-Bravo JA, et al (2021)

Does microwave and hydrogen peroxide disinfection reduce Candida albicans biofilm on polymethyl methacrylate denture surfaces?.

The Journal of prosthetic dentistry pii:S0022-3913(21)00094-9 [Epub ahead of print].

STATEMENT OF PROBLEM: Whether the disinfection of polymethyl methacrylate (PMMA) dentures eliminates Candida albicans biofilm is unclear.

PURPOSE: The purpose of this in vitro study was to determine the antimicrobial effect of immersion in hydrogen peroxide (H2O2) and subsequent application of microwaves on the formation of C albicans biofilm on the surface of polished and unpolished PMMA disks.

MATERIAL AND METHODS: Polished and unpolished PMMA disks (n=40) were mounted in a Center for Disease Control (CDC) biofilm reactor by adding yeast-dextrose-peptone (YPD) broth inoculated with C albicans in a cell suspension for 24 hours. After this period, the PMMA disks (n=8) were disinfected with 5 different solutions: saline solution, 1% sodium hypochlorite (NaOCl), H2O2, H2O2 microwaved at 650 W for 3 minutes (H2O2/μw), and distilled water microwaved at 650 W for 3 minutes (H2O/μw). On the polished and unpolished surface of each disk, arbitrary fluorescence units (AFU) were quantified with the live/dead bacterial viability kit (Invitrogen) by using confocal laser scanning microscopy (CLSM) to evaluate 10 different areas of each surface; these were counted as the colony-forming units (CFUs). The mean values were compared by using the Mann-Whitney U test (α=.05).

RESULTS: Polished surfaces disinfected with H2O2/μw obtained the lowest viable cells (9.76 AFU) and nonviable cells (12.46 AFU) compared with H2O/μw and H2O2. In the unpolished surface the lowest mean values of viable cells (14.64 AFU) and nonviable cells (12.46 AFU) were obtained for the PMMA disks disinfected with H2O/μw compared with H2O2/μw and H2O2. Both polished and unpolished disks showed significant difference (P<.05) compared with the group of PMMA disks immersed in saline solution. No CFUs were detected in the polished or unpolished PMMA disks immersed in H2O2/μw or in NaOCl.

CONCLUSIONS: H2O2 alone did not eliminate the formation of the biofilm of C albicans; however, in combination with the use of the microwave at 650 W for 3 minutes, the biofilm formation of C albicans on polished surfaces was reduced. The number of AFUs of viable-nonviable cells and CFUs depended on whether the surfaces are polished or unpolished.

RevDate: 2021-04-13

Rao H, Choo S, Rajeswari Mahalingam SR, et al (2021)

Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies.

Molecules (Basel, Switzerland), 26(7):.

Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.

RevDate: 2021-04-05

Coraça-Huber DC, Steixner S, Wurm A, et al (2021)

Antibacterial and Anti-Biofilm Activity of Omega-3 Polyunsaturated Fatty Acids against Periprosthetic Joint Infections-Isolated Multi-Drug Resistant Strains.

Biomedicines, 9(4): pii:biomedicines9040334.

Background: Implantable medical devices, such as prosthetics, catheters, and several other devices, have revolutionized medicine, but they increase the infection risk. In previous decades, commercially available antibiotics lost their activity against coagulase-negative Staphylococci (CoNS) and several other microorganisms. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the two major omega-3 polyunsaturated fatty acids (ω-3 PUFAs) with antimicrobial properties. Materials and Methods: In this study, we tested the EPA and the DHA for its antibacterial and anti-biofilm activity in vitro against Staphylococcus epidermidis, Staphylococcus aureus, and different CoNS as reference strains and isolated from patients undergoing orthopedic treatment for implant infections. The tests were carried out with the strains in planktonic and biofilm form. Cytotoxicity assay was carried out with EPA and DHA using human gingival fibroblasts HGF-1. Results: The highest concentration of EPA and DHA promoted the complete killing of S. epidermidis 1457 and S. aureus ATCC 25923 in planktonic form. The fatty acids showed low activity against P. aeruginosa. EPA and DHA completely killed or significantly reduced the count of planktonic bacteria of the patient isolated strains. When incubated with media enriched with EPA and DHA, the biofilm formation was significantly reduced on S. epidermidis 1457 and not present on S. aureus ATCC 25923. The reduction or complete killing were also observed with the clinical isolates. The pre-formed biofilms showed reduction of the cell counting after treatment with EPA and DHA. Conclusion: In this study, the ω-3 PUFAs EPA and DHA showed antimicrobial and anti-biofilm activity in vitro against S. aureus, S. epidermidis, and P. aeruginosa, as well as against multi-drug resistant S. aureus and CoNS strains isolated from patients undergoing periprosthetic joint infections (PJI) treatment. Higher concentrations of the fatty acids showed killing activity on planktonic cells and inhibitory activity of biofilm formation. Although both substances showed antimicrobial activity, EPA showed better results in comparison with DHA. In addition, when applied on human gingival fibroblasts in vitro, EPA and DHA showed a possible protective effect on cells cultured in medium enriched with ethanol. Further studies are required to confirm the antimicrobial activity of EPA and DHA against multi-drug resistant strains and pan-drug resistant strains.

RevDate: 2021-04-13

Perpetuini G, Rossetti AP, Battistelli N, et al (2021)

Adhesion Properties, Biofilm Forming Potential, and Susceptibility to Disinfectants of Contaminant Wine Yeasts.

Microorganisms, 9(3):.

In this study, yeasts isolated from filter membranes used for the quality control of bottled wines were identified and tested for their resistance to some cleaning agents and potassium metabisulphite, adhesion to polystyrene and stainless-steel surfaces, and formation of a thin round biofilm, referred to as a MAT. A total of 40 strains were identified by rRNA internal transcribed spacer (ITS) restriction analysis and sequence analysis of D1/D2 domain of 26S rRNA gene. Strains belong to Pichia manshurica (12), Pichia kudriavzevii (9), Pichia membranifaciens (1), Candida sojae (6), Candida parapsilosis (3), Candida sonorensis (1), Lodderomyces elongisporus (2), Sporopachydermia lactativora (3), and Clavispora lusitaniae (3) species. Regarding the adhesion properties, differences were observed among species. Yeasts preferred planktonic state when tested on polystyrene plates. On stainless-steel supports, adhered cells reached values of about 6 log CFU/mL. MAT structures were formed only by yeasts belonging to the Pichia genus. Yeast species showed different resistance to sanitizers, with peracetic acid being the most effective and active at low concentrations, with minimum inhibitory concentration (MIC) values ranging from 0.08% (v/v) to 1% (v/v). C. parapsilosis was the most sensible species. Data could be exploited to develop sustainable strategies to reduce wine contamination and establish tailored sanitizing procedures.

RevDate: 2021-04-13

Dimopoulou M, Kefalloniti V, Tsakanikas P, et al (2021)

Assessing the Biofilm Formation Capacity of the Wine Spoilage Yeast Brettanomyces bruxellensis through FTIR Spectroscopy.

Microorganisms, 9(3):.

Brettanomyces bruxellensis is a wine spoilage yeast known to colonize and persist in production cellars. However, knowledge on the biofilm formation capacity of B. bruxellensis remains limited. The present study investigated the biofilm formation of 11 B. bruxellensis strains on stainless steel coupons after 3 h of incubation in an aqueous solution. FTIR analysis was performed for both planktonic and attached cells, while comparison of the obtained spectra revealed chemical groups implicated in the biofilm formation process. The increased region corresponding to polysaccharides and lipids clearly discriminated the obtained spectra, while the absorption peaks at the specific wavenumbers possibly reveal the presence of β-glucans, mannas and ergosterol. Unsupervised clustering and supervised classification were employed to identify the important wavenumbers of the whole spectra. The fact that all the metabolic fingerprints of the attached versus the planktonic cells were similar within the same cell phenotype class and different between the two phenotypes, implies a clear separation of the cell phenotype; supported by the results of the developed classification model. This study represents the first to succeed at applying a non-invasive technique to reveal the metabolic fingerprint implicated in the biofilm formation capacity of B. bruxellensis, underlying the homogenous mechanism within the yeast species.

RevDate: 2021-04-13

Al-Hadidi A, Navarro J, Goodman SD, et al (2021)

Lactobacillus reuteri in Its Biofilm State Improves Protection from Experimental Necrotizing Enterocolitis.

Nutrients, 13(3):.

Necrotizing enterocolitis (NEC) is a devastating disease predominately found in premature infants that is associated with significant morbidity and mortality. Despite decades of research, medical management with broad spectrum antibiotics and bowel rest has remained relatively unchanged, with no significant improvement in patient outcomes. The etiology of NEC is multi-factorial; however, gastrointestinal dysbiosis plays a prominent role in a neonate's vulnerability to and development of NEC. Probiotics have recently emerged as a new avenue for NEC therapy. However, current delivery methods are associated with potential limitations, including the need for at least daily administration in order to obtain any improvement in outcomes. We present a novel formulation of enterally delivered probiotics that addresses the current limitations. A single enteral dose of Lactobacillus reuteri delivered in a biofilm formulation increases probiotic survival in acidic gastric conditions, increases probiotic adherence to gastrointestinal epithelial cells, and reduces the incidence, severity, and neurocognitive sequelae of NEC in experimental models.

RevDate: 2021-04-08

Rowińska I, Szyperska-Ślaska A, Zariczny P, et al (2021)

Impact of the Diet on the Formation of Oxidative Stress and Inflammation Induced by Bacterial Biofilm in the Oral Cavity.

Materials (Basel, Switzerland), 14(6):.

The diet is related to the diversity of bacteria in the oral cavity, and the less diverse microbiota of the oral cavity may favor the growth of pathogenic bacteria of all bacterial complexes. Literature data indicate that disturbances in the balance of the bacterial flora of the oral cavity seem to contribute to both oral diseases, including periodontitis, and systemic diseases. If left untreated, periodontitis can damage the gums and alveolar bones. Improper modern eating habits have an impact on the oral microbiome and the gut microbiome, which increase the risk of several chronic diseases, including inflammatory bowel disease, obesity, type 2 diabetes, cardiovascular disease and cancer. The subject of our consideration is the influence of the traditional diet on the formation of oxidative stress and inflammation caused by bacterial biofilm in the oral cavity. Through dental, biomedical and laboratory studies, we wanted to investigate the effect of individual nutrients contained in specific diets on the induction of oxidative stress inducing inflammation of the soft tissues in the oral cavity in the presence of residual supra- and subgingival biofilm. In our research we used different types of diets marked as W, T, B, F and noninvasively collected biological material in the form of bacterial inoculum from volunteers. The analyzed material was grown on complete and selective media against specific strains of all bacterial complexes. Additionally, the zones of growth inhibition were analyzed based on the disc diffusion method. The research was supplemented with dental and periodontological indicators. The research was supplemented by the application of molecular biology methods related to bacterial DNA isolation, PCR reactions and sequencing. Such selected methods constitute an ideal screening test for the analysis of oral bacterial microbiota. The obtained results suggest that certain types of diet can be an effective prophylaxis in the treatment of civilization diseases such as inflammation of the oral cavity along with periodontal tissues and gingival pockets.

RevDate: 2021-04-13

Kensche A, Reich M, Hannig C, et al (2021)

Modification of the Lipid Profile of the Initial Oral Biofilm In Situ Using Linseed Oil as Mouthwash.

Nutrients, 13(3):.

Lipids are of interest for the targeted modification of oral bioadhesion processes. Therefore, the sustainable effects of linseed oil on the composition and ultrastructure of the in situ pellicle were investigated. Unlike saliva, linseed oil contains linolenic acid (18:3), which served as a marker for lipid accumulation. Individual splints with bovine enamel slabs were worn by five subjects. After 1 min of pellicle formation, rinses were performed with linseed oil for 10 min, and the slabs' oral exposure was continued for up to 2 or 8 h. Gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS) was used to characterize the fatty acid composition of the pellicle samples. Transmission electron microscopy was performed to analyze the ultrastructure. Extensive accumulation of linolenic acid was recorded in the samples of all subjects 2 h after the rinse and considerable amounts persisted after 8 h. The ultrastructure of the 2 h pellicle was less electron-dense and contained lipid vesicles when compared with controls. After 8 h, no apparent ultrastructural effects were visible. Linolenic acid is an excellent marker for the investigation of fatty acid accumulation in the pellicle. New preventive strategies could benefit from the accumulation of lipid components in the pellicle.

RevDate: 2021-04-13

Pałka K, Miazga-Karska M, Pawłat J, et al (2021)

The Effect of Liquid Rubber Addition on the Physicochemical Properties, Cytotoxicity, and Ability to Inhibit Biofilm Formation of Dental Composites.

Materials (Basel, Switzerland), 14(7):.

The aim of this study was to evaluate the effect of modification with liquid rubber on the adhesion to tooth tissues (enamel, dentin), wettability and ability to inhibit bacterial biofilm formation of resin-based dental composites. Two commercial composites (Flow-Art-flow type with 60% ceramic filler and Boston-packable type with 78% ceramic filler; both from Arkona Laboratorium Farmakologii Stomatologicznej, Nasutów, Poland) were modified by addition of 5% by weight (of resin) of a liquid methacrylate-terminated polybutadiene. Results showed that modification of the flow type composite significantly (p < 0.05) increased the shear bond strength values by 17% for enamel and by 33% for dentine. Addition of liquid rubber significantly (p < 0.05) reduced also hydrophilicity of the dental materials since the water contact angle was increased from 81-83° to 87-89°. Interestingly, modified packable type material showed improved antibiofilm activity against Steptococcus mutans and Streptococcus sanguinis (quantitative assay with crystal violet), but also cytotoxicity against eukaryotic cells since cell viability was reduced to 37% as proven in a direct-contact WST-8 test. Introduction of the same modification to the flow type material significantly improved its antibiofilm properties (biofilm reduction by approximately 6% compared to the unmodified material, p < 0.05) without cytotoxic effects against human fibroblasts (cell viability near 100%). Thus, modified flow type composite may be considered as a candidate to be used as restorative material since it exhibits both nontoxicity and antibiofilm properties.

RevDate: 2021-04-13

Niedzielski A, Chmielik LP, T Stankiewicz (2021)

The Formation of Biofilm and Bacteriology in Otitis Media with Effusion in Children: A Prospective Cross-Sectional Study.

International journal of environmental research and public health, 18(7):.

BACKGROUND: Otitis media with effusion (OME) can cause serious complications such as hearing impairment or development delays. The aim of the study was to assess the microbiological profile of organisms responsible for OME and to determine if a biofilm formation can be observed.

METHODS: Ninety-nine samples from 76 patients aged from 6 months to 12 years were collected for microbiological and molecular studies.

RESULTS: In microbiological studies, pathogenic bacteria Haemophilus influenzae (38.89%), Streptococcus pneumoniae (33.33%), and Staphylococcus aureus MSSA (27.78%), as well as opportunistic bacteria Staphylococcus spp. (74.14%), Diphtheroids (20.69%), Streptococcus viridans (3.45%), and Neisseria spp. (1.72%) were found. The average degree of hearing loss in the group of children with positive bacterial culture was 35.9 dB, while in the group with negative bacterial culture it was 25.9 dB (p = 0.0008). The type of cultured bacteria had a significant impact on the degree of hearing impairment in children (p = 0.0192). In total, 37.5% of Staphylococcus spp. strains were able to form biofilm.

CONCLUSIONS: Staphylococcus spp. in OME may form biofilms, which can explain the chronic character of the disease. Pathogenic and opportunistic bacteria may be involved in the etiopathogenesis of OME. The degree of hearing loss was significantly higher in patients from which the positive bacterial cultures were obtained.

RevDate: 2021-04-13

Kruk M, M Trząskowska (2021)

Analysis of Biofilm Formation on the Surface of Organic Mung Bean Seeds, Sprouts and in the Germination Environment.

Foods (Basel, Switzerland), 10(3):.

This study aimed to analyse the impact of sanitation methods on the formation of bacterial biofilms after disinfection and during the germination process of mung bean on seeds and in the germination environment. Moreover, the influence of Lactobacillus plantarum 299v on the growth of the tested pathogenic bacteria was evaluated. Three strains of Salmonella and E. coli were used for the study. The colony forming units (CFU), the crystal violet (CV), the LIVE/DEAD and the gram fluorescent staining, the light and the scanning electron microscopy (SEM) methods were used. The tested microorganisms survive in a small number. During germination after disinfection D2 (20 min H2O at 60 °C, then 15 min in a disinfecting mixture consisting of H2O, H2O2 and CH₃COOH), the biofilms grew most after day 2, but with the DP2 method (D2 + L. plantarum 299v during germination) after the fourth day. Depending on the method used, the second or fourth day could be a time for the introduction of an additional growth-limiting factor. Moreover, despite the use of seed disinfection, their germination environment could be favourable for the development of bacteria and, consequently, the formation of biofilms. The appropriate combination of seed disinfection methods and growth inhibition methods at the germination stage will lead to the complete elimination of the development of unwanted microflora and their biofilms.

RevDate: 2021-04-05

Qian Z, Zhu H, Zhao D, et al (2021)

Probiotic Lactobacillus sp. Strains Inhibit Growth, Adhesion, Biofilm Formation, and Gene Expression of Bacterial Vaginosis-Inducing Gardnerella vaginalis.

Microorganisms, 9(4): pii:microorganisms9040728.

Gardnerella vaginalis contributes significantly to bacterial vaginosis, which causes an ecological imbalance in vaginal microbiota and presents with the depletion of Lactobacillus sp. Lactobacillus supplementation was reported to be an approach to treat bacterial vaginosis. We investigated the applicability of three Lactobacillus sp. strains (Lactobacillus delbrueckii DM8909, Lactiplantibacillus plantarum ATCC14917, and Lactiplantibacillus plantarum ZX27) based on their probiotic abilities in vitro. The three candidate Lactobacillus sp. strains for bacterial vaginosis therapy showed distinct properties in auto-aggregation ability, hydrophobicity, adhesion to cervical epithelial cells, and survivability in 0.01% hydrogen peroxide. Lpb. plantarum ZX27 showed a higher yield in producing short-chain fatty acids and lactic acid among the three candidate strains, and all three Lactobacillus sp. strains inhibited the growth and adhesion of G. vaginalis. Furthermore, we discovered that the culture supernatant of Lactobacillus sp. exhibited anti-biofilm activity against G. vaginalis. In particular, the Lpb. plantarum ZX27 supernatant treatment decreased the expression of genes related to virulence factors, adhesion, biofilm formation, metabolism, and antimicrobial resistance in biofilm-forming cells and suspended cells. Moreover, Lactobacillus sp. decreased the upregulated expression of interleukin-8 in HeLa cells induced by G. vaginalis or hydrogen peroxide. These results demonstrate the efficacy of Lactobacillus sp. application for treating bacterial vaginosis by limiting the growth, adhesion, biofilm formation, and virulence properties of G. vaginalis.

RevDate: 2021-04-13

Lu Q, Zhang N, Chen C, et al (2021)

The Dynamic Response of Nitrogen Transformation to the Dissolved Oxygen Variations in the Simulated Biofilm Reactor.

International journal of environmental research and public health, 18(7):.

Lab-scale simulated biofilm reactors, including aerated reactors disturbed by short-term aeration interruption (AE-D) and non-aerated reactors disturbed by short-term aeration (AN-D), were established to study the stable-state (SS) formation and recovery after disturbance for nitrogen transformation in terms of dissolved oxygen (DO), removal efficiency (RE) of NH4+-N and NO3--N and activity of key nitrogen-cycle functional genes amoA and nirS (RNA level abundance, per ball). SS formation and recovery of DO were completed in 0.56-7.75 h after transition between aeration (Ae) and aeration stop (As). In terms of pollutant REs, new temporary SS formation required 30.7-52.3 h after Ae and As interruptions, and seven-day Ae/As interruptions required 5.0% to 115.5% longer recovery times compared to one-day interruptions in AE-D and AN-D systems. According to amoA activity, 60.8 h were required in AE-D systems to establish new temporary SS after As interruptions, and RNA amoA copies (copy number/microliter) decreased 88.5%, while 287.2 h were required in AN-D systems, and RNA amoA copies (copy number/microliter) increased 36.4 times. For nirS activity, 75.2-85.8 h were required to establish new SSs after Ae and As interruptions. The results suggested that new temporary SS formation and recovery in terms of DO, pollutant REs and amoA and nirS gene activities could be modelled by logistic functions. It is concluded that temporary SS formation and recovery after Ae and As interruptions occurred at asynchronous rates in terms of DO, pollutant REs and amoA and nirS gene activities. Because of DO fluctuations, the quantitative relationship between gene activity and pollutant RE remains a challenge.

RevDate: 2021-04-05

Baidamshina DR, Koroleva VA, Olshannikova SS, et al (2021)

Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain.

Marine drugs, 19(4): pii:md19040197.

Chitosan, the product of chitin deacetylation, is an excellent candidate for enzyme immobilization purposes. Here we demonstrate that papain, an endolytic cysteine protease (EC: 3.4.22.2) from Carica papaya latex immobilized on the matrixes of medium molecular (200 kDa) and high molecular (350 kDa) weight chitosans exhibits anti-biofilm activity and increases the antimicrobials efficiency against biofilm-embedded bacteria. Immobilization in glycine buffer (pH 9.0) allowed adsorption up to 30% of the total protein (mg g chitosan-1) and specific activity (U mg protein-1), leading to the preservation of more than 90% of the initial total activity (U mL-1). While optimal pH and temperature of the immobilized papain did not change, the immobilized enzyme exhibited elevated thermal stability and 6-7-fold longer half-life time in comparison with the soluble papain. While one-half of the total enzyme dissociates from both carriers in 24 h, this property could be used for wound-dressing materials design with dosed release of the enzyme to overcome the relatively high cytotoxicity of soluble papain. Our results indicate that both soluble and immobilized papain efficiently destroy biofilms formed by Staphylococcus aureus and Staphylococcus epidermidis. As a consequence, papain, both soluble and immobilized on medium molecular weight chitosan, is capable of potentiating the efficacy of antimicrobials against biofilm-embedded Staphylococci. Thus, papain immobilized on medium molecular weight chitosan appears a presumably beneficial agent for outer wound treatment for biofilms destruction, increasing antimicrobial treatment effectiveness.

RevDate: 2021-04-05

Piras C, Di Ciccio PA, Soggiu A, et al (2021)

S. aureus Biofilm Protein Expression Linked to Antimicrobial Resistance: A Proteomic Study.

Animals : an open access journal from MDPI, 11(4): pii:ani11040966.

Antimicrobial resistance (AMR) represents one of the most critical challenges that humanity will face in the following years. In this context, a "One Health" approach with an integrated multidisciplinary effort involving humans, animals and their surrounding environment is needed to tackle the spread of AMR. One of the most common ways for bacteria to live is to adhere to surfaces and form biofilms. Staphylococcus aureus (S. aureus) can form biofilm on most surfaces and in a wide heterogeneity of environmental conditions. The biofilm guarantees the survival of the S. aureus in harsh environmental conditions and represents an issue for the food industry and animal production. The identification and characterization of biofilm-related proteins may provide interesting insights into biofilm formation mechanisms in S. aureus. In this regard, the aims of this study were: (i) to use proteomics to compare proteomes of S. aureus growing in planktonic and biofilm forms in order to investigate the common features of biofilm formation properties of different strains; (ii) to identify specific biofilm mechanisms that may be involved in AMR. The proteomic analysis showed 14 differentially expressed proteins among biofilm and planktonic forms of S. aureus. Moreover, three proteins, such as alcohol dehydrogenase, ATP-dependent 6-phosphofructokinase, and fructose-bisphosphate aldolase, were only differentially expressed in strains classified as high biofilm producers. Differentially regulated catabolites metabolisms and the switch to lower oxygen-related metabolisms were related to the sessile conformation analyzed.

RevDate: 2021-04-13

Gherasim O, Popescu RC, Grumezescu V, et al (2021)

MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications.

Materials (Basel, Switzerland), 14(7):.

The present study reports on the development and evaluation of nanostructured composite coatings of polylactic acid (PLA) embedded with iron oxide nanoparticles (Fe3O4) modified with Eucalyptus (Eucalyptus globulus) essential oil. The co-precipitation method was employed to synthesize the magnetite particles conjugated with Eucalyptus natural antibiotic (Fe3O4@EG), while their composition and microstructure were investigated using grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The matrix-assisted pulsed laser evaporation (MAPLE) technique was further employed to obtain PLA/Fe3O4@EG thin films. Optimal experimental conditions for laser processing were established by complementary infrared microscopy (IRM) and scanning electron microscopy (SEM) investigations. The in vitro biocompatibility with eukaryote cells was proven using mesenchymal stem cells, while the anti-biofilm efficiency of composite PLA/Fe3O4@EG coatings was assessed against Gram-negative and Gram-positive pathogens.

RevDate: 2021-04-13

Zand E, Pfanner H, Domig KJ, et al (2021)

Biofilm-Forming Ability of Microbacterium lacticum and Staphylococcus capitis Considering Physicochemical and Topographical Surface Properties.

Foods (Basel, Switzerland), 10(3):.

Biofilm characteristics of Microbacterium lacticum D84 (M. lacticum) and Staphylococcus capitis subsp. capitis (S. capitis) on polytetrafluoroethylene and AISI-304 stainless steel at early- (24, 48 h) and late-stage (144, 192 h) biofilm formation were investigated. M. lacticum biofilm structure was more developed compared to S. capitis, representing vastly mature biofilms with a strongly developed amorphous matrix, possibly extracellular polymeric substances (EPSs), at late-stage biofilm formation. S. capitis showed faster growth behavior but still resulted in a relatively flat biofilm structure. Strong correlations were found between several roughness parameters and S. capitis surface coverage (r ≥ 0.98), and between total surface free energy (γs) and S. capitis surface coverage (r = 0.89), while M. lacticum remained mostly unaffected. The pronounced ubiquitous biofilm characteristics make M. lacticum D84 a suitable model for biofilm research. Studying biofilm formation of these bacteria may help one understand bacterial adhesion on interfaces and hence reduce biofilm formation in the food industry.

RevDate: 2021-04-08

Peng TY, Lin DJ, Mine Y, et al (2021)

Biofilm Formation on the Surface of (Poly)Ether-Ether-Ketone and In Vitro Antimicrobial Efficacy of Photodynamic Therapy on Peri-Implant Mucositis.

Polymers, 13(6):.

Poly-ether-ether-ketone (PEEK) is an aesthetically pleasing natural material with good biocompatibility and shock absorption characteristics. The application of PEEK as a dental implant or abutment is expected to reduce the risk of failure and enhance aesthetics. Given that approximately one in 15 patients have allergic reactions to antibiotics, photodynamic therapy (PDT) has been gaining attention as an alternative treatment. Herein, the applicability of PEEK dental implants or abutments was investigated using material analyses, biofilm formation assay, and cell viability tests. The possible use of PDT for peri-implant mucositis was evaluated with the biofilm removal assay. The obtained data were analyzed based on the multivariate analysis of variance, paired t-tests, and the Pearson correlation coefficient (α = 0.05). The results revealed that PEEK was significantly less conducive to the formation of biofilms with S. mutans and A. actinomycetemcomitan (p < 0.001) but exhibited comparable MG-63 (human osteoblast-like) osteoblast cell viability (p > 0.05) to the other materials. PDT had similar antimicrobial efficacy and yielded similar biofilm removal effects to antibiotics. Altogether, these findings suggest that PEEK has attractive features and can serve as an alternative material for dental implants or abutments. In cases where peri-implant mucositis occurs, PDT can be used as an accessible therapeutic approach.

RevDate: 2021-04-13

Dergham Y, Sanchez-Vizuete P, Le Coq D, et al (2021)

Comparison of the Genetic Features Involved in Bacillus subtilis Biofilm Formation Using Multi-Culturing Approaches.

Microorganisms, 9(3):.

Surface-associated multicellular assemblage is an important bacterial trait to withstand harsh environmental conditions. Bacillus subtilis is one of the most studied Gram-positive bacteria, serving as a model for the study of genetic pathways involved in the different steps of 3D biofilm formation. B. subtilis biofilm studies have mainly focused on pellicle formation at the air-liquid interface or complex macrocolonies formed on nutritive agar. However, only few studies focus on the genetic features of B. subtilis submerged biofilm formation and their link with other multicellular models at the air interface. NDmed, an undomesticated B. subtilis strain isolated from a hospital, has demonstrated the ability to produce highly structured immersed biofilms when compared to strains classically used for studying B. subtilis biofilms. In this contribution, we have conducted a multi-culturing comparison (between macrocolony, swarming, pellicle, and submerged biofilm) of B. subtilis multicellular communities using the NDmed strain and mutated derivatives for genes shown to be required for motility and biofilm formation in pellicle and macrocolony models. For the 15 mutated NDmed strains studied, all showed an altered phenotype for at least one of the different culture laboratory assays. Mutation of genes involved in matrix production (i.e., tasA, epsA-O, cap, ypqP) caused a negative impact on all biofilm phenotypes but favored swarming motility on semi-solid surfaces. Mutation of bslA, a gene coding for an amphiphilic protein, affected the stability of the pellicle at the air-liquid interface with no impact on the submerged biofilm model. Moreover, mutation of lytF, an autolysin gene required for cell separation, had a greater effect on the submerged biofilm model than that formed at aerial level, opposite to the observation for lytABC mutant. In addition, B. subtilis NDmed with sinR mutation formed wrinkled macrocolony, less than that formed by the wild type, but was unable to form neither thick pellicle nor structured submerged biofilm. The results are discussed in terms of the relevancy to determine whether genes involved in colony and pellicle formation also govern submerged biofilm formation, by regarding the specificities in each model.

RevDate: 2021-04-13

Shahed-Al-Mahmud M, Roy R, Sugiokto FG, et al (2021)

Phage φAB6-Borne Depolymerase Combats Acinetobacter baumannii Biofilm Formation and Infection.

Antibiotics (Basel, Switzerland), 10(3):.

Biofilm formation is one of the main causes of increased antibiotic resistance in Acinetobacter baumannii infections. Bacteriophages and their derivatives, such as tail proteins with depolymerase activity, have shown considerable potential as antibacterial or antivirulence agents against bacterial infections. Here, we gained insights into the activity of a capsular polysaccharide (CPS) depolymerase, derived from the tailspike protein (TSP) of φAB6 phage, to degrade A. baumannii biofilm in vitro. Recombinant TSP showed enzymatic activity and was able to significantly inhibit biofilm formation and degrade formed biofilms; as low as 0.78 ng, the inhibition zone can still be formed on the bacterial lawn. Additionally, TSP inhibited the colonization of A. baumannii on the surface of Foley catheter sections, indicating that it can be used to prevent the adhesion of A. baumannii to medical device surfaces. Transmission and scanning electron microscopy demonstrated membrane leakage of bacterial cells treated with TSP, resulting in cell death. The therapeutic effect of TSP in zebrafish was also evaluated and the results showed that the survival rate was significantly improved (80%) compared with that of the untreated control group (10%). Altogether, we show that TSP derived from φAB6 is expected to become a new antibiotic against multi-drug resistant A. baumannii and a biocontrol agent that prevents the formation of biofilms on medical devices.

RevDate: 2021-04-08

Schestakow A, Guth MS, Eisenmenger TA, et al (2021)

Evaluation of Anti-Biofilm Activity of Mouthrinses Containing Tannic Acid or Chitosan on Dentin In Situ.

Molecules (Basel, Switzerland), 26(5):.

In contrast to enamel, dentin surfaces have been rarely used as substrates for studies evaluating the effects of experimental rinsing solutions on oral biofilm formation. The aim of the present in situ study was to investigate the effects of tannic acid and chitosan on 48-h biofilm formation on dentin surfaces. Biofilm was formed intraorally on dentin specimens, while six subjects rinsed with experimental solutions containing tannic acid, chitosan and water as negative or chlorhexidine as positive control. After 48 h of biofilm formation, specimens were evaluated for biofilm coverage and for viability of bacteria by fluorescence and scanning electron microscopy. In addition, saliva samples were collected after rinsing and analyzed by fluorescence (five subjects) and transmission electron microscopy (two subjects) in order to investigate the antibacterial effect on bacteria in a planktonic state and to visualize effects of the rinsing agents on salivary proteins. After rinsing with water, dentin specimens were covered by a multiple-layered biofilm with predominantly vital bacteria. In contrast, chlorhexidine led to dentin surfaces covered only by few and avital bacteria. By rinsing with tannic acid both strong anti-adherent and antibacterial effects were observed, but the effects declined in a time-dependent manner. Transmission electron micrographs of salivary samples indicated that aggregation of proteins and bacteria might explain the antiadhesion effects of tannic acid. Chitosan showed antibacterial effects on bacteria in saliva, while biofilm viability was only slightly reduced and no effects on bacterial adherence on dentin were observed, despite proteins being aggregated in saliva after rinsing with chitosan. Tannic acid is a promising anti-biofilm agent even on dentin surfaces, while rinsing with chitosan could not sufficiently prevent biofilm formation on dentin.

RevDate: 2021-04-08

Liu Z, Feng X, Wang X, et al (2021)

Quercetin as an Auxiliary Endodontic Irrigant for Root Canal Treatment: Anti-Biofilm and Dentin Collagen-Stabilizing Effects In Vitro.

Materials (Basel, Switzerland), 14(5):.

Bacterial reinfection and root fracture are the main culprits related to root canal treatment failure. This study aimed to assess the utility of quercetin solution as an adjunctive endodontic irrigant that does not weaken root canal dentin with commitment anti-biofilm activity and bio-safety. Based on a noninvasive dentin infection model, dentin tubules infected with Enterococcus faecalis (E. faecalis) were irrigated with sterile water (control group), and 0, 1, 2, 4 wt% quercetin-containing ethanol solutions. Live and dead bacteria percentages in E. faecalis biofilms were analyzed by confocal laser scanning microscopy (CLSM). Elastic modulus, hydroxyproline release and X-ray photoelectron spectroscopy (XPS) characterization were tested to evaluate the irrigants' collagen-stabilizing effect. The cytotoxicity was tested by CCK-8 assay. Quercetin increased the proportion of dead bacteria volumes within E. faecalis and improved the flexural strength of dentin compared to control group (p < 0.05). Quercetin-treated dentin matrix had less elasticity loss and hydroxyproline release after collagenase degradation (p < 0.05). Moreover, quercetin solutions revealed an increase in the C-O peak area under both C1s and O1s narrow-scan spectra of XPS characterization, and no cytotoxicity (p > 0.05). Quercetin exhibited anti-biofilm activity, a collagen-stabilizing effect with cytocompatibility, supporting quercetin as a potential candidate for endodontic irrigant.

RevDate: 2021-04-08

Oleńska E, Małek W, Kotowska U, et al (2021)

Exopolysaccharide Carbohydrate Structure and Biofilm Formation by Rhizobium leguminosarum bv. trifolii Strains Inhabiting Nodules of Trifoliumrepens Growing on an Old Zn-Pb-Cd-Polluted Waste Heap Area.

International journal of molecular sciences, 22(6):.

Heavy metals polluting the 100-year-old waste heap in Bolesław (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including Trifolium repens and its root nodule microsymbionts-rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, Rhizobium leguminosarum bv. trifolii strains originating from the waste heap area and a non-polluted reference site were investigated for the characteristics of the sugar fraction of their EPS using gas chromatography mass-spectrometry and also for biofilm formation and structural characteristics using confocal laser scanning microscopy under control conditions as well as when exposed to toxic concentrations of zinc, lead, and cadmium. Significant differences in EPS structure, biofilm thickness, and ratio of living/dead bacteria in the biofilm were found between strains originating from the waste heap and from the reference site, both without exposure to metals and under metal exposure. Received results indicate that studied rhizobia can be assumed as potentially useful in remediation processes.

RevDate: 2021-04-13

Yamamoto K, Kusada H, Kamagata Y, et al (2021)

Parallel Evolution of Enhanced Biofilm Formation and Phage-Resistance in Pseudomonas aeruginosa during Adaptation Process in Spatially Heterogeneous Environments.

Microorganisms, 9(3):.

An opportunistic pathogen Pseudomonas aeruginosa has a versatile phenotype and high evolutionary potential to adapt to various natural habitats. As the organism normally lives in spatially heterogeneous and polymicrobial environments from open fields to the inside of hosts, adaptation to abiotic (spatial heterogeneity) and biotic factors (interspecies interactions) is a key process to proliferate. However, our knowledge about the adaptation process of P. aeruginosa in spatially heterogeneous environments associated with other species is limited. We show herein that the evolutionary dynamics of P. aeruginosa PAO1 in spatially heterogeneous environments with Staphylococcus aureus known to coexist in vivo is dictated by two distinct core evolutionary trajectories: (i) the increase of biofilm formation and (ii) the resistance to infection by a filamentous phage which is retained in the PAO1 genome. Hyperbiofilm and/or pili-deficient phage-resistant variants were frequently selected in the laboratory evolution experiment, indicating that these are key adaptive traits under spatially structured conditions. On the other hand, the presence of S. aureus had only a marginal effect on the emergence and maintenance of these variants. These results show key adaptive traits of P. aeruginosa and indicate the strong selection pressure conferred by spatial heterogeneity, which might overwhelm the effect of interspecies interactions.

RevDate: 2021-04-13

Marek A, Pyzik E, Stępień-Pyśniak D, et al (2021)

Biofilm-Formation Ability and the Presence of Adhesion Genes in Coagulase-Negative Staphylococci Isolates from Chicken Broilers.

Animals : an open access journal from MDPI, 11(3):.

The aim of the study was to analyze the biofilm-production capacity of 87 coagulase-negative Staphylococcus strains (CoNS) isolated from broiler chickens and to determine the occurrence of biofilm-associated genes. The biofilm production capacity of staphylococci was assessed using the microtiter plate method (MTP), and the frequency of genes was determined by PCR. The ability to form a biofilm in vitro was shown in 79.3% of examined strains. Strong biofilm capacity was demonstrated in 26.4% of strains, moderate capacity in 25.3%, weak capacity in 27.6%, and a complete lack of biofilm production capacity in 20.7% of strains. The icaAB gene responsible for the production of extracellular polysaccharide adhesins was detected in 6.9% of strains. The other four genes, i.e., bap (encoding biofilm-associated protein), atlE (encoding cell surface protein exhibiting vitronectin-binding activity), fbe (encoding fibrinogen-binding protein), and eno (encoding laminin-binding protein) were detected in 5.7%, 19.5%, 8%, and 70.1% of strains, respectively. Demonstration of genes that play a role in bacterial biofilm formation may serve as a genetic basis to distinguish between symbiotic and potentially invasive coagulase-negative staphylococcal strains.

RevDate: 2021-04-13

Oh HK, Hwang YJ, Hong HW, et al (2021)

Comparison of Enterococcus faecalis Biofilm Removal Efficiency among Bacteriophage PBEF129, Its Endolysin, and Cefotaxime.

Viruses, 13(3):.

Enterococcus faecalis is a Gram-positive pathogen which colonizes human intestinal surfaces, forming biofilms, and demonstrates a high resistance to many antibiotics. Especially, antibiotics are less effective for eradicating biofilms and better alternatives are needed. In this study, we have isolated and characterized a bacteriophage, PBEF129, infecting E. faecalis. PBEF129 infected a variety of strains of E. faecalis, including those exhibiting antibiotic resistance. Its genome is a linear double-stranded DNA, 144,230 base pairs in length. Its GC content is 35.9%. The closest genomic DNA sequence was found in Enterococcus phage vB_EfaM_Ef2.3, with a sequence identity of 99.06% over 95% query coverage. Furthermore, 75 open reading frames (ORFs) were functionally annotated and five tRNA-encoding genes were found. ORF 6 was annotated as a phage endolysin having an L-acetylmuramoyl-l-alanine amidase activity. We purified the enzyme as a recombinant protein and confirmed its enzymatic activity. The endolysin's host range was observed to be wider than its parent phage PBEF129. When applied to bacterial biofilm on the surface of in vitro cultured human intestinal cells, it demonstrated a removal efficacy of the same degree as cefotaxime, but much lower than its parent bacteriophage.

RevDate: 2021-04-02

Ramalingam B, Venkatachalam SS, Kiran MS, et al (2021)

Rationally designed Shewanella oneidensis Biofilm Toilored Graphene-Magnetite Hybrid Nanobiocomposite as Reusable Living Functional Nanomaterial for Effective Removal of Trivalent Chromium.

Environmental pollution (Barking, Essex : 1987), 278:116847 pii:S0269-7491(21)00429-2 [Epub ahead of print].

Sustainable treatment of wastewater containing trivalent chromium (Cr3+) remains a significant challenge owing to the several limitations of the existing methodologies. Herein, combination of biosynthesis and Response Surface Methodology (RSM) for the fabrication and optimization of Shewanella oneidensis biofilm functionalized graphene-magnetite (GrM) nanobiocomposite was adopted as a 'living functional nanomaterial' (viz. S-GrM) for effective removal of Cr3+ ions from aqueous solution. In the biosynthetic process, S. oneidensis cells reduced the GO-akaganeite complex and adhered on the as-synthesized GrM nanocomposite to form S-GrM hybrid-nanobiocomposite. The process parameters for fabrication of S-GrM hybrid-nanobiocomposite was optimized by RSM based on four responses of easy magnetic separation, biofilm formation along with protein, and carbohydrate contents in extracellular polymeric substances (EPS). The morphology and chemical composition of S-GrM hybrid-nanobiocomposite were investigated using various spectroscopic and microscopic analyses and subsequently explored for removal of Cr3+ ions. The hybrid-nanobiocomposite effectively removed 304.64 ± 14.02 mg/g of Cr3+ at pH 7.0 and 30 °C, which is found to be very high compared to the previously reported values. The high surface area of graphene, biofilm biomass of S. oneidensis and plenty of functional groups provided a unique structure to the S-GrM hybrid-nanobiocomposite for efficient removal of Cr3+ through synergistic interaction. The FTIR and zeta potential studies confirmed that electrostatic and chelation/complexation reaction played key roles in the adsorption process. The fabrication of S-GrM nanobiocomposite thus creates a novel hybrid 'living functional nanomaterial' for low cost, recyclable, and sustainable removal of Cr3+ from wastewater.

RevDate: 2021-04-09

Wang R, Xu Q, Chen C, et al (2021)

Microbial nitrogen removal in synthetic aquaculture wastewater by fixed-bed baffled reactors packed with different biofilm carrier materials.

Bioresource technology, 331:125045 pii:S0960-8524(21)00384-9 [Epub ahead of print].

Fixed-bed baffled reactors packed with carbon fiber (CFBR), polyurethane, or non-woven fabrics were developed to support microbial nitrification-denitrification reactions for nitrogen removal from synthetic aquaculture wastewater. The CFBR showed the best performance, with a short hydraulic retention time and low C/N ratio. Microbial communities in the reactor's biofilms and deposited sludge were analyzed using high-throughput sequencing and quantitative polymerase chain reactions. The biofilms efficiently enriched the nitrifying and denitrifying bacteria in the CFBR. Moreover, bacteria capable of denitrification under aerobic conditions were detected in the aerobic chamber biofilm, showing positive correlations with the main nitrifiers and denitrifiers, which provides potential synergistic interactions for simultaneous nitrification-denitrification in the aerobic chamber. A network analysis revealed that the CFBR had more complex cooperative interactions than others. This study provides insights into the influence of different carrier materials on biofilm formation, proving that the CFBR has potential applications in aquaculture wastewater treatment.

RevDate: 2021-04-02

Ferguson RMW, O'Gorman EJ, McElroy DJ, et al (2021)

The Ecological Impacts of Multiple Environmental Stressors on Coastal Biofilm Bacteria.

Global change biology [Epub ahead of print].

Ecological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results. Bacterial communities in coastal ecosystems underpin marine food webs and provide many important ecosystem services (e.g. nutrient cycling and carbon fixation). Yet, how microbial communities will respond to a changing climate remains uncertain. Thus, we used marine mesocosms to examine the impacts of warming, nutrient enrichment, and altered top-predator population size structure (common shore crab) on costal microbial biofilm communities in a crossed experimental design. Warming increased bacterial α-diversity (18% increase in species richness and 67% increase in evenness), but this was countered by a decrease in α-diversity with nutrient enrichment (14% and 21% decrease for species richness and evenness respectively). Thus, we show some effects of these stressors could cancel each other out under climate change scenarios. Warming and top-predator population size structure both affected bacterial biofilm community composition, with warming increasing the abundance of bacteria capable of increased mineralization of dissolved and particulate organic matter, such as Flavobacteriia, Sphingobacteriia, and Cytophagia. However, the community shifts observed with warming depended on top-predator population size structure, with Sphingobacteriia increasing with smaller crabs and Cytophagia increasing with larger crabs. These changes could alter the balance between mineralization and sequestration of carbon in coastal ecosystems, leading to a positive feedback loop between warming and CO2 production. Our results highlight the potential for warming to disrupt microbial communities and biogeochemical cycling in coastal ecosystems, and the importance of studying these effects in combination with other environmental stressors.

RevDate: 2021-04-03

Sahal G, Woerdenbag HJ, Hinrichs WLJ, et al (2021)

Candida Biofilm Formation Assay on Essential Oil Coated Silicone Rubber.

Bio-protocol, 11(5):e3941.

Development of biofilm associated candidemia for patients with implanted biomaterials causes an urgency to develop antimicrobial and biofilm inhibitive coatings in the management of recalcitrant Candida infections. Recently, there is an increase in the number of patients with biofilm formation and resistance to antifungal therapy. Therefore, there is a growing interest to use essential oils as coating agents in order to prevent biomaterial-associated Candida infections. Often high costs, complicated and laborious technologies are used for both applying the coating and determination of the antibiofilm effects hampering a rapid screening of essential oils. In order to determine biofilm formation of Candida on essential oil coated surfaces easier, cheaper and faster, we developed an essential oil (lemongrass oil) coated surface (silicone-rubber) by using a hypromellose ointment/essential oil mixture. Furthermore, we modified the "crystal violet binding assay" to quantify the biofilm mass of Candida biofilm formed on the lemongrass oil coated silicone rubber surface. The essential oil coating and the biomass determination of biofilms on silicone rubber can be easily applied with simple and accessible equipment, and will therefore provide rapid information about whether or not a particular essential oil is antiseptic, also when it is used as a coating agent.

RevDate: 2021-04-08

Kommerein N, Weigel AJ, Stiesch M, et al (2021)

Plant-based oral care product exhibits antibacterial effects on different stages of oral multispecies biofilm development in vitro.

BMC oral health, 21(1):170.

BACKGROUND: Excessive biofilm formation on surfaces in the oral cavity is amongst the main reasons for severe infection development like periodontitis and peri-implantitis. Mechanical biofilm removal as well as the use of adjuvant antiseptics supports the prevention of pathogenic biofilm formation. Recently, the antibacterial effect of the oral care product REPHA-OS®, based on medicinal plant extracts and essential oils, has been demonstrated on oral pathogens grown on agar plates. In the present study, the effectiveness of the product on medical relevant oral biofilm development should be demonstrated for the first time.

METHODS: An established in vitro oral multispecies biofilm, composed of Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis, was used to analyze the antibacterial effect of different REPHA-OS® concentrations on planktonic bacteria, biofilm formation and mature biofilms. It was quantified using metabolic activity assays and live/dead fluorescence staining combined with three-dimensional confocal laser-scanning microscopy. Additionally, effects on species distribution inside the biofilm were assessed by means of quantitative real-time PCR.

RESULTS: REPHA-OS® showed statistically significant antimicrobial effects on all stages of biofilm development: a minimal inhibitory concentration of 5% could be detected for both, for planktonic bacteria and for biofilm formation. Interestingly, only a slightly higher concentration of 10% was necessary to completely kill all bacteria in mature biofilms also. In contrast, an influence on the biofilm matrix or the species distribution could not be observed. The effect could be attributed to the herbal ingredients, not to the contained ethanol.

CONCLUSION: The strong antibacterial effect of REPHA-OS® on different stages of oral biofilm development strengthens its application as an alternative adjuvant in oral care therapies.

RevDate: 2021-04-12

Passos MR, Almeida RS, Lima BO, et al (2021)

Anticariogenic activities of Libidibia ferrea, gallic acid and ethyl gallate against Streptococcus mutans in biofilm model.

Journal of ethnopharmacology, 274:114059 pii:S0378-8741(21)00286-5 [Epub ahead of print].

In Brazil, ethnopharmacological studies show that Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz is commonly used in folk medicine as an antifungal, antimicrobial and anti-inflammatory. In the Amazon region, the dried fruit powder of L. ferrea are widely used empirically by the population in an alcoholic tincture as an antimicrobial mouthwash in oral infections and the infusion is also recommended for healing oral wounds. However, there are few articles that have evaluated the antimicrobial activity against oral pathogens in a biofilm model, identifying active compounds and mechanisms of action.

AIM OF THE STUDY: The aim of this study was to evaluate the antimicrobial and anti-adherence activities of the ethanolic extract, fractions and isolated compounds (gallic acid and ethyl gallate) of the fruit and seed of L. ferrea against Streptococcus mutans. The inhibition of acidicity/acidogenicity and the expression of the S. mutans GTF genes in biofilms were also evaluated.

MATERIALS AND METHODS: Minimal Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Minimum Inhibitory Concentration of Cell Adhesion (MICA) were evaluated with ethanolic extract (EELF), fractions, gallic acid (GA) and ethyl gallate (EG) against S. mutans. Inhibition of biofilm formation, pH drop and proton permeability tests were conducted with EELF, GA and EG, and also evaluated the expression of the GTF genes in biofilms. The compounds of dichloromethane fraction were identified by GC-MS.

RESULTS: This is the first report of shikimic, pyroglutamic, malic and protocatechuic acids identified in L. ferrea. EELF, GA and EG showed MIC at 250 μg/mL, and MBC at 1000 μg/mL by EELF. EELF biofilms showed reduced dry weight and acidogenicity of S. mutans in biofilms. GA and EG reduced viable cells, glucans soluble in alkali, acidogenicity, aciduricity and downregulated expression of gtfB, gtfC and gtfD genes in biofilms. SEM images of GA and EG biofilms showed a reduction of biomass, exopolysaccharide and microcolonies of S. mutans.

CONCLUSIONS: The ethanolic extract of fruit and seed of L. ferrea, gallic acid and ethyl gallate showed great antimicrobial activity and inhibition of adhesion, reduction of acidogenicity and aciduricity in S. mutans biofilms. The results obtained in vitro validate the use of this plant in ethnopharmacology, and open opportunities for the development of new oral anticariogenic agents, originated by plants that can inhibit pathogenic biofilm that leads to the development of caries.

RevDate: 2021-04-02

Senobar Tahaei SA, Stájer A, Barrak I, et al (2021)

Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature.

Infection and drug resistance, 14:1155-1168.

Introduction: Staphylococcus aureus (S. aureus) is an important causative pathogen in human infections. The production of biofilms by bacteria is an important factor, leading to treatment failures. There has been significant interest in assessing the possible relationship between the multidrug-resistant (MDR) status and the biofilm-producer phenotype in bacteria. The aim of our present study was to assess the biofilm-production rates in clinical methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S. aureus [MRSA] isolates from Hungarian hospitals and the correlation between resistance characteristics and their biofilm-forming capacity.

Methods: A total of three hundred (n=300) S. aureus isolates (corresponding to MSSA and MRSA isolates in equal measure) were included in this study. Identification of the isolates was carried out using the VITEK 2 ID/AST system and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method and E-tests, confirmation of MRSA status was carried out using PBP2a agglutination assay. Biofilm-production was assessed using the crystal violet (CV) tube-adherence method and the Congo red agar (CRA) plate method.

Results: There were significant differences among MSSA and MRSA isolates regarding susceptibility-levels to commonly used antibiotics (in case of erythromycin, clindamycin and ciprofloxacin: p<0.001, gentamicin: p=0.023, sulfamethoxazole/trimethoprim: p=0.027, rifampin: p=0.037). In the CV tube adherence-assay, 37% (n=56) of MSSA and 39% (n=58) of MRSA isolates were positive for biofilm-production, while during the use of CRA plates, 41% (n=61) of MSSA and 44% (n=66) of MRSA were positive; no associations were found between methicillin-resistance and biofilm-production. On the other hand, erythromycin, clindamycin and rifampin resistance was associated with biofilm-positivity (p=0.004, p<0.001 and p<0.001, respectively). Biofilm-positive isolates were most common from catheter-associated infections.

Discussion: Our study emphasizes the need for additional experiments to assess the role biofilms have in the pathogenesis of implant-associated and chronic S. aureus infections.

RevDate: 2021-04-03

Zhang S, Wang P, Shi X, et al (2021)

Inhibitory properties of Chinese Herbal Formula SanHuang decoction on biofilm formation by antibiotic-resistant Staphylococcal strains.

Scientific reports, 11(1):7134.

The aim of this study was to explore the effect of Chinese herbal SanHuang decoction (SH) on biofilm formation of antibiotic-resistant Staphylococci on titanium surface, and to explore its mechanism. Biofilm-forming ATCC 35984, ATCC 43300 and MRSE 287 were used in this study. The MICs of SH and vancomycin against Staphylococci were determined by the broth microdilution method. Six groups were designed, namely control group (bacteria cultured with medium), 1/8MIC SH group (1MIC SH was diluted by 1/8 using TSB or saline), 1/4MIC SH group, 1/2MIC SH group, 1MIC SH group and vancomycin group (bacteria cultured with 1MIC vancomycin). The inhibitory effect on bacterial adhesion and biofilm formation were observed by the spread plate method, CV staining, SEM, and CLSM. Real-time PCR was performed to determine the effect of SH on the expression levels of ica AD and ica R gene in ATCC 35984 during the biofilm formation. The strains were found to be susceptible to SH and vancomycin with MIC of 38.75 mg/ml and 2.5 μg/ml, respectively. SH with 1 MIC and 1/2 MIC could inhibit the bacteria adhesion, showing only scattered adhesion from SEM. CLSM showed that SH with 1 MIC and 1/2 MIC inhibited the biofilm formation. The quantitative results of the spread plate method and CV staining showed that there was significant differences between the SH groups (P < 0.05). Further, with an increase in SH concentration, the inhibitory effect became more obvious when compared with control group. Among the groups, vancomycin had the strongest inhibitory effect on bacterial adhesion and biofilm formation (P < 0.01). With an increase in SH concentration, the expression levels of ica AD decreased, and the expression of ica R increased correspondingly (P < 0.05). In conclusions, SH can inhibit the biofilm formation of antibiotic-resistant Staphylococci. Its probable mechanistic activity may be through the inhibition of polysaccharide intercellular adhesin synthesis by down-regulating the expression of ica AD gene.

RevDate: 2021-03-30

Faria SI, Teixeira-Santos R, Morais J, et al (2021)

The association between the initial adhesion and cyanobacterial biofilm development.

FEMS microbiology ecology pii:6204666 [Epub ahead of print].

Although laboratory assays provide valuable information about the antifouling effectiveness of marine surfaces and the dynamics of biofilm formation, they may be laborious and time-consuming. This study aimed to determine the potential of short-time adhesion assays to estimate how biofilm development may proceed. The initial adhesion and cyanobacterial biofilm formation were evaluated using glass and a polymer epoxy resin surface at two hydrodynamic conditions and compared using linear regression models. For initial adhesion, the polymer epoxy resin surface was significantly associated with a lower number of adhered cells when compared to glass (-1.27×105 cells.cm-2). Likewise, the number of adhered cells was significantly lower (-1.16×105 cells.cm-2) at 185 than at 40 rpm. This tendency was maintained during biofilm development and was supported by the biofilm wet weight, thickness, chlorophyll α content, and structure. Results indicated a significant correlation between the number of adhered and biofilm cells (r = 0.800, p <0.001). Moreover, the number of biofilm cells on day 42 was dependent on the number of adhered cells at the end of the initial adhesion and hydrodynamic conditions (R2 = 0.795, p <0.001). These findings demonstrated the high potential of initial adhesion assays to estimate marine biofilm development.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

cover-pic

SUPPORT ESP: Order from Amazon
The ESP project will earn a commission.

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )