Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Reynolds Number

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 18 Jun 2024 at 01:34 Created: 

Reynolds Number

It is well known that relative size greatly affects how organisms interact with the world. Less well known, at least among biologists, is that at sufficiently small sizes, mechanical interaction with the environment becomes difficult and then virtually impossible. In fluid dynamics, an important dimensionless parameter is the Reynolds Number (abbreviated Re), which is the ratio of inertial to viscous forces affecting the movement of objects in a fluid medium (or the movement of a fluid in a pipe). Since Re is determined mainly by the size of the object (pipe) and the properties (density and viscosity) of the fluid, organisms of different sizes exhibit significantly different Re values when moving through air or water. A fish, swimming at a high ratio of inertial to viscous forces, gives a flick of its tail and then glides for several body lengths. A bacterium, "swimming" in an environment dominated by viscosity, possesses virtually no inertia. When the bacterium stops moving its flagellum, the bacterium "coasts" for about a half of a microsecond, coming to a stop in a distance less than a tenth the diameter of a hydrogen atom. Similarly, the movement of molecules (nutrients toward, wastes away) in the vicinity of a bacterium is dominated by diffusion. Effective stirring — the generation of bulk flow through mechanical means — is impossible at very low Re. An understanding of the constraints imposed by life at low Reynolds numbers is essentially for understanding the prokaryotic biosphere.

Created with PubMed® Query: ( "reynolds number" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2024-06-17

Ali I, Hussain T, Unar IN, et al (2024)

Turbulence model study for aerodynamic analysis of the leading edge tubercle wing for low Reynolds number flows.

Heliyon, 10(11):e32148.

A turbulence model study was performed to analyze the flow around the Tubercle Leading Edge (TLE) wing. Five turbulence models were selected to evaluate aerodynamic force coefficients and flow mechanism by comparing with existing literature results. The selected models are realizable k-ε, k-ω Shear Stress Transport (SST), (γ - R e θ) SST model, Transition k-k l -ω model and Stress- ω Reynolds Stress Model (RSM). For that purpose, the TLE wing model was developed by using the NACA0021 airfoil profile. The wing model is designed with tubercle wavelength of 0.11c and amplitude of 0.03c. Numerical simulation was performed at chord-based Reynolds number of Rec = 120,000. The Computational Fluid Dynamic (CFD) simulation reveals that among the selected turbulence models, Stress- ω RSM estimated aerodynamic forces (i.e. lift and drag) coefficients closest to that of the experimental values followed by realizable k-ε, (γ - R e θ) SST model, k-ω SST model and k-k l -ω model. However, at a higher angle of attacks i.e. at 16° & 20° k-ω SST model predicted closest drag and lift coefficient to that of the experimental values. Additionally, the critical observation of pressure contour confirmed that at the lower angle of attack Stress- ω RSM predicted strong Leading Edge (LE) suction followed by realizable k-ε, (γ - R e θ)SST model, k-ω SST model and k-k l -ω model. Thus, the superiority of Stress- ω RSM in predicting the aerodynamic force coefficients is shown by the flow behavior. In addition to this pressure contours also confirmed that k-k l -ω model failed to predict tubercled wing aerodynamic performance. At higher angles of attacks k-ω SST model estimated aerodynamic force coefficients closest to that of the experimental values, thus k-ω SST model is used at 16° & 20° AoAs. The observed streamline behavior for different turbulence models showed that the Stress- ω RSM model and k-k l -ω model failed to model flow behavior at higher AoAs, whereas k-ω SST model is a better approach to model separated flows that experience strong flow recirculation zone.

RevDate: 2024-06-10
CmpDate: 2024-06-10

Khashan S, Odhah AA, Taha M, et al (2024)

Enhanced microfluidic multi-target separation by positive and negative magnetophoresis.

Scientific reports, 14(1):13293.

We introduce magnetophoresis-based microfluidics for sorting biological targets using positive Magnetophoresis (pM) for magnetically labeled particles and negative Magnetophoresis (nM) for label-free particles. A single, externally magnetized ferromagnetic wire induces repulsive forces and is positioned across the focused sample flow near the main channel's closed end. We analyze magnetic attributes and separation performance under two transverse dual-mode magnetic configurations, examining magnetic fields, hydrodynamics, and forces on microparticles of varying sizes and properties. In pM, the dual-magnet arrangement (DMA) for sorting three distinct particles shows higher magnetic gradient generation and throughput than the single-magnet arrangement (SMA). In nM, the numerical results for SMA sorting of red blood cells (RBCs), white blood cells (WBCs), and prostate cancer cells (PC3-9) demonstrate superior magnetic properties and throughput compared to DMA. Magnetized wire linear movement is a key design parameter, allowing device customization. An automated device for handling more targets can be created by manipulating magnetophoretic repulsion forces. The transverse wire and magnet arrangement accommodate increased channel depth without sacrificing efficiency, yielding higher throughput than other devices. Experimental validation using soft lithography and 3D printing confirms successful sorting and separation, aligning well with numerical results. This demonstrates the successful sorting and separating of injected particles within a hydrodynamically focused sample in all systems. Both numerical and experimental findings indicate a separation accuracy of 100% across various Reynolds numbers. The primary channel dimensions measure 100 µm in height and 200 µm in width. N52 permanent magnets were employed in both numerical simulations and experiments. For numerical simulations, a remanent flux density of 1.48 T was utilized. In the experimental setup, magnets measuring 0.5 × 0.5 × 0.125 inches and 0.5 × 0.5 × 1 inch were employed. The experimental data confirm the device's capability to achieve 100% separation accuracy at a Reynolds number of 3. However, this study did not explore the potential impact of increased flow rates on separation accuracy.

RevDate: 2024-06-10
CmpDate: 2024-06-10

Islam M, Ali U, S Mone (2024)

Harnessing flow-induced vibrations for energy harvesting: Experimental and numerical insights using piezoelectric transducer.

PloS one, 19(6):e0304489 pii:PONE-D-24-02616.

Flow-induced vibrations (FIV) were considered as unwanted vibrations analogous to noise. However, in a recent trend, the energy of these vibrations can be harvested and converted to electrical power. In this study, the potential of FIV as a source of renewable energy is highlighted through experimental and numerical analyses. The experimental study was conducted on an elastically mounted circular cylinder using helical and leaf springs in the wind tunnel. The Reynolds number (Re) varied between 2300-16000. The motion of the cylinder was restricted in all directions except the transverse direction. The micro-electromechanical system (MEMS) was mounted on the leaf spring to harvest the mechanical energy. Numerical simulations were also performed with SST k-ω turbulence model to supplement the experiments and were found to be in good agreement with the experimental results. The flow separation and vortex shedding induce aerodynamic forces in the cylinder causing it to vibrate. 2S vortex shedding pattern was observed in all of the cases in this study. The maximum dimensionless amplitude of vibration (A/D) obtained was 0.084 and 0.068 experimentally and numerically, respectively. The results showed that the region of interest is the lock-in region where maximum amplitude of vibration is observed and, therefore, the maximum power output. The piezoelectric voltage and power output were recorded for different reduced velocities (Ur = 1-10) at different resistance values in the circuit. It was observed that as the amplitude of oscillation of the cylinder increases, the voltage and power output of the MEMS increases due to high strain in piezoelectric transducer. The maximum output voltage of 0.6V was observed at Ur = 4.95 for an open circuit, i.e., for a circuit with the resistance value of infinity. As the resistance value reduced, a drop in voltage output was observed. Maximum power of 10.5μW was recorded at Ur = 4.95 for a circuit resistance of 100Ω.

RevDate: 2024-06-06

Mizuno Y, Misaka T, Y Furukawa (2024)

Fluid-particle-structure interaction in single shot peening.

Scientific reports, 14(1):13029.

Shot peening is a widely used cold-working process. Physical phenomena of shot peening are analyzed using the developed fluid-particle-structure coupled solver. The influences of the flow field and shot peening parameters such as the shot impact velocity and shot size are investigated in the case of the falling, impacting, and rebounding single particle. The weakly coupled solver applies the immersed boundary method which enables direct evaluation of the interactions between the unsteady flow field and moving/deforming objects. The elastoplastic object of AISI4340 during the collision of rigid steel shot is analyzed dynamically using the finite element method. Consequently, it is clarified that the flow field of the post-collision between the shot and structure can be characterized by the relative Reynolds number, which is based on the shot diameter and relative velocity between the uniform flow and rebounding shot velocities. As the relative Reynolds number increases, the complex flow field and vortex structures are generated at the collision location. These fluid structures affect the collision phenomena resulting in the random behavior of the shot and the asymmetric indentation in the structure.

RevDate: 2024-06-04

Lou S, Zou Y, Wang H, et al (2024)

Influence of vegetation on heavy metal Cr release process from bottom sediment under unidirectional flows and regular waves.

Marine pollution bulletin, 204:116535 pii:S0025-326X(24)00512-5 [Epub ahead of print].

As human activities become more intensive, a substantial number of heavy metals are discharged into estuarine or wetland environments. Due to the poor degradability, heavy metals are prone to adsorption and deposition on suspended particles in bottom sediments. Subsequently, under the influence of disturbances, there is a potential for their re-release, causing secondary pollution. To investigate the release process of the heavy metal Cr from sediment, laboratory experiments were conducted under both unidirectional flow and regular wave conditions. At the initial stage, the temporal trends of particulate (CrP) and dissolved (CrD) Chromium concentrations were both characterized by initial increments followed by stabilization and continuous escalation. Vertically, the stable concentrations of CrP and CrD increased with the presence of vegetation and the enhancement of hydrodynamics. The Elovich equation, pseudo-second-order kinetic equation, Double constant equation (Freundlich model), and parabolic diffusion equation were employed to predict the release process of CrD from bottom sediment. The Elovich equation proved most suitable for describing the release process of CrD, with an R[2] exceeding 0.9. In order to assess the influence of vegetation on the Cr release process, the Stem-Reynolds were introduced to modify the Elovich equation. The final maximum error was 12 % (excluding the initial stage), which was much lower than that using the original Elovich equation (maximum error of 32 %). The study findings provide practical support for estuarine and wetland managers to formulate effective heavy metal management measures, which contribute to the conservation and sustainable management of aquatic ecosystems.

RevDate: 2024-05-29

Li D, Dong J, H Li (2024)

Electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid through a rough circular microchannel with surface charge-dependent slip.

Electrophoresis [Epub ahead of print].

This research examines the electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid in a rough circular microchannel while considering the effect of surface charge on slip. The channel wall corrugations are described as periodic sinusoidal waves with small amplitudes. The perturbation method is employed to derive solutions for velocity and volumetric flow rate, and a combination of three-dimensional (3D) and two-dimensional (2D) graphical representations is utilized to effectively illustrate the impacts of relevant parameters on them. The significance of the Reynolds number R e $Re$ in investigations of EMHD flow is particularly emphasized. Furthermore, the effect of wall roughness ε $\varepsilon $ and wave number k $k$ on velocity and the influence of wall roughness ε $\varepsilon $ and surface charge density σ s ${\sigma }_s$ on volumetric flow rate are primarily focused on, respectively, at various Reynolds numbers. The results suggest that increasing the wall roughness leads to a reduction in velocity at low Reynolds numbers (R e = 1 $Re = 1$) and an increment at high Reynolds numbers (R e = 10 $Re = 10$). For any Reynolds number, a roughness with an odd multiple of wave number (k = 6 , 10 $k = 6,10$) will result in a more stable velocity profile compared to one with an even multiple of wave number (k = 4 , 8 $k = 4,8$). Decreasing the relaxation time λ ¯ 1 ${\bar{\lambda }}_1$ while increasing the retardation time λ ¯ 2 ${\bar{\lambda }}_2$ and Hartmann number H a $Ha$ can diminish the impact of wall roughness ε $\varepsilon $ and surface charge density σ s ${\sigma }_s$ on volumetric flow rate, independent of the Reynolds number. Interestingly, in the existence of wall roughness, further consideration of the effect of surface charge on slip leads to a 15% drop in volumetric flow rate at R e = 1 $Re = 1$ and a 32% slippage at R e = 10 $Re = 10$ . However, in the condition where the effect of surface charge on slip is considered, further examination of the presence of wall roughness only results in a 1.4% decline in volumetric flow rate at R e = 1 $Re = 1$ and a 1.6% rise at R e = 10 $Re = 10$ . These findings are crucial for optimizing the EMHD flow models in microchannels.

RevDate: 2024-05-25

Shi X, He Q, Tan W, et al (2024)

Experiment study on focusing pattern prediction of particles in asymmetric contraction-expansion array channel.

Electrophoresis [Epub ahead of print].

Contraction-expansion array (CEA) microchannel is a typical structure applied on particle/cell manipulation. The prediction of the particle focusing pattern in CEA microchannel is worthwhile to be investigate deeply. Here, we demonstrated a virtual boundary method by flow field analysis and theoretical derivation. The calculating method of the virtual boundary location, related to the Reynolds number (Re) and the structure parameter RW, was proposed. Combining the approximate Poiseuille flow pattern based on the virtual boundary method with the simulation results of Dean flow, the main line pattern and the main/lateral lines pattern were predicted and validated in experiments. The transformation from the main line pattern to the main/lateral lines pattern can be facilitated by increasing Re, decreasing RW , and decreasing α. An empirical formula was derived to characterize the critical condition of the transformation. The virtual boundary method can provide a guidance for asymmetric CEA channel design and contribute to the widespread application of microfluidic particle focusing.

RevDate: 2024-05-24

Zhang H, Zhu B, W Chen (2024)

Enhancing Energy Harvesting Efficiency of Flapping Wings with Leading-Edge Magnus Effect Cylinder.

Biomimetics (Basel, Switzerland), 9(5): pii:biomimetics9050293.

According to the Magnus principle, a rotating cylinder experiences a lateral force perpendicular to the incoming flow direction. This phenomenon can be harnessed to boost the lift of an airfoil by positioning a rotating cylinder at the leading edge. In this study, we simulate flapping-wing motion using the sliding mesh technique in a heaving coordinate system to investigate the energy harvesting capabilities of Magnus effect flapping wings (MEFWs) featuring a leading-edge rotating cylinder. Through analysis of the flow field vortex structure and pressure distribution, we explore how control parameters such as gap width, rotational speed ratio, and phase difference of the leading-edge rotating cylinder impact the energy harvesting characteristics of the flapping wing. The results demonstrate that MEFWs effectively mitigate the formation of leading-edge vortices during wing motion. Consequently, this enhances both lift generation and energy harvesting capability. MEFWs with smaller gap widths are less prone to induce the detachment of leading-edge vortices during motion, ensuring a higher peak lift force and an increase in the energy harvesting efficiency. Moreover, higher rotational speed ratios and phase differences, synchronized with wing motion, can prevent leading-edge vortex generation during wing motion. All three control parameters contribute to enhancing the energy harvesting capability of MEFWs within a certain range. At the examined Reynolds number, the optimal parameter values are determined to be a∗ = 0.0005, R = 3, and ϕ0 = 0°.

RevDate: 2024-05-17

Rezazadeh MR, Dastan A, Sadrizadeh S, et al (2024)

A quasi-realistic computational model development and flow field study of the human upper and central airways.

Medical & biological engineering & computing [Epub ahead of print].

The impact of drug delivery and particulate matter exposure on the human respiratory tract is influenced by various anatomical and physiological factors, particularly the structure of the respiratory tract and its fluid dynamics. This study employs computational fluid dynamics (CFD) to investigate airflow in two 3D models of the human air conducting zone. The first model uses a combination of CT-scan images and geometrical data from human cadaver to extract the upper and central airways down to the ninth generation, while the second model develops the lung airways from the first Carina to the end of the ninth generation using Kitaoka's deterministic algorithm. The study examines the differences in geometrical characteristics, airflow rates, velocity, Reynolds number, and pressure drops of both models in the inhalation and exhalation phases for different lobes and generations of the airways. From trachea to the ninth generation, the average air flowrates and Reynolds numbers exponentially decay in both models during inhalation and exhalation. The steady drop is the case for the average air velocity in Kitaoka's model, while that experiences a maximum in the 3rd or 4th generation in the quasi-realistic model. Besides, it is shown that the flow field remains laminar in the upper and central airways up to the total flow rate of 15 l/min. The results of this work can contribute to the understanding of flow behavior in upper respiratory tract.

RevDate: 2024-05-17

Vasconcelos GL, Ribeiro LRC, Macêdo AMS, et al (2024)

Turbulence hierarchy in foreign exchange markets.

Physical review. E, 109(4-1):044313.

We present a multiscale stochastic analysis of foreign exchange rates using the H-theory formalism, which provides a hierarchical intermittency model for the information cascade in the currency market. We examine the distributions of returns and volatilities for the three most traded currency pairs: euro-U.S. dollar, U.S. dollar-Japanese yen, and British pound-U.S. dollar. We find that these markets have a hierarchy of timescales, with larger markets exhibiting more hierarchy levels. We provide a theoretical framework for understanding why the number of levels in the information cascade increases with market size, in analogy with similar behavior for the energy cascade in turbulence as a function of Reynolds number. We briefly argue that using turbulence-like models for financial markets can also provide valuable insights for developing efficient algorithmic trading strategies.

RevDate: 2024-05-17

Doranehgard MH, Karimi N, Borazjani I, et al (2024)

Breaking the symmetry of a wavy channel alters the route to chaotic flow.

Physical review. E, 109(4-2):045103.

We numerically explore the two-dimensional, incompressible, isothermal flow through a wavy channel, with a focus on how the channel geometry affects the routes to chaos at Reynolds numbers between 150 and 1000. We find that (i) the period-doubling route arises in a symmetric channel, (ii) the Ruelle-Takens-Newhouse route arises in an asymmetric channel, and (iii) the type-II intermittency route arises in both asymmetric and semiwavy channels. We also find that the flow through the semiwavy channel evolves from a quasiperiodic torus to an unstable invariant set (chaotic saddle), before eventually settling on a period-1 limit-cycle attractor. This study reveals that laminar channel flow at elevated Reynolds numbers can exhibit a variety of nonlinear dynamics. Specifically, it highlights how breaking the symmetry of a wavy channel can not only influence the critical Reynolds number at which chaos emerges, but also diversify the types of bifurcation encountered en route to chaos itself.

RevDate: 2024-05-14

Refaie Ali A, Mahmood R, Asghar A, et al (2024)

AI-based predictive approach via FFB propagation in a driven-cavity of Ostwald de-Waele fluid using CFD-ANN and Levenberg-Marquardt.

Scientific reports, 14(1):11024.

The integration of Artificial Intelligence (AI) and Machine Learning (ML) techniques into computational science has ushered in a new era of innovation and efficiency in various fields, with particular significance in computational fluid dynamics (CFD). Several methods based on AI and Machine Learning (ML) have been standardized in many fields of computational science, including computational fluid dynamics (CFD). This study aims to couple CFD with artificial neural networks (ANNs) to predict the fluid forces that arise when a flowing fluid interacts with obstacles installed in the flow domain. The momentum equation elucidating the flow has been simulated by adopting the finite element method (FEM) for a range of rheological and kinematic conditions. Hydrodynamic forces, including pressure drop between the back and front of the obstacle, surface drag, and lift variations, are measured on the outer surface of the cylinder via CFD simulations. This data has subsequently been fed into a Feed-Forward Back (FFB) propagation neural network for the prediction of such forces with completely unknown data. For all cases, higher predictivity is achieved for the drag coefficient (CD) and lift coefficient (CL) since the mean square error (MSE) is within ± 2% and the coefficient of determination (R) is approximately 99% for all the cases. The influence of pertinent parameters like the power law index (n) and Reynolds number (Re) on velocity, pressure, and drag and lift coefficients is also presented for limited cases. Moreover, a significant reduction in computing time has been noticed while applying hybrid CFD-ANN approach as compared with CFD simulations only.

RevDate: 2024-05-10

Si X, L Fang (2024)

Biologically generated turbulent energy flux in shear flow depends on tensor geometry.

PNAS nexus, 3(2):pgae056 pii:pgae056.

It has been proposed that biologically generated turbulence plays an important role in material transport and ocean mixing. Both experimental and numerical studies have reported evidence of the nonnegligible mixing by moderate Reynolds number swimmers, such as zooplankton, in quiescent water, especially at aggregation scales. However, the interaction between biologically generated agitation and the background flow, as a key factor in biologically generated turbulence that could reshape our previous knowledge of biologically generated turbulence, has long been ignored. Here, we show that the geometry between the biologically generated agitation and the background hydrodynamic shear can determine both the intensity and direction of biologically generated turbulent energy flux. Measuring the migration of a centimeter-scale swimmer-as represented by the brine shrimp Artemia salina-in a shear flow and verifying through an analog experiment with an artificial jet revealed that different geometries between the biologically generated agitation and the background shear can result in spectral energy transferring toward larger or smaller scales, which consequently intensifies or attenuates the large-scale hydrodynamic shear. Our results suggest that the long ignored geometry between the biologically generated agitation and the background flow field is an important factor that should be taken into consideration in future studies of biologically generated turbulence.

RevDate: 2024-05-06

Mohadjer A, Nobakhti MH, Nezamabadi A, et al (2024)

Thermohydraulic analysis of nanofluid flow in tubular heat exchangers with multi-blade turbulators: The adverse effects.

Heliyon, 10(9):e30333.

Based on the significance of heat transfer in tubular flows, various methods of heat transfer enhancement have been developed by scholars. The use of turbulator inserts like twisted tapes is widely discussed and suggested by researchers, and many studies have concentrated on the positive influence of these devices. However, the question is whether these devices always positively impact heat transfer and fluid flow. In this study, efforts were made to find possible adverse impacts of using twisted tapes on the average Nusselt number (Nu), friction factor (f), flow behavior, and performance evaluation criterion (PEC) of water-titania nanofluid. Three-dimensional (3D) numerical methods were used to assess a combination of three different configurations of 156 cases with/without turbulators with different numbers of blades and pitch ratios (PR). Results suggest that at Reynolds number (Re) = 4000, 6000, and 8000, only 25 %, 25 %, and 22.9 % of the examined cases led to PEC values over 1. Based on the results, while twisted tapes raised the Nu by up to 65.1 %, the f can be increased by up to more than six times. Furthermore, streamlines and velocity magnitude contours were employed to discuss the fluid flow behavior in the presence of the turbulators. According to the findings, while with the best turbulator, the PEC value was increased by only 6.3 %, some of the turbulators reduced this parameter by up to 11.8 %, which is more severe. The worst performance was observed with the Case C (three-bladed) turbulator at a PR value of 11, which reduced the PEC by 11.8 %.

RevDate: 2024-05-03

Bahrami HR, M Ghaedi (2024)

Enhancement of thermal energy transfer behind a double consecutive expansion utilizing a variable magnetic field.

Scientific reports, 14(1):10236.

This research focuses on utilizing non-uniform magnetic fields, induced by dipoles, to control and enhance thermal energy transfer in a two-dimensional cooling conduit including a double backward-facing step. The presence of electronic equipment along the straight channel path creates such arrangements, and cooling is often ineffective in the corners of the formed steps. The use of a non-constant magnetic field is a passive technique to improve the cooling rate in these sections without changing the internal geometry, thereby increasing the heat transfer rate. A commercial software based on the finite volume technique is employed to solve the governing equations of fluid flow and heat transfer. Multiple parameters are examined in this study, including the flow Reynolds number (12.5-50), dipole location and strength (0.1-5 A-m), and the number of dipoles (single or double). The results indicate that all of these parameters have a significant impact on the thermal energy transfer. The results of the study show that a single dipole increase the average heat transfer by about 22%, two magnetic fields by 40%, the strength of the magnetic source by 24% with respect to the non-magnetic field in the present study.

RevDate: 2024-05-01

Liu ZL, Rao QH, Yi W, et al (2024)

A modified drag coefficient model for calculating the terminal settling velocity and horizontal diffusion distance of irregular plume particles in deep-sea mining.

Environmental science and pollution research international [Epub ahead of print].

Deep-sea mining inevitably produces plumes, which will pose a serious threat to the marine environment with the continuous movement and diffusion of plumes along with ocean currents. The terminal settling velocity (wt) of irregular particles is one of the crucial factors for determining the plumes' diffusion range. It is generally calculated by drag coefficient (CD), while most existing CD models only consider single shape characteristic parameter or have a smaller range of Reynolds number (Re). In this study, a new shape factor (γ) of irregular particles is proposed by considering the thickness (one-dimension), the projected area (two-dimension), and the surface area (three-dimension) of irregular particles as well as their coupling effect to establish a modified CD model for calculating the wt. A modified Gaussian plume model is proposed to predict the horizontal diffusion distance of the plume particles by considering the settling velocity and diffusion effect of irregular particles. Research results show that the wt increases nearly linearly, with a gradually decreased slope and slightly then greatly with the increasing of γ, dp (diameter) and ρp (density), respectively. The modified CD model is verified to be more valid with a wider application range (Re < 3×10[5]) than five existing CD models by the test results. The larger the ρp or dp, the larger the wt and thus the smaller the Sh. This study could provide a theoretical basis for calculating the plume diffusion range to further study the impact of deep-sea mining on the ocean environment.

RevDate: 2024-04-26

Yoshida M, T Fukui (2024)

Numerical Simulation of the Advantages of the Figure-Eight Flapping Motion of an Insect on Aerodynamics under Low Reynolds Number Conditions.

Biomimetics (Basel, Switzerland), 9(4): pii:biomimetics9040249.

In proceeding with the advanced development of small unmanned aerial vehicles (UAVs), which are small flying machines, understanding the flight of insects is important because UAVs that use flight are attracting attention. The figure-eight trajectory of the wing tips is often observed in the flight of insects. In this study, we investigated the more efficient figure-eight motion patterns in generating lift during the hovering motion and the relationship between figure-eight motion and Reynolds number. For this purpose, we compared the ratios of the cycle-averaged lift coefficient to the power coefficient generated from each motion by varying the elevation motion angle, which is the rotational motion that represents the figure-eight motion, and the Reynolds number. The result showed that the motion with a smaller initial phase of the elevation motion angle (φe0≤90°) could generate lift more efficiently at all Reynolds numbers. In addition, the figure-eight motion was more effective when the Reynolds number was low.

RevDate: 2024-04-24

Dong H, Huang L, L Zhao (2024)

Influence of the internal structure of straight microchannels on inertial transport behavior of particles.

Heliyon, 10(8):e29577.

The rapid advancement of Micro-Electro-Mechanical Systems (MEMS) technology has established microfluidics as a pivotal field. This technology marks the onset of a new era in various applications, including drug testing, cell culture, and disease monitoring, underscoring its extensive practicality and potential for future exploration. This research delves into the intricate behavior of particle inertial migration within microchannels, particularly focusing on the impact of different channel structures and Reynolds numbers (Re). Our studies reveal that particles in microchannels with one-sided sharp-cornered microstructures migrate towards the sharp corner at a relative position of 0.4 under low flow rates, and towards the straight wall side at a relative position of 0.8 under high flow rates. The migration pattern of equilibrium positions varies with different arrangements of sharp-corner structures, achieving stability at the channel's center only when the sharp corners are symmetrically arranged on both sides. Our investigation into the shape of microstructures indicates that sharp-cornered structures generate a more stable secondary flow compared to rectangular and semi-circular structures, preventing particle aggregation at the outlet. To address the challenges associated with handling variable cross-section geometries and solid-wall boundaries in dissipative particle dynamics methods effectively, we have developed a dissipative particle dynamics model specifically for analyzing such microchannels. Building upon our previous research, this model introduces a conservative force coefficient for particles within the microstructured region and an interaction zone that only involves repulsive forces, aligning well with experimental outcomes. Through the study of microstructures' geometric shapes, this paper offers guidance for designing microchannels for particle enrichment. Furthermore, the dissipative particle dynamics model established for the particle flow and solid structure interaction within microstructured channels provides insights into the mesoscale dynamics of liquid-solid two-phase flow and particle motion. In conclusion, this paper aims to enhance particle motion sample preparation techniques, thereby broadening the scope of microfluidic applications in the biomedical field.

RevDate: 2024-04-23

Lee D, Ruf M, Karadimitriou N, et al (2024)

Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation.

Scientific reports, 14(1):9375.

We propose an integrated methodology for the design and fabrication of 3D micromodels that are suitable for the pore-scale study of transport processes in macroporous materials. The micromodels, that bear the pore-scale characteristics of sandstone, such as porosity, mean pore size, etc, are designed following a stochastic reconstruction algorithm that allows for fine-tuning the porosity and the correlation length of the spatial distribution of the solid material. We then construct a series of 3D micromodels at very fine resolution (i.e. 16 μ m) using a state-of-the-art 3D printing infrastructure, specifically a ProJet MJP3600 3D printer, that utilizes the Material Jetting technology. Within the technical constraints of the 3D printer resolution, the fabricated micromodels represent scaled-up replicas of natural sandstones, that are suitable for the study of the scaling between the permeability, the porosity and the mean pore size. The REV- and pore-scale characteristics of the resulting physical micromodels are recovered using a combination of X-ray micro-CT and microfluidic studies. The experimental results are then compared with single-phase flow simulations at pore-scale and geostatistic models in order to determine the effects of the design parameters on the intrinsic permeability and the spatial correlation of the velocity profile. Our numerical and experimental measurements reveal an excellent match between the properties of the designed and fabricated 3D domains, thus demonstrating the robustness of the proposed methodology for the construction of 3D micromodels with fine-tuned and well-controlled pore-scale characteristics. Furthermore, a pore-scale numerical study over a wider range of 3D digital domain realizations reveals a very good match of the measured permeabilities with the predictions of the Kozeny-Carman formulation based on a single control parameter, k 0 , that is found to have a practically constant value for porosities ϕ ≥ 0.2 . This, in turn, enables us to customize the sample size to meet REV constraints, including enlarging pore morphology while considering the Reynolds number. It is also found that at lower porosities there is a significant increase in the fraction of the non-percolating pores, thus leading to different k 0 , as the porosity approaches a numerically determined critical porosity value, ϕ c , where the domain is no longer percolating.

RevDate: 2024-04-22

Smeltz AM, Patel DS, JH Williams (2024)

The influence of needleless connectors and inserted catheters on flow rates through vascular introducer sheaths.

Anaesthesia and intensive care [Epub ahead of print].

SummaryA vascular introducer sheath is often used for rapid volume replacement. However, common manipulations such as the addition of needleless connectors to infusion ports and the insertion of catheters or other devices through the introducer sheath may impede flow. In this study we utilised a rapid infuser to deliver room-temperature normal saline through two introducer sheath configurations with and without the addition of needleless connectors and the placement of catheters through the introducer sheaths. The maximal flow rate delivered by the rapid infuser was 1000 mL/min, which was observed with both introducer sheath sizes tested without additional resistive elements. However, with the addition of a needleless connector, flow rates through the introducer sheaths were substantially lower (64 (standard deviation (SD) 6) mL/min and 61 (SD 7) mL/min for the 8.5 Fr and 9 Fr introducers, respectively). Flow rates were also reduced when catheters were placed within the sheaths (298 (SD 9) mL/min with the 7 Fr catheter and 74 (SD 9) mL/min with the 8 Fr catheter placed in an 8.5 Fr sheath; 649 (SD 6) mL/min with the 7 Fr catheter and 356 (SD 14) mL/min with the 8 Fr catheter placed in the 9 Fr sheath). These findings indicated that both needleless connectors and the placement of catheters through vascular introducer sheaths substantially reduced potential flow rates. Even 'large' vascular introducer sheaths capable of delivering high flow rates could be rendered minimally effective for rapid fluid administration when used in this way. Clinicians should consider these impediments to flow when rapid fluid administration is required, and obtain alternative vascular access if necessary.

RevDate: 2024-04-18

Azad AK, Parvin S, T Hossain (2024)

Performance evaluation of nanofluid-based photovoltaic thermal (PVT) system with regression analysis.

Heliyon, 10(7):e29252.

The recent global energy crisis has shocked Bangladesh's power sectors, and experts recommend using alternative energy sources to conserve natural gas, fossil fuels, and electricity. Numerous investigations on the photovoltaic thermal (PVT) system have been carried out to get the source efficiently. As a result, a parametric evaluation of the PVT system's efficiency in Dhaka, Bangladesh, is investigated numerically using CNT nanofluid as a coolant. The numerical simulation is performed using the Galerkin weighted residual based finite element method. For accurate computations, the meteorological data for Dhaka, Bangladesh, is taken from open sources of The effect of regulating parameters Reynolds number (200 ≤ Re ≤ 1000), solar irradiation (200 W/m[2] ≤ G ≤ 1000 W/m[2]), and the monthly influence on performance such as cell temperature, fluid domain exit temperature, efficiencies, and energy are discussed. In addition, regression analyses of electrical efficiency and thermal efficiency are discussed for the input variables Reynolds number and solar irradiation. After postprocessing, empirical results are compiled and presented as 3D surface graphs, tables, and line diagrams. As the Reynolds number increased, the cell temperature and discharge temperature decreased, resulting in increased efficiency. However, the opposite situation is found for solar irradiation. Month-to-month variation also has a considerable impact on photovoltaic thermal performance. This research will help to improve the efficacy of PVTs in Dhaka, Bangladesh, by identifying useful alternative renewable energy sources.

RevDate: 2024-04-16

Deissler RJ, Al Helo R, R Brown (2024)

From an obliquely falling rod in a viscous fluid to the motion of suspended magnetic bead chains that are driven by a gradient magnetic field and that make an arbitrary angle with the magnetic force vector: A Stokes flow study.

PloS one, 19(4):e0301852 pii:PONE-D-24-01635.

In view of the growing role of magnetic particles under magnetic field influence in medical and other applications, and perforce the bead chaining, it is important to understand more generally the chain dynamics. As is well known, in the presence of a magnetic field, magnetic beads tend to form chains that are aligned with the magnetic field vector. In addition, if there is a magnetic field gradient, there will be a magnetic force acting on this chain. The main goal of the present research is to study the motion of a magnetic bead chain that makes an arbitrary angle with the magnetic force vector in the Stokes flow limit, that is, in the limit of zero Reynolds number. We used the public-domain computer program HYDRO++ to calculate the mobility matrix, which relates the magnetic force acting on the chain to the velocity of the chain, for a chain of N beads making an arbitrary angle with the magnetic force vector. Because of the presence of off-diagonal elements of the mobility matrix, as the chain is drawn in the direction of the magnetic force, it is also deflected to the side. We derived analytic solutions for this motion. Also, for bead chains moving in directions both parallel and perpendicular to their lengths, we fit three-parameter functions to solutions from HYDRO++. We found the fits to be excellent. Combining these results with the analytic solutions, we obtained expressions for the velocity components for the bead chains that provide excellent fits to HYDRO++ solutions for arbitrary angles. Finally, we apply the methodology used for the bead chain studies to the study of an obliquely falling rod in a viscous fluid and derive analytic solutions for the velocity components of the obliquely falling rod.

RevDate: 2024-04-15

Ahamed R, Salehin M, MM Ehsan (2024)

Thermal-hydraulic performance and flow phenomenon evaluation of a curved trapezoidal corrugated channel with E-shaped baffles implementing hybrid nanofluid.

Heliyon, 10(7):e28698.

A numerical investigation of a curved trapezoidal-corrugated channel with E-shaped baffles is conducted for thermal-hydraulic performance and flow behavior involving the use of single and hybrid nanofluids. This investigation introduces a unique integrated methodology for enhancing heat transfer efficiency by simultaneously combining geometric modifications and optimizing coolant utilization. To simulate turbulent, single-phase flow in three-dimensional corrugated channels, a computational model has been developed. The model considers a Reynolds number (Re) range of 5 × 10[3]≤Re ≤ 35 × 10[3] and implies a uniform heat flux of 1000 W/m[2]. A commercial software, Ansys fluent was used in order to simulate the fluid flow by setting the inlet temperature at 300 K and velocity according to the Reynolds number. The continuity equation, momentum equation, and energy equations are discretized using a second-order upwind method. The equation's residual has been assigned a value of 1 × 10[6] for absolute criteria. The study evaluates the thermal-hydraulic performance of single nanofluids (Al2O3/water, CuO/water, SiO2/water) and hybrid nanofluids (Al2O3-Cu/water, TiO2-SiO2/EG-water) at varying volume fractions (1%≤φ ≤ 5%). Additionally, the investigation examines the effects of corrugations, baffles, and geometric parameter: blockage ratio (BR = 0.10, 0.15, 0.25). The findings demonstrate that the effects of baffles and corrugations can lead to the creation of vortex flow and greater turbulence, which can promote heat transfer enhancement. Various nanofluids demonstrated a significant rise in the Nusselt number, ranging from 35% to 60%, when compared to water in a curved corrugated channel. Additionally, a lower BR resulted in a smaller but still notable gain of 15%-19%. An effective heat exchanger that results in a significant energy dissipation is measured by the energy ratio (ER). The use of corrugated channels with narrow baffles has been found to consistently outperform smooth channels in terms of thermo-hydraulic parameters, leading to enhanced heat transfer. Using BR = 0.10 over 0.25 resulted in an increase in ΔP, HTC, and ER of 48.44%, 18.71%, and 45.86%, respectively. The implementation of a hybrid nanofluid consisting of 1% (20% TiO2-80% SiO2)/(60% Water-40% EG) volume fraction in a curved corrugated channel with baffles resulted in a significant improvement of 36.49% in thermal performance. This finding suggests that the aforementioned nanofluid composition and design parameter, characterized by a blockage ratio of 0.10, are the most effective in enhancing thermal performance.

RevDate: 2024-04-15

Srinivasarao M, Lee BJ, VM Reddy (2024)

Modified Reacting Solver: A Simplified Approach for Capturing the Molecular and Flow Diffusivities for the Nonpremixed MILD Flames.

ACS omega, 9(14):15804-15817.

The present study investigates the applicability of the inlet boundary species Lewis number (combined effect of molecular and flow diffusion) for the nonpremixed moderate and intense low oxygen dilution (MILD) flames. A modified reactive solver named modifiedReactingFoam is developed by including the enthalpy flux in the energy equation and using modified model constants in OpenFOAM. The present solver is tested on the delft-jet-in-hot-coflow burner operating under a moderate and intense low oxygen dilution combustion environment. Along with the flame with Reynolds number 4100, eight other jet-in-hot-coflow flames are simulated to test the capability of the present proposed solver. The main aim of the current work is to investigate the efficacy of the proposed solver in predicting the velocity field, temperatures, and flame lift-off height for the considered flames with a significant reduction in computational time. The predictions with the modified eddy dissipation concept model are improved. However, a significant deviation is still observed in the downstream direction of the burner. The numerical simulations are performed with methane Lewis numbers of 0.9-1.14 by keeping the respective constant Lewis numbers for the inlet boundary species. The modifiedReactingFoam predictions at a methane Lewis number of 1.12 are in very close agreement with the experimental results. The maximum deviation in lift-off heights is within ±3% of the experimental results. The present modified solver outperformed the other combustion models in the literature and reduced the computational time up to 10 times with a combination of DLBFoam compared to the inbuilt solver.

RevDate: 2024-04-15

Qian S, Jiang M, Z Liu (2021)

Inertial migration of aerosol particles in three-dimensional microfluidic channels.

Particuology, 55:23-34.

In recent years, manipulation of particles by inertial microfluidics has attracted significant attention. However, most studies focused on inertial focusing of particles suspended within liquid phase, in which the ratio of the density of the particle to that of the medium is O(1). The investigation on manipulation of aerosol particles in an inertial microfluidics is very limited. In this study, we numerically investigate the aerosol particle's motion in a 3D straight microchannel with rectangular cross section by fully resolved simulation of the particle-air flow. The air flow is modeled by the Navier-Stokes equations. The particle's motions, including translation and rotation, are governed, respectively, by the Newton's second law and the Euler equations without using any approximation models for the lift and drag forces. The coupled mathematical model is numerically solved by combining immersed boundary with lattice Boltzmann method (IB-LBM). We find that the Reynolds number (Re), the particle's initial position, particle's density and diameter are the influential parameters in this process. The equilibrium positions and their stabilities of aerosols are different from those suspended in liquid.

RevDate: 2024-04-13

Magos-Rivera M, Avilés-Cruz C, J Ramírez-Muñoz (2024)

A Novel Experimental Apparatus for Characterizing Flow Regime in Mechanically Stirred Tanks through Force Sensors.

Sensors (Basel, Switzerland), 24(7): pii:s24072319.

Pressure fluctuations in a mixing tank can provide valuable information about the existing flow regime within the tank, which in turn influences the degree of mixing that can be achieved. In the present work, we propose a prototype for identifying the flow regime in mechanically stirred tanks equipped with four vertical baffles through the characterization of pressure fluctuations. Our innovative proposal is based on force sensors strategically placed in the baffles of the mixing tank. The signals coming from the sensors are transmitted to an electronic module based on an Arduino UNO development board. In the electronic module, the pressure signals are conditioned, amplified and sent via Bluetooth to a computer. In the computer, the signals can be plotted or stored in an Excel file. In addition, the proposed system includes a moving average filtering and a hierarchical bottom-up clustering analysis that can determine the real-time flow regime (i.e., the Reynolds number, Re) in which the tank was operated during the mixing process. Finally, to demonstrate the versatility of the proposed prototype, experiments were conducted to identify the Reynolds number for different flow regimes (static, laminar, transition and turbulent), i.e., 0≤Re≤ 42,955. Obtained results were in agreement with the prevailing consensus on the onset and developed from different flow regimes in mechanically stirred tanks.

RevDate: 2024-04-08

Muñóz AJ, Reca J, J Martínez (2024)

Application of a hydrophobic coating to a pressurized pipe and its effect on energy losses and fluid flow profile.

Scientific reports, 14(1):8236.

The use of additives, generally called DRAs (Drag Reducing Additives), has been proposed to re-duce the energy consumption in pressurized pipes. Although many research works have been conducted to analyze the effect of these additives, less attention have been devoted to the application of coatings to the pipe wall. This paper demonstrates that the application of a hydrophobic coating to the pipe can lead to a head loss reduction for a transition flow regime with moderate Reynolds number values (Re). For this purpose, an experiment was conducted to compare the performance of both coated and uncoated pipes by measuring the head losses and assessing the Drag Reduction Percentage (%DR) and the pipe friction factor (f). This was done for two Polyvinylchloride (PVC) pipes with different nominal diameters (PVC90 and PVC63). In addition, the flow velocity distribution was also measured in all these tests. The %DR decreased as the Re values increased, with the reduction being notably less pronounced for higher Re values. This could be explained by the fact that a partial slip condition is induced by the hydrophobic product. Its effect is significant for a transition regime where the effect of viscosity is important, but it becomes negligible for increasing levels of turbulence. No significant differences were observed in the flow distribution between coated and uncoated pipes, which seems to indicate that the velocity change could be limited to the near-wall viscous sublayer. The results of this work open an important research line aimed at reducing energy costs and the carbon footprint in pipe fluid distribution systems.

RevDate: 2024-04-08

Seder I, Zheng T, Zhang J, et al (2024)

A Scalable Microfluidic Platform for Nanoparticle Formulation: For Exploratory- and Industrial-Level Scales.

Nano letters [Epub ahead of print].

Nanoparticle synthesis on microfluidic platforms provides excellent reproducibility and control over bulk synthesis. While there have been plenty of platforms for producing nanoparticles (NPs) with controlled physicochemical properties, such platforms often operate in a narrow range of predefined flow rates. The flow rate limitation restricts either up-scalability for industrial production or down-scalability for exploratory research use. Here, we present a universal flow rate platform that operates over a wide range of flow rates (0.1-75 mL/min) for small-scale exploratory research and industrial-level synthesis of NPs without compromising the mixing capabilities. The wide range of flow rate is obtained by using a coaxial flow with a triangular microstructure to create a vortex regardless of the flow regime (Reynolds number). The chip synthesizes several types of NPs for gene and protein delivery, including polyplex, lipid NPs, and solid polymer NPs via self-assembly and precipitation, and successfully expresses GFP plasmid DNA in human T cells.

RevDate: 2024-04-05

Cordes J, Schadschneider A, A Nicolas (2024)

Dimensionless numbers reveal distinct regimes in the structure and dynamics of pedestrian crowds.

PNAS nexus, 3(4):pgae120.

In fluid mechanics, dimensionless numbers like the Reynolds number help classify flows. We argue that such a classification is also relevant for crowd flows by putting forward the dimensionless Intrusion and Avoidance numbers, which quantify the intrusions into the pedestrians' personal spaces and the imminency of the collisions that they face, respectively. Using an extensive dataset, we show that these numbers delineate regimes where distinct variables characterize the crowd's arrangement, namely, Euclidean distances at low Avoidance number and times-to-collision at low Intrusion number. On the basis of these findings, a perturbative expansion of the individual pedestrian dynamics is carried out around the noninteracting state, in quite general terms. Simulations confirm that this expansion performs well in its expected regime of applicability.

RevDate: 2024-04-01

Tripty TA, R Nasrin (2024)

Efficiency upgrading of solar PVT finned hybrid system in Bangladesh: Flow rate and temperature influences.

Heliyon, 10(7):e28323 pii:S2405-8440(24)04354-8.

This research aims to determine the impact of mass flow rate and inflow temperature on the utility and effectiveness of solar thermal systems using fins with air in various applications in Bangladesh. This study examines a three-dimensional (3D) photovoltaic thermal (PVT) system where we analyze the behavior of a hybrid system with six aluminum sheets (1 mm thick fin as a heat exchange material) inside the heat exchanger where the air takes the direction to pass in waveform through the channels (made of aluminum) using fins. The top side of the fins is bent and affixed to the bottom of the floor of the PV panel to allow heat transfer utilizing the conduction-based method. This study selects inlet fluid mass flow rate and inflow temperature between (0.015-0.535 kg/s), and (10-40 °C) respectively, while comparing the result with experimental/numerical published data based on Bangladesh's weather conditions and applies the finite element method (FEM) to solve heat transfer equations. A brief analysis of the association among Reynolds number with pressure drop and fanning friction factor is included in this paper. Our model can be mounted on building rooftops or open fields where air velocity will be controlled mechanically; thus, it has many applications. This model can be implemented within an agricultural photovoltaic (APV) system, domestic functions, dry agricultural products, and provide heat for greenhouses. The result indicates that 302-514 W thermal energy has been produced for 0.015-0.535 kg/s. For growing inflow temperature, despite the reduction in electrical efficiency, the value of adding electrical and thermal efficiency (overall efficiency) comes with elevation. A 5 °C increase in inflow temperature leads to an overall efficiency increase of 0.33%. This study's findings can help researchers better comprehend air's properties as a heat exchanger in a developed design, and they can be applied to government and commercial projects.

RevDate: 2024-03-27

Gan W, Zuo Z, Zhuang J, et al (2024)

Aerodynamic/Hydrodynamic Investigation of Water Cross-Over for a Bionic Unmanned Aquatic-Aerial Amphibious Vehicle.

Biomimetics (Basel, Switzerland), 9(3): pii:biomimetics9030181.

An aerodynamic/hydrodynamic investigation of water cross-over is performed for a bionic unmanned aquatic-aerial amphibious vehicle (bionic UAAV). According to flying fish features and UAAV flight requirements of water cross-over, the bionic conceptual design of crossing over water is described and planned in multiple stages and modes of motion. A solution procedure for the numerical simulation method, based on a modified SST turbulence model and the VOF model, is expressed, and a verification study is presented using a typical case. Longitudinal-lateral numerical simulation analysis investigates the cruise performance underwater and in the air. The numerical simulation and principal experiment verification are conducted for crossing over water and water surface acceleration. The results indicate that the bionic UAAV has an excellent aerodynamic/hydrodynamic performance and variant configuration to adapt to water cross-over. The bionic UAAV has good water and air navigation stability, and the cruise flying lift-drag ratio is greater than 15 at a low Reynolds number. Its pitching moment has the phenomenon of a "water mound" forming and breaking at the water cross-over process. The present method and the bionic variant configuration provide a feasible water cross-over design and analysis strategy for bionic UAAVs.

RevDate: 2024-03-22

Zapata F, Angriman S, Ferran A, et al (2024)

Turbulence Unsteadiness Drives Extreme Clustering.

Physical review letters, 132(10):104005.

We show that the unsteadiness of turbulence has a drastic effect on turbulence parameters and in particle cluster formation. To this end we use direct numerical simulations of particle laden flows with a steady forcing that generates an unsteady large-scale flow. Particle clustering correlates with the instantaneous Taylor-based flow Reynolds number, and anticorrelates with its instantaneous turbulent energy dissipation constant. A dimensional argument for these correlations is presented. In natural flows, unsteadiness can result in extreme particle clustering, which is stronger than the clustering expected from averaged inertial turbulence effects.

RevDate: 2024-03-22

Bandak D, Mailybaev AA, Eyink GL, et al (2024)

Spontaneous Stochasticity Amplifies Even Thermal Noise to the Largest Scales of Turbulence in a Few Eddy Turnover Times.

Physical review letters, 132(10):104002.

How predictable are turbulent flows? Here, we use theoretical estimates and shell model simulations to argue that Eulerian spontaneous stochasticity, a manifestation of the nonuniqueness of the solutions to the Euler equation that is conjectured to occur in Navier-Stokes turbulence at high Reynolds numbers, leads to universal statistics at finite times, not just at infinite time as for standard chaos. These universal statistics are predictable, even though individual flow realizations are not. Any small-scale noise vanishing slowly enough with increasing Reynolds number can trigger spontaneous stochasticity, and here we show that thermal noise alone, in the absence of any larger disturbances, would suffice. If confirmed for Navier-Stokes turbulence, our findings would imply that intrinsic stochasticity of turbulent fluid motions at all scales can be triggered even by unavoidable molecular noise, with implications for modeling in engineering, climate, astrophysics, and cosmology.

RevDate: 2024-03-22

Marschik C, W Roland (2023)

Correction factors for the drag and pressure flows of power-law fluids through rectangular ducts.

Polymer engineering and science, 63(7):2043-2058.

There are many industrial examples of low Reynolds number non-Newtonian flows through rectangular ducts in polymer processing. They occur in all types of manufacturing processes in which raw polymeric materials are converted into products, ranging from screw extrusion to shaping operations in dies and molds. In addition, they are found in numerous rheological measurement systems. The literature provides various mathematical formulations for non-Newtonian flows through rectangular ducts, but-if not simplified further-their solution usually requires use of numerical techniques. Removing the need for these time-consuming techniques, we present novel analytical correction factors for the drag and pressure flows of power-law fluids in rectangular flow channels. We approximated numerical results for a fully developed flow under isothermal conditions using symbolic regression based on genetic programming. The correction factors can be applied to the analytical theory that describes the flow of power-law fluids between parallel plates to include effects of the side walls in the prediction of flow rate and viscous dissipation.

RevDate: 2024-03-21

Iqra T, Nadeem S, Ghazwani HA, et al (2024)

Instability analysis for MHD boundary layer flow of nanofluid over a rotating disk with anisotropic and isotropic roughness.

Heliyon, 10(6):e26779.

The study focuses on the instability of local linear convective flow in an incompressible boundary layer caused by a rough rotating disk in a steady MHD flow of viscous nanofluid. Miklavčič and Wang's (Miklavčič and Wang, 2004) [9] MW roughness model are utilized in the presence of MHD of Cu-water nanofluid with enforcement of axial flows. This study will investigate the instability characteristics with the MHD boundary layer flow of nanofluid over a rotating disk and incorporate the effects of axial flow with anisotropic and isotropic surface roughness. The resulting ordinary differential equations (ODEs) are obtained by using von Kàrmàn (Kármán, 1921) [3] similarity transformation on partial differential equations (PDEs). Subsequently, numerical solutions are obtained using the shooting method, specifically the Runge-Kutta technique. Steady-flow profiles for MHD and volume fractions of nanoparticles are analyzed by the partial-slip conditions with surface roughness. Convective instability for stationary modes and neutral stability curves are also obtained and investigated by the formulation of linear stability equations with the MHD of nanofluid. Linear convective growth rates are utilized to analyze the stability of magnetic fields and nanoparticles and to confirm the outcomes of this analysis. Stationary disturbances are also considered in the energy analysis. The investigation indicates the correlation between instability modes Type I and Type II, in the presence of MHD, nanoparticles, and the growth rates of the critical Reynolds number. An integral energy equation enhances comprehension of the fundamental physical mechanisms. The factors contributing to convective instability in the system are clarified using this approach.

RevDate: 2024-03-21

Rehman N, Mahmood R, Majeed AH, et al (2024)

Multigrid simulations of non-Newtonian fluid flow and heat transfer in a ventilated square cavity with mixed convection and baffles.

Scientific reports, 14(1):6694.

The impact of baffles on a convective heat transfer of a non-Newtonian fluid is experimentally studied within a square cavity. The non-Newtonian fluid is pumped into the cavity through the inlet and subsequently departs from the cavity via the outlet. Given the inherent non-linearity of the model, a numerical technique has been selected as the method for obtaining the outcomes. Primarily, the governing equations within the two-dimensional domain have been discretized using the finite element method. For approximating velocity and pressure, we have employed the reliable P 2 - P 1 finite element pair, while for temperature, we have opted for the quadratic basis. To enhance convergence speed and accuracy, we employ the powerful multigrid approach. This study investigates how key parameters like Richardson number (Ri), Reynolds number (Re), and baffle gap b g influence heat transfer within a cavity comprising a non-Newtonian fluid. The baffle gap (b g) has been systematically altered within the range of 0.2-0.6, and for this research, three distinct power law indices have been selected namely: 0.5, 1.0, and 1.5. The primary outcomes of the investigation are illustrated through velocity profiles, streamlines, and isotherm visualizations. Furthermore, the study includes the computation of the Nu avg (average Nusselt number) across a range of parameter values. As the Richardson number (Ri) increases, Nu avg also rises, indicating that an increase in Ri results in augmented average heat transfer. Making the space between the baffles wider makes heat flow more intense. This, in turn, heats up more fluid within the cavity.

RevDate: 2024-03-19

Cao Y, Liu X, Zhang L, et al (2024)

Water Impalement Resistance and Drag Reduction of the Superhydrophobic Surface with Hydrophilic Strips.

ACS applied materials & interfaces [Epub ahead of print].

Superhydrophobic surfaces (SHS) offer versatile applications by trapping an air layer within microstructures, while water jet impact can destabilize this air layer and deactivate the functions of the SHS. The current work presents for the first time that introducing parallel hydrophilic strips to SHS (SHS-s) can simultaneously improve both water impalement resistance and drag reduction (DR). Compared with SHS, SHS-s demonstrates a 125% increase in the enduring time against the impact of water jet with velocity of 11.9 m/s and a 97% improvement in DR at a Reynolds number of 1.4 × 10[4]. The key mechanism lies in the enhanced stability of the air layer due to air confinement by the adjacent three-phase contact lines. These lines not only impede air drainage through the surface microstructures during water jet impact, entrapping the air layer to resist water impalement, but also prevent air floating up due to buoyancy in Taylor-Couette flow, ensuring an even spread of the air layer all over the rotor, boosting DR. Moreover, failure modes of SHS under water jet impact are revealed to be related to air layer decay and surface structure destruction. This mass-producible structured surface holds the potential for widespread use in DR for hulls, autonomous underwater vehicles, and submarines.

RevDate: 2024-03-19

Mattusch AM, Schaldach G, Bartsch J, et al (2024)

Intrinsic dissolution rate modeling for the pharmacopoeia apparatus rotating disk compared to flow channel method.

Pharmaceutical development and technology [Epub ahead of print].

For a solid understanding of drug characteristics, in vitro measurement of the intrinsic dissolution rate is important. Hydrodynamics are often emphasized as the decisive parameter influencing the dissolution. In this study, experiments and computational fluid dynamic (CFD) simulations showed that the mixing behavior in the rotating disc apparatus causes an inhomogeneous flow field and a systematic error in the calculation of the intrinsic dissolution rate. This error is affected by both the experimental time and the velocity. Due to the rotational movement around the tablet center, commonly utilized in pharmacopeia methods, a broad variance is present with regard to the impact of fluid velocity on individual particles of the specimen surface. As this is significantly reduced in the case of uniform overflow, the flow channel is recommended for investigating the dissolution behavior. It is shown that rotating disc measurements can be compared with flow channel measurements after adjusting the measured data for the rotating disc based on a proposed, representative Reynolds number and a suggested apparatus-dependent correction factor. Additionally, modeling the apparatus-independent intrinsic dissolution rate for different temperatures in the rotating disc apparatus is possible using the adapted Levich's equation.

RevDate: 2024-03-17

Mwapinga A (2024)

Mathematical formulation and computation of the dynamics of blood flow, heat and mass transfer during MRI scanning.

Scientific reports, 14(1):6364.

Computational modeling of arterial blood flow, heat and mass transfer during MRI scanning is studied. The flow is assumed to be unsteady, in-compressible, and asymmetric. Mathematical formulation considers the presence of stenosis, joule heating viscous dissipation and chemical reaction. The explicit finite difference scheme is used to numerically solve the model equations. The MATLAB software was used to plot the graphical results. The study reveals that, during MRI scanning, both radial and axial velocities diminish with increase in the strength of magnetic fields. Besides, the study found that, Eckert number and Hartman number enhance the blood's temperature and the same, diminishes with increase in Prandtl and Reynolds numbers. Concentration profile is observed to decline with increase in chemical reaction parameter, Schmidt number and Reynolds number. Soret number on the other hand, is observed to positively influence the concentration.

RevDate: 2024-03-12

Labonte D, Bishop PJ, Dick TJM, et al (2024)

Dynamic similarity and the peculiar allometry of maximum running speed.

Nature communications, 15(1):2181.

Animal performance fundamentally influences behaviour, ecology, and evolution. It typically varies monotonously with size. A notable exception is maximum running speed; the fastest animals are of intermediate size. Here we show that this peculiar allometry results from the competition between two musculoskeletal constraints: the kinetic energy capacity, which dominates in small animals, and the work capacity, which reigns supreme in large animals. The ratio of both capacities defines the physiological similarity index Γ, a dimensionless number akin to the Reynolds number in fluid mechanics. The scaling of Γ indicates a transition from a dominance of muscle forces to a dominance of inertial forces as animals grow in size; its magnitude defines conditions of "dynamic similarity" that enable comparison and estimates of locomotor performance across extant and extinct animals; and the physical parameters that define it highlight opportunities for adaptations in musculoskeletal "design" that depart from the eternal null hypothesis of geometric similarity. The physiological similarity index challenges the Froude number as prevailing dynamic similarity condition, reveals that the differential growth of muscle and weight forces central to classic scaling theory is of secondary importance for the majority of terrestrial animals, and suggests avenues for comparative analyses of locomotor systems.

RevDate: 2024-03-11

Golmirzaee N, DH Wood (2024)

Some effects of domain size and boundary conditions on the accuracy of airfoil simulations.

Advances in aerodynamics, 6(1):7.

This paper investigates a specific case of one of the most popular fluid dynamic simulations, the incompressible flow around an airfoil (NACA 0012 here) at a high Reynolds number (6×106). OpenFOAM software was used to study the effect of domain size and four common choices of boundary conditions on airfoil lift, drag, surface friction, and pressure. We also examine the relation between boundary conditions and the velocity, pressure, and vorticity distributions throughout the domain. In addition to the common boundary conditions, we implement the "point vortex" boundary condition that was introduced many years ago but is now rarely used. We also applied the point vortex condition for the outlet pressure instead of using the traditional Neumann condition. With the airfoil generating significant lift at incidence angles of 5∘,10∘, and 14∘, we confirm a previous finding that the boundary conditions combine with domain size to produce an induced (pressure) drag. The change in the pressure drag with domain size is significant for the commonly-used boundary conditions but is much smaller for the point vortex alternative. The point vortex boundary condition increases the execution time, but this is more than offset by the reduction in domain size needed to achieve a specified accuracy in the lift and drag. This study also estimates the error in total drag and lift due to domain size and shows it can be almost eliminated using the point vortex boundary condition. We also used the impulse form of the momentum equations to study the relation between drag and lift and spurious vorticity, which is generated as a result of using non-exact boundary conditions. These equations reveal that the spurious vorticity throughout the domain is associated with cancelling circulation around the domain boundaries.

RevDate: 2024-03-11

Uddin MN, Hoque KE, MM Billah (2024)

The impact of multiple stenosis and aneurysms on arterial diseases: A cardiovascular study.

Heliyon, 10(5):e26889.

The comparative effect of serial stenosis and aneurysms arteries on blood flow is examined to identify atherosclerotic diseases. The finite element approach has been used to solve the continuity, momentum, and Oldroyd-B partial differential equations to analyze the blood flow. Newtonian and non-Newtonian both cases are taken for the viscoelastic response of blood. In this study, the impact of multiple stenotic and aneurysmal arteries on blood flow have been studied to determine the severity of atherosclerosis diseases through the analysis of blood behavior. The novel aspect of the study is its assessment of the severity of atherosclerotic disorders for the occurrence of serial stenosis and aneurysm simultaneously in the blood vessel wall in each of the four cases. The maximum abnormal arterial blood flow effect is found for the presence of serial stenoses compared to aneurysms which refers to the severity of atherosclerosis. At the hub of stenosis, the blood velocity magnitude and wall shear stress (WSS) are higher, whereas the arterial wall normal gradient values are lower. For all cases, the contrary results are observed at the hub of the aneurysmal model. The blood flow has been affected significantly by the increases in Reynolds number for both models. The influence of stenotic and aneurysmal arteries on blood flow is graphically illustrated in terms of the velocity profile, pressure distribution, and WSS. Medical experts may use this study's findings to assess the severity of cardiovascular diseases.

RevDate: 2024-03-08

Wang Z, Xu P, Ren Z, et al (2024)

Dynamics of cavitation bubbles in viscous liquids in a tube during a transient process.

Ultrasonics sonochemistry, 104:106840 pii:S1350-4177(24)00088-9 [Epub ahead of print].

We experimentally, numerically, and theoretically investigate the dynamics of cavitation bubbles in viscous liquids in a tube during a transient process. In experiments, cavitation bubbles are generated by a modified tube-arrest setup, and the bubble evolution is captured with high-speed imaging. Numerical simulations using OpenFOAM are employed to validate our quasi-one-dimensional theoretical model, which effectively characterizes the bubble dynamics. We find that cavitation onset is minimally affected by the liquid viscosity. However, once cavitation occurs, various aspects of bubble dynamics, such as the maximum bubble length, bubble lifetime, collapse time, and collapse speed, are closely related to the liquid viscosity. We further establish that normalized bubble dynamics are solely determined by the combination of the Reynolds number and the Euler number. Moreover, we also propose a new dimensionless number, Ca2, to predict the maximum bubble length, a critical factor in determining the occurrence of liquid column separation.

RevDate: 2024-03-06

Hu X, Chen W, Lin J, et al (2024)

The motion of micro-swimmers over a cavity in a micro-channel.

Soft matter [Epub ahead of print].

This article combines the lattice Boltzmann method (LBM) with the squirmer model to investigate the motion of micro-swimmers in a channel-cavity system. The study analyses various influential factors, including the value of the squirmer-type factor (β), the swimming Reynolds number (Rep), the size of the cavity, initial position and particle size on the movement of micro-swimmers within the channel-cavity system. We simultaneously studied three types of squirmer models, Puller (β > 0), Pusher (β < 0), and Neutral (β = 0) swimmers. The findings reveal that the motion of micro-swimmers is determined by the value of β and Rep, which can be classified into six distinct motion modes. For Puller and Pusher, when the β value is constant, an increase in Rep will lead to transition in the motion mode. Moreover, the appropriate depth of cavity within the channel-cavity system plays a crucial role in capturing and separating Neutral swimmers. This study, for the first time, explores the effect of complex channel-cavity systems on the behaviour of micro-swimmers and highlights their separation and capture ability. These findings offer novel insights for the design and enhancement of micro-channel structures in achieving efficient separation and capture of micro-swimmers.

RevDate: 2024-03-04

Wannapop R, Jearsiripongkul T, K Jiamjiroch (2024)

Adaptive urban drinking water supply model using the effect of node elevation and head loss formula: A case study.

Heliyon, 10(5):e26181.

Along with population growth and health improvement, water demand due to urbanization is increasing and creating a need to develop a strategy for handling water supply networks (WSNs). In the last decade, software modeling of WSNs has been developed to evaluate the state of networks in terms of pressure control, leakage analysis, and overall demand determination. In the case of very complex and extremely large networks, it is very difficult to manage the water supply. Metropolitan Waterworks Authority (MWA) in Thailand has to supply drinking water to the three densely populated cities; Bangkok, Nonthaburi, and Samut Prakan, that cover an area of 2944.05 km[2]. Hence, MWA has developed a main pipe model using EPANET software as a managing tool. This tool can offer a good solution for the water supply, but there is approximately a 14 percent error, mainly due to not having the elevation data of the pipe network. The current research is based on demand and pressure modeling analysis with utilizing two important parameters, node elevations, and head loss. The first trial model was an initial revision of the node elevation based on a road surface map. It was found that the model with elevation data could offer a better solution and was 3.95% more accurate than the existing model. The result was significantly improved, but another error, which may have been caused by using an inappropriate head loss model, was found. As the introduced model is based on the Hazen-William model, it cannot offer an accurate solution for all Reynolds number ranges. Even though Darcy-Weisbach is more complex to use, it could provide a better solution. The results indicate the Darcy-Weisbach model produces results that are 8.65% more accurate than the Hazen-William model.

RevDate: 2024-03-02

Pandey SK, A Prajapati (2024)

An analytical and comparative study of swallowing in a tumor-infected oesophagus: a mathematical model.

Journal of mathematical biology, 88(3):37.

This study discusses non-steady effects encountered in peristaltic flows in oesophagus. The purpose of this communication is to evolve a mechanism to diagnose tumor in an oesophagus mathematically. The tumor is modelled by generic bump function of certain height and width. The method of solution follows long wavelength and low-Reynolds number approximations for unsteady flow, while integrations have been performed numerically in order to plot graphs, which reveal various characteristics of the flow. The goal is to assess how pressure varies across the tumor's width. The spatial, as well as temporal, dependence of pressure has been studied in the laboratory frame of reference. The pressure distribution for tumor-infected oesophagus is compared with that of normal oesophagus. An intensified pressure is obtained in the presence of tumor. The interruption while swallowing through benign oesophageal tumor is confirmed by an abrupt pressure rise across the tumor's width. Tumor position also plays a significant role whether it is at contraction or relaxation of walls. Additionally, wall-shear-stress, volumetric flow rate and streamlines have also been described and compared with that without tumor growth. The expressions corresponding to all the physical quantities are computed numerically. Further, this model may also be implemented to the two-dimensional channel flow for an industrial application.

RevDate: 2024-03-01

Zidi K, Texier BD, Gauthier G, et al (2024)

Viscosimetric squeeze flow of suspensions.

The European physical journal. E, Soft matter, 47(3):17.

The rheology of particle suspensions has been extensively explored in the case of a simple shear flow, but less in other flow configurations which are also important in practice. Here we investigate the behavior of a suspension in a squeeze flow, which we revisit using local pressure measurements to deduce the effective viscosity. The flow is generated by approaching a moving disk to a fixed wall at constant velocity in the low Reynolds number limit. We measure the evolution of the pressure field at the wall and deduce the effective viscosity from the radial pressure drop. After validation of our device using a Newtonian fluid, we measure the effective viscosity of a suspension for different squeezing speeds and volume fractions of particles. We find results in agreement with the Maron-Pierce law, an empirical expression for the viscosity of suspensions that was established for simple shear flows. We prove that this method to determine viscosity remains valid in the limit of large gap width. This makes it possible to study the rheology of suspensions within this limit and therefore suspensions composed of large particles, in contrast to Couette flow cells which require small gaps.

RevDate: 2024-02-27

Elmhedy Y, Abd-Alla AM, Abo-Dahab SM, et al (2024)

Influence of inclined magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid model in an inclined channel.

Scientific reports, 14(1):4735.

The recent study is focused on discussion of heat transfer and magnetic field results of peristaltic flow of Rabinowitsch fluid model in an Inclined Channel. In this piece of research, peristalsis's fundamental problem with heat transfer in the presence of a magnetic field is checked. An incompressible Rabinowitsch fluid is present in an inclined channel, which is considered as the reference for this research. The solutions are devised with the assumptions of long wavelength and low Reynolds number approximations. The resulting equations are then solved exactly by implementing various command of MATHEMATICA subject to relevant boundary conditions. Results are discussed for various flow quantities like temperature, velocity, tangential stress, pressure gradient and rise, and friction force. Computational simulations are performed to determine the flow quantities. This investigation goes beyond mere calculations and examines particle motion to gain deeper insights into flow quantities. Furthermore, this investigates how magnetic field and heat transfer parameters influence these peristaltic flow phenomena. The outcomes of important parameters were plotted and scrutinized. There is amultitude of medical implementations derived from the current consideration, such as the depiction of the gastric juice motion in the small intestine when an endoscope is inserted through it.

RevDate: 2024-02-26

Chand K, Rosenberger H, B Sanderse (2024)

A pressure-free long-time stable reduced-order model for two-dimensional Rayleigh-Bénard convection.

Chaos (Woodbury, N.Y.), 34(2):.

The present work presents a stable proper orthogonal decomposition (POD)-Galerkin based reduced-order model (ROM) for two-dimensional Rayleigh-Bénard convection in a square geometry for three Rayleigh numbers: 104 (steady state), 3×105 (periodic), and 6×106 (chaotic). Stability is obtained through a particular (staggered-grid) full-order model (FOM) discretization that leads to a ROM that is pressure-free and has skew-symmetric (energy-conserving) convective terms. This yields long-time stable solutions without requiring stabilizing mechanisms, even outside the training data range. The ROM's stability is validated for the different test cases by investigating the Nusselt and Reynolds number time series and the mean and variance of the vertical temperature profile. In general, these quantities converge to the FOM when increasing the number of modes, and turn out to be a good measure of accuracy. However, for the chaotic case, convergence with increasing numbers of modes is relatively difficult and a high number of modes is required to resolve the low-energy structures that are important for the global dynamics.

RevDate: 2024-02-21

Chang R, Davydov A, Jaroenlak P, et al (2024)

Energetics of the mokicrosporidian polar tube invasion machinery.

eLife, 12: pii:86638.

Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3-4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s[-1]. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60-140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.

RevDate: 2024-02-20

Qiao S, Cai C, Pan C, et al (2024)

Study on the Performance of a Surface with Coupled Wettability Difference and Convex-Stripe Array for Improved Air Layer Stability.

Langmuir : the ACS journal of surfaces and colloids [Epub ahead of print].

The existence of an air layer reduces friction drag on superhydrophobic surfaces. Therefore, improving the air layer stability of superhydrophobic surfaces holds immense significance in reducing both energy consumption and environmental pollution caused by friction drag. Based on the properties of mathematical discretization and the contact angle hysteresis generated by the wettability difference, a surface coupled with a wettability difference treatment and a convex-stripe array is developed by laser engraving and fluorine modification, and its performance in improving the air layer stability is experimentally studied in a von Kármán swirling flow field. The results show that the destabilization of the air layer is mainly caused by the Kelvin-Helmholtz instability, which is triggered by the density difference between gas and liquid, as well as the tangential velocity difference between gas and liquid. When the air layer is relatively thin, tangential wave destabilization occurs, whereas for larger thicknesses, the destabilization mode is coupled wave destabilization. The maximum Reynolds number that keeps the air layer fully covering the surface of the rotating disk (with drag reduction performance) during the disk rotation process is defined as the critical Reynolds number (Rec), which is 1.62 × 10[5] for the uniform superhydrophobic surface and 3.24 × 10[5] for the superhydrophobic surface with a convex stripe on the outermost ring (SCSSP). Individual treatments of wettability difference and a convex-stripe array on the SCSSP further improve the air layer stability, but Rec remains at 3.24 × 10[5]. Finally, the coupling of the wettability difference treatment with a convex-stripe array significantly improves the air layer stability, resulting in an increase of Rec to 4.05 × 10[5], and the drag reduction rate stably maintained around 30%.

RevDate: 2024-02-20

Dunt T, Heck KS, Lyons K, et al (2024)

Wavelength-induced shedding frequency modulation of seal whisker inspired cylinders.

Bioinspiration & biomimetics [Epub ahead of print].

The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Undulation wavelength is systematically investigated in order to explore its effect on unsteady lift force and shedding frequency. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical nondimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of the these location-based modes produces a complex and spanwise dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction.

RevDate: 2024-02-17

Zhou H, EG Blackman (2024)

Helical dynamo growth and saturation at modest versus extreme magnetic Reynolds numbers.

Physical review. E, 109(1-2):015206.

Understanding magnetic field growth in astrophysical objects is a persistent challenge. In stars and galaxies, turbulent flows with net kinetic helicity are believed to be responsible for driving large-scale magnetic fields. However, numerical simulations have demonstrated that such helical dynamos in closed volumes saturate at lower magnetic field strengths when increasing the magnetic Reynolds number Rm. This would imply that helical large-scale dynamos cannot be efficient in astrophysical bodies without the help of helicity outflows such as stellar winds. But do these implications actually apply for very large Rm? Here we tackle the long-standing question of how much helical large-scale dynamo growth occurs independent of Rm in a closed volume. We analyze data from numerical simulations with a new method that tracks resistive versus nonresistive drivers of helical field growth. We identify a presaturation regime when the large-scale field grows at a rate independent of Rm, but to an Rm-dependent magnitude. The latter Rm dependence is due to a dominant resistive contribution, but whose fractional contribution to the large-scale magnetic energy decreases with increasing Rm. We argue that the resistive contribution would become negligible at large Rm and an Rm-independent dynamical contribution would dominate if the current helicity spectrum in the inertial range is steeper than k^{0}. As such helicity spectra are plausible, this renews optimism for the relevance of closed dynamos. Our work pinpoints how modest Rm simulations can cause misapprehension of the Rm→∞ behavior.

RevDate: 2024-02-16

Chen Y, Chong KL, Liu H, et al (2024)

Buoyancy-driven attraction of active droplets.

Journal of fluid mechanics, 980: pii:jfm.2024.18.

For dissolving active oil droplets in an ambient liquid, it is generally assumed that the Marangoni effect results in repulsive interactions, while the buoyancy effects caused by the density difference between the droplets, diffusing product and the ambient fluid are usually neglected. However, it has been observed in recent experiments that active droplets can form clusters due to buoyancy-driven convection (Krüger et al. Eur. Phys. J. E, vol. 39, 2016, pp. 1-9). In this study, we numerically analyze the buoyancy effect, in addition to the propulsion caused by Marangoni flow (with its strength characterized by Péclet number Pe). The buoyancy effects have their origin in (i) the density difference between the droplet and the ambient liquid, which is characterized by Galileo number Ga, and (ii) the density difference between the diffusing product (i.e. filled micelles) and the ambient liquid, which can be quantified by a solutal Rayleigh number Ra. We analyze how the attracting and repulsing behaviour of neighbouring droplets depends on the control parameters Pe, Ga, and Ra. We find that while the Marangoni effect leads to the well-known repulsion between the interacting droplets, the buoyancy effect of the reaction product leads to buoyancy-driven attraction. At sufficiently large Ra, even collisions between the droplets can take place. Our study on the effect of Ga further shows that with increasing Ga, the collision becomes delayed. Moreover, we derive that the attracting velocity of the droplets, which is characterized by a Reynolds number Red, is proportional to Ra[1/4]/(ℓ/R), where ℓ/R is the distance between the neighbouring droplets normalized by the droplet radius. Finally, we numerically obtain the repulsive velocity of the droplets, characterized by a Reynolds number Rerep, which is proportional to PeRa[-0.38]. The balance of attractive and repulsive effect leads to Pe ~ Ra[0.63], which agrees well with the transition curve between the regimes with and without collision.

RevDate: 2024-02-15

Xi Y, F Meng (2024)

Numerical study on flow and heat transfer characteristics of rectangular mini-channel of interpolated double S turbulators.

PloS one, 19(2):e0297678 pii:PONE-D-23-35780.

In this study, we propose a new type of small-channel plug-in, the double S turbulators, for passive heat transfer enhancement to improve the flow and heat transfer performance of the fluid in the channel. In the range of Reynolds number 254.51~2545.09, under constant wall temperature heating conditions, the effects of interpolated double S turbulators with different long axial radii (1mm, 1.5mm, 2mm) on the average Nusselt number, pressure drop, total thermal resistance and field synergy number in the rectangular mini-channel were studied. The simulation results show that compared with the smooth rectangular mini-channel, after interpolating double S turbulators with different long axial radii (1mm, 1.5mm, 2mm), the average Nusselt number increased by 81.74%~101.74%, 71.29%~94.06%, 67.16%~88.48%, the total thermal resistance decreased by 45.1%~50.72%, 41.72%~48.74%, 40.28%~47.2%, and the number of field synergies increased by 85.58%~111.65%, 74.1%~102.6%, 69.64%~96.12%. At present, there are few studies on the boundary condition of constant wall temperature, and this paper supplements the research on this aspect. At the same time, the heat transfer performance of the rectangular mini-channel of the interpolated double S turbulators is stronger than that of the ordinary smooth rectangular mini-channel, which not only provides a new idea for the manufacture of micro heat dissipation equipment, but also improves the heat transfer performance of micro heat dissipation equipment and improves its work efficiency. According to the simulation data, the prediction formula of average Nusselt number and pressure drop was established by nonlinear regression method, which can be used to predict the flow and heat transfer characteristics of the rectangular mini-channel of the interpolated double S turbulators.

RevDate: 2024-02-14

Gnanasekaran M, A Satheesh (2024)

Numerical analysis of turbulent flow characteristics with the influence of speed ratio in a double-sided cavity.

MethodsX, 12:102594.

The present study numerically investigates the two-dimensional steady incompressible turbulent flow characteristics in an enclosed cavity. The finite volume method (FVM) is used to discretize the governing equations, and k-ε turbulence models are adopted to predict the flow characteristics. The turbulent flow behavior is studied by varying the speed ratio (0.05 ≤ S ≤ 1.0), aspect ratio (0.5 ≤ K ≤ 2.0), and Reynolds number (1 × 10[4] ≤ Re ≤ 2 × 10[5]). The flow characteristics are analyzed using stream function (ψ), Reynolds stresses (u'v'), and turbulent quantities. Results show the Reynolds number and speed ratio significantly influence the formation of vortices over the selected range of operating parameters. With the speed ratio, the turbulent kinetic energy reduces considerably by increasing the Reynolds number and aspect ratio. Similarly, for S = 0.05 and K = 0.5, the turbulent kinetic energy and dissipation rate are decreased by 89.16% and 42.28%, respectively. When Re is increased from 1 × 10[4] to 2 × 10[5], the turbulent viscosity increases by 92.10%. By comparing the results, average turbulent quantities are decreased by increasing the flow parameters.•Turbulent flow behavior is investigated by using the FVM near-wall treatment approach.One of the unique parameters called speed ratio is emphasized.•Contours of turbulence kinetic energy, dissipation, and viscosity are examined.•The average intensity of turbulent quantities is decreased by increasing the speed ratio.

RevDate: 2024-02-09

Kim SJ, Kos Ž, Um E, et al (2024)

Symmetrically pulsating bubbles swim in an anisotropic fluid by nematodynamics.

Nature communications, 15(1):1220.

Swimming in low-Reynolds-number fluids requires the breaking of time-reversal symmetry and centrosymmetry. Microswimmers, often with asymmetric shapes, exhibit nonreciprocal motions or exploit nonequilibrium processes to propel. The role of the surrounding fluid has also attracted attention because viscoelastic, non-Newtonian, and anisotropic properties of fluids matter in propulsion efficiency and navigation. Here, we experimentally demonstrate that anisotropic fluids, nematic liquid crystals (NLC), can make a pulsating spherical bubble swim despite its centrosymmetric shape and time-symmetric motion. The NLC breaks the centrosymmetry by a deformed nematic director field with a topological defect accompanying the bubble. The nematodynamics renders the nonreciprocity in the pulsation-induced fluid flow. We also report speed enhancement by confinement and the propulsion of another symmetry-broken bubble dressed by a bent disclination. Our experiments and theory propose another possible mechanism of moving bodies in complex fluids by spatiotemporal symmetry breaking.

RevDate: 2024-02-09

Wang Z, Liu X, Guo Y, et al (2024)

Armored Superhydrophobic Surfaces with Excellent Drag Reduction in Complex Environmental Conditions.

Langmuir : the ACS journal of surfaces and colloids [Epub ahead of print].

Superhydrophobic surfaces (SHSs) have possibilities for achieving significantly reduced solid-liquid frictional drag in the marine sector due to their excellent water-repelling properties. Although the stability of SHSs plays a key role in drag reduction, little consideration was given to the effect of extreme environments on the ability of SHSs to achieve drag reduction underwater, particularly when subjected to acidic conditions. Here, we propose interconnected microstructures to protect superhydrophobic coatings with the aim of enhancing the stability of SHSs in extreme environments. The stability of armored SHSs (ASHSs) was demonstrated by the contact angle and bounce time of droplets on superhydrophobic surfaces treated by various methods, resulting in an ASHS surface with excellent stability under extreme environmental conditions. Additionally, inspired by microstructures protecting superhydrophobic nanomaterials from frictional wear, the armored superhydrophobic spheres (ASSPs) were designed to explain from theoretical and experimental perspectives why ASSPs can achieve sustainable drag reduction and demonstrate that the ASSPs can achieve drag reduction of over 90.4% at a Reynolds number of 6.25 × 10[4] by conducting water entry experiments on spheres treated in various solutions. These studies promote a fundamental understanding of what drives the application of SHSs under extreme environmental conditions and provide practical strategies to maximize frictional drag reduction.

RevDate: 2024-02-09

Wang K, Sprinkle B, Zuo M, et al (2024)

Centrifugal Flows Drive Reverse Rotation of Feynman's Sprinkler.

Physical review letters, 132(4):044003.

The issue of reversibility in hydromechanical sprinklers that auto-rotate while ejecting fluid from S-shaped tubes raises fundamental questions that remain unresolved. Here, we report on precision experiments that reveal robust and persistent reverse rotation under suction and a model that accounts for the observed motions. We implement an ultralow friction bearing in an apparatus that allows for free rotation under ejection and suction for a range of flow rates and arbitrarily long times. Flow measurements reveal a rocketlike mechanism shared by the reverse and forward modes that involves angular momentum flux, whose subtle manifestation in the reverse case stems from centrifugal effects for flows in curved conduits. These findings answer Feynman's long-standing question by providing quantitatively accurate explanations of both modes, and they suggest further inquiries into flux-based force generation and the roles of geometry and Reynolds number.

RevDate: 2024-02-07

Mishra NK, Sharma P, Sharma BK, et al (2024)

Electroosmotic MHD ternary hybrid Jeffery nanofluid flow through a ciliated vertical channel with gyrotactic microorganisms: Entropy generation optimization.

Heliyon, 10(3):e25102 pii:S2405-8440(24)01133-2.

In this study, the computational analysis of entropy generation optimization for synthetic cilia regulated ternary hybrid Jeffery nanofluid (Ag-Au-TiO2/PVA) flow through a peristaltic vertical channel with swimming motile Gyrotactic microorganisms is investigated. Understanding the intricate interaction of multiple physical phenomena in biomedical applications is essential for optimizing entropy generation and advancing microfluidic systems. The characteristics of nanofluid are explored for the electroosmotic MHD fluid flow in the presence of thermophoresis and Brownian motion, viscous dissipation, Ohmic heating and chemical reaction. Using the appropriate transformations, a set of ordinary differential equations are created from the governing partial differential equations. The resulting ODEs are numerically solved using the shooting technique using BVP5C in MATLAB after applying the long-wavelength and low Reynolds number approximation. The velocity, temperature, concentration, electroosmosis, and microorganism density profiles are analyzed graphically for different emerging parameters. Graphical investigation of engineering interest quantities like heat transfer rate, mass transfer rate, skin friction coefficient, and entropy generation optimization are also presented. It is observed that the rate of mass transfer increases for increasing thermophoretic parameter, while reverse effect is noted for Brownian motion parameter, Schmidt number, and chemical reaction number. The outcomes of present study can be pertinent in studying Cilia properties of respiratory tract, reproductive system, and brain ventricles.

RevDate: 2024-02-07

Selimefendigil F, Ghachem K, Albalawi H, et al (2024)

Magneto-convection of nanofluid flow over multiple rotating cylinders in a confined space with elastic walls and ventilated ports.

Heliyon, 10(3):e25101 pii:S2405-8440(24)01132-0.

In this study, convective heat transfer for nanofluid flow over multiple rotating cylinder in a confined space is analyzed under magnetic field while enclosure has one inlet and one outlet port. Three identical circular cylinder are used and the two walls of the cavity are considered to be elastic. The coupled fluid-structure interaction and magneto-convection problem is solved by finite element method. Impacts of rotational Reynolds number (Rew between -100 and 100), Hartmann number (Ha between 0 and 50), cylinder size (R between 0.001H and 0.11H) and Cauchy number (Ca between 10-8 and 10-3) on the flow and thermal performance features are explored. The flow field and recirculation inside the cavity are significantly affected by the activation of rotation and magnetic field. The vortices are suppressed by increasing the strength of magnetic field and thermal performance is improved. Thermal performance of 56.6% is achieved by activation of magnetic field at the highest strength with rotations of the circular cylinders. When rotations are active, heat transfer rate is reduced while up to 40% reduction is obtained without magnetic field. Cylinder size has the highest impact on the overall thermal performance improvement while up to 132% enhancements are achieved. The contribution of elastic walls on the thermal performance is slight while less than 5% improvements in the average heat transfer is obtained. An optimization study leads to 12.7% higher thermal performance improvements as compared to best case of parametric computational fluid dynamics simulation results while the optimum values of (Rew, Ha, R) is obtained as (-80.66, 50, 0.11H).

RevDate: 2024-02-06

Massaro D, Karp M, Jansson N, et al (2024)

Direct numerical simulation of the turbulent flow around a Flettner rotor.

Scientific reports, 14(1):3004.

The three-dimensional turbulent flow around a Flettner rotor, i.e. an engine-driven rotating cylinder in an atmospheric boundary layer, is studied via direct numerical simulations (DNS) for three different rotation speeds ([Formula: see text]). This technology offers a sustainable alternative mainly for marine propulsion, underscoring the critical importance of comprehending the characteristics of such flow. In this study, we evaluate the aerodynamic loads produced by the rotor of height h, with a specific focus on the changes in lift and drag force along the vertical axis of the cylinder. Correspondingly, we observe that vortex shedding is inhibited at the highest [Formula: see text] values investigated. However, in the case of intermediate [Formula: see text], vortices continue to be shed in the upper section of the cylinder ([Formula: see text]). As the cylinder begins to rotate, a large-scale motion becomes apparent on the high-pressure side, close to the bottom wall. We offer both a qualitative and quantitative description of this motion, outlining its impact on the wake deflection. This finding is significant as it influences the rotor wake to an extent of approximately one hundred diameters downstream. In practical applications, this phenomenon could influence the performance of subsequent boats and have an impact on the cylinder drag, affecting its fuel consumption. This fundamental study, which investigates a limited yet significant (for DNS) Reynolds number and explores various spinning ratios, provides valuable insights into the complex flow around a Flettner rotor. The simulations were performed using a modern GPU-based spectral element method, leveraging the power of modern supercomputers towards fundamental engineering problems.

RevDate: 2024-02-02

Mandujano F, E Vázquez-Luis (2024)

Chaotic vortex-induced rotation of an elliptical cylinder.

Chaos (Woodbury, N.Y.), 34(2):.

Non-linear oscillations of an elliptical cylinder, which can rotate about an axis that passes through its symmetry axle due to a torsional spring and hydrodynamic torque produced by the flow of a Newtonian fluid, were analyzed in terms of a single parameter that compares vortex shedding frequency with the torsional spring's natural frequency. The governing equations for the flow coupled with a rigid body with one degree of freedom were solved numerically using the lattice-Boltzmann method. The Reynolds number used was Re=200, which, in the absence of torsional spring, produces chaotic oscillations of the elliptical cylinder. When the torsional spring is included, we identified three branches separated by transition regions when stiffness of the restorative torque changes, as in the case of vortex-induced vibrations. However, in this case, several regions presenting chaotic dynamics were identified. Two regions with stable limit cycles were found when both torques synchronized and when stiffness of the torsional spring is big enough so that the ellipse's oscillation is small.

RevDate: 2024-02-01

Ashkani A, Jafari A, Ghomsheh MJ, et al (2024)

Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes.

Scientific reports, 14(1):2679.

Serpentine microchannels are known for their effective particle focusing through Dean flow-induced rotational effects, which are used in compact designs for size-dependent focusing in medical diagnostics. This study explores square serpentine microchannels, a geometry that has recently gained prominence in inertial microfluidics, and presents a modification of square wave microchannels for improved particle separation and focusing. The proposed modification incorporates an additional U-shaped unit to convert the square wave microchannel into a non-axisymmetric structure, which enhances the Dean flow and consequently increases the Dean drag force. Extensive experiments were conducted covering a wide range of Reynolds numbers and particle sizes (2.45 µm to 12 µm). The particle concentration capability and streak position dynamics of the two structures were compared in detail. The results indicate that the modified square-wave microchannel exhibits efficient particle separation in the lower part of the Dean vortex-dominated regime. With increasing Reynolds number, the particles are successively focused into two streaks in the lift force-dominated regime and into a single streak in the Dean vortex-dominated regime, in this modified square wave geometry. These streaks have a low standard deviation around a mean value. In the Dean vortex-dominated regime, the location of the particle stream is highly dependent on the particle size, which allows good particle separation. Particle focusing occurs at lower Reynolds numbers in both the lift-dominated and lift/Dean drag-dominated regions than in the square wave microchannel. The innovative serpentine channel is particularly useful for the Dean drag-dominated regime and introduces a unique asymmetry that affects the particle focusing dynamics. The proposed device offers significant advantages in terms of efficiency, parallelization, footprint, and throughput over existing geometries.

RevDate: 2024-02-01

Xia Y, S Lyu (2024)

Direct numerical simulation of contaminant removal in presence of underfloor air distribution system.

Heliyon, 10(2):e24331 pii:S2405-8440(24)00362-1.

Indoor contaminant removal over 0.5 ≤ FrT ≤ 5.0, 0.5 ≤ N ≤ 5.0, and 50 ≤ Re ≤ 500 was investigated numerically, wherein FrT refers to the Froude number, N refers to the buoyancy ratio, and Re refers to the Reynolds number. As demonstrated, the ventilation effectiveness increased with increasing contaminant source intensity and air supply intensity at a constant air temperature, indicating that increase the fresh air can effectively eliminate contaminants in this case. At high air supply temperatures, the heat retention time and contaminant transport was extremely short, and the fresh air induced by strong natural convection floating lift was rapidly discharged. Additioanlly, the air supply intensity had significant effects on contaminant removal. Quantification of the ventilation effectiveness under the combined effects of air supply intensity, air supply temperature and contaminant source intensity was determined based on the results of direct numerical simulations.

RevDate: 2024-02-01

Almutairi DK (2024)

Mathematical modelling and heat transfer observations for Jeffrey nanofluid with applications of extended Fourier theory and temperature dependent thermal conductivity.

Heliyon, 10(2):e24353 pii:S2405-8440(24)00384-0.

The suspension of non-Newtonian materials with nanoparticles is important to enhance the thermal phenomenon in various engineering and industrial processes. The versatile research in nanomaterials provide different applications in thermal processes, heat exchangers, thermoelectric devices, HVAC systems, energy processes etc. Following to such novel motivations in mind, current research endorsed the enhancement in heat transfer due to suspension of Jeffrey nanofluid comprising the variable thermal conductivity. The cause of flow is associated to two disks attaining fixed distance. The modified developed relations for Fourier's hypothesis are utilized to model the problem. The flow problem is modeled with appliance of fundamental novel laws. By applying suitable transformations, corresponding differential equations are renovated into dimensionless forms which are solved with applications of analytic homotopic algorithm. The behavior of temperature and velocity due to various parameters is discussed. The numerical calculations have been done for wall shear force and Nusselt number. The results show that the velocity profile boosted due to variation of stretching ratio constant. The enhancement in heat transfer is observed due to Reynolds number. Moreover, the increasing observations for wall shear force in upper and lower disk surfaces are obtained against larger material parameter. The simulated results may find applications in improving heat transfer phenomenon, manufacturing systems, recovery processes, cooling systems, chemical phenomenon, fuel cells etc.

RevDate: 2024-02-01

Gande VV, Podupu PKR, Berry B, et al (2024)

Engineering advancements in microfluidic systems for enhanced mixing at low Reynolds numbers.

Biomicrofluidics, 18(1):011502 pii:5.0178939.

Mixing within micro- and millichannels is a pivotal element across various applications, ranging from chemical synthesis to biomedical diagnostics and environmental monitoring. The inherent low Reynolds number flow in these channels often results in a parabolic velocity profile, leading to a broad residence time distribution. Achieving efficient mixing at such small scales presents unique challenges and opportunities. This review encompasses various techniques and strategies to evaluate and enhance mixing efficiency in these confined environments. It explores the significance of mixing in micro- and millichannels, highlighting its relevance for enhanced reaction kinetics, homogeneity in mixed fluids, and analytical accuracy. We discuss various mixing methodologies that have been employed to get a narrower residence time distribution. The role of channel geometry, flow conditions, and mixing mechanisms in influencing the mixing performance are also discussed. Various emerging technologies and advancements in microfluidic devices and tools specifically designed to enhance mixing efficiency are highlighted. We emphasize the potential applications of micro- and millichannels in fields of nanoparticle synthesis, which can be utilized for biological applications. Additionally, the prospects of machine learning and artificial intelligence are offered toward incorporating better mixing to achieve precise control over nanoparticle synthesis, ultimately enhancing the potential for applications in these miniature fluidic systems.

RevDate: 2024-01-31

Shi Q, Wu J, Chen H, et al (2024)

Inertial migration of polymer micelles in a square microchannel.

Soft matter [Epub ahead of print].

Using a hybrid simulation approach that combines a lattice-Boltzmann method for fluid flow and a molecular dynamics model for polymers, we investigate the inertial migration of star-like and crew-cut polymer micelles in a square microchannel. It is found that they exhibit two types of equilibrium positions, which shift further away from the center of the microchannel when the Reynolds number (Re) increases, as can be observed for soft particles. What differs from the behaviors of soft particles is that here, the blockage ratio is no longer the decisive factor. When the sizes are the same, the star-like micelles are always relatively closer to the microchannel wall as they gradually transition from spherical to disc-like with the increase of Re. In comparison, the crew-cut micelles are only transformed into an ellipsoid. Conversely, when the hydrophobic core sizes are the same, the equilibrium position of the star-like micelles becomes closer to that of the crew-cut micelles. Our results demonstrate that for polymer micelles with a core-shell structure, the equilibrium position is no longer solely determined by their overall dimensions but depends on the core and shell's specific dimensions, especially the hydrophobic core size. This finding opens up a new approach for achieving the separation of micelles in inertial migration.

RevDate: 2024-01-29

Maar K, Shavit U, Andersen A, et al (2024)

The fluid dynamics of barnacle feeding.

The Journal of experimental biology pii:342635 [Epub ahead of print].

Sessile barnacles feed by sweeping their basket-like cirral fan through the water, intercepting suspended prey. A primary component of the diet of adult barnacles is copepods that are sensitive to fluid disturbances and capable of escaping. How do barnacles manage to capture copepods despite the fluid disturbances they generate? We examined this question by describing the feeding current architecture of 1 cm sized Balanus crenatus using particle image velocimetry, and by studying the trajectories of captured copepods and the escapes of evading copepods. We find that barnacles produce a feeding current that arrives both from behind and the sides of the barnacle. The flow from the sides represents quiescent corridors of low fluid deformation and uninterrupted by the beating cirral fan. Potential prey arriving from behind are likely to encounter the cirral fan and, hence, capture here is highly unlikely. Accordingly, most captured copepods arrived through the quiet corridors, while most copepods arriving from behind managed to escape. Thus, it is the unique feeding flow architecture that allows feeding on evasive prey. We used the Landau-Squire jet as a simple model of the feeding current. For the Reynolds number of our experiments, the model reproduces the main features of the feeding current, including the lateral feeding corridors. Furthermore, the model suggests that smaller barnacle specimens, operating at lower Reynolds numbers, will produce a fore-and-aft symmetric feeding current without the lateral corridors. This suggests an ontogenetic diet shift from non-evasive prey to inclusion of evasive prey as the barnacle grows.

RevDate: 2024-01-29

Abbas N, Mustafa Z, Abodayeh K, et al (2023)

Darcy resistant of Soret and Dufour impact of radiative induced magnetic field sutterby fluid flow over stretching cylinder.

Heliyon, 9(12):e22503 pii:S2405-8440(23)09711-6.

The incompressible two-dimensional steady flow of Sutterby fluid over a stretching cylinder is taken into account. The magnetic Reynolds number is not deliberated low in the present analysis. Radiation and variable thermal conductivity are considered to debate the impact on the cylindrical surface. The Dufour and Soret impacts are considered on the cylinder. The mathematical model is settled by employing boundary layer approximations in the form of differential equations. The system of differential equations becomes dimensionless using suitable transformations. The dimensionless nonlinear differential equations are solved through a numerical scheme(bvp4c technique). The flow parameters of physical effects on the velocity, temperature, heat transfer rate, and friction between surface and liquid are presented in tabular as well as graphical form. The velocity function declined by improving the values of the Sponginess parameter. The fluid temperature is reduced by increment in curvature parameter.

RevDate: 2024-01-26

Chang L, Zhao G, Buren M, et al (2023)

Alternating Current Electroosmotic Flow of Maxwell Fluid in a Parallel Plate Microchannel with Sinusoidal Roughness.

Micromachines, 15(1): pii:mi15010004.

The EOF of a viscoelastic Maxwell fluid driven by an alternating pressure gradient and electric field in a parallel plate microchannel with sinusoidal roughness has been investigated within the Debye-Hückel approximation based on boundary perturbation expansion and separation of variables. Perturbation solutions were obtained for the potential distribution, the velocity and the mean velocity, and the relation between the mean velocity and the roughness. There are significant differences in the velocity amplitudes of the Newtonian and Maxwell fluids. It is shown here that the velocity distribution of the viscoelastic fluid is significantly affected by the roughness of the walls, which leads to the appearance of fluctuations in the fluid. Also, the velocity is strongly dependent on the phase difference θ of the roughness of the upper and lower plates. As the oscillation Reynolds number ReΩ increases, the velocity profile and the average velocity um(t) of AC EOF oscillate rapidly but the velocity amplitude decreases. The Deborah number De plays a similar role to ReΩ, which makes the AC EOF velocity profile more likely to oscillate. Meanwhile, phase lag χ (representing the phase difference between the electric field and the mean velocity) decreases when G and θ are increased. However, for larger λ (e.g., λ > 3), it almost has no phase lag χ.

RevDate: 2024-01-24

Salman M, Liu J, Chauhan R, et al (2024)

A MATLAB simulation-based analytical study of energy, exergy, and cost benefits in jet-impinged protrusion-roughened double pass solar air collector.

Environmental science and pollution research international [Epub ahead of print].

This study analyzes the performance and cost-effectiveness of a protrusion-roughened jet-impinged double-pass solar air collector (PRJDPSAC) within a Reynolds number (Re) range of 2500 to 22,500. Examining jet slot parameters, i.e., the jet height ratio (Hjp/Dhd = 0.11-0.44), stream-wise pitch ratio (Xjp/Dhd = 0.44-1.32), and span-wise pitch ratio (Yjp/Dhd = 0.44-1.32), the model demonstrates enhanced energy conversion, minimizes losses, improves efficiency, and brings positive economic impact, making it a promising solution for diverse applications including drying processes, livestock facilities, remote accommodations, and HVAC system pre-heating. The examination incorporates advanced MATLAB simulations to assess energy-exergy performance and cost viability. At lower Re values, both energy ([Formula: see text]) and exergy ([Formula: see text]) efficiencies increase uniformly; however, stabilization and decline occur at higher Re values. The maximum [Formula: see text] for the PRJDPSAC is 4.38% under a temperature rise parameter of 60 × 10[-3] Km[2]/W for obtaining optimum values of Xjp/Dhd = 1.32, Hjp/Dhd = 0.22, and Yjp/Dhd = 1.32, which is 31% higher than that of the smooth double-pass solar air collector (DPSAC). Economic benefits are significant for PRJDPSAC within mair (0.01-0.07 kg/s), but above 0.07 kg/s, the DPSAC becomes more cost-effective. Integrating simulation and experimental data, the study highlights MATLAB's effectiveness for solar energy system analysis and optimization, reinforcing the practicality of the proposed collector design.

RevDate: 2024-01-24

Wu Y, Wang F, Zheng S, et al (2024)

Evolution dynamics of thin liquid structures investigated using a phase-field model.

Soft matter [Epub ahead of print].

Liquid structures of thin-films and torus droplets are omnipresent in daily lives. The morphological evolution of liquid structures suspending in another immiscible fluid and sitting on a solid substrate is investigated by using three-dimensional (3D) phase-field (PF) simulations. Here, we address the evolution dynamics by scrutinizing the interplay of surface energy, kinetic energy, and viscous dissipation, which is characterized by Reynolds number Re and Weber number We. We observe special droplet breakup phenomena by varying Re and We. In addition, we gain the essential physical insights into controlling the droplet formation resulting from the morphological evolution of the liquid structures by characterizing the top and side profiles under different circumstances. We find that the shape evolution of the liquid structures is intimately related to the initial shape, Re, We as well as the intrinsic wettability of the substrate. Furthermore, it is revealed that the evolution dynamics are determined by the competition between the coalescence phenomenology and the hydrodynamic instability of the liquid structures. For the coalescence phenomenology, the liquid structure merges onto itself, while the hydrodynamic instability leads to the breakup of the liquid structure. Last but not least, we investigate the influence of wall relaxation on the breakup outcome of torus droplets on substrates with different contact angles. We shed light on how the key parameters including the initial shape, Re, We, wettability, and wall relaxation influence the droplet dynamics and droplet formation. These findings are anticipated to contribute insights into droplet-based systems, potentially impacting areas like ink-jet printing, drug delivery systems, and microfluidic devices, where the interplay of surface energy, kinetic energy, and viscous dissipation plays a crucial role.

RevDate: 2024-01-24

Jeon H, Lee SH, Shin J, et al (2024)

Elasto-inertial microfluidic separation of microspheres with submicron resolution at high-throughput.

Microsystems & nanoengineering, 10:15.

Elasto-inertial microfluidic separation offers many advantages including high throughput and separation resolution. Even though the separation efficiency highly depends on precise control of the flow conditions, no concrete guidelines have been reported yet in elasto-inertial microfluidics. Here, we propose a dimensionless analysis for precise estimation of the microsphere behaviors across the interface of Newtonian and viscoelastic fluids. Reynolds number, modified Weissenberg number, and modified elastic number are used to investigate the balance between inertial and elastic lift forces. Based on the findings, we introduce a new dimensionless number defined as the width of the Newtonian fluid stream divided by microsphere diameter. The proposed dimensionless analysis allows us to predict whether the microspheres migrate across the co-flow interface. The theoretical estimation is found to be in good agreement with the experimental results using 2.1- and 3.2-μm-diameter polystyrene microspheres in a co-flow of water and polyethylene oxide solution. Based on the theoretical estimation, we also realize submicron separation of the microspheres with 2.1 and 2.5 μm in diameter at high throughput, high purity (>95%), and high recovery rate (>97%). The applicability of the proposed method was validated by separation of platelets from similar-sized Escherichia coli (E.coli).

RevDate: 2024-01-22

Macías MM, García-Ortiz JH, Oliveira TF, et al (2024)

Numerical Investigation of Dimensionless Parameters in Carangiform Fish Swimming Hydrodynamics.

Biomimetics (Basel, Switzerland), 9(1): pii:biomimetics9010045.

Research into how fish and other aquatic organisms propel themselves offers valuable natural references for enhancing technology related to underwater devices like vehicles, propellers, and biomimetic robotics. Additionally, such research provides insights into fish evolution and ecological dynamics. This work carried out a numerical investigation of the most relevant dimensionless parameters in a fish swimming environment (Reynolds Re, Strouhal St, and Slip numbers) to provide valuable knowledge in terms of biomechanics behavior. Thus, a three-dimensional numerical study of the fish-like lambari, a BCF swimmer with carangiform kinematics, was conducted using the URANS approach with the k-ω-SST transition turbulence closure model in the OpenFOAM software. In this study, we initially reported the equilibrium Strouhal number, which is represented by St∗, and its dependence on the Reynolds number, denoted as Re. This was performed following a power-law relationship of St∝Re(-α). We also conducted a comprehensive analysis of the hydrodynamic forces and the effect of body undulation in fish on the production of swimming drag and thrust. Additionally, we computed propulsive and quasi-propulsive efficiencies, as well as examined the influence of the Reynolds number and Slip number on fish performance. Finally, we performed a vortex dynamics analysis, in which different wake configurations were revealed under variations of the dimensionless parameters St, Re, and Slip. Furthermore, we explored the relationship between the generation of a leading-edge vortex via the caudal fin and the peak thrust production within the motion cycle.

RevDate: 2024-01-20

Xiong J, Liu X, Feng H, et al (2023)

Inertial migration of spherical and oblate particles in a triangular microchannel.

Physical review. E, 108(6-2):065105.

The. inertial migration of both spherical and oblate particles within an equilateral triangular channel is studied numerically. Our study primarily focuses on the effects of fluid inertia, quantified by the Reynolds number (Re) and particle size (β). Our observations reveal two distinct equilibrium positions: the corner equilibrium position (CEP) is situated along the angle bisector near the corner, while the face equilibrium position (FEP) is located on a segment of the line perpendicular from the triangle's center to one of its sides. Spherical particles with varying initial positions predominantly reach the FEP. For oblate particles initially positioned along the angle bisector with a specific orientation, meaning the particle's evolution axis is inside the plane bisecting the angle, they will migrate along the angle bisector to reach the CEP while rotating in the tumbling mode. Conversely, for particles with different initial orientations and positions, they will employ the log-rolling mode to reach the FEP. Notably, we identify a dual-stage particle migration process to the FEP, with trajectories converging to an equilibrium manifold, which bears a resemblance to the cross section of the channel. To further illustrate the transition between FEP and CEP under general initial conditions, except for those along the angle bisector, we construct a phase diagram in the (Re, β) parameter space. This transition is often triggered by the size of larger particles (as the FEP cannot accommodate them) or the influence of inertia for smaller particles. For the FEP, especially for medium- or small-size particles, we notice an initial outward movement of the FEP from the center of the cross section as Re increases, followed by a return towards the center. This behavior results from the interplay of three forces acting on the particle. This research holds potential implications for the design of microfluidic devices, offering insights into the behavior of particles within equilateral triangular channels.

RevDate: 2024-01-20

Wang S, Wang J, J Deng (2023)

Effect of layer thickness for the bounce of a particle settling through a density transition layer.

Physical review. E, 108(6-2):065108.

We study numerically a spherical particle settling through a density transition layer at moderate Reynolds numbers Re_{u}=69∼259 for the upper fluid. We investigate how the transition layer thickness affects the particle's bouncing behavior as it crosses the interface. The previous intuitive understanding was that the bounce occurs when the relative thickness of the transition layer, L/D, which is characterized by the ratio of the layer thickness L to the particle diameter D, is small. Indeed, we report no bounce phenomenon for very thick interfaces, i.e., L/D>10 in the current parametric range. However, we argue that the bounce can also be inhibited when L/D is too small. Upon a fixed upper layer Reynolds number Re_{u}=207 with varying L/D, we examine the flow evolution of these cases. We propose that this inhibition is attributed to two mechanisms. First, as the interface thickness decreases, the detachment of the attached lighter fluid from the upper layer occurs more rapidly, resulting in a faster decrease in buoyancy. Second, in the case of a very thin interface (L/D=0.5-3.0), the residual light fluid accumulates and undergoes a secondary detachment, separating from the particle at an angle relative to the central axis. This secondary detachment reduces the drag force and effectively prevents the particle from experiencing a rebound motion.

RevDate: 2024-01-18

Liu T, Deng H, He F, et al (2024)

Synthesizing high performance LNMO cathode materials with porous structure by manipulating Reynolds number in a microreactor.

Nanotechnology [Epub ahead of print].

The demand for Lithium-ion batteries (LIBs) has significantly grown in the last decade due to their extensive use electric vehicles (EVs). To further advance the commercialization of LIBs for various applications, there is a pressing need to develop electrode materials with enhanced performance. The porous microsphere morphology LiNixMn2-xO4 (LNMO) is considered to be an effective material with both high energy density and excellent rate performance. Nevertheless, LNMO synthesis technology still has problem such as long reaction time, high energy consumption and environmental pollution. Herein, LNMO microsphere was successfully synthesized with short precursors reaction time (18 seconds) at 40oC without using chelating agent by microreaction technology combined solid-state lithiation. The optimized LNMO cathode shows microsphere (~8μm) morphology stacked by nano primary particles, with abundant mesoporous and fully exposed low-energy plane. The electrochemical analysis indicates that the optimized LNMO cathode demonstrates 97.33% capacity retention even after 200 cycles at 1C. Additionally, the material shows a highly satisfactory discharge capacity of 92.3 mAh·g-1 at 10C. Overall, microreaction technology is anticipated to offer a novel approach in the synthesis of LNMO cathode materials with excellent performance.

RevDate: 2024-01-17

Ashraf H, Siddique I, Siddiqa A, et al (2024)

Analysis of two layered peristaltic-ciliary transport of Jeffrey fluid and in vitro preimplantation embryo development.

Scientific reports, 14(1):1469.

The analysis of peristaltic-ciliary transport in the human female fallopian tube, specifically in relation to the growing embryo, is a matter of considerable physiological importance. This paper proposes a biomechanical model that incorporates a finite permeable tube consisting of two layers, where the Jeffrey fluid model characterizes the viscoelastic properties of the growing embryo and continuously secreting fluid. Jeffrey fluid entering with some negative pressure gradient forms the core fluid layer while continuously secreting Jeffrey fluid forms the peripheral fluid layer. The resulting partial differential equations are solved for closed-form solutions after employing the assumption of long wavelength. The analysis delineated that increasing the constant secretion velocity, Darcy number, and Reynolds number leads to a decrease in the appropriate residue time of the core fluid layer and a reduction in the size of the secreting fluid bolus in the peripheral fluid layer. Eventually, the boluses completely disappear when the constant secretion velocity exceeds 3.0 Progesterone ([Formula: see text]) and estradiol ([Formula: see text]) directly regulate the transportation of the growing embryo, while luteinizing hormone (LH) and follicle-stimulating hormone (FSH), prolactin, anti-mullerian hormone (AMH), and thyroid-stimulating hormone (TSH) have an indirect effects. Based on the number and size of blastomeres, the percentage of fragmentation, and the presence of multinucleated blastomeres two groups were formed in an in vitro experiment. Out of 50 patients, 26 (76.5%) were pregnant in a group of the good quality embryos, and only 8 (23.5%) were in a group of the bad quality embryos. The transport of growing embryo in the human fallopian tube and preimplantation development of human embryos in in vitro are constraint by baseline hormones FSH, LH, prolactin, [Formula: see text], AMH, and TSH.

RevDate: 2024-01-17

Akbar NS, Rafiq M, Muhammad T, et al (2024)

Microbic flow analysis of nano fluid with chemical reaction in microchannel with flexural walls under the effects of thermophoretic diffusion.

Scientific reports, 14(1):1474.

The current investigation examines the peristaltic flow, in curved conduit, having complaint boundaries for nanofluid. The effects of curvature are taken into account when developing the governing equations for the nano fluid model for curved channels. Nonlinear & coupled differential equations are then simplified by incorporating the long wavelength assumption along with smaller Reynolds number. The homotopy perturbation approach is used to analytically solve the reduced coupled differential equations. The entropy generation can be estimated through examining the contributions of heat and fluid viscosities. The results of velocity, temperature, concentration, entropy number, and stream functions have been plotted graphically in order to discuss the physical attributes of the essential quantities. Increase in fluid velocity within the curved conduit is noticed for higher values of thermophoresis parameter and Brownian motion parameter further entropy generation number is boosted by increasing values of Grashof number.

RevDate: 2024-01-12

Allehiany FM, Riaz A, Shoukat S, et al (2023)

Three dimensional study for entropy optimization in nanofluid flow through a compliant curved duct: A drug delivery and therapy application.

Heliyon, 9(12):e22255.

This research explores the three-dimensional characteristics of nanofluid dynamics within curved ducts, in contrast to earlier studies that mainly focus on two-dimensional flow. By using this ground-breaking method, we can capture a more accurate depiction of fluid behavior that complies with the intricate duct design. In this study, we investigate the three dimensional flow and entropic analysis of peristaltic nanofluid flows in a flexible curved duct, comparing the effects of silver and copper nanoparticles. To obtain accurate results, we assume physical constraints such as long wavelength and low Reynolds number and used a perturbation technique through NDSolve commands for finding exact solutions of the obtained differential equations. A comprehensive error analysis is provided through residual error table and figures to estimate a suitable range of the physical factors. Our findings indicate that the velocity of the nanofluid is directly proportional to the elasticity of the walls, while the mass per unit volume inversely affects velocity. We show that reducing the aspect ratio of the duct rectangular section can decrease entropy generation by raising magnitudes of damping force exerted by to the flexible walls of the enclosure. Additionally, using a larger height of the channel than the breadth can reduce stream boluses. The practical implications of this study extend beyond turbines and endoscopy to biomedical processes such as drug delivery and microfluidic systems.

RevDate: 2024-01-11

Uttieri M, L Svetlichny (2024)

Escape performance in the cyclopoid copepod Oithona davisae.

Scientific reports, 14(1):1078.

Escaping a predator is one of the keys to success for any living creature. The performance of adults (males, females, and ovigerous females) of the cyclopoid copepod Oithona davisae exposed to an electrical stimulus is analysed as a function of temperature by measuring characteristic parameters associated with the escape movement (distance covered, duration of the appendage movement, mean and maximum escape speeds, Reynolds number). In addition, as a proxy for the efficiency of the motion, the Strouhal number was calculated. The escape performance showed temperature-dependent relationships within each adult state, as well as differences between sexes; additionally, changes owing to the presence of the egg sac were recorded in females. In a broader perspective, the results collected reveal the occurrence of different behavioural adaptations in males and females, adding to the comprehension of the mechanisms by which O. davisae interacts with its environment and shedding new light on the in situ population dynamics of this species.

RevDate: 2024-01-10

Banerjee A, Pavithran I, RI Sujith (2024)

Early warnings of tipping in a non-autonomous turbulent reactive flow system: Efficacy, reliability, and warning times.

Chaos (Woodbury, N.Y.), 34(1):.

Real-world complex systems such as the earth's climate, ecosystems, stock markets, and combustion engines are prone to dynamical transitions from one state to another, with catastrophic consequences. State variables of such systems often exhibit aperiodic fluctuations, either chaotic or stochastic in nature. Often, the parameters describing a system vary with time, showing time dependency. Constrained by these effects, it becomes difficult to be warned of an impending critical transition, as such effects contaminate the precursory signals of the transition. Therefore, a need for efficient and reliable early-warning signals (EWSs) in such complex systems is in pressing demand. Motivated by this fact, in the present work, we analyze various EWSs in the context of a non-autonomous turbulent thermoacoustic system. In particular, we investigate the efficacy of different EWS in forecasting the onset of thermoacoustic instability (TAI) and their reliability with respect to the rate of change of the control parameter. This is the first experimental study of tipping points in a non-autonomous turbulent thermoacoustic system. We consider the Reynolds number (Re) as the control parameter, which is varied linearly with time at finite rates. The considered EWSs are derived from critical slowing down, spectral properties, and fractal characteristics of the system variables. The state of TAI is associated with large amplitude acoustic pressure oscillations that could lead thermoacoustic systems to break down. We consider acoustic pressure fluctuations as a potential system variable to perform the analysis. Our analysis shows that irrespective of the rate of variation of the control parameter, the Hurst exponent and variance of autocorrelation coefficients warn of an impending transition well in advance and are more reliable than other EWS measures. Additionally, we show the variation in the warning time to an impending TAI with rates of change of the control parameter. We also investigate the variation in amplitudes of the most significant modes of acoustic pressure oscillations with the Hurst exponent. Such variations lead to scaling laws that could be significant in prediction and devising control actions to mitigate TAI.

RevDate: 2024-01-09

Faisal S, Barbour M, Seibel EJ, et al (2024)

Hemodynamics of Saline Flushing in Endoscopic Imaging of Partially Occluded Coronary Arteries.

Cardiovascular engineering and technology [Epub ahead of print].

PURPOSE: Intravascular endoscopy can aid in the diagnosis of coronary atherosclerosis by providing direct color images of coronary plaques. The procedure requires a blood-free optical path between the catheter and plaque, and achieving clearance safely remains an engineering challenge. In this study, we investigate the hemodynamics of saline flushing in partially occluded coronary arteries to advance the development of intravascular forward-imaging catheters that do not require balloon occlusion.

METHODS: In-vitro experiments and CFD simulations are used to quantify the influence of plaque size, catheter stand-off distance, saline injection flowrate, and injection orientation on the time required to achieve blood clearance.

RESULTS: Experiments and simulation of saline injection from a dual-lumen catheter demonstrated that flushing times increase both as injection flow rate (Reynolds number) decreases and as the catheter moves distally away from the plaque. CFD simulations demonstrated that successful flushing was achieved regardless of lumen axial orientation in a 95% occluded artery. Flushing time was also found to increase as plaque size decreases for a set injection flowrate, and a lower limit for injection flowrate was found to exist for each plaques size, below which clearance was not achieved. For the three occlusion sizes investigated (90, 95, 97% by area), successful occlusion was achieved in less than 1.2 s. Investigation of the pressure fields developed during injection, highlight that rapid clearance can be achieved while keeping the arterial overpressure to < 1 mmHg.

CONCLUSIONS: A dual lumen saline injection catheter was shown to produce clearance safely and effectively in models of partially occluded coronary arteries. Clearance was achieved across a range of engineering and clinical parameters without the use of a balloon occlusion, providing development guideposts for a fluid injection system in forward-imaging coronary endoscopes.

RevDate: 2024-01-05

Inubushi M, Saiki Y, Kobayashi MU, et al (2023)

Characterizing Small-Scale Dynamics of Navier-Stokes Turbulence with Transverse Lyapunov Exponents: A Data Assimilation Approach.

Physical review letters, 131(25):254001.

Data assimilation (DA) of turbulence, which involves reconstructing small-scale turbulent structures based on observational data from large-scale ones, is crucial not only for practical forecasting but also for gaining a deeper understanding of turbulent dynamics. We propose a theoretical framework for DA of turbulence based on the transverse Lyapunov exponents (TLEs) in synchronization theory. Through stability analysis using TLEs, we identify a critical length scale as a key condition for DA; turbulent dynamics smaller than this scale are synchronized with larger-scale turbulent dynamics. Furthermore, considering recent findings for the maximal Lyapunov exponent and its relation with the TLEs, we clarify the Reynolds number dependence of the critical length scale.

RevDate: 2024-01-04

Akbar NS, Rafiq M, Muhammad T, et al (2024)

Electro osmotically interactive biological study of thermally stratified micropolar nanofluid flow for Copper and Silver nanoparticles in a microchannel.

Scientific reports, 14(1):518.

A novel mathematical analysis is established that summits the key features of peristaltic propulsion for a non-Newtonian micropolar fluid with the electroosmosis and heat transfer enhancement using nanoparticles. In such physiological models, the channel have a symmetric configuration in accordance with the biological problem. Being mindful of this fact, we have disclosed an integrated analysis on symmetric channel that incorporates major physiological applications. The creeping flow inference is reviewed to model this realistic problem. Flow equations are model using cartesian coordinates and simplified using long wave length and low Reynolds number approximation. Nonlinear linear couple equations are solving numerically. We have studied the variation in the properties of nanofluid developed by two different types of nanoparticles (i.e. Cu and Ag nanoparticles). Graphical illustrations are unveiled to highlight the physical aspects of nanoparticles and flow parameters. The exploration demonstrates that the micro-rotation of the nano-liquid elements enhances the thermal conductivity of the fluid movement. The effect of micropolar fluid parameters on mean flow and pressure variables is also presented.

RevDate: 2024-01-04

Chinnasamy P, Sivajothi R, Sathish S, et al (2024)

Peristaltic transport of Sutterby nanofluid flow in an inclined tapered channel with an artificial neural network model and biomedical engineering application.

Scientific reports, 14(1):555.

Modern energy systems are finding new applications for magnetohydrodynamic rheological bio-inspired pumping systems. The incorporation of the electrically conductive qualities of flowing liquids into the biological geometries, rheological behavior, and propulsion processes of these systems was a significant effort. Additional enhancements to transport properties are possible with the use of nanofluids. Due to their several applications in physiology and industry, including urine dynamics, chyme migration in the gastrointestinal system, and the hemodynamics of tiny blood arteries. Peristaltic processes also move spermatozoa in the human reproductive system and embryos in the uterus. The present research examines heat transport in a two-dimensional deformable channel containing magnetic viscoelastic nanofluids by considering all of these factors concurrently, which is vulnerable to peristaltic waves and hall current under ion slip and other situations. Nanofluid rheology makes use of the Sutterby fluid model, while nanoscale effects are modeled using the Buongiorno model. The current study introduces an innovative numerical computing solver utilizing a Multilayer Perceptron feed-forward back-propagation artificial neural network (ANN) with the Levenberg-Marquardt algorithm. Data were collected for testing, certifying, and training the ANN model. In order to make the dimensional PDEs dimensionless, the non-similar variables are employed and calculated by the Homotopy perturbation technique. The effects of developing parameters such as Sutterby fluid parameter, Froude number, thermophoresis, ion-slip parameter, Brownian motion, radiation, Eckert number, and Hall parameter on velocity, temperature, and concentration are demonstrated. The machine learning model chooses data, builds and trains a network, and subsequently assesses its performance using the mean square error metric. Current results declare that the improving Reynolds number tends to increase the pressure rise. Improving the Hall parameter is shown to result in a decrease in velocity. When raising a fluid's parameter, the temperature profile rises.

RevDate: 2024-01-03

Heronimczak M, Mrowiec A, Rząsa M, et al (2024)

Measurements of the flow of a liquid-solid mixture/suspension through a segmented orifice.

Scientific reports, 14(1):269.

The paper attempts to solve the metrological problem that occurs when measuring the intensity of a flowing fluid with suspended solids with densities greater and less than the density of the fluid. The issue of the possibility of self-cleaning of a prototype variant of a segmented orifice from floating solid particles forming mixture/suspensions is discussed. For spherical particles of solids calculations have been made to allow for determining a borderline between their floating and entrainment by the flow, based on dimensionless numbers: Archimedes number and Reynolds number. Experimental tests and CFD simulations were conducted with a variable flow determined by Reynolds number for comparable segmental orifices with orifice module m = 0.102. Flow characteristics were plotted. Based on the results obtained from numerical simulations, positive influence of the inclination of skew segmental orifice downflow plane was presented. The results obtained from the study are a guideline for planning further studies to expand the knowledge of segmented orifices with inclined inflow plane.

RevDate: 2024-01-02

Jubaer H, Thomas M, Farkas D, et al (2024)

Development of an effective two-equation turbulence modeling approach for simulating aerosol deposition across a range of turbulence levels.

Journal of aerosol science, 175:106262.

Pharmaceutical aerosol systems present a significant challenge to computational fluid dynamics (CFD) modeling based on the need to capture multiple levels of turbulence, frequent transition between laminar and turbulent flows, anisotropic turbulent particle dispersion, and near-wall particle transport phenomena often within geometrically complex systems over multiple time scales. Two-equation turbulence models, such as the k-ω family of approximations, offer a computationally efficient solution approach, but are known to require the use of near-wall (NW) corrections and eddy interaction model (EIM) modifications for accurate predictions of aerosol deposition. The objective of this study was to develop an efficient and effective two-equation turbulence modeling approach that enables accurate predictions of pharmaceutical aerosol deposition across a range of turbulence levels. Key systems considered were the traditional aerosol deposition benchmark cases of a 90-degree bend (Re=6,000) and a vertical straight section of pipe (Re=10,000), as well as a highly complex case of direct-to-infant (D2I) nose-to-lung pharmaceutical aerosol delivery from an air-jet dry powder inhaler (DPI) including a patient interface and infant nasal geometry through mid-trachea (500

RevDate: 2023-12-28

Xu Z, Chen Z, Yang S, et al (2023)

Passive Focusing of Single Cells Using Microwell Arrays for High-Accuracy Image-Activated Sorting.

Analytical chemistry [Epub ahead of print].

Sorting single cells from a population was of critical importance in areas such as cell line development and cell therapy. Image-based sorting is becoming a promising technique for the nonlabeling isolation of cells due to the capability of providing the details of cell morphology. This study reported the focusing of cells using microwell arrays and the following automatic size sorting based on the real-time recognition of cells. The simulation first demonstrated the converged streamlines to the symmetrical plane contributed to the focusing effect. Then, the influence of connecting microchannel, flowing length, particle size, and the sample flow rate on the focusing effect was experimentally analyzed. Both microspheres and cells could be aligned in a straight line at the Reynolds number (Re) of 0.027-0.187 and 0.027-0.08, respectively. The connecting channel was proved to drastically improve the focusing performance. Afterward, a tapered microwell array was utilized to focus sphere/cell spreading in a wide channel to a straight line. Finally, a custom algorithm was employed to identify and sort the size of microspheres/K562 cells with a throughput of 1 event/s and an accuracy of 97.8/97.1%. The proposed technique aligned cells to a straight line at low Reynolds numbers and greatly facilitated the image-activated sorting without the need for a high-speed camera or flow control components with high frequency. Therefore, it is of enormous application potential in the field of nonlabeled separation of single cells.

RevDate: 2023-12-27

Shams M, S Sarwar (2023)

Channelized water driven flow of MHD carbon-nanotube nanofluid influenced by rotation, heat source and thermal radiation.

PloS one, 18(12):e0295406 pii:PONE-D-22-34242.

The efficiency enhancements of thermal energy systems are made with advancements made in the effective use of thermal solar collectors, operating fluid and the introduction of curved and transparent solar panels. In this paper, we present a prototype theoretical/mathematical model for the carbon nanotube-based curved solar panels combined with the solar thermal collector and the porous rotating channel. The analysis is carried out to study the effect of transversely applied magnetic, rotation of the porous channel, linear thermal radiation and the uniformly distributed heat source on the heat transfer characteristics of the single-walled (SWCNT) and multi-walled carbon nanotubes (MWCNT). Due to the nonlinearity of the governing momentum and the heat transport equations and the limitation of the exact methods, numerical similarity solutions are obtained for the boundary value problem using the MATLAB function bvp4c. Influences of different parameters are observed through graphs on the nanofluid flow and temperature profiles. The velocity profile exhibits dual behavior for rising the nanoparticles' volume fraction, the magnetic parameter, rotation, and the Reynolds number. The temperature profile increases with increasing nanoparticles and heat source parameters and decreases for increasing suction, rotation, Reynolds number, and thermal radiation. In some cases, flow profiles for SWCNT exceed those of MWCNT.

RevDate: 2023-12-27

Jahangiri AR, Ziarati N, Dadkhah E, et al (2023)

Microfluidics: The future of sperm selection in assisted reproduction.

Andrology [Epub ahead of print].

BACKGROUND: Obtaining functional sperm cells is the first step to treat infertility. With the ever-increasing trend in male infertility, clinicians require access to effective solutions that are able to single out the most viable spermatozoa, which would max out the chance for a successful pregnancy. The new generation techniques for sperm selection involve microfluidics, which offers laminar flow and low Reynolds number within the platforms can provide unprecedented opportunities for sperm selection. Previous studies showed that microfluidic platforms can provide a novel approach to this challenge and since then researchers across the globe have attacked this problem from multiple angles.

OBJECTIVE: In this review, we seek to provide a much-needed bridge between the technical and medical aspects of microfluidic sperm selection. Here, we provide an up-to-date list on microfluidic sperm selection procedures and its application in assisted reproductive technology laboratories.

SEARCH METHOD: A literature search was performed in Web of Science, PubMed, and Scopus to select papers reporting microfluidic sperm selection using the keywords: microfluidic sperm selection, self-motility, non-motile sperm selection, boundary following, rheotaxis, chemotaxis, and thermotaxis. Papers published before March 31, 2023 were selected.

OUTCOMES: Our results show that most studies have used motility-based properties for sperm selection. However, microfluidic platforms are ripe for making use of other properties such as chemotaxis and especially rheotaxis. We have identified that low throughput is one of the major hurdles to current microfluidic sperm selection chips, which can be solved via parallelization.

CONCLUSION: Future work needs to be performed on numerical simulation of the microfluidics chip prior to fabrication as well as relevant clinical assessment after the selection procedure. This would require a close collaboration and understanding among engineers, biologists, and medical professionals. It is interesting that in spite of two decades of microfluidics sperm selection, numerical simulation and clinical studies are lagging behind. It is expected that microfluidic sperm selection platforms will play a major role in the development of fully integrated start-to-finish assisted reproductive technology systems.

RevDate: 2023-12-25

Liu L, Meng Z, Zhang Y, et al (2023)

Simulation of High-Viscosity Generalized Newtonian Fluid Flows in the Mixing Section of a Screw Extruder Using the Lattice Boltzmann Model.

ACS omega, 8(50):47991-48018.

The mixing quality of polymer melts in the mixing section of a single-screw extruder and an injection molding machine has considerable effects on the properties of the molded products. Therefore, the study of the flow field of polymer melts in the mixing section is of great importance. The lattice Boltzmann method (LBM) exhibits unique advantages in simulating non-Newtonian fluids. Many researchers have used LBM to study the flow of medium- and low-viscosity fluids. In their studies, the Reynolds number of fluid flows is generally moderate. However, polymer melts are typical high-viscosity fluids, and their flow Reynolds number is generally very small. The single-relaxation-time lattice Boltzmann method (SRT-LBM) has been used previously to study the flow field of power law fluids in the mixing section. Herein, the flow field of high-viscosity generalized Newtonian fluids in the mixing section of a single-screw extruder is studied using SRT-LBM, the two-relaxation-time lattice Boltzmann method (TRT-LBM), and the multiple-relaxation-time lattice Boltzmann method (MRT-LBM). Through comparison, TRT-LBM has been found to exhibit obvious advantages regarding stability, calculation accuracy, calculation efficiency, and selection of simulation parameters. The TRT-LBM is more suitable for studying high-viscosity generalized Newtonian fluids than SRT-LBM and MRT-LBM. SRT-LBM has low computational efficiency when simulating high-viscosity generalized Newtonian fluids, and instability is easily caused when the fluid has a yield stress. For MRT-LBM, only by studying the relaxation parameters can its advantages be fully utilized. However, optimizing the accuracy and stability of the MRT-LBM via parameter research and linear stability analysis is difficult. For non-Newtonian fluids, it is difficult to optimize the relaxation parameters to make the MRT-LBM more stable and accurate than the TRT-LBM. It is difficult for the MRT-LBM to realize its potential when simulating high-viscosity generalized Newtonian fluids. In addition, we studied the flow pattern in the cross section of the screw channel and compared it to the results reported in previous studies.

RevDate: 2023-12-22

Qiao Z, Pan Y, Tang Y, et al (2023)

Numerical Simulation of Membrane Separation Characteristics of Supercritical Carbon Dioxide and Water.

Membranes, 13(12): pii:membranes13120892.

To solve the problem of water carryover in the supercritical CO2 separation and mining process in the CO2 plume geothermal system, a three-dimensional shell-tube hollow fiber membrane absorption separator is designed in this study. A coupled species transport model, a porous medium model, and an absorption mathematical model are established, and the flow field and separation characteristics in the circular and flat tubes are analyzed using numerical simulation. The results show that the membrane separation efficiency increases with an increase in the flatness and membrane tube length. When the inlet velocity of the mixture is 0.1 m/s, the separation efficiency can reach 75.92%. Selecting a smaller flow Reynolds number and a more significant membrane tube flatness will reduce the water mass fraction at the outlet. When adding baffles of different shapes to the membrane tube, the mixture fluid in the membrane tube meanders forward and flows in the shape of "Z" under the blocking effect of the arcuate baffles. With an increase in the number of arcuate baffles in the membrane tube, the membrane separation efficiency of the separator increases continuously. The mixture fluid flows in the membrane tube with the built-in torsional baffles in a spiral manner, and the separation efficiency of the membrane separator increases with a torsion ratio reduction in the membrane tube.

RevDate: 2023-12-20

L'Estimé M, Schindler M, Shahidzadeh N, et al (2023)

Droplet Size Distribution in Emulsions.

Langmuir : the ACS journal of surfaces and colloids [Epub ahead of print].

The droplet size in emulsions is known to affect the rheological properties and plays a crucial role in many applications of emulsions. Despite its importance, the underlying mechanisms governing droplet size in emulsification remain poorly understood. We investigate the average drop size and size distribution upon emulsification with a high-shear mixer for model oil-in-water emulsions stabilized by a surfactant. The size distribution is found to be a log-normal distribution resulting from the repetitive random breakup of drops. High-shear emulsification, the usual way of making emulsions, is therefore found to be very different from turbulent emulsification given by the Kolmogorov-Hinze theory, for which power-law distributions of the drop size are expected. In agreement with this, the mean droplet size does not follow a scaling with the Reynolds number of the emulsification flow but rather a capillary number scaling based on the viscosity of the continuous phase.

RevDate: 2023-12-20

Tang Y, Li G, Wu J, et al (2023)

Charging characteristics of long distance accumulator for underwater electro-hydraulic control system.

The Review of scientific instruments, 94(12):.

Long distance accumulators are widely used in underwater electro-hydraulic control systems. However, as the working depth increases, the underwater umbilical cable becomes longer. The actual physical properties of the gas in the accumulator change. These factors affect the charging characteristics of the accumulator. To address the above issues, a simulation model of the charging of the long distance accumulator under real operating conditions is developed. Among them, the real properties of the gas inside the accumulator were calculated using the Redlich-Kwong-Soave method. The coefficient of friction within the umbilical cable is based on the Reynolds number and relative roughness. The simulation data were compared with the experimental results in the South China Sea to verify the accuracy of the simulation model. The effects of key factors on the charging characteristics of the long distance accumulators were also analyzed. The results show that the simulation results are in good agreement with the experimental results. The law of accumulator charging was analyzed: the greater the pressure of the gas source, the smaller the accumulator charging time; the greater the working water depth, the shorter the accumulator charging time. The research provides guidance for the design of long distance accumulators.

RevDate: 2023-12-14

Bao H, Song B, Ma D, et al (2023)

Aerodynamic performance of flapping wing with alula under different kinematics of complex flapping motion.

Bioinspiration & biomimetics, 19(1):.

The flight of birds is a remarkable feat, and their remarkable ability to fly derives from complex multi-degree-of-freedom flapping motions and small-scale feather structures that have evolved over millions of years. One of these feather structures is the alula, which can enhance the birds' flight performance at low speeds and large angles of attack. Previous studies on the alula have focused on the steady state. This undoubtedly ignores the unsteady effect caused by complex flapping motion, which is also the most important characteristic of avian flight. Therefore, this paper carries out a study on the effect of different motion modes and motion parameters on the aerodynamic mechanism of the alula. Previous studies found the dominate effect in the lift enhancement is influenced by Reynolds number, stall condition and geometric parameters. After coupling complex flapping motion, aerodynamic characteristics of the flapping wing are greatly influenced by different motion patterns and parameters. For pure plunge motion, both the slot effect and the vortex generator effect of the alula dominate the lift enhancement; while for plunge-twist and plunge-sweep motion, the vortex generator dominates more. At a low plunge amplitude, a low twist amplitude and a low sweep amplitude, the deflection of the alula has a good lift enhancement compared with the baseline wing. Increasing these amplitudes attenuates both the slot effect and the vortex generator effect. The alula can enhance the lift by 10.4% at the plunge amplitude of 25 deg (for pure plunge motion), by 7.9% at the plunge amplitude of 25 deg and twist amplitude of 10 deg (for plunge-twist motion), by 3.3% at the plunge amplitude of 25 deg and sweep amplitude of 15 deg (for plunge-sweep motion). Meanwhile, at a large sweep phase angle, the alula has a better lift enhancement. Increasing the phase angle enhances the vortex generator effect of the alula, and it has an optimal lift enhancement effect of 11% at the phase angle of 180 deg.

RevDate: 2023-12-13

Shuvo MS, Mahmud MJ, S Saha (2023)

Multi-scaling analysis of turbulent boundary layers over an isothermally heated flat plate with zero pressure gradient.

Heliyon, 9(12):e22721 pii:S2405-8440(23)09929-2.

A meticulous investigation into turbulent boundary layers over an isothermally heated flat plate with zero pressure gradient has been conducted. Eight distinct turbulence models, including algebraic yPlus, standard k-ω, standard k-ε, length-velocity, Spalart-Allmaras, low Reynolds number k-ε, shear stress transport, and v[2]-f turbulence models, are carefully chosen for numerical simulation alongside thermal energy and Reynolds-Averaged Navier-Stokes equations. A comparative analysis has determined that the Spalart-Allmaras model exhibits remarkable agreement with the results from direct numerical simulation, making it a reliable tool for predicting turbulent heat transfer and fluid flow, particularly at higher Prandtl and Reynolds numbers. Subsequently, a multi-scale investigation employs a comprehensive four-layer structure scheme and encompasses various momentum thickness Reynolds numbers of 1432, 2522, and 4000, and Prandtl numbers of 0.71, 2, and 5. The subsequent investigation reveals the governing non-dimensional numbers' substantial impact on the distribution and magnitude of mean thermal and flow characteristics. Notably, the scaling of mean thermal and momentum fields discloses the existence of a meso or intermediate layer characterized by a logarithmic nature unique to itself. The multi-scaling analysis of the flow field demonstrates greater conformity with the selected scaling variables primarily relying on the Reynolds number. Furthermore, the scaling of the energy field yields compelling outcomes within the inner and intermediate layers. However, according to the four-layer theory, minor discrepancies are observed in the outer layer when using the current scaling.

RevDate: 2023-12-12

Akram MM, Nazila Hosseini S, Levesque J, et al (2023)

A fully-flexible and thermally adjustable implantable neural probe with a U-turn polyester microchannel.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2023:1-4.

This work presents a fully flexible implantable neural probe fabricated with Polydimethylsiloxane (PDMS) and including a thermally-tunable stiffness microchannel filled with Polyester. The probe includes an optimized microfluidics mixer for drug delivery. Polyester, which is solid at room temperature and has a low melting point close to body temperature, is used to decrease the stiffness of the probe after insertion, after getting in contact with tissues. We designed a U-turn microchannel inside the PDMS neural probe and filled it up with melted polyester. The microchannel has a cross-section of 30 μm × 5 μm and a length of 14.7 mm. The following probe dimensions were chosen after extensive simulation: thickness = 20 μm, width = 300 μm, and length = 7 mm. These values yield a buckling force above 1 mN, which is sufficient for proper insertion into the brain tissues. Simulation results show that the microfluidics mixer with a cross-section of 90 μm × 5 μm and a length of 7 mm has optimum performance for the desired flow rate and quantity of drug to deliver. The pressure drop inside the microfluidic channel is less than 0.43 kPa, which is appropriate for PDMS-PDMS bonding, whereas the Reynolds number is near 1.91k in the laminar regime. No leakage or bubble occurred during the experimental validation, which suggests an appropriate pressure and a laminar flow in the channel.

RevDate: 2023-12-11

Srivathsan B, G T, Ram KV, et al (2023)

Multiphase simulation of sustainable nanoenhanced ionic liquid coolants for improved thermal performance in Ti-6Al-4V alloy drilling.

Heliyon, 9(12):e23020.

Extensive research has been conducted by the manufacturing industry to enhance the efficiency of drilling processes by focusing on the utilization of nanoenhanced cutting fluids that possess excellent heat conductivity. Due to their eco-friendliness and adaptability of physical and chemical properties, ionic fluids offer enormous potential for application as cutting fluids. This study investigates the computational fluid dynamics analysis of the heat transfer performance of various ionanofluid pairs dispersed with nanoparticles as cutting fluids in the drilling process using Ansys Fluent software. For this purpose, 1-Hexyl-3-methyl-imidazolium-tetrafluoroborate is considered the ionic fluid, and its thermal behavior is examined by dispersing it with nanoparticles of copper, silver, and multiwalled carbon nanotubes (MWCNT) at different particle volume fractions and Reynolds numbers. The workpiece is composed of an alloy of titanium Ti-6Al-4V, while the drill bit is made of tungsten carbide-cobalt. It is observed that the ionic nanocoolant mist emanates from the spray tip and moves towards the drill bit-workpiece interface. Initially, the coolant's velocity is greatest close to the orifice, and as time passes, it approaches the drilling space. The data indicates that the spraying velocity of the coolant augments over time and that it disperses heat at the tool-chip interface. The results help us validate the flow and interaction of ionanocoolant with the drilling zone. With a rise in the volume fraction of added nanoparticles and Reynolds number, the results indicated a significant decrease in the drilling temperature. With a higher particle volume fraction, the MWCNT-ionic coolant combination decreases the drilling temperature of pure ionic liquid by 25.64 %. The copper, silver, and MWCNT ionanofluids enhance the average heat transfer coefficient of pure ionic coolant by 35.14 %, 47.42 %, and 62.75 %, respectively. In addition, MWCNT nanocoolants demonstrated improved thermal performance and heat removal rate in comparison to copper and silver ionanocoolants.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.


ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.


Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )