Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Telomeres

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 19 Apr 2024 at 01:57 Created: 

Telomeres

Wikipedia: A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. Its name is derived from the Greek nouns telos (τέλος) "end" and merοs (μέρος, root: μερ-) "part". For vertebrates, the sequence of nucleotides in telomeres is TTAGGG, with the complementary DNA strand being AATCCC, with a single-stranded TTAGGG overhang. This sequence of TTAGGG is repeated approximately 2,500 times in humans. In humans, average telomere length declines from about 11 kilobases at birth to less than 4 kilobases in old age,[3] with average rate of decline being greater in men than in women. During chromosome replication, the enzymes that duplicate DNA cannot continue their duplication all the way to the end of a chromosome, so in each duplication the end of the chromosome is shortened (this is because the synthesis of Okazaki fragments requires RNA primers attaching ahead on the lagging strand). The telomeres are disposable buffers at the ends of chromosomes which are truncated during cell division; their presence protects the genes before them on the chromosome from being truncated instead. The telomeres themselves are protected by a complex of shelterin proteins, as well as by the RNA that telomeric DNA encodes.

Created with PubMed® Query: telomere.q.txt NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-04-18

Li B, Xiong W, Zuo W, et al (2024)

Proximal telomeric decompaction due to telomere shortening drives FOXC1-dependent myocardial senescence.

Nucleic acids research pii:7650606 [Epub ahead of print].

Telomeres, TTAGGGn DNA repeat sequences located at the ends of eukaryotic chromosomes, play a pivotal role in aging and are targets of DNA damage response. Although we and others have demonstrated presence of short telomeres in genetic cardiomyopathic and heart failure cardiomyocytes, little is known about the role of telomere lengths in cardiomyocyte. Here, we demonstrate that in heart failure patient cardiomyocytes, telomeres are shortened compared to healthy controls. We generated isogenic human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) with short telomeres (sTL-CMs) and normal telomeres (nTL-CMs) as model. Compared to nTL-CMs, short telomeres result in cardiac dysfunction and expression of senescent markers. Using Hi-C and RNASeq, we observe that short telomeres induced TAD insulation decrease near telomeric ends and this correlated with a transcription upregulation in sTL-CMs. FOXC1, a key transcription factor involved in early cardiogenesis, was upregulated in sTL-CMs and its protein levels were negatively correlated with telomere lengths in heart failure patients. Overexpression of FOXC1 induced hiPSC-CM aging, mitochondrial and contractile dysfunction; knockdown of FOXC1 rescued these phenotypes. Overall, the work presented demonstrate that increased chromatin accessibility due to telomere shortening resulted in the induction of FOXC1-dependent expression network responsible for contractile dysfunction and myocardial senescence.

RevDate: 2024-04-18

Garcia-Medina JS, Sienkiewicz K, Narayanan SA, et al (2024)

Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight.

Precision clinical medicine, 7(1):pbae007.

BACKGROUND: The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and radiation exposure.

METHODS: To provide a detailed genetics analysis of the mission, we collected dried blood spots pre-, during, and post-flight for DNA extraction. Telomere length was measured by quantitative PCR, while whole genome and cfDNA sequencing provided insight into genomic stability and immune adaptations. A robust bioinformatic pipeline was used for data analysis, including variant calling to assess mutational burden.

RESULT: Telomere elongation occurred during spaceflight and shortened after return to Earth. Cell-free DNA analysis revealed increased immune cell signatures post-flight. No significant clonal hematopoiesis of indeterminate potential (CHIP) or whole-genome instability was observed. The long-term gene expression changes across immune cells suggested cellular adaptations to the space environment persisting months post-flight.

CONCLUSION: Our findings provide valuable insights into the physiological consequences of short-duration spaceflight, with telomere dynamics and immune cell gene expression adapting to spaceflight and persisting after return to Earth. CHIP sequencing data will serve as a reference point for studying the early development of CHIP in astronauts, an understudied phenomenon as previous studies have focused on career astronauts. This study will serve as a reference point for future commercial and non-commercial spaceflight, low Earth orbit (LEO) missions, and deep-space exploration.

RevDate: 2024-04-18

Yu HJ, Byun YH, CK Park (2024)

Techniques for assessing telomere length: A methodological review.

Computational and structural biotechnology journal, 23:1489-1498.

Telomeres are located at the ends of chromosomes and have specific sequences with a distinctive structure that safeguards genes. They possess capping structures that protect chromosome ends from fusion events and ensure chromosome stability. Telomeres shorten in length during each cycle of cell division. When this length reaches a certain threshold, it can lead to genomic instability, thus being implicated in various diseases, including cancer and neurodegenerative disorders. The possibility of telomeres serving as a biomarker for aging and age-related disease is being explored, and their significance is still under study. This is because post-mitotic cells, which are mature cells that do not undergo mitosis, do not experience telomere shortening due to age. Instead, other causes, for example, exposure to oxidative stress, can directly damage the telomeres, causing genomic instability. Nonetheless, a general agreement has been established that measuring telomere length offers valuable insights and forms a crucial foundation for analyzing gene expression and epigenetic data. Numerous approaches have been developed to accurately measure telomere lengths. In this review, we summarize various methods and their advantages and limitations for assessing telomere length.

RevDate: 2024-04-17

de Punder K, Salinas-Manrique J, Dietrich DE, et al (2024)

Serum levels of the steroid hormone dehydroepiandrosterone (DHEA) are associated with psychological trauma and lymphocyte telomere integrity in women suffering from depression.

Neuroimmunomodulation pii:000538893 [Epub ahead of print].

INTRODUCTION: Emerging studies highlight the telomere system as an aging mechanism underlying the association between exposure to psychological trauma and the development of a wide range of physical and mental disorders, including major depressive disorder (MDD). Here, we investigated associations of circulating levels of the steroid hormone dehydroepiandrosterone (DHEA) with immune cell telomere length (TL) in the context of lifetime trauma exposure and MDD.

METHODS: Lifetime traumatic events (trauma load) were assessed using the Essener Trauma Inventory (ETI) in n=22 postmenopausal female inpatients with MDD and n=22 non-depressed controls. All women completed the Beck's Depression Inventory-II to assess the severity of current depressive symptoms. DHEA concentration in serum was measured by immunoassay and TL was quantified in kilobase units using quantitative fluorescent in situ hybridization (qFISH) in total peripheral blood mononuclear cells (PBMC) and in selected T cell subpopulations isolated by FACS separation.

RESULTS: Higher trauma load was significantly associated with lower DHEA concentration, which in turn was linked to more depression-related fatigue. Furthermore, DHEA concentration was positively and significantly associated with TL in memory CD4+ T cells as well as in naïve and memory CD8+ T cells, but not in naïve CD4+ T cells and total PBMC. Mediational analysis suggested that DHEA concentration is a mediator in the relationship between trauma load and memory CD8+ T cell TL.

CONCLUSION: The current findings suggest a potential role of DHEA as a biological resilience factor that may exert beneficial effects on telomere integrity, especially in conditions related to distress.

RevDate: 2024-04-17

Zhong M, Salberg S, Sampangi S, et al (2024)

Leukocyte telomere length in multiple sclerosis: relationship between disability severity and pregnancy history.

Multiple sclerosis and related disorders, 86:105607 pii:S2211-0348(24)00186-X [Epub ahead of print].

BACKGROUND: Aging-related processes contribute to neurodegeneration and disability in multiple sclerosis (MS). Biomarkers of biological aging such as leukocyte telomere length (LTL) could help personalise prognosis. Pregnancy has been shown to be protective against disability accumulation in women with MS, though it is unclear if this effect relates to aging mechanisms or LTL.

OBJECTIVES: This study aimed to cross-sectionally characterise LTL in a cohort of individuals with MS, and to correlate LTL with disability severity and pregnancy history.

METHODS: We extracted DNA from the whole blood of 501 people with MS in Melbourne, Australia. Expanded Disability Status Scale (EDSS) score and demographic data, as well as pregnancy history for 197 females, were obtained at sample collection. Additional data were extracted from the MSBase Registry. LTL was determined in base pairs (bp) using real-time quantitative polymerase chain reaction.

RESULTS: A relationship between EDSS score and shorter LTL was robust to multivariable adjustment for demographic and clinical factors including chronological age, with an adjusted LTL reduction per 1.0 increase in EDSS of 97.1 bp (95 % CI = 9.7-184.5 bp, p = 0.030). Adjusted mediation analysis found chronological age accounted for 33.6 % of the relationship between LTL and EDSS score (p = 0.018). In females with pregnancy data, history of pregnancy was associated with older age (median 49.7 vs 33.0 years, p < 0.001). There were no significant relationships between adjusted LTL and any history of pregnancy (LTL increase of 65.3 bp, 95 % CI = -471.0-601.5 bp, p = 0.81) or number of completed pregnancies (LTL increase of 14.6 bp per pregnancy, 95 % CI = -170.3-199.6 bp, p = 0.87).

CONCLUSIONS: The correlation between LTL and disability independent of chronological age and other factors points to a link between neurological reserve in MS and biological aging, and a potential research target for pathophysiological and therapeutic mechanisms. Although LTL did not significantly differ by pregnancy history, longitudinal analyses could help identify interactions with prospectively captured pregnancy effects.

RevDate: 2024-04-17

Liang X, Aouizerat BE, So-Armah K, et al (2024)

DNA methylation-based telomere length is associated with HIV infection, physical frailty, cancer, and all-cause mortality.

Aging cell [Epub ahead of print].

Telomere length (TL) is an important indicator of cellular aging. Shorter TL is associated with several age-related diseases including coronary heart disease, heart failure, diabetes, osteoporosis, and cancer. Recently, a DNA methylation-based TL (DNAmTL) estimator has been developed as an alternative method for directly measuring TL. In this study, we examined the association of DNAmTL with cancer prevalence and mortality risk among people with and without HIV in the Veterans Aging Cohort Study Biomarker Cohort (VACS, N = 1917) and Women's Interagency HIV Study Cohort (WIHS, N = 481). We profiled DNAm in whole blood (VACS) or in peripheral blood mononuclear cells (WIHS) using an array-based method. Cancer prevalence was estimated from electronic medical records and cancer registry data. The VACS Index was used as a measure of physiologic frailty. Models were adjusted for self-reported race and ethnicity, batch, smoking status, alcohol consumption, and five cell types (CD4, CD8, NK, B cell, and monocyte). We found that people with HIV had shorter average DNAmTL than those without HIV infection [beta = -0.25, 95% confidence interval (-0.32, -0.18), p = 1.48E-12]. Greater value of VACS Index [beta = -0.002 (-0.003, -0.001), p = 2.82E-05] and higher cancer prevalence [beta = -0.07 (-0.10, -0.03), p = 1.37E-04 without adjusting age] were associated with shortened DNAmTL. In addition, one kilobase decrease in DNAmTL was associated with a 40% increase in mortality risk [hazard ratio: 0.60 (0.44, 0.82), p = 1.42E-03]. In summary, HIV infection, physiologic frailty, and cancer are associated with shortening DNAmTL, contributing to an increased risk of all-cause mortality.

RevDate: 2024-04-15

Moura HF, Schuch JB, Ornell F, et al (2024)

Association between telomere length with alcohol use disorder and internalizing/externalizing comorbidities in a Brazilian male sample.

Alcohol (Fayetteville, N.Y.) pii:S0741-8329(24)00062-4 [Epub ahead of print].

BACKGROUND: Shortening telomere length (TL) is an important ageing marker associated with substance use disorder (SUD). However, the influence of psychiatric and clinical comorbidities and alcohol-related outcomes has not been much explored in the context of TL in individuals with alcohol use disorder (AUD) and may be a source of heterogeneity in AUD studies. Therefore, our aim was to investigate the influence of AUD, alcohol-related outcomes, and common psychiatric comorbidities on TL in men with AUD and healthy controls (HC).

METHODS: Men with AUD (n=108, mean age=52.4, SD=8.6) were recruited in a detoxification unit, and HC (n=80, mean age=50.04, SD=9.1) from the blood bank, both located in Brazil. HC had no current or lifetime diagnosis of any substance use disorder. Psychiatric comorbidities were assessed using SCID-I. TL ratio was measured in triplicates using quantitative multiplex PCR.

RESULTS: Telomere length did not differ between individuals with AUD and HC (p=0.073) or was associated with AUD-related outcomes, trauma, or clinical comorbidities. Individuals with externalizing disorders had longer TL when comparing with those with internalizing disorders (p=0.018) or without comorbidity (p=0.018).

CONCLUSION: Our findings indicate that TL was influenced by the presence of psychiatric comorbidity rather than case or control status. These results were adjusted for potential confounders, such as age.

RevDate: 2024-04-15

Greshnova A, Pál K, Martinez JFI, et al (2024)

Transcript Isoform Diversity of Y Chromosome Ampliconic Genes of Great Apes Uncovered Using Long Reads and Telomere-to-Telomere Reference Genome Assemblies.

bioRxiv : the preprint server for biology pii:2024.04.02.587783.

Y chromosomes of great apes harbor A mpliconic G enes (YAGs)-multi-copy gene families (BPY2 , CDY , DAZ , HSFY , PRY , RBMY , TSPY , VCY , and XKRY) that encode proteins important for spermatogenesis. Previous work assembled YAG transcripts based on their targeted sequencing but not using reference genome assemblies, potentially resulting in an incomplete transcript repertoire. Here we used the recently produced gapless telomere-to-telomere (T2T) Y chromosome assemblies of great ape species (bonobo, chimpanzee, human, gorilla, Bornean orangutan, and Sumatran orangutan) and analyzed RNA data from whole-testis samples for the same species. We generated hybrid transcriptome assemblies by combining targeted long reads (Pacific Biosciences), untargeted long reads (Pacific Biosciences) and untargeted short reads (Illumina)and mapping them to the T2T reference genomes. Compared to the results from the reference-free approach, average transcript length was more than two times higher, and the total number of transcripts decreased three times, improving the quality of the assembled transcriptome. The reference-based transcriptome assemblies allowed us to differentiate transcripts originating from different Y chromosome gene copies and from their non-Y chromosome homologs. We identified two sources of transcriptome diversity-alternative splicing and gene duplication with subsequent diversification of gene copies. For each gene family, we detected transcribed pseudogenes along with protein-coding gene copies. We revealed previously unannotated gene copies of YAGs as compared to currently available NCBI annotations, as well as novel isoforms for annotated gene copies. This analysis paves the way for better understanding Y chromosome gene functions, which is important given their role in spermatogenesis.

RevDate: 2024-04-13

Li J, Yang C, Zhang Y, et al (2024)

Study of association of leptin with leukocyte telomere length in a Chinese rural population.

Lipids in health and disease, 23(1):103.

BACKGROUND: Previous studies have demonstrated the relationship between adipocyte factors, insulin resistance, and other indicators with telomere length. However, these studies did not consider the influence of changes in different indicators on telomere length over time. Therefore, the aim of this study is to elucidate the impact of changes in adipocyte factors, HOMA-IR, and other indicators on the dynamic variation of telomere length.

METHODS: The data were from a cohort study conducted in Ningxia, China. A total of 1624 subjects were analyzed. Adipokines and relative leukocyte telomere length (RLTL) were measured, and changes in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), Homeostatic Model Assessment for β-Cell Function (HOMA-β), and Quantitative Insulin Sensitivity Check Index (QUICKI) were calculated. Generalized linear models evaluated associations between changes in adipokines and RLTL changes. Furthermore, univariate analyses examined the effects of changes in adipokines and insulin resistance indicators on ΔRLTL.

RESULTS: The research findings indicate that females generally have shorter telomeres compared to males. In comparison to the low-level group of Δleptin (LEP), the high-level group of ΔLEP shows a negative correlation with ΔRLTL (B=-1.32, 95% CI (-2.38, -0.27)). Even after multivariable adjustments, this relationship persists (B=-1.31, 95% CI (-2.24, -0.23)). Further analysis reveals that after adjusting for ΔHOMA-IR, ΔHOMA-β, and ΔQUICKI, the high-level group of ΔLEP still exhibits a significant negative correlation with ΔRLTL (B=-1.37, 95% CI (-2.43, -0.31)). However, the interaction effects between ΔHOMA-IR, ΔHOMA-β, ΔQUICKI, and ΔLEP do not affect ΔRLTL.

CONCLUSIONS: Elevated levels of leptin were significantly correlated with shortened telomere length. This suggests that increased leptin levels may impact overall individual health by affecting telomere length, underscoring the importance of measures to reduce leptin levels to mitigate the onset and progression of related diseases.

RevDate: 2024-04-13

Li Z, Yang J, Ji X, et al (2024)

First telomere-to-telomere gapless assembly of the rice blast fungus Pyricularia oryzae.

Scientific data, 11(1):380.

Rice blast caused by Pyricularia oryzae (syn., Magnaporthe oryzae) was one of the most destructive diseases of rice throughout the world. Genome assembly was fundamental to genetic variation identification and critically impacted the understanding of its ability to overcome host resistance. Here, we report a gapless genome assembly of rice blast fungus P. oryzae strain P131 using PacBio, Illumina and high throughput chromatin conformation capture (Hi-C) sequencing data. This assembly contained seven complete chromosomes (43,237,743 bp) and a circular mitochondrial genome (34,866 bp). Approximately 14.31% of this assembly carried repeat sequences, significantly greater than its previous assembled version. This assembly had a 99.9% complement in BUSCO evaluation. A total of 14,982 genes protein-coding genes were predicted. In summary, we assembled the first telomere-to-telomere gapless genome of P. oryzae, which would be a valuable genome resource for future research on the genome evolution and host adaptation.

RevDate: 2024-04-13

Wakita H, Lu Y, Li X, et al (2024)

Evaluating Leukocyte Telomere Length and Myeloid-Derived Suppressor Cells as Biomarkers for Prostate Cancer.

Cancers, 16(7): pii:cancers16071386.

BACKGROUND: Leukocyte telomere length (LTL) and myeloid-derived suppressor cells (MDSC) are associated with aging and the development and progression of cancer. However, the exact nature of this relationship remains unclear. Our study aimed to investigate the potential of LTL and MDSC as diagnostic biomarkers for prostate cancer while also seeking to deepen our understanding of the relationship of these potential biomarkers to each other.

METHODS: Our study involved patients undergoing a prostate biopsy. We analyzed the relative LTL in genomic DNA obtained from peripheral blood leukocytes as well as the percentage of MDSC and their subtypes in peripheral blood mononuclear cells (PBMC). Our evaluation focused on examining the relationship between LTL and MDSC and pathological diagnoses as well as investigating the correlation between LTL and MDSC levels.

RESULTS: In our study of 102 participants, 56 were pathologically diagnosed with localized prostate cancer (cancer group), while 46 tested negative (control group). The cancer group exhibited significantly shorter LTL in comparison to the control group (p = 0.024). Additionally, the cancer group showed a tendency towards a higher percentage of monocytic MDSC (M-MDSC), although this difference did not reach statistical significance (p = 0.056). Our multivariate logistic regression analysis revealed that patients with shorter LTL and higher percentages of M-MDSC had a 2.98-fold (95% CI = 1.001-8.869, p = 0.049) and 3.03-fold (95% CI = 1.152-7.977, p = 0.025) increased risk of prostate cancer diagnosis, respectively. There was also a significant negative correlation between LTL and M-MDSC. (r = -0.347, p < 0.001).

CONCLUSIONS: Our research has established a correlation between LTL and MDSC in patients undergoing biopsy for prostate cancer. Notably, we observed that individuals with localized prostate cancer tend to have shorter LTL and a higher percentage of M-MDSC prior to their diagnosis. These findings suggest that LTL and M-MDSC could potentially serve as adjunctive biomarkers for the early diagnosis of prostate cancer.

RevDate: 2024-04-13

Moustakli E, Zikopoulos A, Skentou C, et al (2024)

Association of Obesity with Telomere Length in Human Sperm.

Journal of clinical medicine, 13(7): pii:jcm13072150.

Background: Telomere attrition and mitochondrial dysfunction are two fundamental aspects of aging. Calorie restriction (CR) is the best strategy to postpone aging since it can enhance telomere attrition, boost antioxidant capacity, and lower the generation of reactive oxygen species (ROS). Since ROS is produced by mitochondria and can readily travel to cell nuclei, it is thought to be a crucial molecule for information transfer between mitochondria and cell nuclei. Important variables that affect the quality and functionality of sperm and may affect male reproductive health and fertility include telomere length, mitochondrial content, and the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA). Telomere damage results from mitochondrial failure, whereas nuclear DNA remains unaffected. This research aims to investigate potential associations between these three variables and how they might relate to body mass index. Methods: Data were collected from 82 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. Evaluations included sperm morphology, sperm count, sperm motility, and participant history. To address this, male participants who were categorized into three body mass index (ΒΜΙ) groups-normal, overweight, and obese-had their sperm samples tested. Results: For both the normal and overweight groups, our results show a negative connection between relative telomere length and ΒΜI. As an illustration of a potential connection between mitochondrial health and telomere maintenance, a positive correlation was found for the obese group. Only the obese group's results were statistically significant (p < 0.05). More evidence that longer telomeres are associated with lower mitochondrial content can be found in the negative connection between telomere length and mitochondrial content in both the normal and overweight groups. However, the obese group showed a positive association. The data did not reach statistical significance for any of the three groups. These associations may affect sperm quality since telomere length and mitochondrial concentration are indicators of cellular integrity and health. Moreover, the ratio of mtDNA to nDNA was positively correlated with the relative telomere lengths of the obese group, but negatively correlated with the normal and overweight groups. In every group that was studied, the results were not statistically significant. According to this, male fertility may be negatively impacted by an imbalance in the copy number of the mitochondrial genome compared to the nuclear DNA in sperm. Conclusions: Essentially, the goal of our work is to determine whether mitochondria and telomere length in human sperm interact. Understanding these connections may aid in the explanation of some male infertility causes and possibly contribute to the creation of new treatment modalities for problems pertaining to reproductive health. The functional implications of these connections and their applications in therapeutic settings require further investigation.

RevDate: 2024-04-12

Wang B, Xiong Y, Li R, et al (2024)

Shorter telomere length increases the risk of lymphocyte immunodeficiency: A Mendelian randomization study.

Immunity, inflammation and disease, 12(4):e1251.

BACKGROUND: For a long time, the prevailing viewpoint suggests that shorter telomere contribute to chromosomal instability, which is a shared characteristic of both aging and cancer. The newest research presented that T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to some cancers. However, the relationship between genetically determined telomere length (TL) and immune cells remains unclear.

METHODS: The two-sample Mendelian randomization analysis was conducted to elucidate the potential causal relationship. The genetic data of TL and immune cells were obtained from the Genome-Wide Association Study. The inverse variance weighted (IVW) method was used to estimate the effects primarily and another four methods were as a supplement. Sensitivity analysis was used to test the results.

RESULTS: The IVW method showed a significant correlation between TL and the percentage of T cells in lymphocytes (odds ratio [OR]: 1.222, 95% confidence interval [CI]: 1.014-1.472, p = .035), indicating that shorter TL significantly increases the risk of low T cell percentage. Further analysis of T cell subsets indicated that shorter TL may primarily lead to a lower percentage of Natural Killer T cells (OR: 1.574, 95% CI: 1.281-1.935, p < .001). Analysis of B cell subsets revealed that shorter TL may be associated with a higher percentage of Naive-mature B cells, and a lower percentage of Memory B cells. And the sensitivity analysis indicated the validity and robustness of our findings.

CONCLUSION: In summary, our findings suggest that shorter TL may be associated with a decline in the percentage of T cell, as well as impediments in the differentiation of B cell, consequently leading to the onset of immunosenescence and immunodeficiency. The relevant mechanisms and potential therapeutic avenues still need further investigation.

RevDate: 2024-04-12

Nitschke NJ, Jelsig AM, Lautrup C, et al (2024)

Expanding the understanding of telomere biology disorder with reports from two families harboring variants in ZCCHC8 and TERC.

Clinical genetics [Epub ahead of print].

Telomere biology disorder (TBD) can present within a wide spectrum of symptoms ranging from severe congenital malformations to isolated organ dysfunction in adulthood. Diagnosing TBD can be challenging given the substantial variation in symptoms and age of onset across generations. In this report, we present two families, one with a pathogenic variant in ZCCHC8 and another with a novel variant in TERC. In the literature, only one family has previously been reported with a ZCCHC8 variant and TBD symptoms. This family had multiple occurrences of pulmonary fibrosis and one case of bone marrow failure. In this paper, we present a second family with the same ZCCHC8 variant (p.Pro186Leu) and symptoms of TBD including pulmonary fibrosis, hematological disease, and elevated liver enzymes. The suspicion of TBD was confirmed with the measurement of short telomeres in the proband. In another family, we report a novel likely pathogenic variant in TERC. Our comprehensive description encompasses hematological manifestations, as well as pulmonary and hepatic fibrosis. Notably, there are no other reports which associate this variant to disease. The families expand our understanding of the clinical implications and genetic causes of TBD.

RevDate: 2024-04-12

Jia KH, Zhang X, Li LL, et al (2024)

Telomere-to-telomere cultivated and wild soybean genome assembly provides insights into evolution and domestication under structural variation.

Plant communications pii:S2590-3462(24)00189-5 [Epub ahead of print].

RevDate: 2024-04-11

Chang CH, PA Hwang (2024)

Low-molecular-weight fucoidan increases telomere length and immunostimulatory effects on NK-92 cells following inhaled anesthetic injury.

Mutation research, 828:111857 pii:S0027-5107(24)00007-1 [Epub ahead of print].

Inhaled anesthetics, such as isoflurane, may cause side effects, including short-term immunosuppression and DNA damage. In contrast, low molecular weight fucoidan (LMF), derived from brown seaweed, exhibits promising immunomodulatory effects. In this study, we determined the effect of isoflurane on telomeres and examined the potential of LMF to ameliorate the harmful effects of isoflurane. Male Lewis rats, the mouse lymphoma cell line YAC-1, and the human nature killer cell line NK-92 MI were exposed to isoflurane. The relative telomere length (T/S) ratio and mRNA expression were determined by quantitative PCR. The viability assay was used to assess cell viability. In vivo, 2% isoflurane exposure, which is a clinically relevant concentration, reduced telomere length, and correlated with exposure frequency and duration. Isoflurane concentrations above 2% shortened YAC-1 telomeres, with minimal impact on cell viability. LMF pre-treatment enhanced NK-92 MI cell survival resulting from isoflurane exposure and exerted superior telomere protection compared with LMF post-treatment. Furthermore, adding LMF during isoflurane exposure resulted in a significant increase in IFN-γ, TNF-α, and IL-10 mRNA compared with the untreated group. LMF protected against isoflurane-induced telomere shortening, enhanced NK cell viability, and modulated cytokine expression, thus mitigating postoperative immune suppression and risk of tumor metastasis.

RevDate: 2024-04-11

Karimian K, Groot A, Huso V, et al (2024)

Human telomere length is chromosome end-specific and conserved across individuals.

Science (New York, N.Y.) [Epub ahead of print].

Short telomeres cause age-related disease and long telomeres predispose to cancer; however, the mechanisms regulating telomere length are unclear. We developed a nanopore-based method, Telomere Profiling, to determine telomere length at nearly single nucleotide resolution. Mapping telomere reads to chromosome ends showed chromosome end-specific length distributions that could differ by more than six kilobases. Telomere lengths in 147 individuals showed certain chromosome ends were consistently longer or shorter. The same rank order was found in newborn cord blood, suggesting that telomere length is determined at birth and chromosome end-specific telomere length differences are maintained as telomeres shorten with age. Telomere Profiling makes precision investigation of telomere length widely accessible for laboratory, clinical, and drug discovery efforts and will allow deeper insights into telomere biology.

RevDate: 2024-04-11

Gao Y, Xu DD, Z Hu (2024)

Telomere-to-telomere genome assembly of Oldenlandia diffusa.

DNA research : an international journal for rapid publication of reports on genes and genomes pii:7643926 [Epub ahead of print].

We report the complete telomere-to-telomere genome assembly of Oldenlandia diffusa which renowned in traditional Chinese medicine, comprising 16 chromosomes and spanning 499.7 Mb. The assembly showcases 28 telomeres and minimal gaps, with a total of only five. Repeat sequences constitute 46.41% of the genome, and 49,701 potential protein-coding genes have been predicted. Compared with O. corymbosa, O. diffusa exhibits chromosome duplication and fusion events, diverging 20.34 million years ago. Additionally, a total of 11 clusters of terpene synthase have been identified. The comprehensive genome sequence, gene catalog, and terpene synthase clusters of O. diffusa detailed in this study will significantly contribute to advancing research in this species' genetic, genomic, and pharmacological aspects.

RevDate: 2024-04-10

Wang B, Jia Y, Dang N, et al (2024)

Near telomere-to-telomere genome assemblies of two Chlorella species unveil the composition and evolution of centromeres in green algae.

BMC genomics, 25(1):356.

BACKGROUND: Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown.

RESULTS: We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions.

CONCLUSIONS: This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.

RevDate: 2024-04-09

Shou S, Li Y, Chen J, et al (2024)

Understanding, diagnosing, and treating pancreatic cancer from the perspective of telomeres and telomerase.

Cancer gene therapy [Epub ahead of print].

Telomerase is associated with cellular aging, and its presence limits cellular lifespan. Telomerase by preventing telomere shortening can extend the number of cell divisions for cancer cells. In adult pancreatic cells, telomeres gradually shorten, while in precancerous lesions of cancer, telomeres in cells are usually significantly shortened. At this time, telomerase is still in an inactive state, and it is not until before and after the onset of cancer that telomerase is reactivated, causing cancer cells to proliferate. Methylation of the telomerase reverse transcriptase (TERT) promoter and regulation of telomerase by lactate dehydrogenase B (LDHB) is the mechanism of telomerase reactivation in pancreatic cancer. Understanding the role of telomeres and telomerase in pancreatic cancer will help to diagnose and initiate targeted therapy as early as possible. This article reviews the role of telomeres and telomerase as biomarkers in the development of pancreatic cancer and the progress of research on telomeres and telomerase as targets for therapeutic intervention.

RevDate: 2024-04-09

Jiang H, Zhang T, Kaur H, et al (2024)

BLM helicase unwinds lagging strand substrates to assemble the ALT telomere damage response.

Molecular cell pii:S1097-2765(24)00221-1 [Epub ahead of print].

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.

RevDate: 2024-04-09

Teixeira GA, Travenzoli NM, MG Tavares (2024)

Chromosomal organization of different repetitive sequences in four wasp species of the genus Trypoxylon Latreille (Hymenoptera: Crabronidae) and insights into the composition of wasp telomeres.

Genome [Epub ahead of print].

This study characterizes the chromosomal organization of DNA repetitive sequences and the karyotypic evolution in four representatives of the solitary wasp genus Trypoxylon using conventional and molecular cytogenetic techniques. Our findings present the first cytogenetic data for T. rogenhoferi (2n=30) and T. albonigrum (2n=32) while the karyotypes of T. nitidum (2n=30) and T. lactitarse (2n=30) were similar to those described previously. Fluorochrome staining and microsatellite distribution data revealed differences in the constitutive heterochromatin composition among species. Trypoxylon nitidum and T. albonigrum exhibited a single rRNA gene site, potentially representing an ancestral pattern for aculeate Hymenoptera, while T. rogenhoferi and T. lactitarse showed two pericentromeric rRNA gene sites, suggesting amplification events in their ancestral clade. The (TCAGG)n motif hybridized in the terminal regions of the chromosomes in all four Trypoxylon species, which may suggest that this sequence is part of their telomeres. Notably, the presence of this repetitive sequence in the centromeric regions of certain chromosome pairs in two species supports the hypothesis of chromosomal fusions or inversions in the ancestral karyotype of Trypoxylon. The study expands the chromosomal mapping data of repetitive sequences in wasps and offers insights into the dynamic evolutionary landscape of karyotypes in these insects.

RevDate: 2024-04-09

Karadağ A, Dirican E, Özmerdiven ÇG, et al (2024)

Evaluation of miR-130b-3p and miR-375 levels and telomere length with telomerase activity in prostate cancer.

Nucleosides, nucleotides & nucleic acids [Epub ahead of print].

Prostate cancer (PC) is the most frequent cancer in males, as well as the second highest cause of cancer-related deaths in men. Differences in expression levels of miRNAs were linked with prostat cancer pathogenesis. qPCR was used to evaluate the expression of miR-130b-3p and miR-375 in Benign Prostate Hyperplasia (BPH (n = 20) and PC (n = 22, pre- and post-operative) patients plasma. Relative telomere lengths (RLTs) in genomic DNA isolated from plasma were measured with qPCR, and telomerase activity analyzed by the ELISA method. PSA levels of PC patients were greater than of BPH patients (p = 0.0473). miR-130b-3p and miR-375 levels were significantly lower in pre-operative specimens of PC patients according to BPH (p = 0,0362, p = 0.0168, respectively). Similarly, post-operative miR-375 levels were lower in PC patients than in BPH patients (p = 0.1866). BPH patients had shorter RTLs than PC patients in both pre- (p=0.0438) and post-operative (p=0.0297) specimens. Telomerase activity was higher in PC patients than BPH(p = 0.0129). Interestingly, telomerase activity was further increased after surgery (p = 0.0003). We aim to identify the levels of miR-130b-3p and miR-375 expression and their relationship with telomerase activity in PC patients. Our data suggest that miRNAs and telomere length (TL) with telomerase activity may play a role in regulating prostate tumorgenesis and may be used as biomarkers for PC diagnosis.

RevDate: 2024-04-08

de la Rosa R, Le A, Holm S, et al (2024)

Associations Between Early-Life Adversity, Ambient Air Pollution, and Telomere Length in Children.

Psychosomatic medicine pii:00006842-990000000-00179 [Epub ahead of print].

OBJECTIVE: Examine the independent associations and interaction between early-life adversity and residential ambient air pollution exposure on relative buccal telomere length (rBTL).

METHODS: Experiences of abuse, neglect, household challenges, and related life events were identified in a cross-sectional sample of children ages 1-11 years (n = 197) using the 17-item Pediatric ACEs and Related Life Event Screener (PEARLS) tool. The PEARLS tool was analyzed both as a total score and across established domains (Maltreatment, Household Challenges, and Social Context). Ground-level fine particulate matter (PM2.5) concentrations were matched to residential locations for the one and twelve months prior to biospecimen collection. We used multivariable linear regression models to examine for independent associations between continuous PM2.5 exposure and PEARLS score/domains with rBTL. Additionally, effect modification by PEARLS scores and domains on associations between PM2.5 exposure and rBTL was examined.

RESULTS: Study participants were 47% girls, with mean age = 5.9 years [standard deviation: 3.4] median reported PEARLS score of 2 [interquartile range (IQR): 4], median 12-month prior PM2.5 concentrations of 11.8 μg/m3 [IQR: 2.7], median 1-month prior PM2.5 concentrations of 10.9 μg/m3 [IQR: 5.8], and rBTL of 0.1 [IQR: 0.03]. Mean 12-month prior PM2.5 exposure was inversely associated with rBTL (ß = -0.02, 95% CI: -0.04, -0.01). While reported PEARLS scores and domains were not independently associated with rBTL, we observed a greater decrement in rBTL with increment of average annual PM2.5 as reported Social Context domain items increased (p-interaction<0.05).

CONCLUSION: Our results suggest that adverse Social Context factors may accelerate the association between chronic PM2.5 exposure on telomere shortening during childhood.

RevDate: 2024-04-08

Padmanaban S, Lambacher NJ, Tesmer VM, et al (2024)

Caenorhabditis elegans telomere-binding proteins TEBP-1 and TEBP-2 adapt the Myb module to dimerize and bind telomeric DNA.

Proceedings of the National Academy of Sciences of the United States of America, 121(16):e2316651121.

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.

RevDate: 2024-04-08

Martin NA, McLester-Davis LWY, Roy TR, et al (2024)

Monochrome Multiplex Quantitative PCR Telomere Length Measurement.

Journal of visualized experiments : JoVE.

Telomeres are ribonucleoprotein structures at the end of all eukaryotic chromosomes that protect DNA from damage and preserve chromosome stability. Telomere length (TL) has been associated with various exposures, biological processes, and health outcomes. This article describes the monochrome multiplex quantitative polymerase chain reaction (MMqPCR) assay protocol routinely conducted in our laboratory for measuring relative mean TL from human DNA. There are several different PCR-based TL measurement methods, but the specific protocol for the MMqPCR method presented in this publication is repeatable, efficient, cost-effective, and suitable for population-based studies. This detailed protocol outlines all information necessary for investigators to establish this assay in their laboratory. In addition, this protocol provides specific steps to increase the reproducibility of TL measurement by this assay, defined by the intraclass correlation coefficient (ICC) across repeated measurements of the same sample. The ICC is a critical factor in evaluating expected power for a specific study population; as such, reporting cohort-specific ICCs for any TL assay is a necessary step to enhance the overall rigor of population-based studies of TL. Example results utilizing DNA samples extracted from peripheral blood mononuclear cells demonstrate the feasibility of generating highly repeatable TL data using this MMqPCR protocol.

RevDate: 2024-04-08

Lee JJ, Kim H, Park H, et al (2024)

Disruption of G-quadruplex dynamicity by BRCA2 abrogation instigates phase separation and break-induced replication at telomeres.

Nucleic acids research pii:7642069 [Epub ahead of print].

Dynamic interaction between BRCA2 and telomeric G-quadruplexes (G4) is crucial for maintaining telomere replication homeostasis. Cells lacking BRCA2 display telomeric damage with a subset of these cells bypassing senescence to initiate break-induced replication (BIR) for telomere synthesis. Here we show that the abnormal stabilization of telomeric G4 following BRCA2 depletion leads to telomeric repeat-containing RNA (TERRA)-R-loop accumulation, triggering liquid-liquid phase separation (LLPS) and the assembly of Alternative Lengthening of Telomeres (ALT)-associated promyelocytic leukemia (PML) bodies (APBs). Disruption of R-loops abolishes LLPS and impairs telomere synthesis. Artificial engineering of telomeric LLPS restores telomere synthesis, underscoring the critical role of LLPS in ALT. TERRA-R-loops also recruit Polycomb Repressive Complex 2 (PRC2), leading to tri-methylation of Lys27 on histone H3 (H3K27me3) at telomeres. Half of paraffin-embedded tissue sections from human breast cancers exhibit APBs and telomere length heterogeneity, suggesting that BRCA2 mutations can predispose individuals to ALT-type tumorigenesis. Overall, BRCA2 abrogation disrupts the dynamicity of telomeric G4, producing TERRA-R-loops, finally leading to the assembly of telomeric liquid condensates crucial for ALT. We propose that modulating the dynamicity of telomeric G4 and targeting TERRA-R-loops in telomeric LLPS maintenance may represent effective therapeutic strategies for treating ALT-like cancers with APBs, including those with BRCA2 disruptions.

RevDate: 2024-04-07

Lagunas-Rangel FA (2024)

Giardia telomeres and telomerase.

Parasitology research, 123(4):179.

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.

RevDate: 2024-04-06

Mason CE, Sierra MA, Feng HJ, et al (2024)

Telomeres and aging: on and off the planet!.

Biogerontology, 25(2):313-327.

Improving human healthspan in our rapidly aging population has never been more imperative. Telomeres, protective "caps" at the ends of linear chromosomes, are essential for maintaining genome stability of eukaryotic genomes. Due to their physical location and the "end-replication problem" first envisioned by Dr. Alexey Olovnikov, telomeres shorten with cell division, the implications of which are remarkably profound. Telomeres are hallmarks and molecular drivers of aging, as well as fundamental integrating components of the cumulative effects of genetic, lifestyle, and environmental factors that erode telomere length over time. Ongoing telomere attrition and the resulting limit to replicative potential imposed by cellular senescence serves a powerful tumor suppressor function, and also underlies aging and a spectrum of age-related degenerative pathologies, including reduced fertility, dementias, cardiovascular disease and cancer. However, very little data exists regarding the extraordinary stressors and exposures associated with long-duration space exploration and eventual habitation of other planets, nor how such missions will influence telomeres, reproduction, health, disease risk, and aging. Here, we briefly review our current understanding, which has advanced significantly in recent years as a result of the NASA Twins Study, the most comprehensive evaluation of human health effects associated with spaceflight ever conducted. Thus, the Twins Study is at the forefront of personalized space medicine approaches for astronauts and sets the stage for subsequent missions. We also extrapolate from current understanding to future missions, highlighting potential biological and biochemical strategies that may enable human survival, and consider the prospect of longevity in the extreme environment of space.

RevDate: 2024-04-05

Yun JJ, Unai S, Budev MM, et al (2024)

Salvage Lung Retransplantation: En-Bloc Double Lung with Bronchial Artery Revascularization For Bronchial Dehiscence Related to Short Telomeres.

RevDate: 2024-04-05

Rodseth E, Sumasgutner P, Tate G, et al (2024)

Pleiotropic effects of melanin pigmentation: haemoparasite infection intensity but not telomere length is associated with plumage morph in black sparrowhawks.

Royal Society open science, 11(4):230370.

There is increasing recognition of the potential pleiotropic effects of melanin pigmentation, particularly on immunity, with reports of variation in haemoparasite infection intensity and immune responses between the morphs of colour-polymorphic bird species. In a population of the black sparrowhawk (Accipiter melanoleucus) in western South Africa, light morphs have a higher haemoparasite infection intensity, but no physiological effects of this are apparent. Here, we investigate the possible effects of haemoparasite infection on telomere length in this species and explore whether relative telomere length is associated with either plumage morph or sex. Using quantitative polymerase chain reaction analysis, we confirmed that dark morphs had a lower haemoparasite infection intensity than light morphs. However, we found no differences in telomere length associated with either the haemoparasite infection status or morph in adults, although males have longer telomeres than females. While differences in haemoparasite intensity between morphs are consistent with pleiotropic effects of melanin pigmentation in the black sparrowhawk, we found no evidence that telomere length was associated with haemoparasite infection. Further work is needed to investigate the implications of possible pleiotropic effects of plumage morph and their potential role in the maintenance of colour polymorphism in this species.

RevDate: 2024-04-05

Prasad R, G Kaur (2024)

Recent Domains in Telomere and Telomerase Targeting for Accomplished Cancer Therapy.

Indian journal of clinical biochemistry : IJCB, 39(2):151-153.

RevDate: 2024-04-04

LaBella KA, Hsu WH, Li J, et al (2024)

Telomere dysfunction alters intestinal stem cell dynamics to promote cancer.

Developmental cell pii:S1534-5807(24)00188-6 [Epub ahead of print].

Telomere dynamics are linked to aging hallmarks, and age-associated telomere loss fuels the development of epithelial cancers. In Apc-mutant mice, the onset of DNA damage associated with telomere dysfunction has been shown to accelerate adenoma initiation via unknown mechanisms. Here, we observed that Apc-mutant mice engineered to experience telomere dysfunction show accelerated adenoma formation resulting from augmented cell competition and clonal expansion. Mechanistically, telomere dysfunction induces the repression of EZH2, resulting in the derepression of Wnt antagonists, which causes the differentiation of adjacent stem cells and a relative growth advantage to Apc-deficient telomere dysfunctional cells. Correspondingly, in this mouse model, GSK3β inhibition countered the actions of Wnt antagonists on intestinal stem cells, resulting in impaired adenoma formation of telomere dysfunctional Apc-mutant cells. Thus, telomere dysfunction contributes to cancer initiation through altered stem cell dynamics, identifying an interception strategy for human APC-mutant cancers with shortened telomeres.

RevDate: 2024-04-03

Amiard S, Feit L, Vanrobays E, et al (2024)

The TELOMERE REPEAT BINDING proteins TRB4 and TRB5 function as transcriptional activators of PRC2-controlled genes to regulate plant development.

Plant communications pii:S2590-3462(24)00132-9 [Epub ahead of print].

Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins (TRBs) combine two DNA-binding domains, the GH1 domain, which binds to linker DNA and is shared with H1 histones, and the Myb/SANT domain, which specifically recognizes the telobox DNA-binding site motif. TRB1, TRB2, and TRB3 proteins recruit Polycomb group complex 2 (PRC2) to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription. Here, we demonstrate that TRB4 and TRB5, two related paralogs belonging to a separate TRB clade conserved in spermatophytes, regulate the transcription of several hundred genes involved in developmental responses to environmental cues. Indeed, TRB4 binds to several thousand sites in the genome, mainly at TSS and promoter regions of transcriptionally active and H3K4me3-marked genes, but unlike TRB1 it is not enriched at H3K27me3-marked gene bodies. Yet, TRB4 can physically interact with the catalytic components of PRC2, SWINGER and CURLY LEAF (CLF). Unexpectedly, we show that TRB4 and TRB5 are required for distinctive phenotypic traits observed in clf mutant plants and accordingly function as transcriptional activators of several hundred of CLF-controlled genes, including key flowering genes. We further demonstrate that TRB4 shares multiple target genes with TRB1 and physically and genetically interacts with members of both TRB clades. Collectively, this study uncovers that TRB proteins engage in both positive and negative interactions with other members of the family to regulate plant development through both PRC2-dependent and independent mechanisms.

RevDate: 2024-04-02

Huang R, Bornman MSR, Stricker PD, et al (2024)

The impact of telomere length on prostate cancer aggressiveness, genomic instability and health disparities.

Scientific reports, 14(1):7706.

The telomere repetitive TTAGGG motif at the ends of chromosomes, serves to preserve genomic integrity and chromosomal stability. In turn, genomic instability is a hallmark of cancer-implicating telomere disturbance. Prostate cancer (PCa) shows significant ancestral disparities, with men of African ancestry at the greatest risk for aggressive disease and associated genomic instability. Yet, no study has explored the role of telomere length (TL) with respect to ancestrally driven PCa health disparities. Patient- and technically-matched tumour-blood whole genome sequencing data for 179 ancestrally defined treatment naïve PCa patients (117 African, 62 European), we assessed for TL (blood and tumour) associations. We found shortened tumour TL to be associated with aggressive PCa presentation and elevated genomic instabilities, including percentage of genome alteration and copy number gains, in men of African ancestry. For European patients, tumour TL showed significant associations with PCa driver genes PTEN, TP53, MSH2, SETBP1 and DDX11L1, while shorter blood TL (< 3200 base pairs) and tumour TL (< 2861 base pairs) were correlated with higher risk for biochemical recurrence. Concurring with previous studies linking TL to PCa diagnosis and/or prognosis, for the first time we correlated TL differences with patient ancestry with important implications for future treatments targeting telomere dysfunction.

RevDate: 2024-04-02

Ravindran S, Underwood SL, Dorrens J, et al (2024)

No correlative evidence of costs of infection or immunity on leucocyte telomere length in a wild population of Soay sheep.

Proceedings. Biological sciences, 291(2020):20232946.

Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.

RevDate: 2024-04-02

Muoio D, Laspata N, Dannenberg RL, et al (2024)

PARP2 promotes Break Induced Replication-mediated telomere fragility in response to replication stress.

Nature communications, 15(1):2857.

PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.

RevDate: 2024-04-01

Estrem B, Davis RE, J Wang (2024)

End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination.

bioRxiv : the preprint server for biology pii:2024.03.15.585292.

Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well-characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the nematode Ascaris to study the timing of PDE breaks and examine the DSBs and their end processing. Using END-seq, we characterize the DSB ends and demonstrate that DNA breaks are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3' overhangs before the addition of telomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends in Ascaris may be due to the sequestration of the eliminated DNA into micronuclei, preventing their ends from telomere healing. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris , ensuring chromosomal breakage and providing a fail-safe mechanism for nematode PDE.

RevDate: 2024-03-30

Kirk B, Kuo CL, Liu P, et al (2024)

Leukocyte telomere length is associated with MRI-thigh fat-free muscle volume: data from 16 356 UK Biobank adults.

Journal of cachexia, sarcopenia and muscle [Epub ahead of print].

BACKGROUND: Telomere attrition may share common biological mechanisms with bone and muscle loss with aging. Here, we investigated the association between these hallmarks of aging using data from UK Biobank, a large observational study.

METHODS: Leukocyte telomere length (LTL as T/S ratio) was measured using a multiplex qPCR assay at baseline (2006-2010). Bone mineral density (whole body and regional; via dual-energy X-ray absorptiometry), trabecular bone score (via lumbar-spine dual-energy X-ray absorptiometry images), fat-free muscle volume (thighs; via magnetic resonance imaging), and muscle fat infiltration (thighs; via magnetic resonance imaging) were measured during the imaging visit (2014-2018). Regression models were used to model LTL against a muscle or bone outcome, unadjusted and adjusted for covariates.

RESULTS: A total of 16 356 adults (mean age: 62.8 ± 7.5 years, 50.5% women) were included. In the fully adjusted model, thigh fat-free muscle volume was associated with LTL in the overall sample (adjusted standardized β (aβ) = 0.017, 95% CI 0.009 to 0.026, P < 0.001, per SD increase in LTL), with stronger associations in men (aβ = 0.022, 95% CI 0.010 to 0.034, P < 0.001) than in women (aβ = 0.013, 95% CI 0.000 to 0.025, P = 0.041) (sex-LTL P = 0.028). The adjusted odds ratio (aOR) for low thigh fat-free muscle volume (body mass index-adjusted, sex-specific bottom 20%) was 0.93 per SD increase in LTL (95% CI 0.89 to 0.96, P < 0.001) in the overall sample, with stronger associations in men (aOR = 0.92, 95% CI 0.87 to 0.99, P = 0.008) than women (aOR = 0.93, 95% CI 0.88 to 0.98, P = 0.009), although the sex difference was not statistically significant in this model (sex-LTL P = 0.37). LTL was not associated with bone mineral density, trabecular bone score, or muscle fat infiltration in the overall or subgroup analyses (P > 0.05).

CONCLUSIONS: LTL was consistently associated with thigh fat-free muscle volume in men and women. Future research should investigate moderating effects of lifestyle factors (e.g., physical activity, nutrition, or chronic diseases) in the association between LTL and muscle volume.

RevDate: 2024-03-29

Dehdashti B, Miri M, Khanahmad H, et al (2024)

In-Utero exposure to potential sources of indoor air pollution and umbilical cord blood leukocyte telomere length.

Environmental research pii:S0013-9351(24)00695-9 [Epub ahead of print].

Indoor air pollution (IAP) has been associated with various adverse health effects. However, the evidence regarding such an association with leukocyte telomere length (LTL) in cord blood samples is still scarce. Therefore, the present study aimed to assess the relationship between exposure to indicators of IAP and LTL in umbilical cord blood samples. This cross-sectional study was based on 188 mother-newborn pairs who participated in our study between 2020 and 2022 in Isfahan, Iran. Umbilical LTL was measured by quantitative real-time polymerase chain reaction (qRT-PCR) technique. Linear mixed-effect models were used to assess the relationship between IAP indicators and umbilical LTL, adjusted for relevant covariates. The median (interquartile range (IQR)) of umbilical LTL was 0.92 (0.47). In fully adjusted models, frequency of using degreasing spray during pregnancy (times per month) (β = -0.047, 95% CI:0.09, -0.05, P-value = 0.02), using air freshener spray during pregnancy (β = -0.26, 95% CI: -0.5, -0.02, P-value = 0.03) and frequency of using insecticides during pregnancy (times per month) (β = -0.025, 95% CI: -0.047, -0.003, P-value = 0.02) were significantly associated with shorter umbilical LTL. There was a positive significant relationship between the frequency of using cleaning spray during pregnancy (times per month) with umbilical LTL (β = 0.019, 95% CI: 0.005, 0.033, P-value = 0.01). Furthermore, the direct connection of the parking with home and the frequency of using barbecue (times per week) were marginally associated with shorter umbilical LTL. For other indicators of IAP, we did not observe any statistically significant associations. Overall, this study suggested a negative association between prenatal exposure to IAP during pregnancy and umbilical LTL.

RevDate: 2024-03-29

Kraft BD, Verhulst S, Lai TP, et al (2024)

T-cell count and T-cell telomere length in patients with severe COVID-19.

Frontiers in immunology, 15:1356638.

Lymphocyte telomere length (TL) is highly variable and shortens with age. Short telomeres may impede TL-dependent T-cell clonal expansion with viral infection. As SARS-CoV-2 infection can induce prolonged and severe T-cell lymphopenia, infected adults, and particularly older adults with short telomeres, may display severe T-cell lymphopenia. To examine the relationship between T-cell TL parameters and T-cell counts, we studied 40 patients hospitalized with severe COVID-19. T-cells were isolated from lymphocytes, counted using flow cytometry, and their TL parameters were measured using the Telomere Shortest Length Assay. The cohort (median age = 62 years, 27% female) was racially and ethnically diverse (33% White, 35% Black, and 33% Other). On intensive care unit study day 1, T-cell count (mean=1.03 x10[9]/L) was inversely related to age (p=0.007) and higher in females than males (p=0.025). Mean TL was 3.88 kilobases (kb), and 45.3% of telomeres were shorter than 3 kb. Using multiple regression analysis and adjusting for age and sex, T-cell count decreased with increased proportion of T-cell telomeres shorter than 3 kb (p=0.033) and increased with mean TL (p=0.052). Our findings suggest an association between the buildup of short telomeres within T-cells and explain in part reduced peripheral blood T-cell counts in patients with severe COVID-19. Shortened T-cell telomeres may be a risk factor for COVID-19-associated T-cell lymphopenia.

RevDate: 2024-03-28

Pochechueva TV, Schwenzer N, Kohl T, et al (2024)

3D Super-Resolution Nuclear Q-FISH Imaging Reveals Cell-Cycle-Related Telomere Changes.

International journal of molecular sciences, 25(6): pii:ijms25063183.

We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated with inherited and acquired diseases, including cancer and cardiomyopathies, and is frequently analyzed by quantitative (Q)-FISH microscopy. Recently, nanoscopic imaging techniques have resolved individual telomere dimensions and their compaction as a prognostic marker, in part leading to conflicting conclusions still unresolved to date. Here, we developed a comprehensive Q-FISH nanoscopy workflow to assess telomeres with PNA telomere probes and 3D-Stimulated Emission Depletion (STED) microscopy combined with Dynamic Intensity Minimum (DyMIN) scanning. We achieved single-telomere resolution at high, unprecedented telomere coverage. Importantly, our approach revealed a decrease in telomere signal density during mitotic cell division compared to interphase. Innovatively expanding FISH-STED applications, we conducted double FISH targeting of both telomere- and chromosome-specific sub-telomeric regions and accomplished FISH-STED in human cardiac biopsies. In summary, this work further advanced Q-FISH nanoscopy, detected a new aspect of telomere compaction related to the cell cycle, and laid the groundwork for future applications in complex cell types such as post-mitotic neurons and muscle cells.

RevDate: 2024-03-28

Olson CL, DS Wuttke (2024)

Guardians of the Genome: How the Single-Stranded DNA-Binding Proteins RPA and CST Facilitate Telomere Replication.

Biomolecules, 14(3): pii:biom14030263.

Telomeres act as the protective caps of eukaryotic linear chromosomes; thus, proper telomere maintenance is crucial for genome stability. Successful telomere replication is a cornerstone of telomere length regulation, but this process can be fraught due to the many intrinsic challenges telomeres pose to the replication machinery. In addition to the famous "end replication" problem due to the discontinuous nature of lagging strand synthesis, telomeres require various telomere-specific steps for maintaining the proper 3' overhang length. Bulk telomere replication also encounters its own difficulties as telomeres are prone to various forms of replication roadblocks. These roadblocks can result in an increase in replication stress that can cause replication forks to slow, stall, or become reversed. Ultimately, this leads to excess single-stranded DNA (ssDNA) that needs to be managed and protected for replication to continue and to prevent DNA damage and genome instability. RPA and CST are single-stranded DNA-binding protein complexes that play key roles in performing this task and help stabilize stalled forks for continued replication. The interplay between RPA and CST, their functions at telomeres during replication, and their specialized features for helping overcome replication stress at telomeres are the focus of this review.

RevDate: 2024-03-28

Younoussa H, Gadji M, Soumboundou M, et al (2024)

Telomere Dysfunction in Pediatric Patients with Differences/Disorders of Sexual Development.

Biomedicines, 12(3): pii:biomedicines12030565.

UNLABELLED: Differences/Disorders of sex development (DSDs) are conditions in which the development of chromosomal, gonadal, and anatomical sexes is atypical. DSDs are relatively rare, but their incidence is becoming alarmingly common in sub-Saharan Africa (SSA). Their etiologies and mechanisms are poorly understood. Therefore, we have investigated cytogenetic profiles, including telomere dysfunction, in a retrospective cohort of Senegalese DSD patients.

MATERIALS AND METHODS: Peripheral blood lymphocytes were sampled from 35 DSD patients (mean age: 3.3 years; range 0-18 years) admitted to two hospital centers in Dakar. Peripheral blood lymphocytes from 150 healthy donors were used as a control. Conventional cytogenetics, telomere, and centromere staining followed by multiplex FISH, as well as FISH with SRY-specific probes, were employed.

RESULTS: Cytogenetic analysis identified 19 male and 13 female patients with apparently normal karyotypes, two patients with Turner syndrome, and one patient with Klinefelter syndrome. Additional structural chromosome aberrations were detected in 22% of the patients (8/35). Telomere analysis revealed a reduction in mean telomere lengths of DSD patients compared to those of healthy donors of similar age. This reduction in telomere length was associated with an increased rate of telomere aberrations (telomere loss and the formation of telomere doublets) and the presence of additional chromosomal aberrations.

CONCLUSIONS: To the best of our knowledge, this study is the first to demonstrate a correlation between telomere dysfunction and DSDs. Further studies may reveal the link between telomere dysfunction and possible mechanisms involved in the disease itself, such as DNA repair deficiency or specific gene mutations. The present study demonstrates the relevance of implementing telomere analysis in prenatal tests as well as in diagnosed genetic DSD disorders.

RevDate: 2024-03-28

Duseikaite M, Vilkeviciute A, Kunceviciene E, et al (2024)

Associations between ZNF676, CTC1 Gene Polymorphisms and Relative Leukocyte Telomere Length with Myopia and Its Degree.

Biomedicines, 12(3): pii:biomedicines12030538.

BACKGROUND: The interaction between environmental and genetic factors that influence eye growth, regulated by vision, contributes to the development and progression of myopia. This dynamic interaction significantly contributes to the multifaceted development and progression of myopia, a prevalent ocular condition. Our study delves into the associations between ZNF676 and CTC1 gene polymorphisms and their impact on the relative leukocyte telomere length (relative LTL) in myopia, as well as its degree. By unravelling these underpinnings in conjunction with environmental influences, we aim to enhance our understanding of the complex mechanisms that drive the onset and severity of myopia.

METHODS: This study included patients with myopia and ophthalmologically healthy subjects. DNA was extracted from peripheral venous blood by the salting out method. Genotyping of ZNF676 rs412658 and CTC1 rs3027234, as well as the measurement of relative LTL, were conducted using a real-time polymerase chain reaction method (RT-PCR). The data obtained were statistically analyzed using the "IBM SPSS Statistics 29.0" software program.

RESULTS: The results show that myopic patients who are homozygous for the rs3027234 rare allele genotype of the CTC1 gene have statistically significantly shorter relative LTL compared to patients with the CC and CT genotypes. Also, men with the CTC1 rs3027234 TT genotype have statistically significantly longer leukocyte telomeres than women with the same genotype. The respective median (IQR) of the relative LTL for women and men is 0.280 (0.463) vs. 0.696 (0.440), with a p-value of 0.027. The myopia group with the ZNF676 rs412658 CC genotype has statistically significantly shorter leukocyte telomeres than the control group with the same genotype (age ≤ 29), and the p-value is 0.011. Also, the myopia group with the ZNF676 rs412658 CT and CTC1 rs3027234 CT genotypes have statistically significantly longer leukocyte telomeres than the control group with the same genotypes (age > 29), with p-values that are, respectively, 0.016 and 0.012. The evaluation of the genotype distributions of the polymorphisms in the myopia patients showed that ZNF676 rs412658 CT genotype carriers have 4-fold decreased odds of high myopia occurrence (OR = 0.250; CI: 0.076-0.826; p = 0.023). Also, the evaluation of the allele distributions of the polymorphism under the additive genetic model in the myopia group showed that the ZNF676 rs412658 T allele was associated with similar odds of high myopia (OR = 0.269; 95% CI: 0.090-0.807; p = 0.019). The comprehensive p-value, assessing the relative LTL of subjects across the different levels of myopia, signifies a statistical difference in the relative LTL among individuals with varying degrees of myopia. There was a statistically significant difference in relative LTL between mild and moderate myopia degrees (0.819 (1.983) vs. 0.083 (0.930), p = 0.007).

CONCLUSIONS: CTC1 rs3027234 TT may be considered a protective genotype for telomere shortening in men, while the overall telomere shortening might be linked to the worse myopia degree. The ZNF676 rs412658 T allele may protect against a high myopia occurrence.

RevDate: 2024-03-28

Mutz J, Wong WLE, Powell TR, et al (2024)

The duration of lithium use and biological ageing: telomere length, frailty, metabolomic age and all-cause mortality.

GeroScience [Epub ahead of print].

Lithium is an established first-line treatment for bipolar disorder. Beyond its therapeutic effect as a mood stabiliser, lithium exhibits potential anti-ageing effects. This study aimed to examine the relationship between the duration of lithium use, biological ageing and mortality. The UK Biobank is an observational study of middle-aged and older adults. We tested associations between the duration of lithium use (number of prescriptions, total duration of use and duration of the first prescription period) and telomere length, frailty, metabolomic age (MileAge) delta, pulse rate and all-cause mortality. Five hundred ninety-one individuals (mean age = 57.49 years; 55% females) had been prescribed lithium. There was no evidence that the number of prescriptions (β = - 0.022, 95% CI - 0.081 to 0.037, p = 0.47), the total duration of use (β = - 0.005, 95% CI - 0.023 to 0.013, p = 0.57) or the duration of the first prescription period (β = - 0.018, 95% CI - 0.051 to 0.015, p = 0.29) correlated with telomere length. There was also no evidence that the duration of lithium use correlated with frailty or MileAge delta. However, a higher prescription count and a longer duration of use was associated with a lower pulse rate. The duration of lithium use did not predict all-cause mortality. We observed no evidence of associations between the duration of lithium use and biological ageing markers, including telomere length. Our findings suggest that the potential anti-ageing effects of lithium do not differ by the duration of use.

RevDate: 2024-03-27

Xu B, Ren J, Zhu S, et al (2024)

Causal relationship between telomere length and risk of intracranial aneurysm: a bidirectional Mendelian randomization study.

Frontiers in neurology, 15:1355895.

BACKGROUND: Telomere length is closely linked to the aging phenotype, where cellular aging results in the production of a cascade of cell factors and the senescence-associated secretory phenotype (SASP), leading to an inflammatory response. The presence of inflammation plays a crucial role in the formation of intracranial aneurysms. Nevertheless, the relationship between telomere length and intracranial aneurysms remains unclear. This study aims to explore the causal connection between telomere length and intracranial aneurysms through the utilization of Mendelian randomization (MR) analysis.

METHODS: Data on telomere length were obtained from the genome-wide association studies conducted on the UK Biobank, comprising a total of 472,174 participants. Data on intracranial aneurysms were obtained from the summary dataset of the Global Genome-wide Association Study (GWAS) conducted by the International Stroke Genetics Consortium. The dataset consisted of 7,495 cases and 71,934 controls, all of European descent. Initially, the linkage disequilibrium score was used to investigate the connection between telomere length and intracranial aneurysms. Subsequently, a bidirectional MR was conducted using two-sample analysis to assess whether there is a causal connection between telomere length and intracranial aneurysm risk. The results were analyzed utilizing five MR methods, with the inverse variance weighted method serving as the main methodology. In addition, we did various analyses to evaluate the presence of heterogeneity, pleiotropy, and sensitivity in the study results. A reverse MR analysis was conducted to investigate potential reverse causal links.

RESULTS: In the forward MR analysis, it was observed that both the inverse variance-weighted and weighted median analyses implied a potential causal relationship between longer telomere length and a decreased incidence of intracranial aneurysms (IVW: OR = 0.66, 95% CI: 0.47-0.92, p = 1.49 × 10[-2]). There was no heterogeneity or horizontal pleiotropy. The findings were verified to be robust through the utilization of leave-one-out analysis. The use of reverse MR analysis did not establish a potential causal link between the occurrence of intracranial aneurysms and telomere length.

CONCLUSION: There may exist a potential correlation between longer telomere length and a decreased likelihood of intracranial aneurysms within the European population. The present study offers novel insights into the correlation between telomere length and intracranial aneurysms. Additional research is required to clarify the underlying mechanisms and validate our discoveries in diverse populations.

RevDate: 2024-03-25

Chauhan VS, Sibin MK, Yadav P, et al (2024)

To study childhood trauma in patients with bipolar affective disorder and its association with leucocyte telomere length.

Medical journal, Armed Forces India, 80(2):184-191.

BACKGROUND: Childhood traumatic (CT) events are more frequent in Bipolar Affective Disorder (BD) than in healthy individuals. As per existing studies, telomere shortening might be associated with psychiatric illnesses and aging-related disorders. One basis could be CT in BD aiding in telomere shortening.

METHODS: 100 BD patients and 100 healthy controls (HC) were matched for age and sex. All the participants were administered Childhood Trauma Questionnaire (CTQ). Subsequently, Quantitative Polymerase Chain Reaction (q-PCR) was performed in order to verify leukocyte telomere length (LTL) for both cases and controls.

RESULTS: Presence of subtypes of moderate to severe CT among cases revealed emotional abuse in 35%, physical abuse in 16%, and sexual abuse in 15%. BD patients had significantly shorter telomeres in comparison to HC. BD patients with CT had significantly shorter LTL as compared to healthy controls with CT. The association between CT and LTL was not statistically significant in cases as well as in controls.

CONCLUSIONS: Our study revealed presence of CT (moderate to severe) in 46% of BD patients and 12% in age and sex-matched healthy controls. All CT subtypes except sexual abuse were significantly higher among cases than in healthy controls. Mean score of LTL among cases including that with CT was significantly lower than the healthy controls.

RevDate: 2024-03-22

Lieber SB, Lipschultz RA, Syed S, et al (2024)

Association of phenotypic frailty and hand grip strength with telomere length in SLE.

Lupus science & medicine, 11(1): pii:11/1/e001008.

OBJECTIVE: Frailty and objective hand grip strength (one of the components of the frailty phenotype) are both risk factors for worse health outcomes in SLE. Whether telomere length, an established cellular senescence marker, is a biologic correlate of the frailty phenotype and hand grip strength in patients with SLE is not clear. First, we aimed to evaluate differences in telomere length between frail and non-frail women with SLE and then assessed whether frailty or hand grip strength is differentially associated with telomere length after adjusting for relevant confounders.

METHODS: Women ≥18 years of age with validated SLE enrolled at a single medical centre. Fried frailty status (which includes hand grip strength), clinical characteristics and telomere length were assessed cross-sectionally. Differences between frail and non-frail participants were evaluated using Fisher's exact or Wilcoxon rank-sum tests. The associations between frailty and hand grip strength and telomere length were determined using linear regression.

RESULTS: Of the 150 enrolled participants, 131 had sufficient data for determination of frailty classification; 26% were frail with a median age of 45 years. There was a non-significant trend towards shorter telomere length in frail versus non-frail participants (p=0.07). Hand grip strength was significantly associated with telomere length (beta coefficient 0.02, 95% CI 0.004, 0.04), including after adjustment for age, SLE disease activity and organ damage, and comorbidity (beta coefficient 0.02, 95% CI 0.002, 0.04).

CONCLUSIONS: Decreased hand grip strength, but not frailty, was independently associated with shortened telomere length in a cohort of non-elderly women with SLE. Frailty in this middle-aged cohort may be multifactorial rather than strictly a manifestation of accelerated ageing.

RevDate: 2024-03-22

Wei B, Zhou Y, Li Q, et al (2024)

Outdoor fine particulate matter exposure and telomere length in humans: A systematic review and meta-analysis.

Ecotoxicology and environmental safety, 275:116206 pii:S0147-6513(24)00282-3 [Epub ahead of print].

Although the association between changes in human telomere length (TL) and ambient fine particulate matter (PM2.5) has been documented, there remains disagreement among the related literature. Our study conducted a systematic review and meta-analysis of epidemiological studies to investigate the health effects of outdoor PM2.5 exposure on human TL after a thorough database search. To quantify the overall effect estimates of TL changes associated with every 10 μg/m[3] increase in PM2.5 exposure, we focused on two main topics, which were outdoor long-term exposure and prenatal exposure of PM2.5. Additionally, we included a summary of short-term PM2.5 exposure and its impact on TL due to limited data availability. Our qualitative analysis included 20 studies with 483,600 participants. The meta-analysis showed a statistically significant association between outdoor PM2.5 exposure and shorter human TL, with pooled impact estimates (β) of -0.12 (95% CI: -0.20, -0.03, I[2]= 95.4%) for general long-term exposure and -0.07 (95% CI: -0.15, 0.00, I[2]= 74.3%) for prenatal exposure. In conclusion, our findings suggest that outdoor PM2.5 exposure may contribute to TL shortening, and noteworthy associations were observed in specific subgroups, suggesting the impact of various research variables. Larger, high-quality studies using standardized methodologies are necessary to strengthen these conclusions further.

RevDate: 2024-03-22

Carver AJ, Hing B, Elser BA, et al (2024)

Correlation of telomere length in brain tissue with peripheral tissues in living human subjects.

Frontiers in molecular neuroscience, 17:1303974.

Telomeres are important to chromosomal stability, and changes in their length correlate with disease, potentially relevant to brain disorders. Assessing telomere length in human brain is invasive, but whether peripheral tissue telomere length correlates with that in brain is not known. Saliva, buccal, blood, and brain samples were collected at time points before, during, and after subjects undergoing neurosurgery (n = 35) for intractable epilepsy. DNA was isolated from samples and average telomere length assessed by qPCR. Correlations of telomere length between tissue samples were calculated across subjects. When data were stratified by sex, saliva telomere length correlated with brain telomere length in males only. Buccal telomere length correlated with brain telomere length when males and females were combined. These findings indicate that in living subjects, telomere length in peripheral tissues variably correlates with that in brain and may be dependent on sex. Peripheral tissue telomere length may provide insight into brain telomere length, relevant to assessment of brain disorder pathophysiology.

RevDate: 2024-03-22

Chien CW, Tang YA, Jeng SL, et al (2024)

Blastocyst telomere length predicts successful implantation after frozen-thawed embryo transfer.

Human reproduction open, 2024(2):hoae012 pii:hoae012.

STUDY QUESTION: Do embryos with longer telomere length (TL) at the blastocyst stage have a higher capacity to survive after frozen-thawed embryo transfer (FET)?

SUMMARY ANSWER: Digitally estimated TL using low-pass whole genome sequencing (WGS) data from the preimplantation genetic testing for aneuploidy (PGT-A) process demonstrates that blastocyst TL is the most essential factor associated with likelihood of implantation.

WHAT IS KNOWN ALREADY: The lifetime TL is established in the early cleavage cycles following fertilization through a recombination-based lengthening mechanism and starts erosion beyond the blastocyst stage. In addition, a telomerase-mediated slow erosion of TL in human fetuses has been observed from a gestational age of 6-11 weeks. Finally, an abnormal shortening of telomeres is likely involved in embryo loss during early development.

STUDY DESIGN SIZE DURATION: Blastocyst samples were obtained from patients who underwent PGT-A and FET in an IVF center from March 2015 to May 2018. Digitally estimated mitochondrial copy number (mtCN) and TL were used to study associations with the implantation potential of each embryo.

In total, 965 blastocysts from 232 cycles (164 patients) were available to investigate the biological and clinical relevance of TL. A WGS-based workflow was applied to determine the ploidy of each embryo. Data from low-pass WGS-PGT-A were used to estimate the mtCN and TL for each embryo. Single-variant and multi-variant logistic regression, decision tree, and random forest models were applied to study various factors in association with the implantation potential of each embryo.

Of the 965 blastocysts originally available, only 216 underwent FET. While mtCN from the transferred embryos is significantly associated with the ploidy call of each embryo, mtCN has no role in impacting IVF outcomes after an embryo transfer in these women. The results indicate that mtCN is a marker of embryo aneuploidy. On the other hand, digitally estimated TL is the most prominent univariant factor and showed a significant positive association with pregnancy outcomes (P < 0.01, odds ratio 79.1). We combined several maternal and embryo parameters to study the joint effects on successful implantation. The machine learning models, namely decision tree and random forest, were trained and yielded classification accuracy of 0.82 and 0.91, respectively. Taken together, these results support the vital role of TL in governing implantation potential, perhaps through the ability to control embryo survival after transfer.

The small sample size limits our study as only 216 blastocysts were transferred. The number was further reduced to 153 blastocysts, where pregnancy outcomes could be accurately traced. The other limitation of this study is that all data were collected from a single IVF center. The uniform and controlled operation of IVF cycles in a single center may cause selection bias.

We present novel findings to show that digitally estimated TL at the blastocyst stage is a predictor of pregnancy capacity after a FET cycle. As elective single-embryo transfer has become the mainstream direction in reproductive medicine, prioritizing embryos based on their implantation potential is crucial for clinical infertility treatment in order to reduce twin pregnancy rate and the time to pregnancy in an IVF center. The AI-powered, random forest prediction model established in this study thus provides a way to improve clinical practice and optimize the chances for people with fertility problems to achieve parenthood.

This study was supported by a grant from the National Science and Technology Council, Taiwan (MOST 108-2321-B-006-013 -). There were no competing interests.

TRIAL REGISTRATION NUMBER: N/A.

RevDate: 2024-03-21

An G, Zhao X, C Zhao (2024)

Unraveling the causal association between leukocyte telomere length and infertility: A two-sample Mendelian randomization study.

PloS one, 19(3):e0298997 pii:PONE-D-23-32653.

Infertility is a significant challenge in modern society, and observed studies have reported the association between telomere length and infertility. Whether this relationship is causal remains controversial.We employed two-sample mendelian randomization (MR) to investigate the causal relationship between leukocyte telomere length (LTL) and major causes of infertility, including male and female infertility, sperm abnormalities, and endometriosis. MR analyses were mainly performed using the inverse variance weighted (IVW) method and complemented with other MR methods.Our findings demonstrate a causal association between LTL and endometriosis (OR1.304, 95% CI (1.122,1.517), p = 0.001), suggesting its potential as a biomarker for this condition. However, we did not observe a significant causal relationship between LTL and other infertility causes.Our study presents compelling evidence on the relationship between LTL and endometriosis. Meanwhile, our study demonstrates that there is no causal relationship between LTL and infertility. This research contributes to the field by shedding light on the importance of LTL in the early diagnosis and intervention of endometriosis.

RevDate: 2024-03-21

Keller D, Stinus S, Umlauf D, et al (2024)

Non-random spatial organization of telomeres varies during the cell cycle and requires LAP2 and BAF.

iScience, 27(4):109343.

Spatial genome organization within the nucleus influences major biological processes and is impacted by the configuration of linear chromosomes. Here, we applied 3D spatial statistics and modeling on high-resolution telomere and centromere 3D-structured illumination microscopy images in cancer cells. We found a multi-scale organization of telomeres that dynamically evolved from a mixed clustered-and-regular distribution in early G1 to a purely regular distribution as cells progressed through the cell cycle. In parallel, our analysis revealed two pools of peripheral and internal telomeres, the proportions of which were inverted during the cell cycle. We then conducted a targeted screen using MadID to identify the molecular pathways driving or maintaining telomere anchoring to the nuclear envelope observed in early G1. Lamina-associated polypeptide (LAP) proteins were found transiently localized to telomeres in anaphase, a stage where LAP2α initiates the reformation of the nuclear envelope, and impacted telomere redistribution in the next interphase together with their partner barrier-to-autointegration factor (BAF).

RevDate: 2024-03-21

Wolf SE, Woodruff MJ, Chang van Oordt DA, et al (2024)

Among-population variation in telomere regulatory proteins and their potential role as hidden drivers of intraspecific variation in life history.

The Journal of animal ecology [Epub ahead of print].

Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12-day-old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day-old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.

RevDate: 2024-03-20

Hastings WJ, Ye Q, Wolf SE, et al (2024)

Effect of long-term caloric restriction on telomere length in healthy adults: CALERIE™ 2 trial analysis.

Aging cell [Epub ahead of print].

Caloric restriction (CR) modifies lifespan and aging biology in animal models. The Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE™) 2 trial tested translation of these findings to humans. CALERIE™ randomized healthy, nonobese men and premenopausal women (age 21-50y; BMI 22.0-27.9 kg/m[2]), to 25% CR or ad-libitum (AL) control (2:1) for 2 years. Prior analyses of CALERIE™ participants' blood chemistries, immunology, and epigenetic data suggest the 2-year CR intervention slowed biological aging. Here, we extend these analyses to test effects of CR on telomere length (TL) attrition. TL was quantified in blood samples collected at baseline, 12-, and 24-months by quantitative PCR (absolute TL; aTL) and a published DNA-methylation algorithm (DNAmTL). Intent-to-treat analysis found no significant differences in TL attrition across the first year, although there were trends toward increased attrition in the CR group for both aTL and DNAmTL measurements. When accounting for adherence heterogeneity with an Effect-of-Treatment-on-the-Treated analysis, greater CR dose was associated with increased DNAmTL attrition during the baseline to 12-month weight-loss period. By contrast, both CR group status and increased CR were associated with reduced aTL attrition over the month 12 to month 24 weight maintenance period. No differences were observed when considering TL change across the study duration from baseline to 24-months, leaving it unclear whether CR-related effects reflect long-term detriments to telomere fidelity, a hormesis-like adaptation to decreased energy availability, or measurement error and insufficient statistical power. Unraveling these trends will be a focus of future CALERIE™ analyses and trials.

RevDate: 2024-03-19

Dos Santos GA, Viana NI, Pimenta R, et al (2024)

Upregulation of shelterin and CST genes and longer telomeres are associated with unfavorable prognostic characteristics in prostate cancer.

Cancer genetics, 284-285:20-29 pii:S2210-7762(24)00012-7 [Epub ahead of print].

INTRODUCTION: Search for new clinical biomarkers targets in prostate cancer (PC) is urgent. Telomeres might be one of these targets. Telomeres are the extremities of linear chromosomes, essential for genome stability and control of cell divisions. Telomere homeostasis relies on the proper functioning of shelterin and CST complexes. Telomeric dysfunction and abnormal expression of its components are reported in most cancers and are associated with PC. Despite this, there are only a few studies about the expression of the main telomere complexes and their relationship with PC progression. We aimed to evaluate the role of shelterin (POT1, TRF2, TPP1, TIN2, and RAP1) and CST (CTC1, STN1, and TEN1) genes and telomere length in the progression of PC.

METHODS: We evaluated genetic alterations of shelterin and CST by bioinformatics in samples of localized (n = 499) and metastatic castration-resistant PC (n = 444). We also analyzed the expression of the genes using TCGA (localized PC n = 497 and control n = 152) and experimental approaches, with surgical specimens (localized PC n = 81 and BPH n = 10) and metastatic cell lines (LNCaP, DU145, PC3 and PNT2 as control) by real-time PCR. Real-time PCR also determined the telomere length in the same experimental samples. All acquired data were associated with clinical parameters.

RESULTS: Genetic alterations are uncommon in PC, but POT1, TIN2, and TEN1 showed significantly more amplifications in the metastatic cancer. Except for CTC1 and TEN1, which are differentially expressed in localized PC samples, we did not detect an expression pattern relative to control and cell lines. Nevertheless, except for TEN1, the upregulation of all genes is associated with a worse prognosis in localized PC. We also found that increased telomere length is associated with disease aggressiveness in localized PC.

CONCLUSION: The upregulation of shelterin and CST genes creates an environment that favors telomere elongation, giving selective advantages for localized PC cells to progress to more aggressive stages of the disease.

RevDate: 2024-03-19

Li Y, Chen J, Sun T, et al (2024)

Genetically determined telomere length and risk for haematologic diseases: results from large prospective cohorts and Mendelian Randomization analysis.

Blood cancer journal, 14(1):48.

RevDate: 2024-03-18

Gürel S, Pak EN, NA Tek (2024)

Aging Processes Are Affected by Energy Balance: Focused on the Effects of Nutrition and Physical Activity on Telomere Length.

Current nutrition reports [Epub ahead of print].

PURPOSE OF REVIEW: The number and proportion of individuals aged 60 and over are increasing globally. The increase in the elderly population has important social and economic effects. Telomere length is an important marker for healthy aging. Here, we review the relevance between telomere length and energy balance by determining the effects of physical activity, nutrients, dietary patterns, and foods on healthy aging and telomere length with related studies.

RECENT FINDINGS: Evidence emphasizes the importance of telomere length and integrity for healthy aging. It also focuses on the importance of potential interventions such as physical activity and a healthy diet to improve this process. We suggest that ensuring energy balance with regular physical activity and healthy diets can contribute to the aging process by protecting telomere length. In addition, different methods in studies, short and inconsistent durations, different types of exercise, different diet patterns, and non-standard foods have led to conflicting results. More studies are needed to elucidate molecular-based mechanisms.

RevDate: 2024-03-17

Zhang Y, Zhu Y, Zhang X, et al (2024)

The association of sleep duration and leukocyte telomere length in middle-aged and young-old adults: A cross-sectional study of UK Biobank.

Sleep medicine, 117:18-24 pii:S1389-9457(24)00091-1 [Epub ahead of print].

BACKGROUND: The relationships between sleep duration and aging-associated diseases are intricate. Leukocyte telomere length (LTL) is a biomarker of aging, while the association of sleep duration and LTL is unclear.

METHODS: The 310,091 study participants from UK Biobank were enrolled in this cross-sectional study. Restricted cubic splines (RCS) analysis was firstly performed to assess the nonlinear relationship between sleep duration and LTL. Sleep duration was then categorized into three groups: <7 h (short sleep duration), 7-8 h (reference group), and >8 h (long sleep duration) and multiple linear regression was applied to analyze the association of short sleep and long sleep duration with LTL. We further performed subgroup analyses stratified by sex, age, chronotype and snoring.

RESULTS: RCS showed an inverted J-shaped relationship between sleep duration and LTL. Compared with the reference group, the inverse association of long sleep duration and LTL was statistically significant in fully-adjusted model (P = 0.001). Subgroup analyses showed that this association was more apparent in people over 50 years (51-60 y: P = 0.002; >60 y: P = 0.005), in men (P = 0.022), and in people preferred evening chronotype (P = 0.001).

CONCLUSION: Compared with participants sleeping 7-8 h, those sleep longer than 8 h had shorter LTL in middle-aged and young-old adults. The negative association between long sleep duration and LTL was more apparent in older people, in men, and in people preferred evening chronotype.

RevDate: 2024-03-17

Závodník M, Pavlištová V, Machelová A, et al (2024)

KU70 and CAF-1 in Arabidopsis: Divergent roles in rDNA stability and telomere homeostasis.

The Plant journal : for cell and molecular biology [Epub ahead of print].

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.

RevDate: 2024-03-17

Ojeda-Rodriguez A, Rangel-Zuñiga OA, Arenas-de Larriva AP, et al (2024)

Telomere length as biomarker of nutritional therapy for prevention of type 2 diabetes mellitus development in patients with coronary heart disease: CORDIOPREV randomised controlled trial.

Cardiovascular diabetology, 23(1):98.

BACKGROUND: Telomere Length (TL), a marker of cellular aging, holds promise as a biomarker to elucidate the molecular mechanism of diabetes. This study aimed to investigate whether shorter telomeres are associated with a higher risk of type 2 diabetes mellitus (T2DM) incidence in patients with coronary heart disease; and to determine whether the most suitable dietary patterns, particularly a Mediterranean diet or a low-fat diet, can mitigate the development of diabetes in these patients after a follow-up period of five years.

METHODS: The CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (CORDIOPREV study) was a single-centre, randomised clinical trial done at the Reina Sofia University Hospital in Córdoba, Spain. Patients with established coronary heart disease (aged 20-75 years) were randomly assigned in a 1:1 ratio by the Andalusian School of Public Health to receive two healthy diets. Clinical investigators were masked to treatment assignment; participants were not. Quantitative-PCR was used to assess TL measurements.

FINDINGS: 1002 patients (59.5 ± 8.7 years and 82.5% men) were enrolled into Mediterranean diet (n = 502) or a low-fat diet (n = 500) groups. In this analysis, we included all 462 patients who did not have T2DM at baseline. Among them, 107 patients developed T2DM after a median of 60 months. Cox regression analyses showed that patients at risk of short telomeres (TL < percentile 20th) are more likely to experience T2DM than those at no risk of short telomeres (HR 1.65, p-value 0.023). In terms of diet, patients at high risk of short telomeres had a higher risk of T2DM incidence after consuming a low-fat diet compared to patients at no risk of short telomeres (HR 2.43, 95CI% 1.26 to 4.69, p-value 0.008), while no differences were observed in the Mediterranean diet group.

CONCLUSION: Patients with shorter TL presented a higher risk of developing T2DM. This association could be mitigated with a specific dietary pattern, in our case a Mediterranean diet, to prevent T2DM in patients with coronary heart disease.

TRIAL REGISTRATION: Clinicaltrials.gov number NCT00924937.

RevDate: 2024-03-15

Liu CC, Capart MMM, JJ Lin (2024)

Mismatch repair enzymes regulate telomere recombination in Saccharomycescerevisiae.

Biochemical and biophysical research communications, 707:149768 pii:S0006-291X(24)00304-8 [Epub ahead of print].

DNA mismatch repair (MMR) is a crucial mechanism that ensures chromosome stability and prevents the development of various human cancers. Apart from its role in correcting mismatches during DNA replication, MMR also plays a significant role in regulating recombination between non-identical sequences, a process known as homeologous recombination. Telomeres, the protective ends of eukaryotic chromosomes, possess sequences that are not perfectly homologous. While telomerase primarily maintains telomere length in the yeast Saccharomyces cerevisiae, recombination between telomeres becomes a major pathway for length maintenance in cells lacking telomerase. This study investigates the participation of MMR in telomere recombination. Our findings reveal that mutations in MMR genes activate type I recombination. Notably, among the MMR proteins, MutSα (Msh2 and Msh6) and MutLα (Mlh1 and Pms1) exerted the most pronounced effects on telomere recombination. We also found that yeast cells containing simple human telomeric TTAGGG DNA sequences preferentially utilize type II recombination to maintain their telomeres, highlighting the influence of the heterogeneous nature of yeast telomeric sequences on type II recombination. Furthermore, our observations indicate that MMR activity is indispensable for its impact on telomere recombination. Collectively, these results contribute to a more comprehensive understanding of the role of MMR in telomere recombination.

RevDate: 2024-03-15

Frontiers Editorial Office (2024)

Retraction: Obesity accelerates leukocyte telomere length shortening in apparently healthy adults: a meta-analysis.

Frontiers in nutrition, 11:1390502.

[This retracts the article DOI: 10.3389/fnut.2022.812846.].

RevDate: 2024-03-15

Zhang J, Ruiz M, Bergh PO, et al (2024)

Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2.

Nature communications, 15(1):2315.

The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.

RevDate: 2024-03-14

Alanazi AFR, Parkinson GN, S Haider (2024)

Structural Motifs at the Telomeres and Their Role in Regulatory Pathways.

Biochemistry [Epub ahead of print].

Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.

RevDate: 2024-03-13

Du X, Guo C, Zhang C, et al (2024)

Causal Association of Telomere Length and Loss of Bone: a Directional Mendelian Randomization Study of Multi-Outcomes.

Applied biochemistry and biotechnology [Epub ahead of print].

This study employed a genome-wide association study (GWAS) to investigate the relationship between telomere length and marginal bone loss (MBL), a marker of bone health and aging. Telomere length, a biological indicator of aging, was analyzed alongside several serum markers of bone loss. Following a screen for appropriate instrumental variables, telomere length was designated as the exposure variable. We conducted the main analysis using random-effects inverse variance weighting (IVW) and supplemented it with MR Egger, weighted median, simple mode, and weighted mode analyses, employing a total of five methods. Positive outcomes underwent scrutiny through heterogeneity analysis, horizontal multiplicity analysis, and leave-one-out plot. Subsequently, the effective gene locus was chosen for a reverse MR analysis, with positive results serving as the exposure variable. We found a causal relationship between telomere length and the expression of osteocalcin (OC), matrix metalloproteinase-3 (MMP-3), and matrix metalloproteinase-12 (MMP-12), key markers of bone metabolism. Our findings suggest that telomere wear and shortening may contribute to increased activity of OC, MMP-3, and MMP-12, thus affecting bone metabolism. However, reverse Mendelian randomization analysis did not indicate a significant impact of OC, MMP-3, and MMP-12 on telomere length, implying a unidirectional relationship. Overall, this meta-analysis underscores the association between telomere length and bone loss, highlighting the importance of timing and duration of telomere wear and shortening in influencing bone metabolism.

RevDate: 2024-03-13

Gao Z, Santos RB, Rupert J, et al (2024)

Endothelial-specific telomerase inactivation causes telomere-independent cell senescence and multi-organ dysfunction characteristic of aging.

Aging cell [Epub ahead of print].

It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.

RevDate: 2024-03-13

Li J, Wang W, Yang Z, et al (2024)

Causal association of obesity with epigenetic aging and telomere length: a bidirectional mendelian randomization study.

Lipids in health and disease, 23(1):78.

BACKGROUND: In observational studies, there exists an association between obesity and epigenetic age as well as telomere length. However, varying and partially conflicting outcomes have notably arisen from distinct studies on this topic. In the present study, two-way Mendelian randomization was used to identify potential causal associations between obesity and epigenetic age and telomeres.

METHODS: A genome-wide association study was conducted using data from individuals of European ancestry to investigate bidirectional Mendelian randomization (MR) regarding the causal relationships between obesity, as indicated by three obesity indicators (body mass index or BMI, waist circumference adjusted for BMI or WCadjBMI, and waist-to-hip ratio adjusted for BMI or WHRadjBMI), and four epigenetic age measures (HannumAge, HorvathAge, GrimAge, PhenoAge), as well as telomere length. To assess these causal associations, various statistical methods were employed, including Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Weighted Mode, and Simple Mode. To address the issue of multiple testing, we applied the Bonferroni correction. These methods were used to determine whether there is a causal link between obesity and epigenetic age, as well as telomere length, and to explore potential bidirectional relationships. Forest plots and scatter plots were generated to show causal associations between exposures and outcomes. For a comprehensive visualization of the results, leave-one-out sensitivity analysis plots, individual SNP-based forest plots for MR analysis, and funnel plots were included in the presentation of the results.

RESULTS: A strong causal association was identified between obesity and accelerated HannumAge, GrimAge, PhenoAge and telomere length shrinkage. The causal relationship between WCadjBMI and PhenoAge acceleration (OR: 2.099, 95%CI: 1.248-3.531, p = 0.005) was the strongest among them. However, only the p-values for the causal associations of obesity with GrimAge, PhenoAge, and telomere length met the criteria after correction using the Bonferroni multiple test. In the reverse MR analysis, there were statistically significant causal associations between HorvathAge, PhenoAge and GrimAge and BMI, but these associations exhibited lower effect sizes, as indicated by their Odds Ratios (ORs). Notably, sensitivity analysis revealed the robustness of the study results.

CONCLUSIONS: The present findings reveal a causal relationship between obesity and the acceleration of epigenetic aging as well as the reduction of telomere length, offering valuable insights for further scientific investigations aimed at developing strategies to mitigate the aging process in humans.

RevDate: 2024-03-12

Chen S, Pan C, Huang J, et al (2024)

ATR limits Rad18-mediated PCNA monoubiquitination to preserve replication fork and telomerase-independent telomere stability.

The EMBO journal [Epub ahead of print].

Upon replication fork stalling, the RPA-coated single-stranded DNA (ssDNA) formed behind the fork activates the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase, concomitantly initiating Rad18-dependent monoubiquitination of PCNA. However, whether crosstalk exists between these two events and the underlying physiological implications of this interplay remain elusive. In this study, we demonstrate that during replication stress, ATR phosphorylates human Rad18 at Ser403, an adjacent residue to a previously unidentified PIP motif (PCNA-interacting peptide) within Rad18. This phosphorylation event disrupts the interaction between Rad18 and PCNA, thereby restricting the extent of Rad18-mediated PCNA monoubiquitination. Consequently, excessive accumulation of the tumor suppressor protein SLX4, now characterized as a novel reader of ubiquitinated PCNA, at stalled forks is prevented, contributing to the prevention of stalled fork collapse. We further establish that ATR preserves telomere stability in alternative lengthening of telomere (ALT) cells by restricting Rad18-mediated PCNA monoubiquitination and excessive SLX4 accumulation at telomeres. These findings shed light on the complex interplay between ATR activation, Rad18-dependent PCNA monoubiquitination, and SLX4-associated stalled fork processing, emphasizing the critical role of ATR in preserving replication fork stability and facilitating telomerase-independent telomere maintenance.

RevDate: 2024-03-11

Stevers NO, JF Costello (2024)

Telomeres in glioma: Maintenance mechanisms to therapeutic potential.

RevDate: 2024-03-11

Eisenberg DTA, Ryan CP, Lee NR, et al (2024)

DNA methylation-based estimators of telomere length show low correspondence with paternal age at conception and other measures of external validity of telomere length.

GeroScience [Epub ahead of print].

In humans, DNA methylation (DNAm) based estimators of telomere length (TL) have been shown to better predict TL-associated variables (e.g., age, sex, and mortality) than TL itself. The biological significance of DNAm-based estimators of TL (DNAmTL) is unclear. In vitro DNAmTL shortens with cell replications, even when telomerase is maintaining TL. Telomerase is typically suppressed in humans, except in testes. Accordingly, sperm TL increases with age, and offspring with greater paternal age at conception (PAC) have longer TL. Thus, we expect that PAC associations with DNAmTL can shed light on whether in vivo cell replications in the presence of high telomerase activity (production of sperm) shorten DNAmTL or if PAC-lengthened TL causes lengthened DNAmTL. In a pre-registered analysis, using data from 1733 blood samples from the Philippines, we examined the association between paternal age at conception (PAC) and offspring DNAmTL. We did not find an association between PAC and DNAmTL but found a positive association of paternal grandfather's age at father's conception predicting grandchild's DNAmTL. In post hoc analyses, we examined how DNAmTL versus qPCR-measured TL (qPCR-TL) correlated with measures typically associated with TL. Contrary to previous findings, on almost all measures of external validity (correlations with parental TLs, southern blot TL, and age), qPCR-TL outperformed DNAmTL. The "kilobase" units of DNAm-based estimators of TL showed considerable deviations from southern blot-derived kilobase measures. Our findings suggest that DNAmTL is not a reliable index of inherited aspects of TL and underscores uncertainty about the biological meaning of DNAmTL.

RevDate: 2024-03-11

Blanco MB, Smith DL, Greene LK, et al (2024)

Telomere dynamics during hibernation in a tropical primate.

Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology [Epub ahead of print].

Hibernation is a widespread metabolic strategy among mammals for surviving periods of food scarcity. During hibernation, animals naturally alternate between metabolically depressed torpor bouts and energetically expensive arousals without ill effects. As a result, hibernators are promising models for investigating mechanisms that buffer against cellular stress, including telomere protection and restoration. In non-hibernators, telomeres, the protective structural ends of chromosomes, shorten with age and metabolic stress. In temperate hibernators, however, telomere shortening and elongation can occur in response to changing environmental conditions and associated metabolic state. We investigate telomere dynamics in a tropical hibernating primate, the fat-tailed dwarf lemur (Cheirogaleus medius). In captivity, these lemurs can hibernate when maintained under cold temperatures (11-15 °C) with limited food provisioning. We study telomere dynamics in eight fat-tailed dwarf lemurs at the Duke Lemur Center, USA, from samples collected before, during, and after the hibernation season and assayed via qPCR. Contrary to our predictions, we found that telomeres were maintained or even lengthened during hibernation, but shortened immediately thereafter. During hibernation, telomere lengthening was negatively correlated with time in euthermia. Although preliminary in scope, our findings suggest that there may be a preemptive, compensatory mechanism to maintain telomere integrity in dwarf lemurs during hibernation. Nevertheless, telomere shortening immediately afterward may broadly result in similar outcomes across seasons. Future studies could profitably investigate the mechanisms that offset telomere shortening within and outside of the hibernation season and whether those mechanisms are modulated by energy surplus or crises.

RevDate: 2024-03-11

Smoom R, May CL, Skordalakes E, et al (2024)

Separation of telomere protection from length regulation by two different point mutations at amino acid 492 of RTEL1.

bioRxiv : the preprint server for biology pii:2024.02.26.582005.

RTEL1 is an essential DNA helicase that plays multiple roles in genome stability and telomere length regulation. A variant of RTEL1 with a lysine at position 492 is associated with short telomeres in Mus spretus , while a conserved methionine at this position is found in M. musculus, which has ultra-long telomeres. In humans, a missense mutation at this position (RTEL1 [M492I]) causes a fatal telomere biology disease termed Hoyeraal-Hreidarsson syndrome (HHS). We previously described a M. musculus mouse model termed 'Telomouse', in which changing methionine 492 to a lysine (M492K) shortened the telomeres to their length in humans. Here, we report on the derivation of a mouse strain carrying the M492I mutation, termed 'HHS mouse'. The HHS mouse telomeres are not as short as those of Telomice but nevertheless they display higher levels of telomeric DNA damage, fragility and recombination, associated with anaphase bridges and micronuclei. These observations indicate that the two mutations separate critical functions of RTEL1: M492K mainly reduces the telomere length setpoint, while M492I predominantly disrupts telomere protection. The two mouse models enable dissecting the mechanistic roles of RTEL1 and the different contributions of short telomeres and DNA damage to telomere biology diseases, genomic instability, cancer, and aging.

RevDate: 2024-03-11

Zhao R, Xu M, Wondisford AR, et al (2024)

SUMO Promotes DNA Repair Protein Collaboration to Support Alterative Telomere Lengthening in the Absence of PML.

bioRxiv : the preprint server for biology pii:2024.02.29.582813.

Alternative lengthening of telomeres (ALT) pathway maintains telomeres in a significant fraction of cancers associated with poor clinical outcomes. A better understanding of ALT mechanisms can provide a basis for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins plays a critical role in the formation of ALT telomere-associated PML bodies (APBs), where telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, whether and how SUMO contributes to ALT beyond APB formation remains elusive. Here, we report that SUMO promotes collaboration among DNA repair proteins to achieve APB-independent telomere maintenance. By using ALT cancer cells with PML protein knocked out and thus devoid of APBs, we show that sumoylation is required for manifesting ALT features, including telomere clustering and telomeric DNA synthesis, independent of PML and APBs. Further, small molecule-induced telomere targeting of SUMO produces signatures of phase separation and ALT features in PML null cells in a manner depending on both sumoylation and SUMO interaction with SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are linked to the enrichment of DNA repair proteins, including Rad52, Rad51AP1, and BLM, to the SUMO-containing telomere foci. Finally, we find that Rad52 can undergo phase separation, enrich SUMO on telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that, in addition to forming APBs, SUMO also promotes collaboration among DNA repair proteins to support telomere maintenance in ALT cells. Given the promising effects of sumoylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.

RevDate: 2024-03-11

Jian X, Sun W, Zhang J, et al (2024)

Frailty mediating the causality between leucocyte telomere length and mortality: a cohort study of 440,551 UK Biobank participants.

The EPMA journal, 15(1):99-110.

INTRODUCTION: Previous studies reported leucocyte telomere length (LTL) and frailty were associated with mortality, but it remains unclear whether frailty serves as a mediator in the relationship between leucocyte telomere length and mortality risk. This study aimed to evaluate how measuring LTL and frailty can support early monitoring and prevention of risk of mortality from the prospective of predictive, preventive, and personalized medicine (PPPM/3PM).

METHODS: We included 440,551 participants from the UK Biobank between the baseline visit (2006-2010) and November 30, 2022. The time-dependent Cox proportional hazards model was conducted to assess the association between LTL and frailty index with the risk of mortality. Furthermore, we conducted causal mediation analyses to examine the extent to which frailty mediated the association between LTL and mortality.

RESULTS: During a median follow-up of 13.74 years, each SD increase in LTL significantly decreased the risk of all-cause [hazard ratio (HR): 0.94, 95% confidence interval (CI): 0.93-0.95] and CVD-specific mortality (HR: 0.92, 95% CI: 0.90-0.95). The SD increase in FI elevated the risk of all-cause (HR: 1.35, 95% CI: 1.34-1.36), CVD-specific (HR: 1.47, 95% CI: 1.44-1.50), and cancer-specific mortality (HR: 1.22, 95% CI: 1.20-1.24). Frailty mediated approximately 10% of the association between LTL and all-cause and CVD-specific mortality.

CONCLUSIONS: Our results indicate that frailty mediates the effect of LTL on all-cause and CVD-specific mortality. There findings might be valuable to predict, prevent, and reduce mortality through primary prevention and healthcare in context of PPPM.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-024-00355-7.

RevDate: 2024-03-09

Xu M, Senanayaka D, Zhao R, et al (2024)

TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells.

Nature communications, 15(1):2165.

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.

RevDate: 2024-03-08

Li Y, Lai S, X Kan (2024)

Causal relationship between immune cells and telomere length: mendelian randomization analysis.

BMC immunology, 25(1):19.

BACKGROUND: The causal relationship between immune cells and telomere length remains controversial.

METHODS: Data on the immune cells were obtained from a previous study with 3,757 participants. Data on telomere length were obtained from the OpenGWAS database. Genome-Wide Association Study (GWAS) data were obtained and screened for eligible instrumental variables (IVs) using the TwoSampleMR package and the Phenoscanner database. To investigate the genetic causality between immune cells and telomere length, Mendelian randomization (MR) analysis and Bayesian weighted Mendelian randomization (BWMR) analysis were used.

RESULTS: MR analysis showed that there is indeed a genetic causal relationship between immune cells and telomere length. A total of 16 immune cells were successfully validated. A positive correlation was found between telomere length and immune cells such as CD28 + CD45RA + CD8br %CD8br (OR = 1.002, 95%CI: 1.000-1.003). A negative correlation was found between telomere length and immune cells such as Transitional AC (OR = 0.991, 95%CI: 0.984-0.997) (P < 0.05). Reverse MR analysis similarly confirmed that telomere length can affect four types of immune cells, including CD25 on IgD + CD24- (OR = 1.291, 95%CI: 1.060-1.571), at the genetic level.

CONCLUSION: There is indeed a mutual genetic causality between immune cells and telomere length, which will provide theoretical basis and support for more subsequent clinical studies.

RevDate: 2024-03-08

Darian JC, Kundu R, Rajaby R, et al (2024)

Constructing telomere-to-telomere diploid genome by polishing haploid nanopore-based assembly.

Nature methods [Epub ahead of print].

Draft genomes generated from Oxford Nanopore Technologies (ONT) long reads are known to have a higher error rate. Although existing genome polishers can enhance their quality, the error rate (including mismatches, indels and switching errors between paternal and maternal haplotypes) can be significant. Here, we develop two polishers, hypo-short and hypo-hybrid to address this issue. Hypo-short utilizes Illumina short reads to polish an ONT-based draft assembly, resulting in a high-quality assembly with low error rates and switching errors. Expanding on this, hypo-hybrid incorporates ONT long reads to further refine the assembly into a diploid representation. Leveraging on hypo-hybrid, we have created a diploid genome assembly pipeline called hypo-assembler. Hypo-assembler automates the generation of highly accurate, contiguous and nearly complete diploid assemblies using ONT long reads, Illumina short reads and optionally Hi-C reads. Notably, our solution even allows for the production of telomere-to-telomere diploid genomes with additional manual steps. As a proof of concept, we successfully assembled a fully phased telomere-to-telomere diploid genome of HG00733, achieving a quality value exceeding 50.

RevDate: 2024-03-08

Gao C (2024)

Investigating the association between blood metabolites and telomere length: A mendelian randomization study.

PloS one, 19(3):e0298172 pii:PONE-D-23-32682.

BACKGROUND: Telomere length refers to the protective cap at the end of chromosomes, and it plays a crucial role in many diseases. The objective of this study is to explore the relationship between blood metabolites and telomere length, aiming to identify novel biological factors that influence telomere length.

METHODS: In this study, we extracted genome-wide association study (GWAS) data for blood metabolites from a sample of 7824 Europeans. Additionally, GWAS data for telomere length were obtained from the Open GWAS database (GWAS ID: ieu-b-4879). The primary analysis of this study utilized the random inverse variance weighted (IVW) method. Complementary analyses were also conducted using the MR-Egger and weighted median approaches. Sensitivity analyses were performed to assess the robustness of the findings. These included the Cochran Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis. To investigate the possibility of reverse causation, reverse MR analysis was conducted. Additionally, multivariable MR was utilized to evaluate the direct effect of metabolites on telomere length.

RESULTS: The results suggested a potential association between 15-methylpalmitate, taurocholate, levulinate, and X-12712 and telomere length. MVMR analysis further showed that 15-methylpalmitate, taurocholate, and levulinate can directly influence telomere length, regardless of other metabolites.

CONCLUSIONS: This study suggests that 15-methylpalmitate, taurocholate, and levulinate are likely factors correlated with telomere length. These findings will contribute to the development of strategies for protecting telomeres, preventing related diseases, and establishing a new biological foundation for achieving healthy aging.

RevDate: 2024-03-08

Praengam K, Tuntipopipat S, Muangnoi C, et al (2024)

Efficacy of a dietary supplement derived from five edible plants on telomere length in Thai adults: A randomized, double-blind, placebo-controlled trial.

Food science & nutrition, 12(3):1592-1604 pii:FSN33851.

Mylife/Mylife100® is a dietary supplement consisting of black sesame seed, guava fruit, mangosteen aril, pennywort leaves, and soy protein. These edible plants contain multiple high-potential bioactive compounds exerting various vital biological functions including antioxidants which contribute to delaying the rate of telomere shortening. Telomere length is associated with cellular aging and age-related diseases. This study aimed to assess the efficacy of Mylife/Mylife100® on telomere length through a randomized, double-blind placebo-controlled trial. The trial assessed the alteration of leukocyte telomere length after 32 adults aged 50-65 years received either Mylife/Mylife100® or placebo (five capsules/day) for 8-week supplementation. The results demonstrated a significant increase in mean telomere length from baseline (6313 bp) to the 8-week supplementation period (6655 bp; p < 0.05) in the group receiving the product, whereas no significant change was observed in the placebo group. Additionally, the product group exhibited a significant improvement in plasma total antioxidant capacity levels compared to the placebo group (mean change, +35 vs -38; p = 0.006). This study also showed a significant correlation between telomere length and % CD4 + T cells (r = +0.325; p = 0.00003), % CD8 + T cells (r = +0.156; p = 0.048), and visceral fat (r = - 0.349; p = 0.000006). The findings suggest that consuming this dietary supplement (Mylife/Mylife100®) for 8 weeks has a positive effect on cellular aging by lengthening telomeres possible through their antioxidant capacities. Oxidative stress and cellular aging are underlying predisease mechanisms that might be alleviated by supplementing with this product.

RevDate: 2024-03-07

Fang T, Zhang Z, Ren K, et al (2024)

Genetically determined telomere length as a risk factor for hematological malignancies: evidence from Mendelian randomization analysis.

Aging, 16: pii:205625 [Epub ahead of print].

BACKGROUND: Over the past years, the exact correlation between telomere length and hematological malignancies was still not fully understood.

METHODS: We performed a two-sample Mendelian randomization study to investigate the causal relationship between telomere length and hematological malignancies. We selected genetic instruments associated with telomere length. The genetic associations for lymphoid and hematopoietic malignant neoplasms were obtained from the most recent publicly accessible FinnGen study R9 data. Inverse variant weighted (IVW) analysis was adopted as the primary method, and we also performed the weighted-median method and the MR-Egger, and MRPRESSO methods as sensitive analysis.

RESULTS: Significant associations have been observed between telomere length and primary lymphoid (IVW: OR = 1.52, P = 2.11 × 10[-6]), Hodgkin lymphoma (IVW: OR = 1.64, P = 0.014), non-Hodgkin lymphoma (IVW: OR = 1.70, P = 0.002), B-cell lymphoma (IVW: OR = 1.57, P = 0.015), non-follicular lymphoma (IVW: OR = 1.58, P = 1.7 × 10[-3]), mantle cell lymphoma (IVW: OR = 3.13, P = 0.003), lymphoid leukemia (IVW: OR = 2.56, P = 5.92E-09), acute lymphocytic leukemia (IVW: OR = 2.65, P = 0.021) and chronic lymphocytic leukemia (IVW: OR = 2.80, P = 8.21 × 10[-6]), along with multiple myeloma (IVW: OR = 1.85, P = 0.016).

CONCLUSION: This MR study found a significant association between telomere length and a wide range of hematopoietic malignancies. But no substantial impact of lymphoma and hematopoietic malignancies on telomere length has been detected.

RevDate: 2024-03-07

Etherington GJ, Wu PS, Oliferenko S, et al (2024)

Telomere-to-telomere Schizosaccharomyces japonicus genome assembly reveals hitherto unknown genome features.

Yeast (Chichester, England) [Epub ahead of print].

Schizosaccharomyces japonicus belongs to the single-genus class Schizosaccharomycetes, otherwise known as "fission yeasts." As part of a composite model system with its widely studied S. pombe sister species, S. japonicus has provided critical insights into the workings and the evolution of cell biological mechanisms. Furthermore, its divergent biology makes S. japonicus a valuable model organism in its own right. However, the currently available genome assembly contains gaps and has been unable to resolve centromeres and other repeat-rich chromosomal regions. Here we present a telomere-to-telomere long-read genome assembly of the S. japonicus genome. This includes the three megabase-length chromosomes, with centromeres hundreds of kilobases long, rich in 5S ribosomal RNA genes, transfer RNA genes, long terminal repeats, and short repeats. We identify a gene-sparse region on chromosome 2 that resembles a 331 kb centromeric duplication. We revise the genome size of S. japonicus to at least 16.6 Mb and possibly up to 18.12 Mb, at least 30% larger than previous estimates. Our whole genome assembly will support the growing S. japonicus research community and facilitate research in new directions, including centromere and DNA repeat evolution, and yeast comparative genomics.

RevDate: 2024-03-07

Guo X, Li J, Qi Y, et al (2024)

Telomere length and micronuclei trajectories in APP/PS1 mouse model of Alzheimer's disease: Correlating with cognitive impairment and brain amyloidosis in a sexually dimorphic manner.

Aging cell [Epub ahead of print].

Although studies have demonstrated that genome instability is accumulated in patients with Alzheimer's disease (AD), the specific types of genome instability linked to AD pathogenesis remain poorly understood. Here, we report the first characterization of the age- and sex-related trajectories of telomere length (TL) and micronuclei in APP/PS1 mice model and wild-type (WT) controls (C57BL/6). TL was measured in brain (prefrontal cortex, cerebellum, pituitary gland, and hippocampus), colon and skin, and MN was measured in bone marrow in 6- to 14-month-old mice. Variation in TL was attributable to tissue type, age, genotype and, to a lesser extent, sex. Compared to WT, APP/PS1 had a significantly shorter baseline TL across all examined tissues. TL was inversely associated with age in both genotypes and TL shortening was accelerated in brain of APP/PS1. Age-related increase of micronuclei was observed in both genotypes but was accelerated in APP/PS1. We integrated TL and micronuclei data with data on cognition performance and brain amyloidosis. TL and micronuclei were linearly correlated with cognition performance or Aβ40 and Aβ42 levels in both genotypes but to a greater extent in APP/PS1. These associations in APP/PS1 mice were dominantly driven by females. Together, our findings provide foundational knowledge to infer the TL and micronuclei trajectories in APP/PS1 mice during disease progression, and strongly support that TL attrition and micronucleation are tightly associated with AD pathogenesis in a female-biased manner.

RevDate: 2024-03-06

Mu C, Lin M, Shao Y, et al (2024)

Associations between maternal serum neonicotinoid pesticide exposure during pregnancy and newborn telomere length: Effect modification by sampling season.

Ecotoxicology and environmental safety, 273:116164 pii:S0147-6513(24)00239-2 [Epub ahead of print].

BACKGROUND: An increasing amount of evidence suggests that telomere length (TL) at birth can predict lifespan and is associated with chronic diseases later in life, but newborn TL may be affected by environmental pollutants. Neonicotinoids (NEOs) are widely used worldwide, and despite an increasing number of studies showing that they may have adverse effects on birth in mammals and even humans, few studies have examined the effect of NEO exposure on newborn TLs.

OBJECTIVE: To investigate the effects of prenatal exposure to NEOs and the interactions between NEOs and sampling season on newborn TL.

METHODS: We conducted a prospective cohort study of 500 mother-newborn pairs from the Guangxi Zhuang Birth Cohort. Ultraperformance liquid chromatographymass spectrometry was used to detect ten NEOs in maternal serum, and fluorescence quantitative PCR was used to estimate the newborn TL. A generalized linear model (GLM) was used to evaluate the relationships between individual NEO exposures and TLs , and quantile g-computation (Qgcomp) model and Bayesian kernel machine regression (BKMR) model were used to evaluate the combined effect of mixtures of components.

RESULTS: The results of the GLM showed that compared with maternal TMX levels < LOD, maternal TMX levels < median were negatively correlated with newborn TL (-6.93%, 95% CI%: -11.92%, -1.66%), and the decrease in newborn TL was more pronounced in girls (-9.60%, 95% CI: -16.84%, -1.72%). Moreover, different kinds of maternal NEO exposure had different effects on newborn TL in different sampling seasons, and the effect was statistically significant in all seasons except in autumn. Mixed exposure analysis revealed a potential positive trend between NEOs and newborn TL, but the association was not statistically significant.

CONCLUSION: Prenatal exposure to TMX may shorten newborn TL, and this effect is more pronounced among female newborns. Furthermore, the relationship between NEO exposure and TL may be modified by the sampling season.

RevDate: 2024-03-06

Azzalin CM (2024)

TERRA and the alternative lengthening of telomeres: a dangerous affair.

FEBS letters [Epub ahead of print].

Eukaryotic telomeres are transcribed into the long noncoding RNA TERRA. A fraction of TERRA remains associated with telomeres by forming RNA:DNA hybrids dubbed telR-loops. TERRA and telR-loops are essential to promote telomere elongation in human cancer cells that maintain telomeres through a homology-directed repair pathway known as alternative lengthening of telomeres or ALT. However, TERRA and telR-loops compromise telomere integrity and cell viability if their levels are not finely tuned. The study of telomere transcription in ALT cells will enormously expand our understanding of the ALT mechanism and of how genome integrity is maintained. Moreover, telomere transcription, TERRA and telR-loops are likely to become exceptionally suited targets for the development of novel anti-cancer therapies.

RevDate: 2024-03-05

Xu J, Zhu G, H Zhang (2024)

Causal relationship between telomere length and sepsis: a bidirectional Mendelian randomization study.

Scientific reports, 14(1):5397.

Numerous observational studies have elucidated a connection between leukocyte telomere length (LTL) and sepsis, yet its fundamental cause remains enigmatic. Thus, the current study's objective is to employ a bidirectional Mendelian randomization (MR) approach to scrutinize the causality between LTL and sepsis. We selected single nucleotide polymorphisms (SNPs) associated with LTL (n = 472,174) and sepsis from a genome-wide association study (GWAS), including Sepsis (n = 486,484, ncase = 11,643), Sepsis (28 day death in critical care) (n = 431,365, ncase = 347), Sepsis (under 75) (n = 462,869, ncase = 11,568), Sepsis (28 day death) (n = 486,484, ncase = 1896), and Sepsis (critical care) (n = 431,365, ncase = 1380), as instrumental variables (IVs). The inverse variance weighted (IVW) MR method was employed as the primary approach, and various sensitivity analyses were conducted to assess the validity of this instrument and potential pleiotropy. Using the IVW method, we uncovered a potential causal relationship between genetically predicted LTL reduction and increased susceptibility to sepsis, with an odds ratio (OR) of 1.161 [95% confidence interval (CI) 1.039-1.297, p = 0.008]. However, reverse MR analysis did not indicate any impact of sepsis on LTL. Our forward MR study highlights a potential causal relationship between LTL as an exposure and increased susceptibility to sepsis. Specifically, our findings suggest that individuals with genetically determined shorter LTL may be at an increased risk of developing sepsis. This may contribute to the development of novel diagnostic and therapeutic strategies for the prevention, diagnosis, and treatment of sepsis.

RevDate: 2024-03-05

Souza-Talarico JN, Chesak S, Elizalde N, et al (2024)

Exploring the interplay of psychological and biological components of stress response and telomere length in the transition from middle age to late adulthood: A systematic review.

Stress and health : journal of the International Society for the Investigation of Stress [Epub ahead of print].

Ageing and chronic stress have been linked to reduced telomere length (TL) in mixed-age groups. Whether stress response components are linked to TL during the midlife-to-late adulthood transition remains unclear. Our study aimed to synthesise evidence on the relationship between psychological and biological components of stress response on TL in middle-aged and older adults. We conducted a systematic review of studies obtained from six databases (PubMed, CINAHL, EMBASE, PsycINFO, Web of Science, and Scopus) and evaluated by two independent reviewers. Original research measuring psychological and biological components of stress response and TL in human individuals were included. From an initial pool of 614 studies, 15 were included (n = 9446 participants). Synthesis of evidence showed that higher psychological components of the stress response (i.e., global perceived stress or within a specific life domain and cognitive appraisal to social-evaluative stressors) were linked to shorter TL, specifically in women or under major life stressors. For the biological stress response, cortisol, dehydroepiandrosterone sulphate and IGF-1/cortisol imbalance, IL-6, MCP-1, blood pressure, and heart rate presented a significant association with TL, but this relationship depended on major life stressors and the stress context (manipulated vs. non-manipulated conditions). This comprehensive review showed that psychological and biological components of the stress response are linked to shorter TL, but mainly in women or those under a major life stressor and stress-induced conditions. The interaction between stressor attributes and psychological and biological reactions in the transition from middle to late adulthood still needs to be fully understood, and examining it is a critical step to expanding our understanding of stress's impact on ageing trajectories.

RevDate: 2024-03-05

Olovnikov IA (2024)

Telomeres in health and longevity: special issue in memory of Alexey Olovnikov.

In this special issue we commemorate theoretical biologist Alexey Olovnikov (1936-2022), whose theory of marginotomy has laid the foundation for the new field of biology that studies the molecular structure of telomeres and its role in health, longevity and aging. This issue contains a collection of reviews and research articles that discuss different aspects of telomere and telomerase research, ranging from telomere length dynamics in wild animal populations to problems of telomere maintenance during human space flight.

RevDate: 2024-03-05

Henriques CM, MG Ferreira (2024)

Telomere length is an epigenetic trait - Implications for the use of telomerase-deficient organisms to model human disease.

Disease models & mechanisms, 17(3):.

Telomere length, unlike most genetic traits, is epigenetic, in the sense that it is not fully coded by the genome. Telomeres vary in length and randomly assort to the progeny leaving some individuals with longer and others with shorter telomeres. Telomerase activity counteracts this by extending telomeres in the germline and during embryogenesis but sizeable variances remain in telomere length. This effect is exacerbated by the absence of fully active telomerase. Telomerase heterozygous animals (tert+/-) have reduced telomerase activity and their telomeres fail to be elongated to wild-type average length, meaning that - with every generation - they decrease. After a given number of successive generations of telomerase-insufficient crosses, telomeres become critically short and cause organismal defects that, in humans, are known as telomere biology disorders. Importantly, these defects also occur in wild-type (tert+/+) animals derived from such tert+/- incrosses. Despite these tert+/+ animals being proficient for telomerase, they have shorter than average telomere length and, although milder, develop phenotypes that are similar to those of telomerase mutants. Here, we discuss the impact of this phenomenon on human pathologies associated with telomere length, provide a brief overview of telomere biology across species and propose specific measures for working with telomerase-deficient zebrafish.

RevDate: 2024-03-04

Qiu YD, Yan Q, Wang Y, et al (2024)

Discovery of a selective TRF2 inhibitor FKB04 induced telomere shortening and senescence in liver cancer cells.

Acta pharmacologica Sinica [Epub ahead of print].

Telomere repeat binding factor 2 (TRF2), a critical element of the shelterin complex, plays a vital role in the maintenance of genome integrity. TRF2 overexpression is found in a wide range of malignant cancers, whereas its down-regulation could cause cell death. Despite its potential role, the selectively small-molecule inhibitors of TRF2 and its therapeutic effects on liver cancer remain largely unknown. Our clinical data combined with bioinformatic analysis demonstrated that TRF2 is overexpressed in liver cancer and that high expression is associated with poor prognosis. Flavokavain B derivative FKB04 potently inhibited TRF2 expression in liver cancer cells while having limited effects on the other five shelterin subunits. Moreover, FKB04 treatment induced telomere shortening and increased the amounts of telomere-free ends, leading to the destruction of T-loop structure. Consequently, FKB04 promoted liver cancer cell senescence without modulating apoptosis levels. In corroboration with these findings, FKB04 inhibited tumor cell growth by promoting telomeric TRF2 deficiency-induced telomere shortening in a mouse xenograft tumor model, with no obvious side effects. These results demonstrate that TRF2 is a potential therapeutic target for liver cancer and suggest that FKB04 may be a selective small-molecule inhibitor of TRF2, showing promise in the treatment of liver cancer.

RevDate: 2024-03-04

Lunghi E, H Bilandžija (2024)

Telomere length and dynamics in Astyanax mexicanus cave and surface morphs.

PeerJ, 12:e16957.

BACKGROUND: Telomeres are non-coding DNA repeats at the chromosome ends and their shortening is considered one of the major causes of aging. However, they also serve as a biomarker of environmental exposures and their length and attrition is affected by various stressors. In this study, we examined the average telomere length in Astyanax mexicanus, a species that has both surface-dwelling and cave-adapted populations. The cave morph descended from surface ancestors and adapted to a markedly different environment characterized by specific biotic and abiotic stressors, many of which are known to affect telomere length. Our objective was to explore whether telomere length differs between the two morphs and whether it serves as a biological marker of aging or correlates with the diverse environments the morphs are exposed to.

METHODS: We compared telomere length and shortening between laboratory-reared Pachón cavefish and Rio Choy surface fish of A. mexicanus across different tissues and ages.

RESULTS: Astyanax mexicanus surface fish exhibited longer average telomere length compared to cavefish. In addition, we did not observe telomere attrition in either cave or surface form as a result of aging in adults up to 9 years old, suggesting that efficient mechanisms prevent telomere-mediated senescence in laboratory stocks of this species, at least within this time frame. Our results suggest that telomere length in Astyanax may be considered a biomarker of environmental exposures. Cavefish may have evolved shorter and energetically less costly telomeres due to the absence of potential stressors known to affect surface species, such as predator pressure and ultra-violet radiation. This study provides the first insights into telomere dynamics in Astyanax morphs and suggests that shorter telomeres may have evolved as an adaptation to caves.

RevDate: 2024-03-04

Taylor GT, McQueen A, Eastwood JR, et al (2024)

No effect of testosterone or sexual ornamentation on telomere dynamics: A case study and meta-analyses.

Ecology and evolution, 14(3):e11088.

Life-history theory predicts that reproductive investments are traded-off against self-maintenance. Telomeres, the protective caps on the ends of chromosomes, offer a promising avenue for assessing life-history trade-offs, as they shorten in response to stressors and are predictive of the remaining lifespan. In males, testosterone frequently mediates life-history trade-offs, in part, through its effects on sexual ornamentation, which is an important aspect of reproductive investment. However, studies of within-individual associations between telomere dynamics and sexual ornamentation are limited in number and have produced mixed results. Furthermore, most such studies have been observational, making it difficult to discern the nature of any causal relationship. To address this, we used short-acting testosterone implants in free-living male superb fairy-wrens (Malurus cyaneus) to stimulate the production of a sexual ornament: early moult into a costly blue breeding plumage. We found no evidence that elevated testosterone, and the consequent earlier moult into breeding plumage, accelerated telomere shortening. We therefore followed up with a systematic review and two meta-analyses (28 studies, 54 effect sizes) exploring the associations between telomeres and (1) testosterone and (2) sexual ornamentation. In line with our experimental findings, neither meta-analysis showed an overall correlation of testosterone or sexual ornamentation with telomere length or telomere dynamics. However, meta-regression showed that experimental, compared to observational, studies reported greater evidence of trade-offs. Our meta-analyses highlight the need for further experimental studies to better understand potential responses of telomere length or telomere dynamics to testosterone or sexual ornamentation.

RevDate: 2024-03-04

Barcenilla BB, Kundel I, Hall E, et al (2024)

Telomere dynamics and oxidative stress in Arabidopsis grown in lunar regolith simulant.

Frontiers in plant science, 15:1351613.

NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.

RevDate: 2024-03-02

Ding K, Zhangwang J, Lei M, et al (2024)

Insight into telomere regulation: road to discovery and intervention in plasma drug-protein targets.

BMC genomics, 25(1):231.

BACKGROUND: Telomere length is a critical metric linked to aging, health, and disease. Currently, the exploration of target proteins related to telomere length is usually limited to the context of aging and specific diseases, which limits the discovery of more relevant drug targets. This study integrated large-scale plasma cis-pQTLs data and telomere length GWAS datasets. We used Mendelian randomization(MR) to identify drug target proteins for telomere length, providing essential clues for future precision therapy and targeted drug development.

METHODS: Using plasma cis-pQTLs data from a previous GWAS study (3,606 Pqtls associated with 2,656 proteins) and a GWAS dataset of telomere length (sample size: 472,174; GWAS ID: ieu-b-4879) from UK Biobank, using MR, external validation, and reverse causality testing, we identified essential drug target proteins for telomere length. We also performed co-localization, Phenome-wide association studies and enrichment analysis, protein-protein interaction network construction, search for existing intervening drugs, and potential drug/compound prediction for these critical targets to strengthen and expand our findings.

RESULTS: After Bonferron correction (p < 0.05/734), RPN1 (OR: 0.96; 95%CI: (0.95, 0.97)), GDI2 (OR: 0.94; 95%CI: (0.92, 0.96)), NT5C (OR: 0.97; 95%CI: (0.95, 0.98)) had a significant negative causal association with telomere length; TYRO3 (OR: 1.11; 95%CI: (1.09, 1.15)) had a significant positive causal association with telomere length. GDI2 shared the same genetic variants with telomere length (coloc.abf-PPH 4 > 0.8).

CONCLUSION: Genetically determined plasma RPN1, GDI2, NT5C, and TYRO3 have significant causal effects on telomere length and can potentially be drug targets. Further exploration of the role and mechanism of these proteins/genes in regulating telomere length is needed.

RevDate: 2024-03-02

Di D, Zhou H, Cui Z, et al (2024)

Early-life tobacco smoke elevating later-life osteoporosis risk: Mediated by telomere length and interplayed with genetic predisposition.

Journal of advanced research pii:S2090-1232(24)00083-3 [Epub ahead of print].

INTRODUCTION: The growing prevalence of osteoporosis (OP) in an aging global population presents a significant public health concern. Tobacco smoke negatively affects bone turnover, leading to reduced bone mass and heightened OP and fracture risk. However, the impact of early-life tobacco smoke exposure on later-life OP risk remains unclear.

OBJECTIVES: This study was to explore the effects of early-life tobacco smoke exposure on incident OP risk in later life. The mediating role of telomere length (TL) and the interaction with genetic predisposition were also studied.

METHODS: Data on in utero tobacco smoke exposure (IUTSE) status and age of tobacco use initiation from the UK Biobank were used to estimate early-life tobacco smoke exposure. Incident OP cases were identified according to health-related records. Linear, Cox, and Laplace regression models were mainly used for data analysis.

RESULTS: Individuals with IUTSE showed a higher OP risk [hazard ratio (HR): 1.06, 95 % confidence interval (CI): 1.01, 1.11] and experienced earlier OP onset by 0.30 years [50th percentile difference = -0.30, 95 % CI: -0.51, -0.09] compared to those without. Participants initiating tobacco smoke in childhood, adolescence, and adulthood had 1.41 times (95 % CI: 1.23, 1.61), 1.17 times (95 % CI:1.10, 1.24), and 1.14 times (95 % CI: 1.07, 1.20) the risk of OP, respectively, compared to never smokers. They also experienced earlier OP onset by 2.16, 0.95, and 0.71 years, sequentially. The TL significantly mediated the early-life tobacco exposure and OP association. Significant joint and interactive effects were detected between early-life tobacco smoke exposure and genetic elements.

CONCLUSIONS: Our findings implicate that early-life tobacco smoke exposure elevates the later-life OP risk, mediated by telomere length and interplayed with genetic predisposition. These findings highlight the importance of early-life intervention against tobacco smoke exposure and ageing status for precise OP prevention, especially in individuals with a high genetic risk.

RevDate: 2024-03-02

Bories C, Lejour T, Adolphe F, et al (2024)

DCLRE1B/Apollo germline mutations associated with renal cell carcinoma impair telomere protection.

Biochimica et biophysica acta. Molecular basis of disease pii:S0925-4439(24)00096-6 [Epub ahead of print].

Hereditary renal cell carcinoma (RCC) is caused by germline mutations in a subset of genes, including VHL, MET, FLCN, and FH. However, many familial RCC cases do not harbor mutations in the known predisposition genes. Using Whole Exome Sequencing, we identified two germline missense variants in the DCLRE1B/Apollo gene (Apollo[N246I] and Apollo[Y273H]) in two unrelated families with several RCC cases. Apollo encodes an exonuclease involved in DNA Damage Response and Repair (DDRR) and telomere integrity. We characterized these two functions in the human renal epithelial cell line HKC8. The decrease or inhibition of Apollo expression sensitizes these cells to DNA interstrand crosslink damage (ICLs). HKC8 Apollo[-/-] cells appear defective in the DDRR and present an accumulation of telomere damage. Wild-type and mutated Apollo forms could interact with TRF2, a shelterin protein involved in telomere protection. However, only Apollo[WT] can rescue the telomere damage in HKC8 Apollo[-/-] cells. Our results strongly suggest that Apollo[N246I] and Apollo[Y273H] are loss-of-function mutants that cause impaired telomere integrity and could lead to genomic instability. Altogether, our results suggest that mutations in Apollo could induce renal oncogenesis.

RevDate: 2024-03-01

Spano L, Marie-Claire C, Godin O, et al (2024)

Decreased telomere length in a subgroup of young individuals with bipolar disorders: replication in the FACE-BD cohort and association with the shelterin component POT1.

Translational psychiatry, 14(1):131.

Bipolar disorder (BD) has been associated with premature cellular aging with shortened telomere length (TL) as compared to the general population. We recently identified a subgroup of young individuals with prematurely shortened TL. The aims of the present study were to replicate this observation in a larger sample and analyze the expression levels of genes associated with age or TL in a subsample of these individuals. TL was measured on peripheral blood DNA using quantitative polymerase chain reaction in a sample of 542 individuals with BD and clustering analyses were performed. Gene expression level of 29 genes, associated with aging or with telomere maintenance, was analyzed in RNA samples from a subsample of 129 individuals. Clustering analyses identified a group of young individuals (mean age 29.64 years), with shorter TL. None of the tested clinical variables were significantly associated with this subgroup. Gene expression level analyses showed significant downregulation of MYC, POT1, and CD27 in the prematurely aged young individuals compared to the young individuals with longer TL. After adjustment only POT1 remained significantly differentially expressed between the two groups of young individuals. This study confirms the existence of a subgroup of young individuals with BD with shortened TL. The observed decrease of POT1 expression level suggests a newly described cellular mechanism in individuals with BD, that may contribute to telomere shortening.

RevDate: 2024-03-01

Bosquet Enlow M, De Vivo I, Petty CR, et al (2024)

Temperament and sex as moderating factors of the effects of exposure to maternal depression on telomere length in early childhood.

Development and psychopathology pii:S0954579424000518 [Epub ahead of print].

Individual differences in sensitivity to context are posited to emerge early in development and to influence the effects of environmental exposures on a range of developmental outcomes. The goal of the current study was to examine the hypothesis that temperament characteristics and biological sex confer differential vulnerability to the effects of exposure to maternal depression on telomere length in early childhood. Telomere length has emerged as a potentially important biomarker of current and future health, with possible mechanistic involvement in the onset of various disease states. Participants comprised a community sample of children followed from infancy to age 3 years. Relative telomere length was assessed from DNA in saliva samples collected at infancy, 2 years, and 3 years. Maternal depressive symptoms and the child temperament traits of negative affectivity, surgency/extraversion, and regulation/effortful control were assessed via maternal report at each timepoint. Analyses revealed a 3-way interaction among surgency/extraversion, sex, and maternal depressive symptoms, such that higher surgency/extraversion was associated with shorter telomere length specifically among males exposed to elevated maternal depressive symptoms. These findings suggest that temperament and sex influence children's susceptibility to the effects of maternal depression on telomere dynamics in early life.

RevDate: 2024-03-01

Timina MF, Pavlova LE, Kirgintsev RM, et al (2023)

[Changes in telomere length in leukocytes of male rhesus macaques of different ages.].

Advances in gerontology = Uspekhi gerontologii, 36(6):859-863.

Telomeres are specialized terminal sections of chromosomes that ensure the stability of the latter. DNA duplication during cell division is associated with telomere shortening due to the phenomenon of terminal underreplication. As cells divide, shortening of telomere length is considered to be one of the most important causes of cell aging. Estimation of telomere length still remains the subject of scientific research in gerontology and it is not used in clinical practice. Most often, rodents are used as a model object for studying the aging process, but the neuroendocrine mechanisms that influence, among other things, the regulation of the aging process differ in rodents and humans. The model objects closest in phylogenetic relation to humans are monkeys. In particular, Rhesus macaques is one of the representatives of the Old World most often used in biomedical research. However, data on age-related changes in telomere length in monkeys are extremely scarce. We studied the absolute average length of telomeres in DNA from blood leukocytes of 29 clinically healthy male rhesus monkeys aged from 4 to 24 years using quantitative PCR-method. The data obtained did not correspond to the normal distribution and the correlation analysis showed the absence of a significant dependence of telomere length on the age of the animals (rs=0,27; p>0,05). Thus, our study does not confirm the dependence of changes in the average length of telomeres of blood leukocytes with age.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

SUPPORT ESP: Click covers to order from Amazon
The ESP project will earn a commission.

Good Beginner's Books

Although multicellular eukaryotes (MCEs) are the most visible component of the biosphere, they represent a highly derived and constrained evolutionary subset of the biosphere, unrepresentative of the vast, mostly unseen, microbial world of prokaryotic life that comprises at least half of the planet's biomass and most of its genetic diversity. The existence of telomeres is one component of the specialized biology of eukaryotes. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )