Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Mitochondrial Evolution

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 25 Feb 2024 at 01:55 Created: 

Mitochondrial Evolution

The endosymbiotic hypothesis for the origin of mitochondria (and chloroplasts) suggests that mitochondria are descended from specialized bacteria (probably purple nonsulfur bacteria) that somehow survived endocytosis by another species of prokaryote or some other cell type, and became incorporated into the cytoplasm.

Created with PubMed® Query: ( mitochondria AND evolution NOT 26799652[PMID] NOT 33634751[PMID] NOT 38225003[PMID]) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2024-02-23

Kan S, Liao X, Lan L, et al (2024)

Cytonuclear interactions and subgenome dominance shape the evolution of organelle-targeted genes in the Brassica triangle of U.

Molecular biology and evolution pii:7613086 [Epub ahead of print].

The interaction and co-evolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, two billion years later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance vs. cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features three diploid species that together have formed three separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in B. carinata (BBCC) and two varieties of B. juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these two separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the B. nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.

RevDate: 2024-02-22
CmpDate: 2024-02-22

Li H, Akella S, Engstler C, et al (2024)

Recurrent evolutionary switches of mitochondrial cytochrome c maturation systems in Archaeplastida.

Nature communications, 15(1):1548.

Mitochondrial cytochrome c maturation (CCM) requires heme attachment via distinct pathways termed systems I and III. The mosaic distribution of these systems in Archaeplastida raises questions about the genetic mechanisms and evolutionary forces promoting repeated evolution. Here, we show a recurrent shift from ancestral system I to the eukaryotic-specific holocytochrome c synthase (HCCS) of system III in 11 archaeplastid lineages. Archaeplastid HCCS is sufficient to rescue mutants of yeast system III and Arabidopsis system I. Algal HCCS mutants exhibit impaired growth and respiration, and altered biochemical and metabolic profiles, likely resulting from deficient CCM and reduced cytochrome c-dependent respiratory activity. Our findings demonstrate that archaeplastid HCCS homologs function as system III components in the absence of system I. These results elucidate the evolutionary trajectory and functional divergence of CCM pathways in Archaeplastida, providing insight into the causes, mechanisms, and consequences of repeated cooption of an entire biological pathway.

RevDate: 2024-02-22
CmpDate: 2024-02-22

Khan MM, Suhail SM, Majid HA, et al (2024)

Morpometric and molecular characterization of Surguli goat through CO1 gene in district Kohat.

Animal biotechnology, 35(1):2290528.

The present study was designed with the aim to study morphometric characterization as well as phylogeny and diversity of the local Surguli goat at their breeding tract district Kohat through mitochondrial DNA region, i.e., Cytochrome C Oxidase Subunit One (CO1) gene. Morphometric data and blood samples were collected from thirty (30) pure goats. Morphometric analysis showed that sex had significant effect (p < 0.05) on body weight, body length, hearth girth and horn length while no significant effect (p > 0.05) was observed for other characteristics. The results also indicated that age had significant effect (p < 0.05) on height at rump, ear length, horn length and tail length while no significant effect (p > 0.05) was observed for other characteristics. The phylogenetic analysis through CO1 nucleotide sequences within nucleotide range 1-767 showed nine polymorphic sites segregating into eight haplotypes. The mean intraspecific diversity and mean interspecific diversity were calculated as 0.23 and 2.36%, respectively. Phylogenetic tree revealed that Capra Ibex and native Surguli goat have common ancestors. The morphometric and molecular results obtained from the present study can be exploited as a selection tool for breeding and overall improvement.

RevDate: 2024-02-17

Széliová D, Müller S, J Zanghellini (2024)

Costs of ribosomal RNA stabilization affect ribosome composition at maximum growth rate.

Communications biology, 7(1):196.

Ribosomes are key to cellular self-fabrication and limit growth rate. While most enzymes are proteins, ribosomes consist of 1/3 protein and 2/3 ribonucleic acid (RNA) (in E. coli).Here, we develop a mechanistic model of a self-fabricating cell, validated across diverse growth conditions. Through resource balance analysis (RBA), we explore the variation in maximum growth rate with ribosome composition, assuming constant kinetic parameters.Our model highlights the importance of RNA instability. If we neglect it, RNA synthesis is always cheaper than protein synthesis, leading to an RNA-only ribosome at maximum growth rate. Upon accounting for RNA turnover, we find that a mixed ribosome composed of RNA and proteins maximizes growth rate. To account for RNA turnover, we explore two scenarios regarding the activity of RNases. In (a) degradation is proportional to RNA content. In (b) ribosomal proteins cooperatively mitigate RNA instability by protecting it from misfolding and subsequent degradation. In both cases, higher protein content elevates protein synthesis costs and simultaneously lowers RNA turnover expenses, resulting in mixed RNA-protein ribosomes. Only scenario (b) aligns qualitatively with experimental data across varied growth conditions.Our research provides fresh insights into ribosome biogenesis and evolution, paving the way for understanding protein-rich ribosomes in archaea and mitochondria.

RevDate: 2024-02-16

Tetzlaff S, Hillebrand A, Drakoulis N, et al (2024)

Small RNAs from mitochondrial genome recombination sites are incorporated into T. gondii mitoribosomes.

eLife, 13: pii:95407 [Epub ahead of print].

The mitochondrial genomes of apicomplexans comprise merely three protein-coding genes, alongside a set of thirty to forty genes encoding small RNAs (sRNAs), many of which exhibit homologies to rRNA from E. coli. The expression status and integration of these short RNAs into ribosomes remains unclear and direct evidence for active ribosomes within apicomplexan mitochondria is still lacking. In this study, we conducted small RNA sequencing on the apicomplexan Toxoplasma gondii to investigate the occurrence and function of mitochondrial sRNAs. To enhance the analysis of sRNA sequencing outcomes, we also re-sequenced the T. gondii mitochondrial genome using an improved organelle enrichment protocol and Nanopore sequencing. It has been established previously that the T. gondii genome comprises 21 sequence blocks that undergo recombination among themselves but that their order is not entirely random. The enhanced coverage of the mitochondrial genome allowed us to characterize block combinations at increased resolution. Employing this refined genome for sRNA mapping, we find that many small RNAs originated from the junction sites between protein-coding blocks and rRNA sequence blocks. Surprisingly, such block border sRNAs were incorporated into polysomes together with canonical rRNA fragments and mRNAs. In conclusion, apicomplexan ribosomes are active within polysomes and are indeed assembled through the integration of sRNAs, including previously undetected sRNAs with merged mRNA-rRNA sequences. Our findings lead to the hypothesis that T. gondii's block-based genome organization enables the dual utilization of mitochondrial sequences as both messenger RNAs and ribosomal RNAs, potentially establishing a link between the regulation of rRNA and mRNA expression.

RevDate: 2024-02-16

Degli Esposti M (2024)

Did mitophagy follow the origin of mitochondria?.

Autophagy [Epub ahead of print].

Mitophagy is the process of selective autophagy that removes superfluous and dysfunctional mitochondria. Mitophagy was first characterized in mammalian cells and is now recognized to follow several pathways including basal forms in specific organs. Mitophagy pathways are regulated by multiple, often interconnected factors. The present review aims to streamline this complexity and evaluate common elements that may define the evolutionary origin of mitophagy. Key issues surrounding mitophagy signaling at the mitochondrial surface may fundamentally derive from mitochondrial membrane dynamics. Elements of such membrane dynamics likely originated during the endosymbiosis of the alphaproteobacterial ancestor of our mitochondria but underwent an evolutionary leap forward in basal metazoa that determined the currently known variations in mitophagy signaling.Abbreviations: AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ATG, autophagy related; BCL2L13, BCL2 like 13; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; CALCOCO, calcium binding and coiled-coil domain; CL, cardiolipin; ER, endoplasmic reticulum; ERMES, ER-mitochondria encounter structure; FBXL4, F-box and leucine rich repeat protein 4; FUNDC1, FUN14 domain containing 1; GABARAPL1, GABA type A receptor associated protein like 1; HIF, hypoxia inducible factor; IMM, inner mitochondrial membrane; LBPA/BMP, lysobisphosphatidic acid; LIR, LC3-interacting region; LPA, lysophosphatidic acid; MAM, mitochondria-associated membranes; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MCL, monolysocardiolipin; ML, maximum likelihood; NBR1, NBR1 autophagy cargo receptor; OMM, outer mitochondrial membrane; PA, phosphatidic acid; PACS2, phosphofurin acidic cluster sorting protein 2; PC/PLC, phosphatidylcholine; PE, phosphatidylethanolamine; PHB2, prohibitin 2; PINK1, PTEN induced kinase 1; PtdIns, phosphatidylinositol; SAR, Stramenopiles, Apicomplexa and Rhizaria; TAX1BP1, Tax1 binding protein 1; ULK1, unc-51 like autophagy activating kinase 1; VDAC/porin, voltage dependent anion channel.

RevDate: 2024-02-14
CmpDate: 2024-02-14

Sharma A, Ahlawat S, Sharma R, et al (2023)

Tracing the genetic footprints: India's role as a gateway for pig migration and domestication across continents.

Animal biotechnology, 34(9):5173-5179.

This study explored the maternal genetic diversity in the pig genetic resources of India by analyzing a mitochondrial D-loop fragment and comparing it with the corresponding sequences of previously published studies involving domestic pigs and wild boars. Sequencing of 103 samples representing different domestic pig populations revealed existence of 32 maternal haplotypes. The indices of haplotype and nucleotide diversity in Indian domestic pigs were 0.9421 and 0.015, respectively. Median-Joining network revealed that Indian pigs belong to Clade A and show conformity to 6 haplogroups reported worldwide (D1a, D1a1, D1a2, D1e, D1h and D3a). Among these, D1e and D1a2 were shared with Asian wild boars too. Interestingly, haplotype sharing was evident between Indian pigs and samples from other countries representing Africa, Asia, Europe and Oceania. This study substantiates India's contribution as a possible pig domestication center and highlights the importance of the Indian subcontinent in dispersal of the species to other continents. Additionally, genetic evidence suggested the influence of trading routes and historical interactions in shaping pig genetic exchange. Overall, this investigation provides valuable insights into the genetic diversity, historical migration, and domestication of Indian domestic pigs, contributing to the broader understanding of global pig genetic resources and their evolutionary history.

RevDate: 2024-02-13

Choudhury C, Gill MK, McAleese CE, et al (2024)

The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction.

Pharmacological reviews, 76(2):300-320 pii:pharmrev.123.000835.

In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.

RevDate: 2024-02-12

Fehsenfeld S, Yoon GR, Quijada-Rodriguez AR, et al (2024)

Short-term exposure to high pCO2 leads to decreased branchial cytochrome C oxidase activity in the presence of octopamine in a decapod.

Comparative biochemistry and physiology. Part A, Molecular & integrative physiology pii:S1095-6433(24)00030-8 [Epub ahead of print].

In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3[-] observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3[-], and regulation of mitochondrial complex IV (cytochrome C oxidase).

RevDate: 2024-02-10

Guan J, Zhang Z, G Shi (2024)

Genome-Wide Identification of the Ferric Chelate Reductase (FRO) Gene Family in Peanut and Its Diploid Progenitors: Structure, Evolution, and Expression Profiles.

Plants (Basel, Switzerland), 13(3): pii:plants13030418.

The ferric chelate reductase (FRO) family plays a vital role in metal ion homeostasis in a variety of locations in the plants. However, little is known about this family in peanut (Arachis hypogaea). This study aimed to identify FRO genes from the genomes of peanut and the two diploid progenitors (A. duranensis and A. ipaensis) and to analyze their gene/protein structures and evolution. In addition, transcriptional responses of AhFRO genes to Fe deficiency and/or Cu exposure were investigated in two peanut cultivars with different Fe deficiency tolerance (Silihong and Fenghua 1). A total of nine, four, and three FRO genes were identified in peanut, A. duranensis, and A. ipaensis, respectively, which were divided into three groups. Most AhFRO genes underwent WGD/segmental duplication, leading to the expansion of the AhFRO gene family. In general, clustered members share similar gene/protein structures. However, significant divergences occurred in AhFRO2 genes. Three out of five AhFRO2 genes were lowly expressed in all tissues under normal conditions, which may be beneficial for avoiding gene loss. Transcription analysis revealed that AhFRO2 and AhFRO7 genes might be involved in the reduction of Fe/Cu in plasma membranes and plastids, respectively. AhFRO8 genes appear to confer Fe reduction in the mitochondria. Moreover, Fe deficiency induced an increase of Cu accumulation in peanut plants in which AhFRO2.2/2.4/2.5 and FRO7.1/7.2 might be involved. Our findings provided new clues for further understanding the roles of AhFRO genes in the Fe/Cu interaction in peanut.

RevDate: 2024-02-09

Wang Y, Li H, Niu G, et al (2024)

Boosting Sono-immunotherapy of Prostate Carcinoma through Amplifying Domino-Effect of Mitochondrial Oxidative Stress Using Biodegradable Cascade-Targeting Nanocomposites.

ACS nano [Epub ahead of print].

Sono-immunotherapy faces challenges from poor immunogenicity and low response rate due to complex biological barriers. Herein, we prepared MCTH nanocomposites (NCs) consisting of disulfide bonds (S-S) doped mesoporous organosilica (MONs), Cu-modified protoporphyrin (CuPpIX), mitochondria-targeting triphenylphosphine (TPP), and CD44-targeting hyaluronic acid (HA). MCTH NCs efficiently accumulate at the tumor site due to the overexpressed CD44 receptors on the membrane of the cancer cells. Under the function of HAase and glutathione (GSH), MCTH degrades and exposes TPP to deliver CuPpIX to the mitochondrial site and induce a reactive oxygen species (ROS) burst in situ under ultrasound irradiations, thereby causing severe mitochondria dysfunction. This cascade-targeting ability of MCTH NCs not only reinforces oxidative stress in cancer cells but also amplifies immunogenic cell death (ICD) to stimulate the body's immune response and alleviate the tumor immunosuppressive microenvironment. These NCs significantly enhance the infiltration of immune cells into the tumor, particularly CD8[+] T cells, for a powerful antitumor sono-immunotherapy. The proposed cascade-targeting strategy holds promise for strengthening sono-immunotherapy for prostate cancer treatment and overcoming the limitations of traditional immunotherapy.

RevDate: 2024-02-08

Iverson ENK, Criswell A, JC Havird (2024)

Stronger evidence for relaxed selection than adaptive evolution in high-elevation animal mtDNA.

bioRxiv : the preprint server for biology pii:2024.01.20.576402.

Mitochondrial (mt) genes are the subject of many adaptive hypotheses due to the key role of mitochondria in energy production and metabolism. One widespread adaptive hypothesis is that selection imposed by life at high elevation leads to the rapid fixation of beneficial alleles in mtDNA, reflected in the increased rates of mtDNA evolution documented in many high-elevation species. However, the assumption that fast mtDNA evolution is caused by positive, rather than relaxed purifying selection has rarely been tested. Here, we calculated the d N / d S ratio, a metric of nonsynonymous substitution bias, and explicitly tested for relaxed selection in the mtDNA of over 700 species of terrestrial vertebrates, freshwater fishes, and arthropods, with information on elevation and latitudinal range limits, range sizes, and body sizes. We confirmed that mitochondrial genomes of high-elevation taxa have slightly higher d N / d S ratios compared to low-elevation relatives. High-elevation species tend to have smaller ranges, which predict higher d N / d S ratios and more relaxed selection across species and clades, while absolute elevation and latitude do not predict higher d N / d S . We also find a positive relationship between body mass and d N / d S , supporting a role for small effective population size leading to relaxed selection. We conclude that higher mt d N / d S among high-elevation species is more likely to reflect relaxed selection due to smaller ranges and reduced effective population size than adaptation to the environment. Our results highlight the importance of rigorously testing adaptive stories against non-adaptive alternative hypotheses, especially in mt genomes.

RevDate: 2024-02-07

Murphy MP, LAJ O'Neill (2024)

A break in mitochondrial endosymbiosis as a basis for inflammatory diseases.

Nature, 626(7998):271-279.

Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.

RevDate: 2024-02-05
CmpDate: 2024-02-05

Gangavarapu K, Ji X, Baele G, et al (2024)

Many-core algorithms for high-dimensional gradients on phylogenetic trees.

Bioinformatics (Oxford, England), 40(2):.

MOTIVATION: Advancements in high-throughput genomic sequencing are delivering genomic pathogen data at an unprecedented rate, positioning statistical phylogenetics as a critical tool to monitor infectious diseases globally. This rapid growth spurs the need for efficient inference techniques, such as Hamiltonian Monte Carlo (HMC) in a Bayesian framework, to estimate parameters of these phylogenetic models where the dimensions of the parameters increase with the number of sequences N. HMC requires repeated calculation of the gradient of the data log-likelihood with respect to (wrt) all branch-length-specific (BLS) parameters that traditionally takes O(N2) operations using the standard pruning algorithm. A recent study proposes an approach to calculate this gradient in O(N), enabling researchers to take advantage of gradient-based samplers such as HMC. The CPU implementation of this approach makes the calculation of the gradient computationally tractable for nucleotide-based models but falls short in performance for larger state-space size models, such as Markov-modulated and codon models. Here, we describe novel massively parallel algorithms to calculate the gradient of the log-likelihood wrt all BLS parameters that take advantage of graphics processing units (GPUs) and result in many fold higher speedups over previous CPU implementations.

RESULTS: We benchmark these GPU algorithms on three computing systems using three evolutionary inference examples exploring complete genomes from 997 dengue viruses, 62 carnivore mitochondria and 49 yeasts, and observe a >128-fold speedup over the CPU implementation for codon-based models and >8-fold speedup for nucleotide-based models. As a practical demonstration, we also estimate the timing of the first introduction of West Nile virus into the continental Unites States under a codon model with a relaxed molecular clock from 104 full viral genomes, an inference task previously intractable.

We provide an implementation of our GPU algorithms in BEAGLE v4.0.0 (, an open-source library for statistical phylogenetics that enables parallel calculations on multi-core CPUs and GPUs. We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (

RevDate: 2024-02-02

Muñoz-Gómez SA (2024)

The energetic costs of cellular complexity in evolution.

Trends in microbiology pii:S0966-842X(24)00003-9 [Epub ahead of print].

The evolutionary history of cells has been marked by drastic increases in complexity. Some hypothesize that such cellular complexification requires a massive energy flux as the origin of new features is hypothetically more energetically costly than their evolutionary maintenance. However, it remains unclear how increases in cellular complexity demand more energy. I propose that the early evolution of new genes with weak functions imposes higher energetic costs by overexpression before their functions are evolutionarily refined. In the long term, the accumulation of new genes deviates resources away from growth and reproduction. Accrued cellular complexity further requires additional infrastructure for its maintenance. Altogether, this suggests that larger and more complex cells are defined by increased survival but lower reproductive capacity.

RevDate: 2024-02-02

McCallum Q, Askelson K, Fogarty FF, et al (2024)

Pronounced differentiation on the Z chromosome and parts of the autosomes in crowned sparrows contrasts with mitochondrial paraphyly: implications for speciation.

Journal of evolutionary biology pii:7512494 [Epub ahead of print].

When a single species evolves into multiple descendent species, some parts of the genome can play a key role in the evolution of reproductive isolation while other parts flow between the evolving species via interbreeding. Genomic evolution during the speciation process is particularly interesting when major components of the genome-for instance, sex chromosomes vs. autosomes vs. mitochondrial DNA-show widely differing patterns of relationships between three diverging populations. The golden-crowned sparrow (Zonotrichia atricapilla) and the white-crowned sparrow (Zonotrichia leucophrys) are phenotypically differentiated sister species that are largely reproductively isolated despite possessing similar mitochondrial genomes, likely due to recent introgression. We assessed variation in more than 45,000 single nucleotide polymorphisms to determine the structure of nuclear genomic differentiation between these species and between two hybridizing subspecies of Z. leucophrys. The two Z. leucophrys subspecies show moderate levels of relative differentiation and patterns consistent with a history of recurrent selection in both ancestral and daughter populations, with much of the sex chromosome Z and a large region on the autosome 1A showing increased differentiation compared to the rest of the genome. The two species Z. leucophrys and Z. atricapilla show high relative differentiation and strong heterogeneity in the level of differentiation among various chromosomal regions, with a large portion of the sex chromosome (Z) showing highly divergent haplotypes between these species. Studies of speciation often emphasize mitochondrial DNA differentiation, but speciation between Z. atricapilla and Z. leucophrys appears primarily associated with Z chromosome divergence and more moderately associated with autosomal differentiation, whereas mitochondria are highly similar due apparently to recent introgression. These results add to the growing body of evidence for highly heterogeneous patterns of genomic differentiation during speciation, with some genomic regions showing a lack of gene flow between populations many hundreds of thousands of years before other genomic regions.

RevDate: 2024-02-01
CmpDate: 2024-02-01

Yordanov G, Palova N, Mehandjyiski I, et al (2023)

Mitochondrial DNA sequencing illuminates genetic diversity and origin of Hunagrian Nonius horse breed and his relatives - Danubian horse and Serbian Nonius.

Animal biotechnology, 34(8):3897-3907.

From a historical perspective, horse breeding in Bulgaria has been very well developed since the time of the Thracians (early Bronze Age c. 3000 BCE). Archaeological discoveries from this era present us with an extremely rich type diversity, including wild and local primitive horses, the prototype of heavy draft horses, and fine riding horses.The objective of this study was to investigate the genetic structure of unexamined populations of three closely related horse breeds - the Danubian Nonius Hungarian Nonius and Serbian Nonius horses. A 608 bp long fragment of the mtDNA D-loop region was amplified and sequenced. The obtained results showed completely different genetic profiles between the investigated breeds. We identified nine of the 17 haplogroups described in modern horses. Most of the obtained sequences fell into M, L, G, and O'P lineages, which reflects the genetic profiles of the ancestral mares that were probably used at the initial stages of formation of the breeds. The population of the Danubian horse was characterized by a high prevalence of Central Asian specific haplogroup G (45%), followed by Western Eurasian specific haplogroups L and M (both about 21%). In contrast to the Danubian horse, in the Nonius breed the highest frequency of Western Eurasian haplogroup M (43.5%) was found, followed by Middle Eastern haplogroups O'P (26.1%) Central Asian specific E (13.0%) and G (13.1%). The Serbian Nonius horse showed a completely different genetic profile with a prevalence of the rare for Europe haplogroup D (66.7%), followed by Central Asian specific G (16.7%). The high mitochondrial haplotype diversity (Hd = 0.886) found in the investigated samples is evidence for multiple maternal origins in all populations.In conclusion, the obtained results demonstrated a high percentage of haplogroup sharing especially in the Danubian and Hungarian Nonius horse breeds, which reflects the possible common origins of the two breeds. In contrast to these breeds, the Serbian Nonius, despite the small number of investigated animals, showed a specific genetic profile, which could be explained by different and independent origins.

RevDate: 2024-01-31
CmpDate: 2024-01-31

Chen S, Tran TTT, Yeh AY, et al (2024)

The Globodera rostochiensis Gr29D09 Effector with a Role in Defense Suppression Targets the Potato Hexokinase 1 Protein.

Molecular plant-microbe interactions : MPMI, 37(1):25-35.

The potato cyst nematode (Globodera rostochiensis) is an obligate root pathogen of potatoes. G. rostochiensis encodes several highly expanded effector gene families, including the Gr4D06 family; however, little is known about the function of this effector family. We cloned four 29D09 genes from G. rostochiensis (named Gr29D09v1/v2/v3/v4) that share high sequence similarity and are homologous to the Hg29D09 and Hg4D06 effector genes from the soybean cyst nematode (Heterodera glycines). Phylogenetic analysis revealed that Gr29D09 genes belong to a subgroup of the Gr4D06 family. We showed that Gr29D09 genes are expressed exclusively within the nematode's dorsal gland cell and are dramatically upregulated in parasitic stages, indicating involvement of Gr29D09 effectors in nematode parasitism. Transgenic potato lines overexpressing Gr29D09 variants showed increased susceptibility to G. rostochiensis. Transient expression assays in Nicotiana benthamiana demonstrated that Gr29D09v3 could suppress reactive oxygen species (ROS) production and defense gene expression induced by flg22 and cell death mediated by immune receptors. These results suggest a critical role of Gr29D09 effectors in defense suppression. The use of affinity purification coupled with nanoliquid chromatography-tandem mass spectrometry identified potato hexokinase 1 (StHXK1) as a candidate target of Gr29D09. The Gr29D09-StHXK1 interaction was further confirmed using in planta protein-protein interaction assays. Plant HXKs have been implicated in defense regulation against pathogen infection. Interestingly, we found that StHXK1 could enhance flg22-induced ROS production, consistent with a positive role of plant HXKs in defense. Altogether, our results suggest that targeting StHXK1 by Gr29D09 effectors may impair the positive function of StHXK1 in plant immunity, thereby aiding nematode parasitism. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

RevDate: 2024-01-30

Li X, Zhu Y, Ruiz-Lozano P, et al (2024)

Mitochondrial-to-nuclear communications through multiple routes regulate cardiomyocyte proliferation.

Cell regeneration (London, England), 13(1):2.

The regenerative capacity of the adult mammalian heart remains a formidable challenge in biological research. Despite extensive investigations into the loss of regenerative potential during evolution and development, unlocking the mechanisms governing cardiomyocyte proliferation remains elusive. Two recent groundbreaking studies have provided fresh perspectives on mitochondrial-to-nuclear communication, shedding light on novel factors that regulate cardiomyocyte proliferation. The studies identified two mitochondrial processes, fatty acid oxidation and protein translation, as key players in restricting cardiomyocyte proliferation. Inhibition of these processes led to increased cell cycle activity in cardiomyocytes, mediated by reduction in H3k4me3 levels through accumulated α-ketoglutarate (αKG), and activation of the mitochondrial unfolded protein response (UPR[mt]), respectively. In this research highlight, we discuss the novel insights into mitochondrial-to-nuclear communication presented in these studies, the broad implications in cardiomyocyte biology and cardiovascular diseases, as well as the intriguing scientific questions inspired by the studies that may facilitate future investigations into the detailed molecular mechanisms of cardiomyocyte metabolism, proliferation, and mitochondrial-to-nuclear communications.

RevDate: 2024-01-30

Cao J, Luo Y, Chen Y, et al (2024)

Maternal mitochondrial function affects paternal mitochondrial inheritance in Drosophila.

Genetics pii:7593495 [Epub ahead of print].

The maternal inheritance of mitochondria is a widely accepted paradigm, and mechanisms that prevent paternal mitochondria transmission to offspring during spermatogenesis and post-fertilization have been described. Although certain species do retain paternal mitochondria, the factors affecting paternal mitochondria inheritance in these cases are unclear. More importantly, the evolutionary benefit of retaining paternal mitochondria and their ultimate fate are unknown. Here we show that transplanted exogenous paternal D. yakuba mitochondria can be transmitted to offspring when maternal mitochondria are dysfunctional in D. melanogaster. Furthermore, we show that the preserved paternal mitochondria are functional, and can be stably inherited, such that the proportion of paternal mitochondria increases gradually in subsequent generations. Our work has important implications that paternal mitochondria inheritance should not be overlooked as a genetic phenomenon in evolution, especially when paternal mitochondria are of significant differences from the maternal mitochondria or the maternal mitochondria are functionally abnormal. Our results improve the understanding of mitochondrial inheritance and provide a new model system for its study.

RevDate: 2024-01-30

Meng X, Wang D, Pang Q, et al (2024)

Multiple independent origins of duplicated mitochondrial control regions indicate an apomorphy in the Thysanoptera (Insecta).

Archives of insect biochemistry and physiology, 115(1):e22087.

The mitochondrial genome (mitogenome) of thrips is characterized by the presence of control region (CR) duplication. However, the evolution pattern of duplicated CRs in thrips is still unclear. In this study, the multiple independent origins of duplicated CR indicated that the CR duplication was not an ancestral state for Thysanoptera. The macroevolutionary pattern suggested that the earliest CR duplication event occurred in the middle Cretaceous (94.85 Ma) coincided with rearrangement events forming the ancestors of Aeolothripidae, but much later than that forming the ancestors of the suborder Terebrantia. The mitogenome with duplicated CRs showed a higher rate of gene rearrangement. The sequence similarity of the CR copies and divergence time were negatively correlated, indicating age-related deterioration of mitochondrial function. No significant differences were found in the mitochondrial DNA, the P123 and P4FD between the single and multiple-CR charactered mitogenomes, which suggested that the duplicated CRs may not affect the replication process in thrip mitogenome. The mitogenomes with duplicated CRs (mean: 0.0088 subs/s/my) show a significantly increased evolutionary rate than that with a single one (mean: 0.0058 subs/s/my). However, it seems that this higher evolutionary rate did not have adaptive mechanisms in Terebrantia. We speculated that the duplicated CRs may cause a more intense production of energy by mitochondria, and an accelerated mutation and substitution rate is expected in such mitogenomes. Our study provided new insights into the presence of CR duplications and their evolution in the mitogenomes of thrips.

RevDate: 2024-01-29
CmpDate: 2024-01-29

Li K, Yu SW, Hu H, et al (2023)

The Phylogenetic Relationship of Lamiinae (Coleoptera: Cerambycidae) Using Mitochondrial Genomes.

Genes, 15(1):.

Lamiinae is the largest subfamily of the Cerambycidae (longhorn beetles), with approximately 21,863 described species. Previous phylogenetic studies of Lamiinae showed that this subfamily was monophyletic, but the relationship between the tribes of Lamiinae is still controversial. Partial molecular data and species morphological characteristics are not sufficient to resolve species phylogenetic studies perfectly. At the same time, the full mitochondrial genome contains more comprehensive genetic data. Benefiting from the development of next-generation sequencing (NGS), mitochondrial genomes can be easily acquired and used as reliable molecular markers to investigate phylogenetic relationships within Cerambycidae. Using NGS technology, we obtained 11 mitochondrial genome sequences of Lamiinae species. Based on this newly generated mitochondrial genome dataset matrix, we reconstructed the phylogeny of Lamiinae. The Bayesian Inference and Maximum Likelihood analyses strongly support the monophyly of four tribes (Lamiini, Batocerini, Mesosini, and Saperdini), whereas the tribe Acanthocinini was identified as paraphyletic. Other mitochondrial structural features were also observed: the start codon in the nad1 gene of all 11 mitochondrial genomes is TTG; 17-22 bp intergenic spacers (IGS) with a 'TACTA' motif were found between trnS2 and nad1. Moreover, two long IGS were found in Mesosa myops and Batocera sp. Tandem repeats were found in the IGS of Batocera sp.

RevDate: 2024-01-29
CmpDate: 2024-01-29

Bian C, Ji S, Xue R, et al (2024)

Molecular cloning and characterization of BNIP3 and NIX1/2 and their role in DHA-induced mitophagy and apoptosis in grass carp (Ctenopharyngodon idellus) adipocytes.

Gene, 899:148140.

B-cell lymphoma-2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) and BNIP3 like (BNIP3L or NIX) play a vital role in regulating mitophagy and the intrinsic apoptosis in mammals, but their gene characterizations remain unclear in fish. Herein, bnip3, nix1 and nix2 were isolated and characterized from grass carp (Ctenopharyngodon idellus), which encode peptides of 194, 233 and 222 amino acids, respectively. As typical BH3-only proteins, grass carp BNIP3, NIX1 and NIX2 proteins contain BH3 and C-terminal transmembrane domains for inducing apoptosis. Moreover, the LC3-interacting region motif of BNIP3, NIX1 and NIX2 is also conserved in grass carp. Phylogenetic analyses also demonstrated that nix1 and nix2 may have originated from the genome duplication event. Expression pattern analysis indicated that bnip3, nix1 and nix2 were highest expressed in brain, followed by eye (bnip3) and liver (nix1 and nix2). BNIP3, NIX1 and NIX2 localized to the nucleus and the cytoplasm, with a predominant localization to mitochondria within the cytoplasm. In the present study, we found that 200 μM DHA impaired the mitochondrial function, manifested as the decreased antioxidant ability, cellular ATP content and mitochondrial membrane potential in grass carp adipocytes. In addition, the gene expression and enzyme activities of caspase family were significantly increased in 200 μM DHA group, indicating that adipocyte apoptosis was induced. Meanwhile, DHA increased the gene expression of bnip3, nix1 and nix2 in a dose-dependent manner in grass carp adipocytes. The colocalization of mitochondria and lysosomes was promoted by 200 μM DHA treatment, implying that BNIP3/NIX-related mitophagy was activated in adipocytes. Based on these findings, it can be inferred that BNIP3/NIX-related mitophagy may be involved in the adipocyte apoptosis induced by DHA in grass carp.

RevDate: 2024-01-25

Butenko A, Lukeš J, Speijer D, et al (2024)

Mitochondrial genomes revisited: why do different lineages retain different genes?.

BMC biology, 22(1):15.

The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging. In this review, we describe the characteristics of mitochondria-to-nucleus gene transfer and the resulting varied content of mitogenomes across eukaryotes. We introduce a 'burst-upon-drift' model to best explain nuclear-mitochondrial population genetics with flares of transfer due to genetic drift.

RevDate: 2024-01-25

Serrano MJ, Goudet J, T Cumer (2024)

Characterization of the diversity of barn owl's mitochondrial genome reveals high copy number variations in the control region.

PloS one, 19(1):e0295595 pii:PONE-D-23-20889.

Mitochondria are known to play an essential role in the cell. These organelles contain their own DNA, which is divided in a coding and non-coding region (NCR). While much of the NCR's function is unknown, tandem repeats have been observed in several vertebrates, with extreme intra-individual, intraspecific and interspecific variation. Taking advantage of a new complete reference for the mitochondrial genome of the Afro-European Barn Owl (Tyto alba), as well as 172 whole genome-resequencing; we (i) describe the reference mitochondrial genome with a special focus on the repeats in the NCR, (ii) quantify the variation in number of copies between individuals, and (iii) explore the possible factors associated with the variation in the number of repetitions. The reference mitochondrial genome revealed a long (256bp) and a short (80bp) tandem repeat in the NCR region. The re-sequenced genomes showed a great variation in number of copies between individuals, with 4 to 38 copies of the Long and 6 to 135 copies of the short repeat. Among the factors associated with this variation between individuals, the tissue used for extraction was the most significant. The exact mechanisms of the formations of these repeats are still to be discovered and understanding them will help explain the maintenance of the polymorphism in the number of copies, as well as their interactions with the metabolism, the aging and health of the individuals.

RevDate: 2024-01-25

Harada R, Hirakawa Y, Yabuki A, et al (2024)

Encyclopaedia of family A DNA polymerases localized in organelles: Evolutionary contribution of bacteria including the proto-mitochondrion.

Molecular biology and evolution pii:7589574 [Epub ahead of print].

DNA polymerases (DNAPs) synthesize DNA from deoxyribonucleotides in a semi-conservative manner and serve as the core of DNA replication and repair machineries. In eukaryotic cells, there are two genome-containing organelles, mitochondria and plastids, that were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNAPs that localize and work in them to maintain their genomes. The evolution of organellar DNAPs has yet to be fully understood because of two unsettled issues. First, the diversity of organellar DNAPs has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNAPs that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNAPs known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNAP sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNAPs were further examined experimentally. The results presented here suggest that the diversity of organellar DNAPs has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed two mitochondrial DNAPs, POP and a candidate of the direct descendant of the proto-mitochondrial DNAP, rdxPolA, identified in this study.

RevDate: 2024-01-24

Takusagawa M, Misumi O, Nozaki H, et al (2024)

Complete mitochondrial and chloroplast DNA sequences of the freshwater green microalga Medakamo hakoo.

Genes & genetic systems [Epub ahead of print].

We report the complete organellar genome sequences of an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, which has the smallest known nuclear genome in freshwater green algae. Medakamo hakoo has 90.8-kb chloroplast and 36.5-kb mitochondrial genomes containing 80 and 33 putative protein-coding genes, respectively. The mitochondrial genome is the smallest in the Trebouxiophyceae algae studied so far. The GC content of the nuclear genome is 73%, but those of chloroplast and mitochondrial genomes are 41% and 35%, respectively. Codon usages in the organellar genomes have a different tendency from that in the nuclear genome. The organellar genomes have unique characteristics, such as the biased encoding of mitochondrial genes on a single strand and the absence of operon structures in chloroplast ribosomal genes. Medakamo hakoo will be helpful for understanding the evolution of the organellar genome and the regulation of gene expression in chloroplasts and mitochondria.

RevDate: 2024-01-24
CmpDate: 2024-01-24

Li X, Li W, Huo J, et al (2024)

[Identification and expression analysis of citrate synthase 3 gene family members in apple].

Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 40(1):137-149.

As one of the key enzymes in cell metabolism, the activity of citrate synthase 3 (CS3) regulates the substance and energy metabolism of organisms. The protein members of CS3 family were identified from the whole genome of apple, and bioinformatics analysis was performed and expression patterns were analyzed to provide a theoretical basis for studying the potential function of CS3 gene in apple. BLASTp was used to identify members of the apple CS3 family based on the GDR database, and the basic information of CS3 protein sequence, subcellular localization, domain composition, phylogenetic relationship and chromosome localization were analyzed by Pfam, SMART, MEGA5.0, clustalx.exe, ExPASy Proteomics Server, MEGAX, SOPMA, MEME, WoLF PSORT and other software. The tissue expression and inducible expression characteristics of 6 CS3 genes in apple were determined by acid content and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Apple CS3 gene family contains 6 members, and these CS3 proteins contain 473-608 amino acid residues, with isoelectric point distribution between 7.21 and 8.82. Subcellular localization results showed that CS3 protein was located in mitochondria and chloroplasts, respectively. Phylogenetic analysis divided them into 3 categories, and the number of genes in each subfamily was 2. Chromosome localization analysis showed that CS3 gene was distributed on different chromosomes of apple. The secondary structure of protein is mainly α-helix, followed by random curling, and the proportion of β-angle is the smallest. The 6 members were all expressed in different apple tissues. The overall expression trend from high to low was the highest relative expression content of MdCS3.4, followed by MdCS3.6, and the relative expression level of other members was in the order of MdCS3.3 > MdCS3.2 > MdCS3.1 > MdCS3.5. qRT-PCR results showed that MdCS3.1 and MdCS3.3 genes had the highest relative expression in the pulp of 'Chengji No. 1' with low acid content, and MdCS3.2 and MdCS3.3 genes in the pulp of 'Asda' with higher acid content had the highest relative expression. Therefore, in this study, the relative expression of CS3 gene in apple cultivars with different acid content in different apple varieties was detected, and its role in apple fruit acid synthesis was analyzed. The experimental results showed that the relative expression of CS3 gene in different apple varieties was different, which provided a reference for the subsequent study of the quality formation mechanism of apple.

RevDate: 2024-01-23

Tang W, Li X, Ye B, et al (2024)

Characterization of the complete mitochondrial genome and phylogenetic analyses of Haemaphysalis tibetensis Hoogstraal, 1965 (Acari: Ixodidae).

Ticks and tick-borne diseases, 15(2):102311 pii:S1877-959X(24)00004-9 [Epub ahead of print].

Ticks are specialized ectoparasites that feed on blood, causing physical harm to the host and facilitating pathogen transmission. The genus Haemaphysalis contains vectors for numerous infectious agents. These agents cause various diseases in humans and animals. Mitochondrial genome sequences serve as reliable molecular markers, forming a crucial basis for evolutionary analyses, studying species origins, and exploring molecular phylogeny. We extracted mitochondrial genome from the enriched mitochondria of Haemaphysalis tibetensis and obtained a 14,714-bp sequence. The mitochondrial genome consists of 13 protein-coding genes (PCGs), two ribosomal RNA, 22 transfer RNAs (tRNAs), and two control regions. The nucleotide composition of H. tibetensis mitochondrial genome was 38.38 % for A, 9.61 % for G, 39.32 % for T, and 12.69 % for C. The A + T content of H. tibetensis mitochondrial genome was 77.7 %, significantly higher than the G + C content. The repeat units of H. tibetensis exhibited two identical repeat units of 33 bp in length, positioned downstream of nad1 and rrnL genes. Furthermore, phylogenetic analyses based on the 13 PCGs indicated that Haemaphysalis tibetensis (subgenus Allophysalis) formed a monophyletic clade with Haemaphysalis nepalensis (subgenus Herpetobia) and Haemaphysalis danieli (subgenus Allophysalis). Although the species Haemaphysalis inermis, Haemaphysalis kitaokai, Haemaphysalis kolonini, and Haemaphysalis colasbelcouri belong to the subgenus Alloceraea, which were morphologically primitive hemaphysalines just like H. tibetensis, these four tick species cannot form a single clade with H. tibetensis. In this study, the whole mitochondrial genome sequence of H. tibetensis from Tibet was obtained, which enriched the mitochondrial genome data of ticks and provided genetic markers to study the population heredity and molecular evolution of the genus Haemaphysalis.

RevDate: 2024-01-23

Eglit Y, Shiratori T, Jerlström-Hultqvist J, et al (2024)

Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora.

Current biology : CB, 34(2):451-459.e6.

"Kingdom-level" branches are being added to the tree of eukaryotes at a rate approaching one per year, with no signs of slowing down.[1][,][2][,][3][,][4] Some are completely new discoveries, whereas others are morphologically unusual protists that were previously described but lacked molecular data. For example, Hemimastigophora are predatory protists with two rows of flagella that were known since the 19[th] century but proved to represent a new deep-branching eukaryote lineage when phylogenomic analyses were conducted.[2]Meteora sporadica[5] is a protist with a unique morphology; cells glide over substrates along a long axis of anterior and posterior projections while a pair of lateral "arms" swing back and forth, a motility system without any obvious parallels. Originally, Meteora was described by light microscopy only, from a short-term enrichment of deep-sea sediment. A small subunit ribosomal RNA (SSU rRNA) sequence was reported recently, but the phylogenetic placement of Meteora remained unresolved.[6] Here, we investigated two cultivated Meteora sporadica isolates in detail. Transmission electron microscopy showed that both the anterior-posterior projections and the arms are supported by microtubules originating from a cluster of subnuclear microtubule organizing centers (MTOCs). Neither have a flagellar axoneme-like structure. Sequencing the mitochondrial genome showed this to be among the most gene-rich known, outside jakobids. Remarkably, phylogenomic analyses of 254 nuclear protein-coding genes robustly support a close relationship with Hemimastigophora. Our study suggests that Meteora and Hemimastigophora together represent a morphologically diverse "supergroup" and thus are important for resolving the tree of eukaryote life and early eukaryote evolution.

RevDate: 2024-01-23

Sequeira AN, O'Keefe IP, Katju V, et al (2024)

Friend turned foe: selfish behavior of a spontaneously arising mitochondrial deletion in an experimentally evolved C. elegans population.

G3 (Bethesda, Md.) pii:7585480 [Epub ahead of print].

Selfish mitochondrial DNA (mtDNA) mutations are variants that can proliferate within cells and enjoy a replication or transmission bias without fitness benefits for the host. MtDNA deletions in Caenorhabditis elegans can reach high heteroplasmic frequencies despite significantly reducing fitness, illustrating how new mtDNA variants can give rise to genetic conflict between different levels of selection, and between the nuclear and mitochondrial genomes. During a mutation accumulation (MA) experiment in C. elegans, a 1,034 bp deletion originated spontaneously and reached an 81.7% frequency within an experimental evolution line. This heteroplasmic mtDNA deletion, designated as meuDf1, eliminated portions of two protein-coding genes (coxIII and nd4) and tRNA-thr in entirety. MtDNA copy-number in meuDf1 heteroplasmic individuals was 35% higher than in individuals with wildtype mitochondria. After backcrossing into a common genetic background, the meuDf1 mitotype was associated with reduction in several fitness traits and independent competition experiments found a 40% reduction in composite fitness. Experiments that relaxed individual selection by single individual bottlenecks demonstrated that the deletion-bearing mtDNA possessed a strong transmission bias, thereby qualifying it as a novel selfish mitotype.

RevDate: 2024-01-23

Zhang Y, Li H, Wang Y, et al (2024)

Mitogenomic architecture and evolution of the soil ciliates Colpoda.

mSystems [Epub ahead of print].

Colpoda are cosmopolitan unicellular eukaryotes primarily inhabiting soil and benefiting plant growth, but they remain one of the least understood taxa in genetics and genomics within the realm of ciliated protozoa. Here, we investigate the architecture of de novo assembled mitogenomes of six Colpoda species, using long-read sequencing and involving 36 newly isolated natural strains in total. The mitogenome sizes span from 43 to 63 kbp and typically contain 28-33 protein-coding genes. They possess a linear structure with variable telomeres and central repeats, with one Colpoda elliotti strain isolated from Tibet harboring the longest telomeres among all studied ciliates. Phylogenomic analyses reveal that Colpoda species started to diverge more than 326 million years ago, eventually evolving into two distinct groups. Collinearity analyses also reveal significant genomic divergences and a lack of long collinear blocks. One of the most notable features is the exceptionally high level of gene rearrangements between mitochondrial genomes of different Colpoda species, dominated by gene loss events. Population-level mitogenomic analysis on natural strains also demonstrates high sequence divergence, regardless of geographic distance, but the gene order remains highly conserved within species, offering a new species identification criterion for Colpoda species. Furthermore, we identified underlying heteroplasmic sites in the majority of strains of three Colpoda species, albeit without a discernible recombination signal to account for this heteroplasmy. This comprehensive study systematically unveils the mitogenomic structure and evolution of these ancient and ecologically significant Colpoda ciliates, thus laying the groundwork for a deeper understanding of the evolution of unicellular eukaryotes.IMPORTANCEColpoda, one of the most widespread ciliated protozoa in soil, are poorly understood in regard to their genetics and evolution. Our research revealed extreme mitochondrial gene rearrangements dominated by gene loss events, potentially leading to the streamlining of Colpoda mitogenomes. Surprisingly, while interspecific rearrangements abound, our population-level mitogenomic study revealed a conserved gene order within species, offering a potential new identification criterion. Phylogenomic analysis traced their lineage over 326 million years, revealing two distinct groups. Substantial genomic divergence might be associated with the lack of extended collinear blocks and relaxed purifying selection. This study systematically reveals Colpoda ciliate mitogenome structures and evolution, providing insights into the survival and evolution of these vital soil microorganisms.

RevDate: 2024-01-23

Mirra S, G Marfany (2024)

From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies.

International journal of molecular sciences, 25(2): pii:ijms25020834.

Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.

RevDate: 2024-01-22
CmpDate: 2024-01-22

Seesamut T, Oba Y, Jirapatrasilp P, et al (2024)

Global species delimitation of the cosmopolitan marine littoral earthworm Pontodrilus litoralis (Grube, 1855).

Scientific reports, 14(1):1753.

The marine littoral earthworm Pontodrilus litoralis (Grube, 1855) is widely distributed and is reported as a single species. This study utilized an integrative taxonomic approach based upon morphological examination, phylogenetic reconstruction, and molecular species delimitation, to test whether the taxon is a single species or a species complex. For this, a total of 114 P. litoralis specimens collected from North America, Africa, Australia and Oceania, Europe and Asia were used. The phylogenetic analyses revealed deeply divergent mitochondrial lineages and a high level of genetic diversity among P. litoralis populations. Both single and multi-locus species delimitation analyses yielded several molecular operational taxonomic units. Therefore, due to the homogeneity of morphological characteristics, it is likely that the morphospecies P. litoralis is a complex of four or more cryptic species, suggesting that more sampling is required and that the population structure genetic data and gene flow need to be investigated.

RevDate: 2024-01-22
CmpDate: 2024-01-22

Choi SW, Yu HJ, JK Kim (2024)

Comparative ontogeny and phylogenetic relationships of eight lizardfish species (Synodontidae) from the Northwest Pacific, with a focus on Trachinocephalus monophyly.

Journal of fish biology, 104(1):284-303.

Lizardfish (Aulopiforms: Synodontidae), distributed broadly in temperate to tropical waters, are represented globally by 83 species across four genera, with 10 species in Korea. Despite these numbers, few studies have been conducted on the early life history of lizardfishes compared to their adult counterparts. Thus, we conducted molecular identification of 123 Synodontidae larvae collected from the Northwest Pacific (Korea Strait, Yellow Sea, East China Sea, and East Sea) between June 2017 and July 2021, using mitochondrial DNA COI and 16S rRNA sequences. Significant morphological differences were observed in the larvae and juvenile, including variation in melanophore, count, morphometric characteristics, and body shape. The morphological traits of eight species (Harpadon nehereus, Saurida macrolepis, Saurida wanieso, Saurida sp., Synodus hoshinonis, Synodus kaianus, Synodus macrops, and Trachinocephalus trachinus) served as vital data for interpreting the phylogenetic relationships within the Northwest Pacific Synodontidae. Ultimately, the identification key revealed by this study will enable accurate identification of Synodontid larvae and juveniles, and further facilitate our understanding of the phylogenetic relationships within this family.

RevDate: 2024-01-19

Satoh S, Miyake K, Adachi Y, et al (2024)

Cancer-associated SNRPD3 mutation confers resistance to hypoxia, which is attenuated by DRP1 inhibition.

Biochemical and biophysical research communications, 696:149511 pii:S0006-291X(24)00046-9 [Epub ahead of print].

RNA splicing is a fundamental cellular mechanism performed by spliceosomes that synthesise multiple mature RNA isoforms from a single gene. The association between spliceosome abnormality and solid cancers remains largely unknown. Here, we demonstrated that Sm proteins, which are common components of the spliceosomes and constitute the Sm ring, were overexpressed in multiple cancers and their expression levels were correlated with clinical prognosis. In a pan-cancer mutational hotspot in the Sm ring at SNRPD3 G96V, we found that the G96V substitution confers resistance to hypoxia. RNA-seq detected numerous differentially spliced events between the wild-type and mutation-carrying cells cultured under hypoxia, wherein skipping exons and mutually exclusive exons were frequently observed. This was observed in DNM1L mRNA, which encodes the DRP1 protein that regulates mitochondrial fission. The mitochondria of cells carrying this mutation were excessively fragmented compared with those of wild-type cells. Furthermore, treatment with a DRP1 inhibitor (Mdivi-1) recovered the over-fragmented mitochondria, leading to the attenuation of hypoxia resistance in the mutant cells. These results propose a novel correlation between the cancer-related spliceosome abnormality and mitochondrial fission. Thus, targeting SNRPD3 G96V with a DRP1 inhibitor is a potential treatment strategy for cancers with spliceosome abnormalities.

RevDate: 2024-01-18

Ali NA, Song W, Huang J, et al (2024)

Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria.

Critical reviews in biotechnology [Epub ahead of print].

The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.

RevDate: 2024-01-18

Bayazit MB, Francois A, McGrail E, et al (2023)

mt-tRNAs in the polymerase gamma mutant heart.

The journal of cardiovascular aging, 3(4):.

INTRODUCTION: Mice harboring a D257A mutation in the proofreading domain of the mitochondrial DNA polymerase, Polymerase Gamma (POLG), experience severe metabolic dysfunction and display hallmarks of accelerated aging. We previously reported a mitochondrial unfolded protein response (UPT[mt]) - like (UPR[mt]-like) gene and protein expression pattern in the right ventricular tissue of POLG mutant mice.

AIM: We sought to determine if POLG mutation altered the expression of genes encoded by the mitochondria in a way that might also reduce proteotoxic stress.

METHODS AND RESULTS: The expression of genes encoded by the mitochondrial DNA was interrogated via RNA-seq and northern blot analysis. A striking, location-dependent effect was seen in the expression of mitochondrial-encoded tRNAs in the POLG mutant as assayed by RNA-seq. These expression changes were negatively correlated with the tRNA partner amino acid's amyloidogenic potential. Direct measurement by northern blot was conducted on candidate mt-tRNAs identified from the RNA-seq. This analysis confirmed reduced expression of MT-TY in the POLG mutant but failed to show increased expression of MT-TP, which was dramatically increased in the RNA-seq data.

CONCLUSION: We conclude that reduced expression of amyloid-associated mt-tRNAs is another indication of adaptive response to severe mitochondrial dysfunction in the POLG mutant. Incongruence between RNA-seq and northern blot measurement of MT-TP expression points towards the existence of mt-tRNA post-transcriptional modification regulation in the POLG mutant that alters either polyA capture or cDNA synthesis in RNA-seq library generation. Together, these data suggest that 1) evolution has distributed mt-tRNAs across the circular mitochondrial genome to allow chromosomal location-dependent mt-tRNA regulation (either by expression or PTM) and 2) this regulation is cognizant of the tRNA partner amino acid's amyloidogenic properties.

RevDate: 2024-01-16

Krishnan N, Csiszár V, Móri TF, et al (2024)

Genesis of ectosymbiotic features based on commensalistic syntrophy.

Scientific reports, 14(1):1366.

The symbiogenetic origin of eukaryotes with mitochondria is considered a major evolutionary transition. The initial interactions and conditions of symbiosis, along with the phylogenetic affinity of the host, are widely debated. Here, we focus on a possible evolutionary path toward an association of individuals of two species based on unidirectional syntrophy. With the backing of a theoretical model, we hypothesize that the first step in the evolution of such symbiosis could be the appearance of a linking structure on the symbiont's membrane, using which it forms an ectocommensalism with its host. We consider a commensalistic model based on the syntrophy hypothesis in the framework of coevolutionary dynamics and mutant invasion into a monomorphic resident system (evolutionary substitution). We investigate the ecological and evolutionary stability of the consortium (or symbiotic merger), with vertical transmissions playing a crucial role. The impact of the 'effectiveness of vertical transmission' on the dynamics is also analyzed. We find that the transmission of symbionts and the additional costs incurred by the mutant determine the conditions of fixation of the consortia. Additionally, we observe that small and highly metabolically active symbionts are likely to form the consortia.

RevDate: 2024-01-16
CmpDate: 2024-01-16

Doniol-Valcroze P, Coiffard P, Alstrm P, et al (2023)

Molecular and acoustic evidence support the species status of Anthus rubescens rubescens and Anthus [rubescens] japonicus (Passeriformes: Motacillidae).

Zootaxa, 5343(2):173-192.

The Buff-bellied Pipit Anthus rubescens comprises two allopatric subspecies groups: A. r. rubescens and A. r. alticola in North America and A. [r.] japonicus in north-east Asia. Despite their great morphological resemblance in breeding plumage, most individuals can be assigned to one or the other subspecies group in non-breeding plumage. Allopatric distributions, morphological differentiation and previously reported molecular divergence suggested the need for additional taxonomic study to assess the rank of these two populations. To resolve the taxonomy of the Buff-bellied Pipit species complex we analysed i) two mitochondrial DNA (mtDNA) loci and ii) nine bioacoustic parameters across 69 sound recordings (338 flight calls) recovered from public databases using principal component analysis and Euclidean distance measures. By comparing our mtDNA and call divergence measures with similar values measured between long-recognised species pairs of the genus, we show that the level of mitochondrial and acoustic divergence between the two Buff-bellied Pipit subspecies groups is typical of species-level divergence in the genus Anthus. Therefore, we recommend splitting the Buff-bellied Pipit species complex into two species: Anthus rubescens (American Pipit) and Anthus japonicus (Siberian Pipit). Our results also suggest that the Water Pipit A. spinoletta deserves taxonomic reassessment as its lineages are highly divergent in acoustics and mtDNA, while mtDNA relationships suggest paraphyly relative to the Rock Pipit A. petrosus. Our work highlights the crucial importance of integrative approaches in taxonomy and the usefulness of bioacoustics in studying cryptic diversity.

RevDate: 2024-01-16
CmpDate: 2024-01-16

Hoare RJB, Patrick BH, Buckley TR, et al (2023)

Wing pattern variation and DNA barcodes defy taxonomic splitting in the New Zealand Pimelea Looper Notoreas perornata (Walker) (Lepidoptera: Geometridae: Larentiinae): the importance of populations as conservation units.

Zootaxa, 5346(1):1-27.

The endemic Notoreas perornata (Walker, 1863) complex (Lepidoptera: Geometridae: Larentiinae) from the North Island and northern South Island of New Zealand is reviewed. Larvae feed on Pimelea spp. (Thymelaeaceae), frequently in highly fragmented and threatened shrubland habitats. Allopatric populations tend to differ in size and wing pattern characteristics, but not in genitalia; moreover extensive variation renders recognition of subspecies / allopatric species based on any species concept problematic. A mitochondrial DNA gene tree is not congruent with morphology and indicates rapid recent divergence that has not settled into diagnosable lineages. Based on our results, we synonymise Notoreas simplex Hudson, 1898 with N. perornata (Walker, 1863), and retain N. perornata as a single, highly diverse but monotypic species. All known populations are illustrated to display variation. For conservation purposes, we recommend the continued recognition within the species of 10 populations or groups of populations that appear to be on the way to diverging at subspecific level based on morphological and/or DNA data. The conservation status of all these populations is reviewed. One conservation unit, comprising the populations from Westland, has not been seen since 1998 and is feared possibly extinct.

RevDate: 2024-01-16
CmpDate: 2024-01-16

Antoniolli HRM, Carvalho TL, Gottschalk MS, et al (2024)

Systematics and spatio-temporal evolutionary patterns of the flavopilosa group of Drosophila (Diptera, Drosophilidae).

Zootaxa, 5399(1):1-18.

The Drosophila flavopilosa group comprises morphologically cryptic species that are ecologically restricted to feeding, breeding and ovipositing on flowers of Cestrum and Sessea (Solanaceae). Previous studies confirmed the monophyly of the group and the success of DNA barcoding in identifying a subset of its species, but several others remain yet to be evaluated. Furthemore, the taxonomy of the group remains incomplete, with only nine of the 17 species assigned to subgroups. Here, we accessed the phylogenetic relationships and spatio-temporal evolutionary patterns of the flavopilosa group based on a mitochondrial and two nuclear genes, providing the first molecular support to the subdivision of the group and suggesting a new taxonomic scheme for its species. Barcoding proved to be an effective tool, as all species were reciprocally monophyletic and different analyses of species delimitation yielded congruent results. The close relationship of D. flavopilosa with D. cestri and D. cordeiroi was strongly supported, suggesting that the latter should be placed in the flavopilosa subgroup together with the first. Furthermore, D. mariaehelenae was positioned as sister to D. incompta, supporting its inclusion in the nesiota subgroup. Despite new taxonomic assignments, the synapomorphic status of the diagnostic characters proposed for both subgroups was supported. Based on them, each of the remaining species were placed into one of both subgroups. Divergence time estimates suggest that their diversification coincided with the divergence of Sessea and Cestrum, providing an interesting case of coevolution.

RevDate: 2024-01-15
CmpDate: 2024-01-15

Cao L, Chen P, Hou X, et al (2024)

rDNA and mtDNA analysis for the identification of genetic characters in the hybrid grouper derived from hybridization of Cromileptes altivelis (female) × Epinephelus lanceolatus (male).

BMC genomic data, 25(1):5.

BACKGROUND: Hybridization is a useful strategy to produce offspring with more desirable phenotypic characteristics than those of parents. The hybrid grouper derived from the cross of Cromileptes altivelis (♀, 2n = 48) with Epinephelus lanceolatus (♂, 2n = 48) exhibits improved growth compared with its female parent, which makes it valuable to aquaculture. However, the genetic traits of the hybrid grouper are poorly understood.

RESULTS: The observations showed that the hybrid grouper was diploid (2n = 48) and displayed intermediate morphology with the parent's measurable characteristics. The ribosomal DNA (rDNA) and mitochondria DNA (mtDNA) were characterized at molecular and phylogenetic level. High similarity and low genetic distance of 5S rDNA and mtDNA sequences between the hybrid grouper and C. altivelis showed that the hybrid grouper had a closer genetic relationship with female parents. The reconstructed phylogenetic tree based on COI gene and D-loop region of mtDNA recovered that mtDNA was maternally inherited in the hybrid grouper. Additionally, the DNA methylation level of 5S rDNA intergenic spacers (IGS) sequence was tested in here. The results showed that the DNA methylation status of the hybrid grouper was significantly lower than that of C. altivelis.

CONCLUSION: Results of this study provide important data on the genetic characteristics of the hybrid derived from the cross of C. altivelis and E. lanceolatus, and contribute the knowledge of both evolution and marine fish breeding.

RevDate: 2024-01-12
CmpDate: 2024-01-12

Crino OL, Head ML, Jennions MD, et al (2024)

Mitochondrial function and sexual selection: can physiology resolve the 'lek paradox'?.

The Journal of experimental biology, 227(2):.

Across many taxa, males use elaborate ornaments or complex displays to attract potential mates. Such sexually selected traits are thought to signal important aspects of male 'quality'. Female mating preferences based on sexual traits are thought to have evolved because choosy females gain direct benefits that enhance their lifetime reproductive success (e.g. greater access to food) and/or indirect benefits because high-quality males contribute genes that increase offspring fitness. However, it is difficult to explain the persistence of female preferences when males only provide genetic benefits, because female preferences should erode the heritable genetic variation in fitness that sexually selected traits signal. This 'paradox of the lek' has puzzled evolutionary biologists for decades, and inspired many hypotheses to explain how heritable variation in sexually selected traits is maintained. Here, we discuss how factors that affect mitochondrial function can maintain variation in sexually selected traits despite strong female preferences. We discuss how mitochondrial function can influence the expression of sexually selected traits, and we describe empirical studies that link the expression of sexually selected traits to mitochondrial function. We explain how mothers can affect mitochondrial function in their offspring by (a) influencing their developmental environment through maternal effects and (b) choosing a mate to increase the compatibility of mitochondrial and nuclear genes (i.e. the 'mitonuclear compatibility model of sexual selection'). Finally, we discuss how incorporating mitochondrial function into models of sexual selection might help to resolve the paradox of the lek, and we suggest avenues for future research.

RevDate: 2024-01-13
CmpDate: 2024-01-12

Baleva MV, Piunova U, Chicherin I, et al (2023)

Mitochondrial Protein SLIRP Affects Biosynthesis of Cytochrome c Oxidase Subunits in HEK293T Cells.

International journal of molecular sciences, 25(1):.

Mitochondria carry out various vital roles in eukaryotic cells, including ATP energy synthesis, the regulation of apoptosis, Fe-S cluster formation, and the metabolism of fatty acids, amino acids, and nucleotides. Throughout evolution, mitochondria lost most of their ancestor's genome but kept the replication, transcription, and translation machinery. Protein biosynthesis in mitochondria is specialized in the production of highly hydrophobic proteins encoded by mitochondria. These proteins are components of oxidative phosphorylation chain complexes. The coordination of protein synthesis must be precise to ensure the correct assembly of nuclear-encoded subunits for these complexes. However, the regulatory mechanisms of mitochondrial translation in human cells are not yet fully understood. In this study, we examined the contribution of the SLIRP protein in regulating protein biosynthesis in mitochondria. Using a click-chemistry approach, we discovered that deletion of the SLIRP gene disturbs mitochondrial translation, leading to the dysfunction of complexes I and IV, but it has no significant effect on complexes III and V. We have shown that this protein interacts only with the small subunit of the mitochondrial ribosome, which may indicate its involvement in the regulation of the mitochondrial translation initiation stage.

RevDate: 2024-01-13
CmpDate: 2024-01-12

Korolija M, Sukser V, K Vlahoviček (2024)

Mitochondrial point heteroplasmy: insights from deep-sequencing of human replicate samples.

BMC genomics, 25(1):48.

BACKGROUND: Human mitochondrial heteroplasmy is an extensively investigated phenomenon in the context of medical diagnostics, forensic identification and molecular evolution. However, technical limitations of high-throughput sequencing hinder reliable determination of point heteroplasmies (PHPs) with minor allele frequencies (MAFs) within the noise threshold.

RESULTS: To investigate the PHP landscape at an MAF threshold down to 0.1%, we sequenced whole mitochondrial genomes at approximately 7.700x coverage, in multiple technical and biological replicates of longitudinal blood and buccal swab samples from 11 human donors (159 libraries in total). The results obtained by two independent sequencing platforms and bioinformatics pipelines indicate distinctive PHP patterns below and above the 1% MAF cut-off. We found a high inter-individual prevalence of low-level PHPs (MAF < 1%) at polymorphic positions of the mitochondrial DNA control region (CR), their tissue preference, and a tissue-specific minor allele linkage. We also established the position-dependent potential of minor allele expansion in PHPs, and short-term PHP instability in a mitotically active tissue. We demonstrate that the increase in sensitivity of PHP detection to minor allele frequencies below 1% within a robust experimental and analytical pipeline, provides new information with potential applicative value.

CONCLUSIONS: Our findings reliably show different mutational loads between tissues at sub-1% allele frequencies, which may serve as an informative medical biomarker of time-dependent, tissue-specific mutational burden, or help discriminate forensically relevant tissues in a single person, close maternal relatives or unrelated individuals of similar phylogenetic background.

RevDate: 2024-01-12
CmpDate: 2024-01-12

Liu J, Hu JY, DZ Li (2024)

Remarkable mitochondrial genome heterogeneity in Meniocus linifolius (Brassicaceae).

Plant cell reports, 43(2):36.

Detailed analyses of 16 genomes identified a remarkable acceleration of mutation rate, hence mitochondrial sequence and structural heterogeneity, in Meniocus linifolius (Brassicaceae). The powerhouse, mitochondria, in plants feature high levels of structural variation, while the encoded genes are normally conserved. However, the substitution rates and spectra of mitochondria DNA within the Brassicaceae, a family with substantial scientific and economic importance, have not been adequately deciphered. Here, by analyzing three newly assembled and 13 known mitochondrial genomes (mitogenomes), we report the highly variable genome structure and mutation rates in Brassicaceae. The genome sizes and GC contents are 196,604 bp and 46.83%, 288,122 bp and 44.79%, and 287,054 bp and 44.93%, for Meniocus linifolius (Mli), Crucihimalaya lasiocarpa (Cla), and Lepidium sativum (Lsa), respectively. In total, 29, 33, and 34 protein-coding genes (PCGs) and 14, 18, and 18 tRNAs are annotated for Mli, Cla, and Lsa, respectively, while all mitogenomes contain one complete circular molecule with three rRNAs and abundant RNA editing sites. The Mli mitogenome features four conformations likely mediated by the two pairs of long repeats, while at the same time seems to have an unusual evolutionary history due to higher GC content, loss of more genes and sequences, but having more repeats and plastid DNA insertions. Corroborating with these, an ambiguous phylogenetic position with long branch length and elevated synonymous substitution rate in nearly all PCGs are observed for Mli. Taken together, our results reveal a high level of mitogenome heterogeneity at the family level and provide valuable resources for further understanding the evolutionary pattern of organelle genomes in Brassicaceae.

RevDate: 2024-01-08

Huttner WB, Heide M, Mora-Bermúdez F, et al (2024)

Neocortical neurogenesis in development and evolution-Human-specific features.

The Journal of comparative neurology [Epub ahead of print].

In this review, we focus on human-specific features of neocortical neurogenesis in development and evolution. Two distinct topics will be addressed. In the first section, we discuss the expansion of the neocortex during human evolution and concentrate on the human-specific gene ARHGAP11B. We review the ability of ARHGAP11B to amplify basal progenitors and to expand a primate neocortex. We discuss the contribution of ARHGAP11B to neocortex expansion during human evolution and its potential implications for neurodevelopmental disorders and brain tumors. We then review the action of ARHGAP11B in mitochondria as a regulator of basal progenitor metabolism, and how it promotes glutaminolysis and basal progenitor proliferation. Finally, we discuss the increase in cognitive performance due to the ARHGAP11B-induced neocortical expansion. In the second section, we focus on neocortical development in modern humans versus Neanderthals. Specifically, we discuss two recent findings pointing to differences in neocortical neurogenesis between these two hominins that are due to a small number of amino acid substitutions in certain key proteins. One set of such proteins are the kinetochore-associated proteins KIF18a and KNL1, where three modern human-specific amino acid substitutions underlie the prolongation of metaphase during apical progenitor mitosis. This prolongation in turn is associated with an increased fidelity of chromosome segregation to the apical progenitor progeny during modern human neocortical development, with implications for the proper formation of radial units. Another such key protein is transketolase-like 1 (TKTL1), where a single modern human-specific amino acid substitution endows TKTL1 with the ability to amplify basal radial glia, resulting in an increase in upper-layer neuron generation. TKTL1's ability is based on its action in the pentose phosphate pathway, resulting in increased fatty acid synthesis. The data imply greater neurogenesis during neocortical development in modern humans than Neanderthals due to TKTL1, in particular in the developing frontal lobe.

RevDate: 2024-01-09

Riew TR, Hwang JW, Jin X, et al (2023)

Astrocytes are involved in the formation of corpora amylacea-like structures from neuronal debris in the CA1 region of the rat hippocampus after ischemia.

Frontiers in cellular neuroscience, 17:1308247.

Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100β, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.

RevDate: 2024-01-08

Sizek H, Deritei D, Fleig K, et al (2023)

Unlocking Mitochondrial Dysfunction-Associated Senescence (MiDAS) with NAD [+] - a Boolean Model of Mitochondrial Dynamics and Cell Cycle Control.

bioRxiv : the preprint server for biology pii:2023.12.18.572194.

UNLABELLED: The steady accumulation of senescent cells with aging creates tissue environments that aid cancer evolution. The secretome of senescent cells promotes chronic inflammation, contains growth and transforming signals, and causes chronic oxidative stress. The latter is primarily due to dysfunctional mitochondria often seen in senescent cells. Aging cell states are highly heterogeneous. 'Deep senescent' cells rely on healthy mitochondria to fuel a strong proinflammatory secretome. In parallel, the triggers of deep senescence also generate cells with mitochondrial dysfunction, and sufficient energy deficit to alter their secretome - a state termed Mitochondrial Dysfunction-Associated Senescence (MiDAS). Here we offer a mechanistic explanation for the molecular processes leading to MiDAS. To do this we have built a Boolean regulatory network model able to reproduce mitochondrial dynamics during cell cycle progression (hyper-fusion at the G1/S boundary, fission in mitosis), apoptosis (fission and dysfunction) and glucose starvation (reversible hyper-fusion), as well as MiDAS in response to SIRT3 knockdown or oxidative stress. Our model also recapitulates the protective role of NAD [+] and external pyruvate. We offer testable predictions about the growth factor- and glucose-dependence of MiDAS and its reversibility at different stages of reactive oxygen species (ROS)-induced senescence. Our model opens the door to modeling distinct stages of DNA-damage induced senescence, the relationship between senescence and epithelial-to-mesenchymal transition in cancer and building multiscale models of tissue aging.

HIGHLIGHTS: Boolean regulatory network model reproduces mitochondrial dynamics during cell cycle progression, apoptosis, and glucose starvation. Model offers a mechanistic explanation for the positive feedback loop that locks in Mitochondrial Dysfunction-Associated Senescence (MiDAS), involving autophagy-resistant hyperfused but dysfunctional mitochondria. Model reproduces ROS-mediated mitochondrial dysfunction and suggests that MiDAS is part of the early phase of damage-induced senescence. Model predicts that cancer-driving mutations that bypass the G1/S checkpoint generally increase the incidence of MiDAS, with the notable exception of p53 loss.

RevDate: 2024-01-10
CmpDate: 2024-01-09

Prokkola JM, Chew KK, Anttila K, et al (2024)

Tissue-specific metabolic enzyme levels covary with whole-animal metabolic rates and life-history loci via epistatic effects.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 379(1896):20220482.

Metabolic rates, including standard (SMR) and maximum (MMR) metabolic rate have often been linked with life-history strategies. Variation in context- and tissue-level metabolism underlying SMR and MMR may thus provide a physiological basis for life-history variation. This raises a hypothesis that tissue-specific metabolism covaries with whole-animal metabolic rates and is genetically linked to life history. In Atlantic salmon (Salmo salar), variation in two loci, vgll3 and six6, affects life history via age-at-maturity as well as MMR. Here, using individuals with known SMR and MMR with different vgll3 and six6 genotype combinations, we measured proxies of mitochondrial density and anaerobic metabolism, i.e. maximal activities of the mitochondrial citrate synthase (CS) and lactate dehydrogenase (LDH) enzymes, in four tissues (heart, intestine, liver, white muscle) across low- and high-food regimes. We found enzymatic activities were related to metabolic rates, mainly SMR, in the intestine and heart. Individual loci were not associated with the enzymatic activities, but we found epistatic effects and genotype-by-environment interactions in CS activity in the heart and epistasis in LDH activity in the intestine. These effects suggest that mitochondrial density and anaerobic capacity in the heart and intestine may partly mediate variation in metabolic rates and life history via age-at-maturity. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.

RevDate: 2024-01-10
CmpDate: 2024-01-09

Thoral E, Dargère L, Medina-Suárez I, et al (2024)

Non-lethal sampling for assessment of mitochondrial function does not affect metabolic rate and swimming performance.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 379(1896):20220483.

A fundamental issue in the metabolic field is whether it is possible to understand underlying mechanisms that characterize individual variation. Whole-animal performance relies on mitochondrial function as it produces energy for cellular processes. However, our lack of longitudinal measures to evaluate how mitochondrial function can change within and among individuals and with environmental context makes it difficult to assess individual variation in mitochondrial traits. The aims of this study were to test the repeatability of muscle mitochondrial metabolism by performing two biopsies of red muscle, and to evaluate the effects of biopsies on whole-animal performance in goldfish Carassius auratus. Our results show that basal mitochondrial respiration and net phosphorylation efficiency are repeatable at 14-day intervals. We also show that swimming performance (optimal cost of transport and critical swimming speed) was repeatable in biopsied fish, whereas the repeatability of individual oxygen consumption (standard and maximal metabolic rates) seemed unstable over time. However, we noted that the means of individual and mitochondrial traits did not change over time in biopsied fish. This study shows that muscle biopsies allow the measurement of mitochondrial metabolism without sacrificing animals and that two muscle biopsies 14 days apart affect the intraspecific variation in fish performance without affecting average performance of individuals. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.

RevDate: 2024-01-07

Zhang D, Jakovlić I, Zou H, et al (2024)

Strong mitonuclear discordance in the phylogeny of Neodermata and evolutionary rates of Polyopisthocotylea.

International journal for parasitology pii:S0020-7519(24)00001-8 [Epub ahead of print].

The genomic evolution of Polyopisthocotylea remains poorly understood in comparison to the remaining three classes of Neodermata: Monopisthocotylea, Cestoda, and Trematoda. Moreover, the evolutionary sequence of major events in the phylogeny of Neodermata remains unresolved. Herein we sequenced the mitogenome and transcriptome of the polyopisthocotylean Diplorchis sp., and conducted comparative evolutionary analyses using nuclear (nDNA) and mitochondrial (mtDNA) genomic datasets of Neodermata. We found strong mitonuclear discordance in the phylogeny of Neodermata. Polyopisthocotylea exhibited striking mitonuclear discordance in relative evolutionary rates: the fastest-evolving mtDNA in Neodermata and a comparatively slowly-evolving nDNA genome. This was largely attributable to its very long stem branch in mtDNA topologies, not exhibited by the nDNA data. We found indications that the fast evolution of mitochondrial genomes of Polyopisthocotylea may be driven both by relaxed purifying selection pressures and elevated levels of directional selection. We identified mitochondria-associated genes encoded in the nuclear genome: they exhibited unique evolutionary rates, but not correlated with the evolutionary rate of mtDNA, and there is no evidence for compensatory evolution (they evolved slower than the rest of the genome). Finally, there appears to exist an exceptionally large (≈6.3 kb) nuclear mitochondrial DNA segment (numt) in the nuclear genome of newly sequenced Diplorchis sp. A 3'-end segment of the 16S rRNA gene encoded by the numt was expressed, suggesting that this gene acquired novel, regulatory functions after the transposition to the nuclear genome. In conclusion, Polyopisthocotylea appears to be the lineage with the fastest-evolving mtDNA sequences among all of Bilateria, but most of the substitutions were accumulated deep in the evolutionary history of this lineage. As the nuclear genome does not exhibit a similar pattern, the circumstances underpinning this evolutionary phenomenon remain a mystery.

RevDate: 2024-01-08
CmpDate: 2024-01-08

Yonezawa T, Mannen H, Honma K, et al (2024)

Origin and spatial population structure of Malagasy native chickens based on mitochondrial DNA.

Scientific reports, 14(1):569.

Since Malagasy human culture became established in a multi-layered way by genetic admixture of Austronesian (Indonesia), Bantu (East Africa) and West Asian populations, the Malagasy native livestock should also have originated from these regions. While recent genetic studies revealed that Malagasy native dogs and goats were propagated from Africa, the origin of Malagasy native chickens is still controversial. Here, we conducted a phylogeographic analysis of the native chickens, focusing on the historical relationships among the Indian Ocean rim countries and based on mitochondrial D-loop sequences. Although previous work suggested that the rare Haplogroup D occurs with high frequencies in Island Southeast Asia-Pacific, East Africa and Madagascar, the major mitochondrial lineage in Malagasy populations is actually not Haplogroup D but the Sub-haplogroup C2, which is also observed in East Africa, North Africa, India and West Asia. We demonstrate that the Malagasy native chickens were propagated directly from West Asia (including India and North Africa), and not via East Africa. Furthermore, they display clear genetic differentiation within Madagascar, separated into the Highland and Lowland regions as seen in the human genomic landscape on this island. Our findings provide new insights for better understanding the intercommunion of material/non-material cultures within and around Madagascar.

RevDate: 2024-01-04

Chi HM, Davies MR, Garcia SM, et al (2024)

Defining Endogenous Mitochondrial Transfer in Muscle After Rotator Cuff Injury.

The American journal of sports medicine [Epub ahead of print].

BACKGROUND: Rotator cuff muscle degeneration leads to poor clinical outcomes for patients with rotator cuff tears. Fibroadipogenic progenitors (FAPs) are resident muscle stem cells with the ability to differentiate into fibroblasts as well as white and beige adipose tissue. Induction of the beige adipose phenotype in FAPs has been shown to improve muscle quality after rotator cuff tears, but the mechanisms of how FAPs exert their beneficial effects have not been fully elucidated.

PURPOSE: To study the horizontal transfer of mitochondria from FAPs to myogenic cells and examine the effects of β-agonism on this novel process.

STUDY DESIGN: Controlled laboratory study.

METHODS: In mice that had undergone a massive rotator cuff tear, single-cell RNA sequencing was performed on isolated FAPs for genes associated with mitochondrial biogenesis and transfer. Murine FAPs were isolated by fluorescence-activated cell sorting and treated with a β-agonist versus control. FAPs were stained with mitochondrial dyes and cocultured with recipient C2C12 myoblasts, and the rate of transfer was measured after 24 hours by flow cytometry. PdgfraCre[ERT]/MitoTag mice were generated to study the effects of a rotator cuff injury on mitochondrial transfer. PdgfraCre[ERT]/tdTomato mice were likewise generated to perform lineage tracing of PDGFRA[+] cells in this injury model. Both populations of transgenic mice underwent tendon transection and denervation surgery, and MitoTag-labeled mitochondria from Pdgfra[+] FAPs were visualized by fluorescent microscopy, spinning disk confocal microscopy, and 2-photon microscopy; overall mitochondrial quantity was compared between mice treated with β-agonists and dimethyl sulfoxide.

RESULTS: Single-cell RNA sequencing in mice that underwent rotator cuff tear demonstrated an association between transcriptional markers of adipogenic differentiation and genes associated with mitochondrial biogenesis. In vitro cocultures of murine FAPs with C2C12 cells revealed that treatment of cells with a β-agonist increased mitochondrial transfer compared to control conditions (17.8% ± 9.9% to 99.6% ± 0.13% P < .0001). Rotator cuff injury in PdgfraCre[ERT]/MitoTag mice resulted in a robust increase in MitoTag signal in adjacent myofibers compared with uninjured mice. No accumulation of tdTomato signal from PDGFRA[+] cells was seen in injured fibers at 6 weeks after injury, suggesting that FAPs do not fuse with injured muscle fibers but rather contribute their mitochondria.

CONCLUSION: The authors have described a novel process of endogenous mitochondrial transfer that can occur within the injured rotator cuff between FAPs and myogenic cells. This process may be leveraged therapeutically with β-agonist treatment and represents an exciting target for improving translational therapies available for rotator cuff muscle degeneration.

CLINICAL RELEVANCE: Promoting endogenous mitochondrial transfer may represent a novel translational strategy to address muscle degeneration after rotator cuff tears.

RevDate: 2024-01-14
CmpDate: 2024-01-05

Cui M, Yamano K, Yamamoto K, et al (2024)

HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence.

Proceedings of the National Academy of Sciences of the United States of America, 121(2):e2306454120.

Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.

RevDate: 2024-01-06
CmpDate: 2024-01-05

Graham AM, Lavretsky P, Wilson RE, et al (2024)

High-altitude adaptation is accompanied by strong signatures of purifying selection in the mitochondrial genomes of three Andean waterfowl.

PloS one, 19(1):e0294842.

Evidence from a variety of organisms points to convergent evolution on the mitochondria associated with a physiological response to oxygen deprivation or temperature stress, including mechanisms for high-altitude adaptation. Here, we examine whether demography and/or selection explains standing mitogenome nucleotide diversity in high-altitude adapted populations of three Andean waterfowl species: yellow-billed pintail (Anas georgica), speckled teal (Anas flavirostris), and cinnamon teal (Spatula cyanoptera). We compared a total of 60 mitogenomes from each of these three duck species (n = 20 per species) across low and high altitudes and tested whether part(s) or all of the mitogenome exhibited expected signatures of purifying selection within the high-altitude populations of these species. Historical effective population sizes (Ne) were inferred to be similar between high- and low-altitude populations of each species, suggesting that selection rather than genetic drift best explains the reduced genetic variation found in mitochondrial genes of high-altitude populations compared to low-altitude populations of the same species. Specifically, we provide evidence that establishment of these three Andean waterfowl species in the high-altitude environment, coincided at least in part with a persistent pattern of negative purifying selection acting on oxidative phosphorylation (OXPHOS) function of the mitochondria. Our results further reveal that the extent of gene-specific purifying selection has been greatest in the speckled teal, the species with the longest history of high-altitude occupancy.

RevDate: 2024-01-03

Labbadia J (2023)

Potential roles for mitochondria-to-HSF1 signaling in health and disease.

Frontiers in molecular biosciences, 10:1332658.

The ability to respond rapidly and efficiently to protein misfolding is crucial for development, reproduction and long-term health. Cells respond to imbalances in cytosolic/nuclear protein homeostasis through the Heat Shock Response, a tightly regulated transcriptional program that enhances protein homeostasis capacity by increasing levels of protein quality control factors. The Heat Shock Response is driven by Heat Shock Factor 1, which is rapidly activated by the appearance of misfolded proteins and drives the expression of genes encoding molecular chaperones and protein degradation factors, thereby restoring proteome integrity. HSF1 is critical for organismal health, and this has largely been attributed to the preservation of cytosolic and nuclear protein homeostasis. However, evidence is now emerging that HSF1 is also a key mediator of mitochondrial function, raising the possibility that many of the health benefits conferred by HSF1 may be due to the maintenance of mitochondrial homeostasis. In this review, I will discuss our current understanding of the interplay between HSF1 and mitochondria and consider how mitochondria-to-HSF1 signaling may influence health and disease susceptibility.

RevDate: 2024-01-03

Hambardikar V, Akosah YA, Scoma ER, et al (2023)

Toolkit for cellular studies of mammalian mitochondrial inorganic polyphosphate.

Frontiers in cell and developmental biology, 11:1302585.

Introduction: Inorganic polyphosphate (polyP) is an ancient polymer which is extremely well-conserved throughout evolution, and found in every studied organism. PolyP is composed of orthophosphates linked together by high-energy bonds, similar to those found in ATP. The metabolism and the functions of polyP in prokaryotes and simple eukaryotes are well understood. However, little is known about its physiological roles in mammalian cells, mostly due to its unknown metabolism and lack of systematic methods and effective models for the study of polyP in these organisms. Methods: Here, we present a comprehensive set of genetically modified cellular models to study mammalian polyP. Specifically, we focus our studies on mitochondrial polyP, as previous studies have shown the potent regulatory role of mammalian polyP in the organelle, including bioenergetics, via mechanisms that are not yet fully understood. Results: Using SH-SY5Y cells, our results show that the enzymatic depletion of mitochondrial polyP affects the expression of genes involved in the maintenance of mitochondrial physiology, as well as the structure of the organelle. Furthermore, this depletion has deleterious effects on mitochondrial respiration, an effect that is dependent on the length of polyP. Our results also show that the depletion of mammalian polyP in other subcellular locations induces significant changes in gene expression and bioenergetics; as well as that SH-SY5Y cells are not viable when the amount and/or the length of polyP are increased in mitochondria. Discussion: Our findings expand on the crucial role of polyP in mammalian mitochondrial physiology and place our cell lines as a valid model to increase our knowledge of both mammalian polyP and mitochondrial physiology.

RevDate: 2024-01-08
CmpDate: 2024-01-03

Yang X, Li G, Lou P, et al (2024)

Excessive nucleic acid R-loops induce mitochondria-dependent epithelial cell necroptosis and drive spontaneous intestinal inflammation.

Proceedings of the National Academy of Sciences of the United States of America, 121(1):e2307395120.

Oxidative stress, which can be activated by a variety of environmental risk factors, has been implicated as an important pathogenic factor for inflammatory bowel disease (IBD). However, how oxidative stress drives IBD onset remains elusive. Here, we found that oxidative stress was strongly activated in inflamed tissues from both ulcerative colitis patients and Crohn's disease patients, and it caused nuclear-to-cytosolic TDP-43 transport and a reduction in the TDP-43 protein level. To investigate the function of TDP-43 in IBD, we inducibly deleted exons 2 to 3 of Tardbp (encoding Tdp-43) in mouse intestinal epithelium, which disrupted its nuclear localization and RNA-processing function. The deletion gave rise to spontaneous intestinal inflammation by inducing epithelial cell necroptosis. Suppression of the necroptotic pathway with deletion of Mlkl or the RIP1 inhibitor Nec-1 rescued colitis phenotypes. Mechanistically, disruption of nuclear TDP-43 caused excessive R-loop accumulation, which triggered DNA damage and genome instability and thereby induced PARP1 hyperactivation, leading to subsequent NAD[+] depletion and ATP loss, consequently activating mitochondrion-dependent necroptosis in intestinal epithelial cells. Importantly, restoration of cellular NAD[+] levels with NAD[+] or NMN supplementation, as well as suppression of ALKBH7, an α-ketoglutarate dioxygenase in mitochondria, rescued TDP-43 deficiency-induced cell death and intestinal inflammation. Furthermore, TDP-43 protein levels were significantly inversely correlated with γ-H2A.X and p-MLKL levels in clinical IBD samples, suggesting the clinical relevance of TDP-43 deficiency-induced mitochondrion-dependent necroptosis. Taken together, these findings identify a unique pathogenic mechanism that links oxidative stress to intestinal inflammation and provide a potent and valid strategy for IBD intervention.

RevDate: 2024-01-06
CmpDate: 2024-01-03

Kuprina K, Smorkatcheva A, Rudyk A, et al (2023)

Numerous insertions of mitochondrial DNA in the genome of the northern mole vole, Ellobius talpinus.

Molecular biology reports, 51(1):36.

BACKGROUND: Ellobius talpinus is a subterranean rodent representing an attractive model in population ecology studies due to its highly special lifestyle and sociality. In such studies, mitochondrial DNA (mtDNA) is widely used. However, if nuclear copies of mtDNA, aka NUMTs, are present, they may co-amplify with the target mtDNA fragment, generating misleading results. The aim of this study was to determine whether NUMTs are present in E. talpinus.

METHODS AND RESULTS: PCR amplification of the putative mtDNA CytB-D-loop fragment using 'universal' primers from 56 E. talpinus samples produced multiple double peaks in 90% of the sequencing chromatograms. To reveal NUMTs, molecular cloning and sequencing of PCR products of three specimens was conducted, followed by phylogenetic analysis. The pseudogene nature of three out of the seven detected haplotypes was confirmed by their basal positions in relation to other Ellobius haplotypes in the phylogenetic tree. Additionally, 'haplotype B' was basal in relation to other E. talpinus haplotypes and found present in very distant sampling sites. BLASTN search revealed 195 NUMTs in the E. talpinus nuclear genome, including fragments of all four PCR amplified pseudogenes. Although the majority of the NUMTs studied were short, the entire mtDNA had copies in the nuclear genome. The most numerous NUMTs were found for rrnL, COXI, and D-loop.

CONCLUSIONS: Numerous NUMTs are present in E. talpinus and can be difficult to discriminate against mtDNA sequences. Thus, in future population or phylogenetic studies in E. talpinus, the possibility of cryptic NUMTs amplification should always be taken into account.

RevDate: 2024-01-06
CmpDate: 2023-12-28

Shen Q, Yuan Y, J Jin (2023)

[Relationship between Notch signaling pathway and mitochondrial energy metabolism].

Zhonghua wei zhong bing ji jiu yi xue, 35(12):1321-1326.

Notch signaling pathway is a highly conserved signaling pathway in the process of evolution. It is composed of three parts: Notch receptor, ligand and effector molecules responsible for intracellular signal transduction. It plays an important role in cell proliferation, differentiation, development, migration, apoptosis and other processes, and has a regulatory effect on tissue homeostasis and homeostasis. Mitochondria are the sites of oxidative metabolism in eukaryotes, where sugars, fats and proteins are finally oxidized to release energy. In recent years, the regulation of Notch signaling pathway on mitochondrial energy metabolism has attracted more and more attention. A large number of data have shown that Notch signaling pathway has a significant effect on mitochondrial energy metabolism, but the relationship between Notch signaling pathway and mitochondrial energy metabolism needs to be specifically and systematically discussed. In this paper, the relationship between Notch signaling pathway and mitochondrial energy metabolism is reviewed, in order to improve the understanding of them and provide new ideas for the treatment of related diseases.

RevDate: 2023-12-28
CmpDate: 2023-12-28

Yang J, Gao J, Li W, et al (2023)

[Identification and expression analysis of apple PDHB-1 gene family].

Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 39(12):4965-4981.

Pyruvate dehydrogenase E1 component subunit beta-1 (PDHB-1) is a gene encoding the β-subunit of pyruvate dehydrogenase complex, which plays an important role in fruit acid accumulation. The aim of this study was to investigate the evolution characteristics of apple PDHB-1 family and its expression in apples with different acid contents. Bioinformatics analysis was performed using databases including NCBI, Pfam and software including ClustalX, MEGA, and TBtools. By combining titratable acid content determination and quantitative real-time PCR (qRT-PCR), the expression of this family genes in the peel and pulp of apple 'Asda' and 'Chengji No.1' with different acid content were obtained, respectively. The family members were mainly located in chloroplast, cytoplasm and mitochondria. α-helix and random coil were the main factors for the formation of secondary structure in this family. Tissue-specific expression profiles showed that the expression of most members were higher in fruit than in other tissues. qRT-PCR results showed that the expression profile of most members was consistent with the profile of titratable acid contents. In the peel, the expression levels of 14 members in 'Asda' apples with high acid content were significantly higher than that in 'Chengji No.1' apples with low acid content, where the expression difference of MdPDHB1-15 was the most significant. In the pulp, the expression levels of 17 members in 'Asda' apples were significantly higher than that in 'Chengji No.1' apples, where MdPDHB1-01 was the most highly expressed. It was predicted that PDHB-1 gene family in apple plays an important role in the regulation of fruit acidity.

RevDate: 2023-12-30

Buonvicino D, Pratesi S, Ranieri G, et al (2023)

The mitochondriogenic but not the immunosuppressant effects of mTOR inhibitors prompt neuroprotection and delay disease evolution in a mouse model of progressive multiple sclerosis.

Neurobiology of disease, 191:106387 pii:S0969-9961(23)00403-5 [Epub ahead of print].

INTRODUCTION: Purportedly, the progression of multiple sclerosis (MS) occurs when neurodegenerative processes due to derangement of axonal bioenergetics take over the autoimmune response. However, a clear picture of the causative interrelationship between autoimmunity and axonal mitochondrial dysfunction in progressive MS (PMS) pathogenesis waits to be provided.

METHODS: In the present study, by adopting the NOD mouse model of PMS, we compared the pharmacological effects of the immunosuppressants dexamethasone and fingolimod with those of mTOR inhibitors rapamycin and everolimus that, in addition to immunosuppression, also regulate mitochondrial functioning. Female Non-Obese Diabetic (NOD) mice were immunized with MOG35-55 and treated with drugs to evaluate functional, immune and mitochondrial parameters during disease evolution.

RESULTS: We found that dexamethasone and fingolimod did not affect the pattern of progression as well as survival. Conversely, mTOR inhibitors rapamycin and everolimus delayed disease progression and robustly extended survival of immunized mice. The same effects were obtained when treatment was delayed by 30 days after immunization. Remarkably, dexamethasone and fingolimod prompted the same degree of immunosuppression of rapamycin within both spleen and spinal cord of mice. However, only rapamycin prompted mitochondriogenesis by increasing mitochondrial content, and expression of several mitochondrial respiratory complex subunits, thereby preventing mtDNA reduction in the spinal cords of immunized mice. These pharmacodynamic effects were not reproduced in healthy NOD mice, suggesting a disease context-dependent pharmacodynamic effect.

DISCUSSION: Data corroborate the key role of mitochondriogenesis to treatment of MS progression, and for the first time disclose the translational potential of mTOR inhibitors in PMS therapy.

RevDate: 2024-01-01

Griseti E, Bello AA, Bieth E, et al (2023)

Molecular mechanisms of perilipin protein function in lipid droplet metabolism.

FEBS letters [Epub ahead of print].

Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.

RevDate: 2024-01-02
CmpDate: 2023-12-25

He X, Zhang X, Deng Y, et al (2023)

Structural Reorganization in Two Alfalfa Mitochondrial Genome Assemblies and Mitochondrial Evolution in Medicago Species.

International journal of molecular sciences, 24(24):.

Plant mitochondria are crucial for species evolution, phylogenetics, classification, and identification as maternal genetic material. However, the presence of numerous repetitive sequences, complex structures, and a low number of genes in the mitochondrial genome has hindered its complete assembly and related research endeavors. In this study, we assembled two mitochondrial genomes of alfalfa varieties of Zhongmu No.1 (299,123 bp) and Zhongmu No.4 (306,983 bp), based on a combination of PacBio, Illumina, and Hi-C sequences. The comparison of genome assemblies revealed that the same number of mitochondrial genes, including thirty-three protein-coding genes, sixteen tRNA genes, and three rRNA genes existed in the two varieties. Additionally, large fragments of repetitive sequences were found underlying frequent mitochondrial recombination events. We observed extensive transfer of mitochondrial fragments into the nuclear genome of Zhongmu No.4. Analysis of the cox1 and rrn18s genes in 35 Medicago accessions revealed the presence of population-level deletions and substitutions in the rrn18s gene. We propose that mitochondrial structural reorganizations may contribute to alfalfa evolution.

RevDate: 2024-01-11
CmpDate: 2024-01-11

Uvizl M, Puechmaille SJ, Power S, et al (2024)

Comparative Genome Microsynteny Illuminates the Fast Evolution of Nuclear Mitochondrial Segments (NUMTs) in Mammals.

Molecular biology and evolution, 41(1):.

The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.

RevDate: 2023-12-23
CmpDate: 2023-12-22

Cui Z, Zhong Y, Sun Z, et al (2023)

Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica.

Nature communications, 14(1):8480.

Succinic acid (SA) is an important C4-dicarboxylic acid. Microbial production of SA at low pH results in low purification costs and hence good overall process economics. However, redox imbalances limited SA biosynthesis from glucose via the reductive tricarboxylic acid (TCA) cycle in yeast. Here, we engineer the strictly aerobic yeast Yarrowia lipolytica for efficient SA production without pH control. Introduction of the reductive TCA cycle into the cytosol of a succinate dehydrogenase-disrupted yeast strain causes arrested cell growth. Although adaptive laboratory evolution restores cell growth, limited NADH supply restricts SA production. Reconfiguration of the reductive SA biosynthesis pathway in the mitochondria through coupling the oxidative and reductive TCA cycle for NADH regeneration results in improved SA production. In pilot-scale fermentation, the engineered strain produces 111.9 g/L SA with a yield of 0.79 g/g glucose within 62 h. This study paves the way for industrial production of biobased SA.

RevDate: 2023-12-19

He Z, Fang Y, Zhang F, et al (2023)

Adenine nucleotide translocase 2 (Ant2) is required for individualization of spermatogenesis of Drosophila melanogaster.

Insect science [Epub ahead of print].

Successful completion of spermatogenesis is crucial for the perpetuation of the species. In Drosophila, spermatid individualization, a process involving changes in mitochondrial structure and function is critical to produce functional mature sperm. Ant2, encoding a mitochondrial adenine nucleotide translocase, is highly expressed in male testes and plays a role in energy metabolism in the mitochondria. However, its molecular function remains unclear. Here, we identified an important role of Ant2 in spermatid individualization. In Ant2 knockdown testes, spermatid individualization complexes composed of F-actin cones exhibited a diffuse distribution, and mature sperms were absent in the seminal vesicle, thus leading to male sterility. The most striking effects in Ant2-knockdown spermatids were decrease in tubulin polyglycylation and disruption of proper mitochondria derivatives function. Excessive apoptotic cells were also observed in Ant2-knockdown testes. To further investigate the phenotype of Ant2 knockdown in testes at the molecular level, complementary transcriptome and proteome analyses were performed. At the mRNA level, 868 differentially expressed genes were identified, of which 229 genes were upregulated and 639 were downregulated induced via Ant2 knockdown. iTRAQ-labeling proteome analysis revealed 350 differentially expressed proteins, of which 117 proteins were upregulated and 233 were downregulated. The expression of glutathione transferase (GstD5, GstE5, GstE8, and GstD3), proteins involved in reproduction were significantly regulated at both the mRNA and protein levels. These results indicate that Ant2 is crucial for spermatid maturation by affecting mitochondrial morphogenesis.

RevDate: 2023-12-19
CmpDate: 2023-12-19

Baleva MV, Piunova UE, Chicherin IV, et al (2023)

Diversity and Evolution of Mitochondrial Translation Apparatus.

Biochemistry. Biokhimiia, 88(11):1832-1843.

The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses. The dependence on the nuclear genome, specific features of mitochondrial transcripts, and synthesis of highly hydrophobic membrane proteins in the mitochondria have led to significant changes in the translation apparatus inherited from the bacterial ancestor, which retained the basic structure necessary for protein synthesis but became more specialized and labile. In this review, we discuss specific properties of translation initiation in the mitochondria and how the evolution of mitochondria affected the functions of main factors initiating protein biosynthesis in these organelles.

RevDate: 2024-01-15
CmpDate: 2024-01-15

Wang S, He B, Wu H, et al (2024)

Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection.

Cell host & microbe, 32(1):93-105.e6.

Cross-kingdom small RNA trafficking between hosts and microbes modulates gene expression in the interacting partners during infection. However, whether other RNAs are also transferred is unclear. Here, we discover that host plant Arabidopsis thaliana delivers mRNAs via extracellular vesicles (EVs) into the fungal pathogen Botrytis cinerea. A fluorescent RNA aptamer reporter Broccoli system reveals host mRNAs in EVs and recipient fungal cells. Using translating ribosome affinity purification profiling and polysome analysis, we observe that delivered host mRNAs are translated in fungal cells. Ectopic expression of two transferred host mRNAs in B. cinerea shows that their proteins are detrimental to infection. Arabidopsis knockout mutants of the genes corresponding to these transferred mRNAs are more susceptible. Thus, plants have a strategy to reduce infection by transporting mRNAs into fungal cells. mRNAs transferred from plants to pathogenic fungi are translated to compromise infection, providing knowledge that helps combat crop diseases.

RevDate: 2023-12-18
CmpDate: 2023-12-18

Araujo TQ, King-Trudeau S, VanDyke J, et al (2024)

First ultrastructural description of an apomictic opsiblastic egg in freshwater Gastrotricha.

Journal of morphology, 285(1):e21659.

Freshwater gastrotrichs have a biphasic lifecycle that reputedly involves the production of three types of eggs: apomictic and fast hatching (tachyblastic ova), apomictic and delayed hatching (opsiblastic ova), and plaque-bearing eggs (potentially derived from mixis). While some details of oogenesis and eggshell structure are known for tachyblastic ova, there are few details on other egg types. Here, we provide the first ultrastructural description of the oviposited opsiblastic eggs of the freshwater gastrotrich, Lepidodermella squamata. Scanning electron microscopy revealed the eggshell surface to be ornamented with long flattened pillar-like structures centered on polygonal plates that are pitted along their periphery. Transmission electron microscopy showed the pits to lead to a vast labyrinth of tubular spaces and larger cavities throughout the thick apical layer of the shell. The basal layer of the shell is amorphous and connected to a network of fine fibers that traverse an extra-oocyte space and forms a protective sheet around the uncleaved oocyte. The uncleaved oocyte has a dense layer of peripheral ooplasm surrounding a core of organelles including mitochondria, membrane-bound secretion granules, endoplasmic reticulum, and a single nucleus in a granular, ribosome-rich cytoplasm. Secretion granules are the most abundant organelles and presumably contain lipid-rich yolk that will be used as energy for delayed cleavage, thus functioning in temporal dispersal. These data are compared to the fine structure of invertebrate resting eggs across the phylogenetic spectrum to determine the novelty of opsiblastic egg structure in L. squamata.

RevDate: 2024-01-15
CmpDate: 2024-01-15

Hew YX, Ya'cob Z, Chen CD, et al (2024)

Co-occurrence of dual lineages within Simulium (Gomphostilbia) atratum De Meijere in the Indonesian Archipelago along Wallace's Line.

Acta tropica, 250:107097.

Mitochondrial cytochrome c oxidase subunit I (COI) sequences were utilized to infer the population genetic structure of Simulium (Gomphostilbia) atratum De Meijere, an endemic simulid species to Indonesia. Both median-joining haplotype network and maximum-likelihood tree revealed two genetic lineages (A and B) within the species, with an overlap distribution in Lombok, which is situated along Wallace's line. Genetic differentiation and gene flow with varying frequencies (FST = 0.02-0.967; Nm = 0.01-10.58) were observed between populations of S. (G.) atratum, of which population pairs of different lineages showed high genetic differentiation. Notably, the high genetic distance of up to 5.92 % observed within S. (G.) atratum in Lombok was attributed to the existence of two genetically distinct lineages. The co-occurrence of distinct lineages in Lombok indicated that Wallace's line did not act as faunistic border for S. (G.) atratum in the present study. Moreover, both lineages also exhibited unimodal distributions and negative values of neutrality tests, suggesting a pattern of population expansion. The expansion and divergence time estimation suggested that the two lineages of S. (G.) atratum diverged and expanded during the Pleistocene era in Indonesia.

RevDate: 2023-12-16
CmpDate: 2023-12-16

Chen W, Zhang H, Meng R, et al (2023)

Genome-wide phylogenetic and genetic evolutionary analyses of mitochondria in Hypoderma bovis and H. sinense on the Qinghai-Tibetan Plateau.

Parasitology research, 123(1):43.

Hypoderma bovis (H. bovis) and Hypoderma sinense (H. sinense) are insects that cause hypodermosis in yaks and Bos taurus. Hypodermosis is a severe skin condition that not only impairs the development of local animal husbandry but also poses threats to human health as a zoonosis. The Qinghai-Tibetan Plateau (QTP) is known as the "Roof of the World." Its unique geographical environment and climate conditions have supported the growth of a wide range of mammals, providing favorable conditions for Hypoderma spp. to complete their life cycles. In this study, the whole mitochondrial genomes of H. bovis and H. sinense collected from the QTP were sequenced and phylogenetically analyzed. We found that the whole genomes of H. bovis and H. sinense are 16,283 bp and 16,300 bp in length, respectively. Both the H. bovis and H. sinense genomes have 37 mitochondrial genes, which include two rRNA genes (16S rRNA and 12S rRNA), 22 tRNA genes, the control region (D-loop region), the light chain replication initiation region, and 13 protein-coding genes (PCGs). The phylogenetic tree generated based on the 13 PCGs revealed close phylogenetic relationships between H. sinense, H. bovis, and Hypoderma lineatum. A similar result was also found in our phylogenetic analysis based on 18S rRNA and 28S rRNA. However, analysis of cytochrome oxidase subunit I (COI) showed cluster of H. bovis, H. sinense, and Cuterebra spp. on the same branch, all belonging to Oestridae. The differentiation time generated based on 13 PCGs indicates that H. bovis and H. sinense differentiated and formed ~4.69 million years ago (Mya) and ~4.06 Mya, respectively. This timing coincides with the differentiation and appearance of yak and Bos taurus in the Pliocene (~4.7 Mya), indicating that the parasites and mammals diverged in close temporal proximity. Of note, this period also witnessed a rapid uplift of the QTP, causing significant climate and environmental changes. Thus, we conjecture that the differentiation of Hypoderma spp. is potentially related to the differentiation of their host species, as well as climate changes caused by the uplift of the QTP. Overall, our study can provide valuable data to support further studies on the phylogeny and differentiation of Hypoderma spp. on the QTP.

RevDate: 2023-12-16
CmpDate: 2023-12-16

Hamza H, Villa S, Torre S, et al (2023)

Whole mitochondrial and chloroplast genome sequencing of Tunisian date palm cultivars: diversity and evolutionary relationships.

BMC genomics, 24(1):772.

BACKGROUND: Date palm (Phoenix dactylifera L.) is the most widespread crop in arid and semi-arid regions and has great traditional and socioeconomic importance, with its fruit well-known for its high nutritional and health value. However, the genetic variation of date palm cultivars is often neglected. The advent of high-throughput sequencing has made possible the resequencing of whole organelle (mitochondria and chloroplast) genomes to explore the genetic diversity and phylogenetic relationships of cultivated plants with unprecedented detail.

RESULTS: Whole organelle genomes of 171 Tunisian accessions (135 females and 36 males) were sequenced. Targeted bioinformatics pipelines were used to identify date palm haplotypes and genome variants, aiming to provide variant annotation and investigate patterns of evolutionary relationship. Our results revealed the existence of unique haplotypes, identified by 45 chloroplastic and 156 mitochondrial SNPs. Estimation of the effect of these SNPs on genes functions was predicted in silico.

CONCLUSIONS: The results of this study have important implications, in the light of ongoing environmental changes, for the conservation and sustainable use of the genetic resources of date palm cultivars in Tunisia, where monoculture threatens biodiversity leading to genetic erosion. These data will be useful for breeding and genetic improvement programs of the date palm through selective cross-breeding.

RevDate: 2024-01-11
CmpDate: 2024-01-11

Gaudó P, de Tomás-Mateo E, Garrido-Pérez N, et al (2024)

"ATAD3C regulates ATAD3A assembly and function in the mitochondrial membrane".

Free radical biology & medicine, 211:114-126.

Mitochondrial ATAD3A is an ATPase Associated with diverse cellular Activities (AAA) domain containing enzyme, involved in the structural organization of the inner mitochondrial membrane and of increasing importance in childhood disease. In humans, two ATAD3A paralogs arose by gene duplication during evolution: ATAD3B and ATAD3C. Here we investigate the cellular activities of the ATAD3C paralog that has been considered a pseudogene. We detected unique ATAD3C peptides in HEK 293T cells, with expression similar to that in human tissues, and showed that it is an integral membrane protein that exposes its carboxy-terminus to the intermembrane space. Overexpression of ATAD3C, but not of ATAD3A, in fibroblasts caused a decrease in cell proliferation and oxygen consumption rate, and an increase of cellular ROS. This was due to the incorporation of ATAD3C monomers in ATAD3A complex in the mitochondrial membrane reducing its size. Consistent with a negative regulation of ATAD3A function in mitochondrial membrane organization, ATAD3C expression led to increased accumulation of respiratory chain dimeric CIII in the inner membrane, to the detriment to that assembled in respiratory supercomplexes. Our results demonstrate a negative dominant role of the ATAD3C paralog with implications for mitochondrial OXPHOS function and suggest that its expression regulates ATAD3A in the cell.

RevDate: 2023-12-16
CmpDate: 2023-12-16

Santamaria CA, CL Griffiths (2023)

Cryptic diversity and phylogeographic patterns of Deto echinata (Isopoda: Detonidae) in southern Africa.

PeerJ, 11:e16529.

Recent phylogeographic studies of poorly-dispersing coastal invertebrates in highly biodiverse regions have led to the discovery of high levels of cryptic diversity and complex phylogeographic patterns that suggest isolation, geological, and ecological processes have shaped their biodiversity. Studies of southern African coastal invertebrates have uncovered cryptic diversity for various taxa and phylogeographic patterns that, although sharing some similarities across taxa, do differ. These findings underscore the need for additional studies to better understand the biodiversity levels, distributional patterns, and processes responsible for producing coastal biodiversity in that region. The coastal isopod Deto echinata is of particular interest, as its complex taxonomic history, poor dispersal capabilities, and broad geographic distribution suggest the potential for cryptic diversity. We use mitochondrial and nuclear sequences to characterize D. echinata individuals from localities ranging from northern Namibia to Glentana, about 2,500 km along the coastline on the south coast of South Africa. These are used to assess whether D. echinata harbors cryptic genetic diversity and whether phylogeographic distributional patterns correlate with those previously documented for other coastal isopods in the region. Analysis of mitochondrial and nuclear sequences revealed two deeply-divergent lineages that exhibit a distributional break in the Cape Peninsula region. These findings suggest D. echinata is a cryptic species complex in need of taxonomic revision and highlight the need for further taxonomic and phylogeographic studies of similarly poorly-dispersing coastal invertebrates in southern Africa.

RevDate: 2023-12-25

Wolters JF, LaBella AL, Opulente DA, et al (2023)

Mitochondrial genome diversity across the subphylum Saccharomycotina.

Frontiers in microbiology, 14:1268944.

INTRODUCTION: Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available.

METHODS: By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades.

RESULTS: Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements.

DISCUSSION: As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.

RevDate: 2023-12-11

Lin Y, Yang H, Liu H, et al (2023)

A P-type pentatricopeptide repeat protein ZmRF5 promotes 5' region partial cleavages of atp6c transcripts to restore the fertility of CMS-C maize by recruiting a splicing factor.

Plant biotechnology journal [Epub ahead of print].

A fast evolution within mitochondria genome(s) often generates discords between nuclear and mitochondria, which is manifested as cytoplasmic male sterility (CMS) and fertility restoration (Rf) system. The maize CMS-C trait is regulated by the chimeric mitochondrial gene, atp6c, and can be recovered by the restorer gene ZmRf5. Through positional cloning in this study, we identified the nuclear restorer gene, ZmRf5, which encodes a P-type pentatricopeptide repeat (PPR) family protein. The over-expression of ZmRf5 brought back the fertility to CMS-C plants, whereas its genomic editing by CRISPR/Cas9 induced abortive pollens in the restorer line. ZmRF5 is sorted to mitochondria, and recruited RS31A, a splicing factor, through MORF8 to form a cleaving/restoring complex, which promoted the cleaving of the CMS-associated transcripts atp6c by shifting the major cleavage site from 480th nt to 344 th nt for fast degradation, and preserved just right amount of atp6c RNA for protein translation, providing adequate ATP6C to assembly complex V, thus restoring male fertility. Interestingly, ATP6C in the sterile line CMo17A, with similar cytology and physiology changes to YU87-1A, was accumulated much less than it in NMo17B, exhibiting a contrary trend in the YU87-1 nuclear genome previously reported, and was restored to normal level in the presence of ZmRF5. Collectively these findings unveil a new molecular mechanism underlying fertility restoration by which ZmRF5 cooperates with MORF8 and RS31A to restore CMS-C fertility in maize, complemented and perfected the sterility mechanism, and enrich the perspectives on communications between nucleus and mitochondria.

RevDate: 2024-01-17
CmpDate: 2024-01-17

Das PJ, Kumar S, Choudhury M, et al (2024)

Characterization of the complete mitochondrial genome and identification of signature sequence of Indian wild pig.

Gene, 897:148070.

Mitochondrial DNA (mtDNA) serves as a valuable molecular marker for constructing matrilineal genealogies and tracing the evolutionary history of animals. This study aimed to characterize the complete mitochondrial genome of the Indian wild pig (IWB) (Sus scrofa cristatus) and identify IWB-specific DNA sequences that could be used as genomic signatures to differentiate IWB from domestic Indian pigs (IDP) in forensic cases. For the purpose, three wild IWB from a rescue centre were used for the characterization of the mitochondrial genome of the IWB. The mitochondrial genome was sequenced by the primer walking technique using 30 overlapping primers. The mitochondrial genome of the IWB was found to be 16,689 bp long containing 37 genes coding for 2 rRNAs, 22 tRNAs, 13 protein coding genes, and 1 D-loop region similar to the mitogenome of other pigs. Sequence analysis of the D-loop of IWB with other IDP indicated some signature sequence for IWB like duplication and transition event from 1090[th] to 1099[th] position, deletion of a 10 bp sequence at the 755[th] position, insertion of (CA) at the 137[th] position, and substitution of AT to GA at the 638[th] position. These variations specially the duplication along with transition event causes creation of unique signature sequence (-ACACAAACCT-) in the IWB that could serve as signature sequences for the IWB and be used as markers for differentiation of IWB from IDP breeds in academic as well as forensic or vetero-legal cases. Overall, a total of 36 polymorphic positions were identified in the IWB, with 29 sites being unique to the IWB only and seven being common to the Doom and HDK75 pig breeds. None of the common polymorphic sites were identified in prevailing domestic pig populations. Phylogenetic analysis of the mitochondrial genome revealed the distinct separation of the IWB from IDP. The results of genetic distance evaluation showed that the Doom pig breed was the closest to the IWB. This study provides valuable insights into the mitogenome characterisation, signature sequence and genetic distance analysis of the IWB and establishes a foundation for future studies on the conservation of this protected species.

RevDate: 2023-12-16
CmpDate: 2023-12-16

Ouyang L, Liu Y, Yao R, et al (2023)

Genome-wide analysis of UDP-glycosyltransferase gene family and identification of a flavonoid 7-O-UGT (AhUGT75A) enhancing abiotic stress in peanut (Arachis hypogaea L.).

BMC plant biology, 23(1):626.

BACKGROUND: Glycosylation, catalyzed by UDP-glycosyltransferase (UGT), was important for enhancing solubility, bioactivity, and diversity of flavonoids. Peanut (Arachis hypogaea L.) is an important oilseed and cash crop worldwide. In addition to provide high quality of edible oils and proteins, peanut seeds contain a rich source of flavonoid glycosides that benefit human health. However, information of UGT gene family was quite limited in peanut.

RESULTS: In present study, a total of 267 AhUGTs clustered into 15 phylogenetic groups were identified in peanut genome. Group I has greatly expanded to contain the largest number of AhUGT genes. Segmental duplication was the major driving force for AhUGT gene family expansion. Transcriptomic analysis of gene expression profiles in various tissues and under different abiotic stress treatments indicated AhUGTs were involved in peanut growth and abiotic stress response. AhUGT75A (UGT73CG33), located in mitochondria, was characterized as a flavonoid 7-O-UGT by in vitro enzyme assays. The transcript level of AhUGT75A was strongly induced by abiotic stress. Overexpression of AhUGT75A resulted in accumulating less amount of malondialdehyde (MDA) and superoxide, and enhancing tolerance against drought and/or salt stress in transgenic Arabidopsis. These results indicated AhUGT75A played important roles in conferring abiotic stress tolerance through reactive oxygen species scavenging.

CONCLUSIONS: Our research only not provides valuable information for functional characterization of UGTs in peanut, but also gives new insights into potential applications in breeding new cultivars with both desirable stress tolerance and health benefits.

RevDate: 2023-12-16
CmpDate: 2023-12-16

Novák LVF, Treitli SC, Pyrih J, et al (2023)

Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria.

PLoS genetics, 19(12):e1011050.

The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.

RevDate: 2024-01-02
CmpDate: 2023-12-07

Camus MF, S Inwongwan (2023)

Mitonuclear interactions modulate nutritional preference.

Biology letters, 19(12):20230375.

In nature, organisms are faced with constant nutritional options which fuel key life-history traits. Studies have shown that species can actively make nutritional decisions based on internal and external cues. Metabolism itself is underpinned by complex genomic interactions involving components from both nuclear and mitochondrial genomes. Products from these two genomes must coordinate how nutrients are extracted, used and recycled. Given the complicated nature of metabolism, it is not well understood how nutritional choices are affected by mitonuclear interactions. This is under the rationale that changes in genomic interactions will affect metabolic flux and change physiological requirements. To this end we used a large Drosophila mitonuclear genetic panel, comprising nine isogenic nuclear genomes coupled to nine mitochondrial haplotypes, giving a total of 81 different mitonuclear genotypes. We use a capillary-based feeding assay to screen this panel for dietary preference between carbohydrate and protein. We find significant mitonuclear interactions modulating nutritional choices, with these epistatic interactions also being dependent on sex. Our findings support the notion that complex genomic interactions can place a constraint on metabolic flux. This work gives us deeper insights into how key metabolic interactions can have broad implications on behaviour.

RevDate: 2023-12-25

Fernández Miyakawa ME, Casanova NA, MH Kogut (2023)

How did antibiotic growth promoters increase growth and feed efficiency in poultry?.

Poultry science, 103(2):103278 [Epub ahead of print].

It has been hypothesized that reducing the bioenergetic costs of gut inflammation as an explanation for the effect of antibiotic growth promoters (AGPs) on animal efficiency, framing some observations but not explaining the increase in growth rate or the prevention of infectious diseases. The host's ability to adapt to alterations in environmental conditions and to maintain health involves managing all physiological interactions that regulate homeostasis. Thus, metabolic pathways are vital in regulating physiological health as the energetic demands of the host guides most biological functions. Mitochondria are not only the metabolic heart of the cell because of their role in energy metabolism and oxidative phosphorylation, but also a central hub of signal transduction pathways that receive messages about the health and nutritional states of cells and tissues. In response, mitochondria direct cellular and tissue physiological alterations throughout the host. The endosymbiotic theory suggests that mitochondria evolved from prokaryotes, emphasizing the idea that these organelles can be affected by some antibiotics. Indeed, therapeutic levels of several antibiotics can be toxic to mitochondria, but subtherapeutic levels may improve mitochondrial function and defense mechanisms by inducing an adaptive response of the cell, resulting in mitokine production which coordinates an array of adaptive responses of the host to the stressor(s). This adaptive stress response is also observed in several bacteria species, suggesting that this protective mechanism has been preserved during evolution. Concordantly, gut microbiome modulation by subinhibitory concentration of AGPs could be the result of direct stimulation rather than inhibition of determined microbial species. In eukaryotes, these adaptive responses of the mitochondria to internal and external environmental conditions, can promote growth rate of the organism as an evolutionary strategy to overcome potential negative conditions. We hypothesize that direct and indirect subtherapeutic AGP regulation of mitochondria functional output can regulate homeostatic control mechanisms in a manner similar to those involved with disease tolerance.

RevDate: 2023-12-05

Charrasse S, Poquillon T, Saint-Omer C, et al (2023)

Quantitative assessment of mitochondrial morphology relevant for studies on cellular health and environmental toxicity.

Computational and structural biotechnology journal, 21:5609-5619.

Mitochondria are essential organelles that play crucial roles in cellular energy metabolism, calcium signaling and apoptosis. Their importance in tissue homeostasis and stress responses, combined to their ability to transition between various structural and functional states, make them excellent organelles for monitoring cellular health. Quantitative assessment of mitochondrial morphology can therefore provide valuable insights into environmentally-induced cell damage. High-content screening (HCS) provides a powerful tool for analyzing organelles and cellular substructures. We developed a fully automated and miniaturized HCS wet-plus-dry pipeline (MITOMATICS) exploiting mitochondrial morphology as a marker for monitoring cellular health or damage. MITOMATICS uses an in-house, proprietary software (MitoRadar) to enable fast, exhaustive and cost-effective analysis of mitochondrial morphology and its inherent diversity in live cells. We applied our pipeline and big data analytics software to assess the mitotoxicity of selected chemicals, using the mitochondrial uncoupler CCCP as an internal control. Six different pesticides (inhibiting complexes I, II and III of the mitochondrial respiratory chain) were tested as individual compounds and five other pesticides present locally in Occitanie (Southern France) were assessed in combination to determine acute mitotoxicity. Our results show that the assayed pesticides exhibit specific signatures when used as single compounds or chemical mixtures and that they function synergistically to impact mitochondrial architecture. Study of environment-induced mitochondrial damage has the potential to open new fields in mechanistic toxicology, currently underexplored by regulatory toxicology and exposome research. Such exploration could inform health policy guidelines and foster pharmacological intervention, water, air and soil pollution control and food safety.

RevDate: 2023-12-16
CmpDate: 2023-12-05

Kobayashi G (2023)

Buried treasure in a public repository: Mining mitochondrial genes of 32 annelid species from sequence reads deposited in the Sequence Read Archive (SRA).

PeerJ, 11:e16446.

BACKGROUND: The mitochondrial genomes (mitogenomes) of metazoans generally include the same set of protein-coding genes, which ensures the homology of mitochondrial genes between species. The mitochondrial genes are often used as reference data for species identification based on genetic data (DNA barcoding). The need for such reference data has been increasing due to the application of environmental DNA (eDNA) analysis for environmental assessments. Recently, the number of publicly available sequence reads obtained with next-generation sequencing (NGS) has been increasing in the public database (the NCBI Sequence Read Archive, SRA). Such freely available NGS reads would be promising sources for assembling mitochondrial protein-coding genes (mPCGs) of organisms whose mitochondrial genes are not available in GenBank. The present study aimed to assemble annelid mPCGs from raw data deposited in the SRA.

METHODS: The recent progress in the classification of Annelida was briefly introduced. In the present study, the mPCGs of 32 annelid species of 19 families in clitellates and allies in Sedentaria (echiurans and polychaetes) were newly assembled from the reads deposited in the SRA. Assembly was performed with a recently published pipeline mitoRNA, which includes cycles of Bowtie2 mapping and Trinity assembly. Assembled mPCGs were deposited in GenBank as Third Party Data (TPA) data. A phylogenetic tree was reconstructed with maximum likelihood (ML) analysis, together with other mPCGs deposited in GenBank.

RESULTS AND DISCUSSION: mPCG assembly was largely successful except for Travisia forbesii; only four genes were detected from the assembled contigs of the species probably due to the reads targeting its parasite. Most genes were largely successfully obtained, whereas atp8, nad2, and nad4l were only successful in 22-24 species. The high nucleotide substitution rates of these genes might be relevant to the failure in the assembly although nad6, which showed a similarly high substitution rate, was successfully assembled. Although the phylogenetic positions of several lineages were not resolved in the present study, the phylogenetic relationships of some polychaetes and leeches that were not inferred by transcriptomes were well resolved probably due to a more dense taxon sampling than previous phylogenetic analyses based on transcriptomes. Although NGS data are generally better sources for resolving phylogenetic relationships of both higher and lower classifications, there are ensuring needs for specific loci of the mitochondrial genes for analyses that do not require high resolutions, such as DNA barcoding, eDNA, and phylogenetic analysis among lower taxa. Assembly from publicly available NGS reads would help design specific primers for the mitochondrial gene sequences of species, whose mitochondrial genes are hard to amplify by Sanger sequencing using universal primers.

RevDate: 2024-01-12
CmpDate: 2024-01-12

Kong D, Gan Z, X Li (2024)

Phylogenetic relationships and adaptation in deep-sea carideans revealed by mitogenomes.

Gene, 896:148054.

The deep-sea environment is characterized by extreme and inhospitable conditions, including oxygen depletion, low temperatures, high pressure, absence of light, and limited food availability. Mitochondria and mitogenomes play a crudial role in aerobic respiration to generate energy for eukaryotes. Here, using the Illumina Hiseq 4000 platform, we performed mitogenome sequencing for five deep-sea caridean species: Lebbeus shinkaiae, Lebbeus Formosus, Glyphocrangon regalis, Heterocarpus dorsalis, and Heterocarpus laevigatus, and five deep-sea caridean mitogenomes were assembled and identified. Each of the five mitogenomes contained 13 protein-coding genes, 2 rRNAs and 22 tRNAs. Specific elements, such as tandem repeats and AT-rich sequences, were observed in the control regions of Lebbeus formosus and Lebbeus shinkaiae, potentially take a role in regulating mitochondrial genome replication and transcription. The gene order of all obtained mitogenomes follows caridean ancestral type organization. Phylogenetic analysis shows a robustly supported phylogenetic tree for the infraorder Caridea. The monophyly of the families included in this study was strongly supported. This study supports the monophyly of Oplophoroidea, but rejects the monophyletic status of Nematocarcinoidea, Crangonoidea, and Alpheoidea. At the genus level, Plesionika is polyphyletic and Rimicaris is paraphyletic in our analysis. Furthermore, Paralebbeus may be considered invalid and synonymous with Lebbeus. Positive selection analysis reveals evidence for adaptive changes in the mitogenome of different deep-sea caridean lineages. Nine residues located in cox1, cox3, atp6, nad1, nad2, nad4, nad5, nad6 and cytb were determined to have undergone positive selection. Mitogenome of different deep-sea lineages experienced different positive selection, and the lineage represented by Alvinocarididae living in deep-sea hydrothermal vents experienced the strongest positive selection. This study provides valuable insights into the adaptive evolution of deep-sea shrimps at the mitochondrial, highlighting the mitogenomic strategy that contribute to their unique adaptations in the deep-sea environment.

RevDate: 2023-11-30

Ando R, Shimozono S, Ago H, et al (2023)

StayGold variants for molecular fusion and membrane-targeting applications.

Nature methods [Epub ahead of print].

Although StayGold is a bright and highly photostable fluorescent protein, its propensity for obligate dimer formation may hinder applications in molecular fusion and membrane targeting. To attain monovalent as well as bright and photostable labeling, we engineered tandem dimers of StayGold to promote dispersibility. On the basis of the crystal structure of this fluorescent protein, we disrupted the dimerization to generate a monomeric variant that offers improved photostability and brightness compared to StayGold. We applied the new monovalent StayGold tools to live-cell imaging experiments using spinning-disk laser-scanning confocal microscopy or structured illumination microscopy. We achieved cell-wide, high-spatiotemporal resolution and sustained imaging of dynamic subcellular events, including the targeting of endogenous condensin I to mitotic chromosomes, the movement of the Golgi apparatus and its membranous derivatives along microtubule networks, the distribution of cortical filamentous actin and the remolding of cristae membranes within mobile mitochondria.

RevDate: 2023-11-29

Osiewacz HD (2023)

Impact of Mitochondrial Architecture, Function, Redox Homeostasis, and Quality Control on Organismic Aging: Lessons from a Fungal Model System.

Antioxidants & redox signaling [Epub ahead of print].

SIGNIFICANCE: Mitochondria are eukaryotic organelles with various essential functions. They are both, the source as well as the targets of reactive oxygen species (ROS). Different branches of a mitochondrial quality control system (mQCS), like ROS balancing, degradation of damaged proteins, or whole mitochondria can mitigate the adverse effects of ROS stress. However, the capacity of mQCS is limited. Overwhelming this capacity leads to dysfunctions and aging. Strategies to interfere into mitochondria-dependent human aging with the aim to increase the healthy period of life, the healthspan, rely on the precise knowledge of mitochondrial functions. Experimental models like Podospora anserina, a filamentous fungus with a clear mitochondrial aging etiology, proved to be instrumental to reach this goal.

RECENT ADVANCES: Investigations of the P. anserina mQCS revealed that it is constituted by a complex network of different branches. Moreover, mitochondrial architecture and lipid homeostasis emerged to affect aging.

CRITICAL ISSUES: The regulation of the mQCS is only incompletely understood. Details about the involved signaling molecules and interacting pathways remain to be elucidated. Moreover, most of the currently generated experimental data were generated in well-controlled experiments which do not reflect the constantly changing natural life conditions and bear the danger to miss relevant aspects leading to incorrect conclusions.

FUTURE DIRECTIONS: In P. anserina, the precise impact of redox signaling as well as of molecular damaging for aging remains to be defined. Moreover, natural fluctuation of environmental conditions needs to be considered to generate a realistic picture of aging mechanisms as they developed during evolution.

RevDate: 2024-01-06
CmpDate: 2024-01-02

Gao X, Feng B, Du C, et al (2024)

Expression dynamics indicate the involvement of SPG7 in the reproduction and spermiogenesis of Phascolosoma esculenta.

Gene, 895:148028.

Spastic paraplegia 7 (SPG7) is an m-AAA protease subunit involved in mitochondrial morphology and physiology. However, its function in animal reproduction is yet to be evaluated. In this study, its molecular features, subcellular localization, and expression dynamics were investigated to analyze its potential function in the reproduction of male Phascolosoma esculenta, an economically important marine species in China. The full-length cDNA of P. esculenta spg7 (Pe-spg7) measures 3053 bp and encodes an 853-amino acid protein (Pe-SPG7). Pe-SPG7 includes two transmembrane domains, an AAA domain and a proteolytic domain. Amino acid sequence alignment revealed that SPG7 was conserved during evolution. The mRNA and protein expression of spg7 indicated its involvement in reproduction. Its expression was the highest in coelomic fluid, where spermatids develop, and it was significantly higher in the breeding stage than in the nonbreeding stage. SPG7 was mainly found in the mitochondria of spermatids in the coelomic fluid, indicating that it functions in this organelle in spermatids. Immunofluorescence experiments showed that SPG7 was expressed and colocalized in the mitochondria during spermiogenesis, suggesting its involvement in P. esculenta spermiogenesis. Therefore, SPG7 may participate in spermiogenesis by functioning in the mitochondria and regulate the reproduction of male P. esculenta. This study provided insights into the function of SPG7 in animal reproduction and P. esculenta gametogenesis.

RevDate: 2023-11-27
CmpDate: 2023-11-27

Duplouy A (2024)

Validating a Mitochondrial Sweep Accompanying the Rapid Spread of a Maternally Inherited Symbiont.

Methods in molecular biology (Clifton, N.J.), 2739:239-247.

Maternally inherited symbiotic bacteria that interfere with the reproduction of their hosts can contribute to selective sweeps of mitochondrial haplotypes through hitch-hiking or coordinate inheritance of cytoplasmic bacteria and host mitochondria. The sweep will be manifested by genetic variations of mitochondrial genomic DNA of symbiont-infected hosts relative to their uninfected counterparts. In particular, at the population level, infected specimens will show a reduced mitochondrial DNA polymorphism compared to that in the nuclear DNA. This may challenge the use of mitochondrial DNA sequences as neutral genetic markers, as the mitochondrial patterns will reflect the evolutionary history of parasitism, rather than the sole evolutionary history of the host. Here, I describe a detailed step-by-step procedure to infer the occurrence and timing of symbiont-induced mitochondrial sweeps in host species.

RevDate: 2024-01-04
CmpDate: 2023-11-27

Nusir A, Sinclair P, N Kabbani (2023)

Mitochondrial Proteomes in Neural Cells: A Systematic Review.

Biomolecules, 13(11):.

Mitochondria are ancient endosymbiotic double membrane organelles that support a wide range of eukaryotic cell functions through energy, metabolism, and cellular control. There are over 1000 known proteins that either reside within the mitochondria or are transiently associated with it. These mitochondrial proteins represent a functional subcellular protein network (mtProteome) that is encoded by mitochondrial and nuclear genomes and significantly varies between cell types and conditions. In neurons, the high metabolic demand and differential energy requirements at the synapses are met by specific modifications to the mtProteome, resulting in alterations in the expression and functional properties of the proteins involved in energy production and quality control, including fission and fusion. The composition of mtProteomes also impacts the localization of mitochondria in axons and dendrites with a growing number of neurodegenerative diseases associated with changes in mitochondrial proteins. This review summarizes the findings on the composition and properties of mtProteomes important for mitochondrial energy production, calcium and lipid signaling, and quality control in neural cells. We highlight strategies in mass spectrometry (MS) proteomic analysis of mtProteomes from cultured cells and tissue. The research into mtProteome composition and function provides opportunities in biomarker discovery and drug development for the treatment of metabolic and neurodegenerative disease.

RevDate: 2023-11-27

Liu SP, Yin HD, Li WJ, et al (2023)

The Morphological Transformation of the Thorax during the Eclosion of Drosophila melanogaster (Diptera: Drosophilidae).

Insects, 14(11):.

The model organism Drosophila melanogaster, as a species of Holometabola, undergoes a series of transformations during metamorphosis. To deeply understand its development, it is crucial to study its anatomy during the key developmental stages. We describe the anatomical systems of the thorax, including the endoskeleton, musculature, nervous ganglion, and digestive system, from the late pupal stage to the adult stage, based on micro-CT and 3D visualizations. The development of the endoskeleton causes original and insertional changes in muscles. Several muscles change their shape during development in a non-uniform manner with respect to both absolute and relative size; some become longer and broader, while others shorten and become narrower. Muscular shape may vary during development. The number of muscular bundles also increases or decreases. Growing muscles are probably anchored by the tissues in the stroma. Some muscles and tendons are absent in the adult stage, possibly due to the hardened sclerites. Nearly all flight muscles are present by the third day of the pupal stage, which may be due to the presence of more myofibers with enough mitochondria to support flight power. There are sexual differences in the same developmental period. In contrast to the endodermal digestive system, the functions of most thoracic muscles change in the development from the larva to the adult in order to support more complex locomotion under the control of a more structured ventral nerve cord based on the serial homology proposed herein.

RevDate: 2023-11-27
CmpDate: 2023-11-27

Song Y, Du X, Li A, et al (2023)

Assembly and analysis of the complete mitochondrial genome of Forsythia suspensa (Thunb.) Vahl.

BMC genomics, 24(1):708.

BACKGROUND: Forsythia suspensa (Thunb.) Vahl is a valuable ornamental and medicinal plant. Although the nuclear and chloroplast genomes of F. suspensa have been published, its complete mitochondrial genome sequence has yet to be reported. In this study, the genomic DNA of F. suspensa yellowish leaf material was extracted, sequenced by using a mixture of Illumina Novaseq6000 short reads and Oxford Nanopore PromethION long reads, and the sequencing data were assembled and annotated.

RESULT: The F. suspensa mitochondrial genome was obtained in the length of 535,692 bp with a circular structure, and the GC content was 44.90%. The genome contains 60 genes, including 36 protein-coding genes, 21 tRNA genes, and three rRNA genes. We further analyzed RNA editing of the protein-coding genes, relative synonymous codon usage, and sequence repeats based on the genomic data. There were 25 homologous sequences between F. suspensa mitochondria and chloroplast genome, which involved the transfer of 8 mitochondrial genes, and 9473 homologous sequences between mitochondrial and nuclear genomes. Analysis of the nucleic acid substitution rate, nucleic acid diversity, and collinearity of protein-coding genes of the F. suspensa mitochondrial genome revealed that the majority of genes may have undergone purifying selection, exhibiting a slower rate of evolution and a relatively conserved structure. Analysis of the phylogenetic relationships among different species revealed that F. suspensa was most closely related to Olea europaea subsp. Europaea.

CONCLUSION: In this study, we sequenced, assembled, and annotated a high-quality F. suspensa mitochondrial genome. The results of this study will enrich the mitochondrial genome data of Forsythia, lay a foundation for the phylogenetic development of Forsythia, and promote the evolutionary analysis of Oleaceae species.

RevDate: 2023-11-23

Lee YJ, Uh YR, Kim YM, et al (2023)

Characterization and comparative analysis of the complete organelle genomes of three red macroalgae species (Neoporphyra dentata, Neoporphyra seriata, and Neopyropia yezoensis) and development of molecular makers for their identification.

Genes & genomics [Epub ahead of print].

BACKGROUND: Many species of red algae belonging to the phylum Rhodophyta are consumed by humans as raw materials for nutrition and medicine. As the seaweed market grows, the importance of the laver species has increased. The classification of red algal species has changed significantly, and the accuracy of this classification has improved significantly in recent years. Here, we report the complete circular genomes of the chloroplasts (cp) and mitochondria (mt) of three laver species (Neoporphyra dentata, Neoporphyra seriata, and Neopyropia yezoensis).

OBJECTIVE: This study aims to assemble, annotate, and characterize the organization of the organelle genomes of three laver species, conduct comparative genomic studies, and develop molecular markers based on SNPs.

METHODS: We analyzed organelle genome structures, repeat sequences, sequence divergence, gene rearrangements, and phylogenetic relationships of three laver species.

RESULTS: The chloroplast genomes of the three species contained an average of 212 protein-coding genes (PCGs), while the mitochondrial genomes contained an average of 25 PCGs. We reconstructed the phylogenetic trees based on both chloroplast and mitochondrial genomes using 201 and 23 PCGs (in cp and mt genomes, respectively) shared in the class Bangiophyceae (and five species of Florideophyceae class used as an outgroup). In addition, 12 species-specific molecular markers were developed for qRT-PCR analysis.

CONCLUSIONS: This is the first report of Neoporphyra seriata complete organellar genomes. With the results, this study provides useful genetic information regarding taxonomic discrepancies, the reconstruction of phylogenetic trees, and the evolution of red algae. Moreover, the species-specific markers can be used as fast and easy methods to identify a target species.

RevDate: 2023-12-13
CmpDate: 2023-11-24

Záhonová K, Füssy Z, Stairs CW, et al (2023)

Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans.

Microbial genomics, 9(11):.

Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.

RevDate: 2023-11-23
CmpDate: 2023-11-23

Kang N, H Hu (2023)

Adaptive evidence of mitochondrial genes in Pteromalidae and Eulophidae (Hymenoptera: Chalcidoidea).

PloS one, 18(11):e0294687.

Pteromalidae and Eulophidae are predominant and abundant taxa within Chalcidoidea (Hymenoptera: Apocrita). These taxa are found in diverse ecosystems, ranging from basin deserts (200 m) to alpine grasslands (4500 m). Mitochondria, cellular powerhouses responsible for energy production via oxidative phosphorylation, are sensitive to various environmental factors such as extreme cold, hypoxia, and intense ultraviolet radiation characteristic of alpine regions. Whether the molecular evolution of mitochondrial genes in these parasitoids corresponds to changes in the energy requirements and alpine environmental adaptations remains unknown. In this study, we performed a comparative analysis of mitochondrial protein-coding genes from 11 alpine species of Pteromalidae and Eulophidae, along with 18 lowland relatives, including 16 newly sequenced species. We further examined the codon usage preferences (RSCU, ENC-GC3s, neutrality, and PR2 bias plot) in these mitochondrial protein-coding sequences and conducted positive selection analysis based on their Bayesian phylogenetic relationships, and identified positive selection sites in the ATP6, ATP8, COX1, COX3, and CYTB genes, emphasizing the crucial role of mitochondrial gene adaptive evolution in the adaptation of Pteromalidae and Eulophidae to alpine environments. The phylogenetically independent contrast (PIC) analysis results verified the ω ratio of 13 PCGs from Pteromalidae and Eulophidae increased with elevation, and results from generalized linear model confirm that ATP6, ATP8, COX3, and ND1 are closely correlated with temperature-related environmental factors. This research not only enriched the molecular data of endemic alpine species but also underscores the significance of mitochondrial genes in facilitating the adaptation of these minor parasitoids to plateau habitats.

RevDate: 2023-11-20
CmpDate: 2023-11-20

Mahendrarajah TA, Moody ERR, Schrempf D, et al (2023)

ATP synthase evolution on a cross-braced dated tree of life.

Nature communications, 14(1):7456.

The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.

RevDate: 2023-11-17

Hui M, Zhang Y, Wang A, et al (2023)

The First Genome Survey of the Snail Provanna glabra Inhabiting Deep-Sea Hydrothermal Vents.

Animals : an open access journal from MDPI, 13(21):.

The snail P. glabra is an endemic species in deep-sea chemosynthetic ecosystems of the Northwest Pacific Ocean. To obtain more genetic information on this species and provide the basis for subsequent whole-genome map construction, a genome survey was performed on this snail from the hydrothermal vent of Okinawa Trough. The genomic size of P. glabra was estimated to be 1.44 Gb, with a heterozygosity of 1.91% and a repeated sequence content of 69.80%. Based on the sequencing data, a draft genome of 1.32 Gb was assembled. Transposal elements (TEs) accounted for 40.17% of the entire genome, with DNA transposons taking the highest proportion. It was found that most TEs were inserted in the genome recently. In the simple sequence repeats, the dinucleotide motif was the most enriched microsatellite type, accounting for 53% of microsatellites. A complete mitochondrial genome of P. glabra with a total length of 16,268 bp was assembled from the sequencing data. After comparison with the published mitochondrial genome of Provanna sp. from a methane seep, 331 potential single nucleotide polymorphism (SNP) sites were identified in protein-coding genes (PCGs). Except for the cox1 gene, nad2, nad4, nad5, and cob genes are expected to be candidate markers for population genetic and phylogenetic studies of P. glabra and other deep-sea snails. Compared with shallow-water species, three mitochondrial genes of deep-sea gastropods exhibited a higher evolutionary rate, indicating strong selection operating on mitochondria of deep-sea species. This study provides insights into the genome characteristics of P. glabra and supplies genomic resources for further studies on the adaptive evolution of the snail in extreme deep-sea chemosynthetic environments.

RevDate: 2023-12-28
CmpDate: 2023-12-21

Da Costa RT, Riggs LM, ME Solesio (2023)

Inorganic polyphosphate and the regulation of mitochondrial physiology.

Biochemical Society transactions, 51(6):2153-2161.

Inorganic polyphosphate (polyP) is an ancient polymer that is well-conserved throughout evolution. It is formed by multiple subunits of orthophosphates linked together by phosphoanhydride bonds. The presence of these bonds, which are structurally similar to those found in ATP, and the high abundance of polyP in mammalian mitochondria, suggest that polyP could be involved in the regulation of the physiology of the organelle, especially in the energy metabolism. In fact, the scientific literature shows an unequivocal role for polyP not only in directly regulating oxidative a phosphorylation; but also in the regulation of reactive oxygen species metabolism, mitochondrial free calcium homeostasis, and the formation and opening of mitochondrial permeability transitions pore. All these processes are closely interconnected with the status of mitochondrial bioenergetics and therefore play a crucial role in maintaining mitochondrial and cell physiology. In this invited review, we discuss the main scientific literature regarding the regulatory role of polyP in mammalian mitochondrial physiology, placing a particular emphasis on its impact on energy metabolism. Although the effects of polyP on the physiology of the organelle are evident; numerous aspects, particularly within mammalian cells, remain unclear and require further investigation. These aspects encompass, for example, advancing the development of more precise analytical methods, unraveling the mechanism responsible for sensing polyP levels, and understanding the exact molecular mechanism that underlies the effects of polyP on mitochondrial physiology. By increasing our understanding of the biology of this ancient and understudied polymer, we could unravel new pharmacological targets in diseases where mitochondrial dysfunction, including energy metabolism dysregulation, has been broadly described.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.


ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.


Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )