Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Holobiont

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 05 Jun 2020 at 01:31 Created: 

Holobiont

Holobionts are assemblages of different species that form ecological units. Lynn Margulis proposed that any physical association between individuals of different species for significant portions of their life history is a symbiosis. All participants in the symbiosis are bionts, and therefore the resulting assemblage was first coined a holobiont by Lynn Margulis in 1991 in the book Symbiosis as a Source of Evolutionary Innovation. Holo is derived from the Ancient Greek word ὅλος (hólos) for “whole”. The entire assemblage of genomes in the holobiont is termed a hologenome.

Created with PubMed® Query: holobiont OR hologenome NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2020-06-04

Speare L, Davies SW, Paul Balmonte J, et al (2020)

Patterns of environmental variability influence coral-associated bacterial and algal communities on the Mesoamerican Barrier Reef.

Molecular ecology [Epub ahead of print].

A coral's capacity to alter its microbial symbionts may enhance its fitness in the face of climate change. Recent work predicts exposure to high environmental variability may increase coral resilience and adaptability to future climate conditions. However, how this heightened environmental variability impacts coral-associated microbial communities remains largely unexplored. Here, we examined the bacterial and algal symbionts associated with two coral species of the genus Siderastrea with distinct life history strategies from three reef sites on the Belize Mesoamerican Barrier Reef System with low or high environmental variability. Our results reveal bacterial community structure, as well as alpha- and beta-diversity patterns, vary by host species. Differences in bacterial communities between host species were partially explained by high abundance of Deltaproteobacteria and Rhodospirillales and high bacterial diversity in Siderastrea radians. Our findings also suggest Siderastrea spp. have dynamic core bacterial communities that likely drive differences observed in the entire bacterial community, which may play a critical role in rapid acclimatization to environmental change. Unlike the bacterial community, Symbiodiniaceae composition was only distinct between host species at high thermal variability sites, suggesting that different factors shape bacterial versus algal communities within the coral holobiont. Our findings shed light on how domain-specific shifts in dynamic microbiomes may allow for unique methods of enhanced host fitness.

RevDate: 2020-06-02

Hawksworth DL, M Grube (2020)

Lichens redefined as complex ecosystems.

The New phytologist [Epub ahead of print].

RevDate: 2020-06-02

Calusinska M, Marynowska M, Bertucci M, et al (2020)

Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes.

Communications biology, 3(1):275 pii:10.1038/s42003-020-1004-3.

Miscanthus sp. biomass could satisfy future biorefinery value chains. However, its use is largely untapped due to high recalcitrance. The termite and its gut microbiome are considered the most efficient lignocellulose degrading system in nature. Here, we investigate at holobiont level the dynamic adaptation of Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We use an integrative omics approach combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Modified gene expression profiles of gut bacteria suggest a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to closely related species supports the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.

RevDate: 2020-06-02

Roach TNF, Little M, Arts MGI, et al (2020)

A multiomic analysis of in situ coral-turf algal interactions.

Proceedings of the National Academy of Sciences of the United States of America pii:1915455117 [Epub ahead of print].

Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.

RevDate: 2020-06-01

Corbin KR, Bolt B, CM Rodríguez López (2020)

Breeding for Beneficial Microbial Communities Using Epigenomics.

Frontiers in microbiology, 11:937.

RevDate: 2020-05-29

Daybog I, O Kolodny (2020)

Simplified model assumptions artificially constrain the parameter range in which selection at the holobiont level can occur.

RevDate: 2020-05-29

van Vliet S, M Doebeli (2020)

Reply to Daybog and Kolodny: Necessary requirements for holobiont-level selection are robust to model assumptions.

Proceedings of the National Academy of Sciences of the United States of America pii:2005559117 [Epub ahead of print].

RevDate: 2020-05-29

Ben-Eliahu N, Herut B, Rahav E, et al (2020)

Shell Growth of Large Benthic Foraminifera under Heavy Metals Pollution: Implications for Geochemical Monitoring of Coastal Environments.

International journal of environmental research and public health, 17(10): pii:ijerph17103741.

This study was promoted by the recent efforts using larger benthic foraminiferal (LBF) shells geochemistry for the monitoring of heavy metals (HMs) pollution in the marine environment. The shell itself acts as a recorder of the ambient water chemistry in low to extreme HMs-polluted environments, allowing the monitoring of recent-past pollution events. This concept, known as sclerochronology, requires the addition of new parts (i.e., new shell) even in extreme pollution events. We evaluated the physiological resilience of three LBF species with different shell types and symbionts to enriched concentrations of Cd, Cu, and Pb at levels several folds higher than the ecological criteria maximum concentration (CMC) (165-166, 33-43, 1001-1206 µg L-1, respectively), which is derived from aquatic organisms' toxicity tests. The physiological response of the holobiont was expressed by growth rates quantified by the addition of new chambers (new shell parts), and by the chlorophyll a of the algal symbionts. The growth rate decrease varied between 0% and 30% compared to the unamended control for all HMs tested, whereas the algal symbionts exhibited a general non-fatal but significant response to Pb and Cu. Our results highlight that shell growth inhibition of LBF is predicted in extreme concentrations of 57 × CMC of Cu and 523 × CMC of Cd, providing a proof of concept for shell geochemistry monitoring, which is currently not used in the regulatory sectors.

RevDate: 2020-05-26

Arif I, Batool M, PM Schenk (2020)

Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience.

Trends in biotechnology pii:S0167-7799(20)30121-9 [Epub ahead of print].

Plant-associated microbiomes can boost plant growth or control pathogens. Altering the microbiome by inoculation with a consortium of plant growth-promoting rhizobacteria (PGPR) can enhance plant development and mitigate against pathogens as well as abiotic stresses. Manipulating the plant holobiont by microbiome engineering is an emerging biotechnological strategy to improve crop yields and resilience. Indirect approaches to microbiome engineering include the use of soil amendments or selective substrates, and direct approaches include inoculation with specific probiotic microbes, artificial microbial consortia, and microbiome breeding and transplantation. We highlight why and how microbiome services could be incorporated into traditional agricultural practices and the gaps in knowledge that must be answered before these approaches can be commercialized in field applications.

RevDate: 2020-05-23

Yu X, Yu K, Huang W, et al (2020)

Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa.

The Science of the total environment, 733:139319 pii:S0048-9697(20)32836-9 [Epub ahead of print].

Field ecological observations indicate that scleractinian coral exposed to early thermal stress are likely to develop higher tolerance to subsequent heat stress. The causes of this phenomenon, however, remain enigmatic. To unravel the mechanisms underlying the increased heat tolerance, we applied different thermal treatments to the scleractinian coral Acropora pruinosa and studied the resulting differences in appearance, physiological index, Symbiodiniaceae and bacterial communities, and transcriptome response. We found that early heat stress improved the thermal tolerance of the coral holobiont. After thermal acclimation, the community structure and symbiotic bacterial diversity in the microbiota were reorganized, whereas those of Symbiodiniaceae remained stable. RNA-seq analysis revealed that the downregulated coral host genes were mainly involved in pathways relating to metabolism, particularly the nitrogen metabolism pathway. This indicates that thermal acclimation led to decrease in the metabolism level in the coral host, which might be a self-protection mechanism. We suggest that thermal acclimation may increase scleractinian coral thermal tolerance by slowing host metabolism, altering the dominant bacterial population, and increasing bacterial diversity. This study offers new insights into the adaptive potential of scleractinian coral to heat stress from global warming.

RevDate: 2020-05-20

Newkirk CR, Frazer TK, Martindale MQ, et al (2020)

Adaptation to Bleaching: Are Thermotolerant Symbiodiniaceae Strains More Successful Than Other Strains Under Elevated Temperatures in a Model Symbiotic Cnidarian?.

Frontiers in microbiology, 11:822.

The ability of some symbiotic cnidarians to resist and better withstand stress factors that cause bleaching is a trait that is receiving increased attention. The adaptive bleaching hypothesis postulates that cnidarians that can form a stable symbiosis with thermotolerant Symbiodiniaceae strains may cope better with increasing seawater temperatures. We used polyps of the scyphozoan, Cassiopea xamachana, as a model system to test symbiosis success under heat stress. We sought to determine: (1) if aposymbiotic C. xamachana polyps could establish and maintain a symbiosis with both native and non-native strains of Symbiodiniaceae that all exhibit different tolerances to heat, (2) whether polyps with these newly acquired Symbiodiniaceae strains would strobilate (produce ephyra), and (3) if thermally tolerant Symbiodiniaceae strains that established and maintained a symbiosis exhibited greater success in response to heat stress (even if they are not naturally occurring in Cassiopea). Following recolonization of aposymbiotic C. xamachana polyps with different strains, we found that: (1) strains Smic, Stri, Slin, and Spil all established a stable symbiosis that promoted strobilation and (2) strains Bmin1 and Bmin2 did not establish a stable symbiosis and strobilation did not occur. Strains Smic, Stri, Slin, and Spil were used in a subsequent bleaching experiment; each of the strains was introduced to a subset of aposymbiotic polyps and once polyp tissues were saturated with symbionts they were subjected to elevated temperatures - 32°C and 34°C - for 2 weeks. Our findings indicate that, in general, pairings of polyps with Symbiodiniaceae strains that are native to Cassiopea (Stri and Smic) performed better than a non-native strain (Slin) even though this strain has a high thermotolerance. This suggests a degree of partner specificity that may limit the adaptive potential of certain cnidarians to increased ocean warming. We also observed that the free-living, non-native thermotolerant strain Spil was relatively successful in resisting bleaching during experimental trials. This suggests that free-living Symbiodiniaceae may provide a supply of potentially "new" thermotolerant strains to cnidarians following a bleaching event.

RevDate: 2020-05-20

Sariola S, SF Gilbert (2020)

Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene.

Microorganisms, 8(5): pii:microorganisms8050746.

Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.

RevDate: 2020-05-20

Pavagadhi S, S Swarup (2020)

Metabolomics for Evaluating Flavor-Associated Metabolites in Plant-Based Products.

Metabolites, 10(5): pii:metabo10050197.

Plant-based diets (PBDs) are associated with environmental benefits, human health promotion and animal welfare. There is a worldwide shift towards PBDs, evident from the increased global demand for fresh plant-based products (PBPs). Such shifts in dietary preferences accompanied by evolving food palates, create opportunities to leverage technological advancements and strict quality controls in developing PBPs that can drive consumer acceptance. Flavor, color and texture are important sensory attributes of a food product and, have the largest influence on consumer appeal and acceptance. Among these, flavor is considered the most dominating quality attribute that significantly affects overall eating experience. Current state-of-art technologies rely on physicochemical estimations and sensory-based tests to assess flavor-related attributes in fresh PBPs. However, these methodologies often do not provide any indication about the metabolic features associated with unique flavor profiles and, consequently, can be used in a limited way to define the quality attributes of PBPs. To this end, a systematic understanding of metabolites that contribute to the flavor profiles of PBPs is warranted to complement the existing methodologies. This review will discuss the use of metabolomics for evaluating flavor-associated metabolites in fresh PBPs at post-harvest stage, alongside its applications for quality assessment and grading. We will summarize the current research in this area, discuss technical challenges and considerations pertaining to sampling and analytical techniques, as well as s provide future perspectives and directions for government organizations, industries and other stakeholders associated with the quality assessment of fresh PBPs.

RevDate: 2020-05-14

Bonthond G, Bayer T, Krueger-Hadfield SA, et al (2020)

How do microbiota associated with an invasive seaweed vary across scales?.

Molecular ecology [Epub ahead of print].

Communities are shaped by scale dependent processes. To study the diversity and variation of microbial communities across scales, the invasive and widespread seaweed Agarophyton vermiculophyllum presents a unique opportunity. We characterized pro- and eukaryotic communities associated with this holobiont across its known distribution range, which stretches over the northern hemisphere. Our data reveal that community composition and diversity in the holobiont vary at local but also larger geographic scales. While processes acting at the local scale (i.e., within population) are the main structuring drivers of associated microbial communities, changes in community composition also depend on processes acting at larger geographic scales. Interestingly, the largest analyzed scale (i.e., native and nonnative ranges) explained variation in the prevalence of predicted functional groups, which could suggest a functional shift in microbiota occurred over the course of the invasion process. While high variability in microbiota at the local scale supports A. vermiculophyllum to be a generalist host, we also identified a number of core taxa. These geographically independent holobiont members imply that co-introduction of specific microbiota may have additionally promoted the invasion process.

RevDate: 2020-05-14

Suárez J, A Stencel (2020)

A part-dependent account of biological individuality: why holobionts are individuals and ecosystems simultaneously.

Biological reviews of the Cambridge Philosophical Society [Epub ahead of print].

Given one conception of biological individuality (evolutionary, physiological, etc.), can a holobiont - that is the host + its symbiotic (mutualistic, commensalist and parasitic) microbiome - be simultaneously a biological individual and an ecological community? Herein, we support this possibility by arguing that the notion of biological individuality is part-dependent. In our account, the individuality of a biological ensemble should not only be determined by the conception of biological individuality in use, but also by the biological characteristics of the part of the ensemble under investigation. In the specific case of holobionts, evaluations of their individuality should be made either host-relative or microbe-relative. We support the claim that biological individuality is part-dependent by drawing upon recent empirical evidence regarding the physiology of hosts and microbes, and the recent characterization of the 'demibiont'. Our account shows that contemporary disagreements about the individuality of the holobiont derive from an incorrect understanding of the ontology of biological individuality. We show that collaboration between philosophers and biologists can be very fruitful in attempts to solve some contemporary biological debates.

RevDate: 2020-05-11

Tong H, Cai L, Zhou G, et al (2020)

Correlations Between Prokaryotic Microbes and Stress-Resistant Algae in Different Corals Subjected to Environmental Stress in Hong Kong.

Frontiers in microbiology, 11:686.

Coral reefs are extremely vulnerable to global climate change, as evidenced by increasing bleaching events. Previous studies suggest that both algal and microbial partners benefit coral hosts, but the nature of interactions between Symbiodiniaceae and prokaryotic microbes and their effects on coral hosts remains unclear. In the present study, we examined correlations between Symbiodiniaceae and prokaryotic microbes in Montipora spp. and Porites lutea sampled from two sites in Hong Kong with contrasting environmental conditions in March and October 2014. The results showed that the prokaryotic microbial communities had adaptable structures in both Montipora spp. and P. lutea, and environmental conditions had greater effects on the algal/microbial communities in Montipora spp. than in P. lutea. Further network analysis revealed a greater number of prokaryotic microbes were significantly correlated with potentially stress-resistant Symbiodiniaceae in P. lutea than in Montipora spp. Stress-resistant Symbiodiniaceae played more important roles in the community and in the algal-microbial correlations in P. lutea than in Montipora spp. Since P. lutea is faring better in Hong Kong as the seawater temperature gradually increases, the results suggest that the correlations between stress-resistant algae and prokaryotic microbes could provide a compensation mechanism allowing coral hosts to adapt to higher temperatures, particularly as the prokaryotic microbes correlated with Symbiodiniaceae provide the ecological functions of photosynthesis and nitrogen fixation.

RevDate: 2020-05-11

Zhang R, Gao X, Bai H, et al (2020)

Traditional Chinese Medicine and Gut Microbiome: Their Respective and Concert Effects on Healthcare.

Frontiers in pharmacology, 11:538.

Advances in systems biology, particularly based on the omics approaches, have resulted in a paradigm shift in both traditional Chinese medicine (TCM) and the gut microbiome research. In line with this paradigm shift, the importance of TCM and gut microbiome in healthcare, as well as their interplay, has become clearer. Firstly, we briefly summarize the current status of three topics in this review: microbiome, TCM, and relationship of TCM and microbiome. Second, we focused on TCM's therapeutic effects and gut microbiome's mediation roles, including the relationships among diet, gut microbiome, and health care. Third, we have summarized some databases and tools to help understand the impact of TCM and gut microbiome on diagnosis and treatment at the molecular level. Finally, we introduce the effects of gut microbiome on TCM and host health, with two case studies, one on the metabolic effect of gut microbiome on TCM, and another on cancer treatment. In summary, we have reviewed the current status of the two components of healthcare: TCM and gut microbiome, as well as their concert effects. It is quite clear that as the holobiont, the maintenance of the health status of human would depend heavily on TCM, gut microbiome, and their combined effects.

RevDate: 2020-05-06

Perry WB, Lindsay E, Payne CJ, et al (2020)

The role of the gut microbiome in sustainable teleost aquaculture.

Proceedings. Biological sciences, 287(1926):20200184.

As the most diverse vertebrate group and a major component of a growing global aquaculture industry, teleosts continue to attract significant scientific attention. The growth in global aquaculture, driven by declines in wild stocks, has provided additional empirical demand, and thus opportunities, to explore teleost diversity. Among key developments is the recent growth in microbiome exploration, facilitated by advances in high-throughput sequencing technologies. Here, we consider studies on teleost gut microbiomes in the context of sustainable aquaculture, which we have discussed in four themes: diet, immunity, artificial selection and closed-loop systems. We demonstrate the influence aquaculture has had on gut microbiome research, while also providing a road map for the main deterministic forces that influence the gut microbiome, with topical applications to aquaculture. Functional significance is considered within an aquaculture context with reference to impacts on nutrition and immunity. Finally, we identify key knowledge gaps, both methodological and conceptual, and propose promising applications of gut microbiome manipulation to aquaculture, and future priorities in microbiome research. These include insect-based feeds, vaccination, mechanism of pro- and prebiotics, artificial selection on the hologenome, in-water bacteriophages in recirculating aquaculture systems (RAS), physiochemical properties of water and dysbiosis as a biomarker.

RevDate: 2020-05-01

Roberty S, Béraud E, Grover R, et al (2020)

Coral Productivity Is Co-Limited by Bicarbonate and Ammonium Availability.

Microorganisms, 8(5): pii:microorganisms8050640.

The nitrogen environment and nitrogen status of reef-building coral endosymbionts is one of the important factors determining the optimal assimilation of phototrophic carbon and hence the growth of the holobiont. However, the impact of inorganic nutrient availability on the photosynthesis and physiological state of the coral holobiont is partly understood. This study aimed to determine if photosynthesis of the endosymbionts associated with the coral Stylophora pistillata and the overall growth of the holobiont were limited by the availability of dissolved inorganic carbon and nitrogen in seawater. For this purpose, colonies were incubated in absence or presence of 4 µM ammonium and/or 6 mM bicarbonate. Photosynthetic performances, pigments content, endosymbionts density and growth rate of the coral colonies were monitored for 3 weeks. Positive effects were observed on coral physiology with the supplementation of one or the other nutrient, but the most important changes were observed when both nutrients were provided. The increased availability of DIC and NH4+ significantly improved the photosynthetic efficiency and capacity of endosymbionts, in turn enhancing the host calcification rate. Overall, these results suggest that in hospite symbionts are co-limited by nitrogen and carbon availability for an optimal photosynthesis.

RevDate: 2020-04-24

Gong S, Jin X, Ren L, et al (2020)

Unraveling Heterogeneity of Coral Microbiome Assemblages in Tropical and Subtropical Corals in the South China Sea.

Microorganisms, 8(4): pii:microorganisms8040604.

Understanding the coral microbiome is critical for predicting the fidelity of coral symbiosis with growing surface seawater temperature (SST). However, how the coral microbiome will respond to increasing SST is still understudied. Here, we compared the coral microbiome assemblages among 73 samples across six typical South China Sea coral species in two thermal regimes. The results revealed that the composition of microbiome varied across both coral species and thermal regimes, except for Porites lutea. The tropical coral microbiome displayed stronger heterogeneity and had a more un-compacted ecological network than subtropical coral microbiome. The coral microbiome was more strongly determined by environmental factors than host specificity. γ- (32%) and α-proteobacteria (19%), Bacteroidetes (14%), Firmicutes (14%), Actinobacteria (6%) and Cyanobacteria (2%) dominated the coral microbiome. Additionally, bacteria inferred to play potential roles in host nutrients metabolism, several keystone bacteria detected in human and plant rhizospheric microbiome were retrieved in explored corals. This study not only disentangles how different host taxa and microbiome interact and how such an interaction is affected by thermal regimes, but also identifies previously unrecognized keystone bacteria in corals, and also infers the community structure of coral microbiome will be changed from a compacted to an un-compacted network under elevated SST.

RevDate: 2020-04-21

Parker ES, Newton ILG, AP Moczek (2020)

(My Microbiome) Would Walk 10,000 miles: Maintenance and Turnover of Microbial Communities in Introduced Dung Beetles.

Microbial ecology pii:10.1007/s00248-020-01514-9 [Epub ahead of print].

Host-associated microbes facilitate diverse biotic and abiotic interactions between hosts and their environments. Experimental alterations of host-associated microbial communities frequently decrease host fitness, yet much less is known about if and how host-microbiome interactions are altered by natural perturbations, such as introduction events. Here, we begin to assess this question in Onthophagus dung beetles, a species-rich and geographically widely distributed genus whose members rely on vertically transmitted microbiota to support normal development. Specifically, we investigated to what extent microbiome community membership shifts during host introduction events and the relative significance of ancestral associations and novel environmental conditions in the structuring of microbial communities of introduced host species. Our results demonstrate that both evolutionary history and local environmental forces structure the microbial communities of these animals, but that their relative importance is shaped by the specific circumstances that characterize individual introduction events. Furthermore, we identify microbial taxa such as Dysgonomonas that may constitute members of the core Onthophagus microbiome regardless of host population or species, but also Wolbachia which associates with Onthophagus beetles in a species or even population-specific manner. We discuss the implications of our results for our understanding of the evolutionary ecology of symbiosis in dung beetles and beyond.

RevDate: 2020-04-20

Kriaa A, Jablaoui A, Mkaouar H, et al (2020)

Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology [Epub ahead of print].

Serine proteases have been long recognized to coordinate many physiological processes and play key roles in regulating the inflammatory response. Accordingly, their dysregulation has been regularly associated with several inflammatory disorders and suggested as a central mechanism in the pathophysiology of digestive inflammation. So far, studies addressing the proteolytic homeostasis in the gut have mainly focused on host serine proteases as candidates of interest, while largely ignoring the potential contribution of their bacterial counterparts. The human gut microbiota comprises a complex ecosystem that contributes to host health and disease. Yet, our understanding of microbially produced serine proteases and investigation of whether they are causally linked to IBD is still in its infancy. In this review, we highlight recent advances in the emerging roles of host and bacterial serine proteases in digestive inflammation. We also discuss the application of available tools in the gut to monitor disease-related serine proteases. An exhaustive representation and understanding of such functional potential would help in closing existing gaps in mechanistic knowledge.

RevDate: 2020-04-15

Muggia L, Nelsen MP, Kirika PM, et al (2020)

Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta): An impetus for developing an integrated taxonomy.

Molecular phylogenetics and evolution pii:S1055-7903(20)30093-2 [Epub ahead of print].

Lichens provide valuable systems for studying symbiotic interactions. In lichens, these interactions are frequently described in terms of availability, selectivity and specificity of the mycobionts and photobionts towards one another. The lichen-forming, green algal genus Trebouxia Puymaly is among the most widespread photobiont, associating with a broad range of lichen-forming fungi. To date, 29 species have been described, but studies consistently indicate that the vast majority of species-level lineages still lack formal description, and new, previously unrecognized lineages are frequently reported. To reappraise the diversity and the evolutionary relationships of species-level lineages in Trebouxia, we assembled DNA sequence data from over 1600 specimens, compiled from a range of sequences from previously published studies, axenic algal cultures, and lichens collected from poorly sampled regions. From these samples, we selected representatives of the currently known genetic diversity in the lichenized Trebouxia and inferred a phylogeny from multi-locus sequence data (ITS, rbcL, cox2). We demonstrate that the current formally described species woefully underrepresent overall species-level diversity in this important lichen-forming algal genus. We anticipate that an integrative taxonomic approach, incorporating morphological and physiological data from axenic cultures with genetic data, will be required to establish a robust, comprehensive taxonomy for Trebouxia. The data presented here provide an important impetus and reference dataset for more reliably characterizing diversity in lichenized algae and in using lichens to investigate the evolution of symbioses and holobionts.

RevDate: 2020-04-13

Lin D, Lacey EA, Bach BH, et al (2020)

Gut microbial diversity across a contact zone for California voles: implications for lineage divergence of hosts and mito-nuclear mismatch in the assembly of the mammalian gut microbiome.

Molecular ecology [Epub ahead of print].

Gut microbial diversity is thought to reflect the co-evolution of microbes and their hosts as well as current host-specific attributes such as genetic background and environmental setting. To explore interactions among these parameters, we characterized variation in gut microbiome composition in California voles (Microtus californicus) across a contact zone between two recently diverged lineages of this species. Because this contact zone contains individuals with mismatched mitochondrial-nuclear genomes (cybrids), it provides an important opportunity to explore how different components of the genotype contribute to gut microbial diversity. Analyses of bacterial 16S rRNA sequences and joint species distribution modeling revealed that host genotypes and genetic differentiation among host populations together explained more than 50% of microbial community variation across our sampling transect. The ranked importance (most to least) of factors contributing to gut microbial diversity in our study populations were: genome-wide population differentiation, local environmental conditions, and host genotypes. However, differences in microbial communities among vole populations (β-diversity) did not follow patterns of lineage divergence (i.e. phylosymbiosis). Instead, among-population variation was best explained by the spatial distribution of hosts, as expected if the environment is a primary source of gut microbial diversity (i.e. dispersal limitation hypothesis). Across the contact zone, several bacterial taxa differed in relative abundance between the two parental lineages as well as among individuals with mismatched mitochondrial and nuclear genomes. Thus, genetic divergence among host lineages and mito-nuclear genomic mismatches may also contribute to microbial diversity by altering interactions between host genomes and gut microbiota (i.e. hologenome speciation hypothesis).

RevDate: 2020-04-10

Renoud S, Bouffaud ML, Dubost A, et al (2020)

Co-occurrence of rhizobacteria with nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities in the maize rhizosphere.

FEMS microbiology ecology pii:5818760 [Epub ahead of print].

The plant microbiota may differ depending on soil type, but these microbiota probably share the same functions necessary for holobiont fitness. Thus, we tested the hypothesis that phytostimulatory microbial functional groups are likely to co-occur in the rhizosphere, using groups corresponding to nitrogen fixation (nifH) and 1-aminocyclopropane-1-carboxylate deamination (acdS), i.e. two key modes of action in plant-beneficial rhizobacteria. The analysis of three maize fields in two consecutive years showed that quantitative PCR numbers of nifH and of acdS alleles differed according to field site, but a positive correlation was found overall when comparing nifH and acdS numbers. Metabarcoding analyses in the second year indicated that the diversity level of acdS but not nifH rhizobacteria in the rhizosphere differed across fields. Furthermore, between-class analysis showed that the three sites differed from one another based on nifH or acdS sequence data (or rrs data), and the bacterial genera contributing most to field differentiation were not the same for the three bacterial groups. However, co-inertia analysis indicated that the genetic structures of both functional groups and of the whole bacterial community were similar across the three fields. Therefore, results point to co-selection of rhizobacteria harboring nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities.

RevDate: 2020-04-10

Simonin M, Dasilva C, Terzi V, et al (2020)

Influence of plant genotype and soil on the wheat rhizosphere microbiome: Evidences for a core microbiome across eight African and European soils.

FEMS microbiology ecology pii:5818757 [Epub ahead of print].

Here, we assessed the relative influence of wheat genotype, agricultural practices (conventional vs organic) and soil type on the rhizosphere microbiome. We characterized the prokaryotic (archaea, bacteria) and eukaryotic (fungi, protists) communities in soils from four different countries (Cameroon, France, Italy, Senegal) and determined if a rhizosphere core microbiome existed across these different countries. The wheat genotype had a limited effect on the rhizosphere microbiome (2% of variance) as the majority of the microbial taxa were consistently associated to multiple wheat genotypes grown in the same soil. Large differences in taxa richness and in community structure were observed between the eight soils studied (57% variance) and the two agricultural practices (10% variance). Despite these differences between soils, we observed that 177 taxa (2 archaea, 103 bacteria, 41 fungi, 31 protists) were consistently detected in the rhizosphere, constituting a core microbiome. In addition to being prevalent, these core taxa were highly abundant and collectively represented 50% of the reads in our dataset. Based on these results, we identify a list of key taxa as future targets of culturomics, metagenomics and wheat synthetic microbiomes. Additionally, we show that protists are an integral part of the wheat holobiont that is currently overlooked.

RevDate: 2020-04-09

Paix B, Carriot N, Barry-Martinet R, et al (2020)

A Multi-Omics Analysis Suggests Links Between the Differentiated Surface Metabolome and Epiphytic Microbiota Along the Thallus of a Mediterranean Seaweed Holobiont.

Frontiers in microbiology, 11:494.

Marine macroalgae constitute an important living resource in marine ecosystems and complex ecological interactions occur at their surfaces with microbial communities. In this context, the present study aimed to investigate how the surface metabolome of the algal holobiont Taonia atomaria could drive epiphytic microbiota variations at the thallus scale. First, a clear discrimination was observed between algal surface, planktonic and rocky prokaryotic communities. These data strengthened the hypothesis of an active role of the algal host in the selection of epiphytic communities. Moreover, significant higher epibacterial density and α-diversity were found at the basal algal parts compared to the apical ones, suggesting a maturation gradient of the community along the thallus. In parallel, a multiplatform mass spectrometry-based metabolomics study, using molecular networking to annotate relevant metabolites, highlighted a clear chemical differentiation at the algal surface along the thallus with similar clustering as for microbial communities. In that respect, higher amounts of sesquiterpenes, phosphatidylcholines (PCs), and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanines (DGTAs) were observed at the apical regions while dimethylsulfoniopropionate (DMSP) and carotenoids were predominantly found at the basal parts of the thalli. A weighted UniFrac distance-based redundancy analysis linking the metabolomics and metabarcoding datasets indicated that these surface compounds, presumably of algal origin, may drive the zonal variability of the epibacterial communities. As only few studies were focused on microbiota and metabolome variation along a single algal thallus, these results improved our understanding about seaweed holobionts. Through this multi-omics approach at the thallus scale, we suggested a plausible scenario where the chemical production at the surface of T. atomaria, mainly induced by the algal physiology, could explain the specificity and the variations of the surface microbiota along the thallus.

RevDate: 2020-04-08

Boem F, Nannini G, A Amedei (2020)

Not just 'immunity': how the microbiota can reshape our approach to cancer immunotherapy.

Immunotherapy [Epub ahead of print].

Cancer immunotherapy refers to a set of approaches aiming at enhancing the immune system to fight cancer growth and spread. This variety of therapeutic approaches, especially those inhibiting immune checkpoints, have shown very promising results. Nevertheless, patients may respond differently to treatments and the efficacy of immunotherapy seems to be dependent on several factors that go beyond the molecular targeting of immune cells modulation. Here, we review how the activity of gut microbiota appears to be crucial in determining the effectiveness of some immunotherapeutic treatments, fostering or impeding the conditions under which treatments can work or not. Moreover, we discuss how these findings suggest not only extending the range of immunotherapeutic approaches but also reshaping our understanding of immunotherapy itself.

RevDate: 2020-04-06

Biagi E, Caroselli E, Barone M, et al (2020)

Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents.

The Science of the total environment, 724:138048 pii:S0048-9697(20)31561-8 [Epub ahead of print].

Coral microbiomes, the complex microbial communities associated with the different anatomic compartments of the coral, provide important functions for the host's survival, such as nutrient cycling at the host's surface, prevention of pathogens colonization, and promotion of nutrient uptake. Microbiomes are generally referred to as plastic entities, able to adapt their composition and functionality in response to environmental change, with a possible impact on coral acclimatization to phenomena related to climate change, such as ocean acidification. Ocean sites characterized by natural gradients of pCO2 provide models for investigating the ability of marine organisms to acclimatize to decreasing seawater pH. Here we compared the microbiome of the temperate, shallow water, non-symbiotic solitary coral Astroides calycularis that naturally lives at a volcanic CO2 vent in Ischia Island (Naples, Italy), with that of corals living in non-acidified sites at the same island. Bacterial DNA associated with the different anatomic compartments (mucus, tissue and skeleton) of A. calycularis was differentially extracted and a total of 68 samples were analyzed by 16S rRNA gene sequencing. In terms of phylogenetic composition, the microbiomes associated with the different coral anatomic compartments were different from each other and from the microbial communities of the surrounding seawater. Of all the anatomic compartments, the mucus-associated microbiome differed the most between the control and acidified sites. The differences detected in the microbial communities associated to the three anatomic compartments included a general increase in subdominant bacterial groups, some of which are known to be involved in different stages of the nitrogen cycle, such as potential nitrogen fixing bacteria and bacteria able to degrade organic nitrogen. Our data therefore suggests a potential increase of nitrogen fixation and recycling in A. calycularis living close to the CO2 vent system.

RevDate: 2020-04-04

Corona G, Kreimes A, Barone M, et al (2020)

Impact of lignans in oilseed mix on gut microbiome composition and enterolignan production in younger healthy and premenopausal women: an in vitro pilot study.

Microbial cell factories, 19(1):82 pii:10.1186/s12934-020-01341-0.

BACKGROUND: Dietary lignans belong to the group of phytoestrogens together with coumestans, stilbenes and isoflavones, and themselves do not exhibit oestrogen-like properties. Nonetheless, the gut microbiota converts them into enterolignans, which show chemical similarity to the human oestrogen molecule. One of the richest dietary sources of lignans are oilseeds, including flaxseed. The aim of this pilot study was to determine the concentration of the main dietary lignans in an oilseed mix, and explore the gut microbiota-dependent production of enterolignans for oestrogen substitution in young and premenopausal women. The oilseed mix was fermented in a pH-controlled batch culture system inoculated with women's faecal samples. The lignan content and enterolignan production were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and the faecal-derived microbial communities were profiled by 16S rRNA gene-based next-generation sequencing.

RESULTS: In vitro batch culture fermentation of faecal samples inoculated with oilseed mix for 24 h resulted in a substantial increase in enterolactone production in younger women and an increase in enterodiol in the premenopausal group. As for the gut microbiota, different baseline profiles were observed as well as different temporal dynamics, mainly related to Clostridiaceae, and Klebsiella and Collinsella spp.

CONCLUSIONS: Despite the small sample size, our pilot study revealed that lignan-rich oilseeds could strongly influence the faecal microbiota of both younger and premenopausal females, leading to a different enterolignan profile being produced. Further studies in larger cohorts are needed to evaluate the long-term effects of lignan-rich diets on the gut microbiota and find out how enterolactone-producing bacterial species could be increased. Diets rich in lignans could potentially serve as a safe supplement of oestrogen analogues to meet the cellular needs of endogenous oestrogen and deliver numerous health benefits, provided that the premenopausal woman microbiota is capable of converting dietary precursors into enterolignans.

RevDate: 2020-04-01

Leitão AL, Costa MC, Gabriel AF, et al (2020)

Interspecies Communication in Holobionts by Non-Coding RNA Exchange.

International journal of molecular sciences, 21(7): pii:ijms21072333.

Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.

RevDate: 2020-03-27

Hewson I, Brown JM, Burge CA, et al (2012)

Description of viral assemblages associated with the Gorgonia ventalina holobiont.

Coral reefs (Online), 31(2):487-491.

The diversity and function of viruses in coral holobionts has only recently received attention. The non-reef building gorgonian octocoral, Gorgonia ventalina, is a major constituent of Caribbean reefs. We investigated viral communities associated with G. ventalina tissues to understand their role in gorgonian ecology. Pyrosequencing was used to prepare a total of 514,632 sequence reads of DNA- and RNA-based mixed-community viral genomes (metaviromes). RNA viral assemblages were comprised of primarily unidentifiable reads, with most matching host transcripts and other RNA metaviromes. DNA metaviromes were similar between healthy and diseased tissues and comprised of contiguous sequences (contigs) that matched primarily metazoan and bacterial proteins. Only ~5% of contigs matched viral proteins that were primarily cyanophage and viruses of Chlorella and Ostreococcus. Our results confirm that DNA and RNA viruses comprise a component of the gorgonian holobiont, suggesting that they may play a role in the ecology of G. ventalina.

RevDate: 2020-03-26

Storey MA, Andreassend SK, Bracegirdle J, et al (2020)

Metagenomic Exploration of the Marine Sponge Mycale hentscheli Uncovers Multiple Polyketide-Producing Bacterial Symbionts.

mBio, 11(2): pii:mBio.02997-19.

Marine sponges have been a prolific source of unique bioactive compounds that are presumed to act as a deterrent to predation. Many of these compounds have potential therapeutic applications; however, the lack of efficient and sustainable synthetic routes frequently limits clinical development. Here, we describe a metagenomic investigation of Mycale hentscheli, a chemically gifted marine sponge that possesses multiple distinct chemotypes. We applied shotgun metagenomic sequencing, hybrid assembly of short- and long-read data, and metagenomic binning to obtain a comprehensive picture of the microbiome of five specimens, spanning three chemotypes. Our data revealed multiple producing species, each having relatively modest secondary metabolomes, that contribute collectively to the chemical arsenal of the holobiont. We assembled complete genomes for multiple new genera, including two species that produce the cytotoxic polyketides pateamine and mycalamide, as well as a third high-abundance symbiont harboring a proteusin-type biosynthetic pathway that appears to encode a new polytheonamide-like compound. We also identified an additional 188 biosynthetic gene clusters, including a pathway for biosynthesis of peloruside. These results suggest that multiple species cooperatively contribute to defensive symbiosis in M. hentscheli and reveal that the taxonomic diversity of secondary-metabolite-producing sponge symbionts is larger and richer than previously recognized.IMPORTANCEMycale hentscheli is a marine sponge that is rich in bioactive small molecules. Here, we use direct metagenomic sequencing to elucidate highly complete and contiguous genomes for the major symbiotic bacteria of this sponge. We identify complete biosynthetic pathways for the three potent cytotoxic polyketides which have previously been isolated from M. hentscheli Remarkably, and in contrast to previous studies of marine sponges, we attribute each of these metabolites to a different producing microbe. We also find that the microbiome of M. hentscheli is stably maintained among individuals, even over long periods of time. Collectively, our data suggest a cooperative mode of defensive symbiosis in which multiple symbiotic bacterial species cooperatively contribute to the defensive chemical arsenal of the holobiont.

RevDate: 2020-03-25

Vanwonterghem I, NS Webster (2020)

Coral Reef Microorganisms in a Changing Climate.

iScience, 23(4):100972 pii:S2589-0042(20)30156-5 [Epub ahead of print].

Coral reefs are one of the most diverse and productive ecosystems on the planet, yet they have suffered tremendous losses due to anthropogenic disturbances and are predicted to be one of the most adversely affected habitats under future climate change conditions. Coral reefs can be viewed as microbially driven ecosystems that rely on the efficient capture, retention, and recycling of nutrients in order to thrive in oligotrophic waters. Microorganisms play vital roles in maintaining holobiont health and ecosystem resilience under environmental stress; however, they are also key players in positive feedback loops that intensify coral reef decline, with cascading effects on biogeochemical cycles and marine food webs. There is an urgent need to develop a fundamental understanding of the complex microbial interactions within coral reefs and their role in ecosystem acclimatization, and it is important to include microorganisms in reef conservation in order to secure a future for these unique environments.

RevDate: 2020-03-20

Suárez J, V Triviño (2020)

What Is a Hologenomic Adaptation? Emergent Individuality and Inter-Identity in Multispecies Systems.

Frontiers in psychology, 11:187.

Contemporary biological research has suggested that some host-microbiome multispecies systems (referred to as "holobionts") can in certain circumstances evolve as unique biological individual, thus being a unit of selection in evolution. If this is so, then it is arguably the case that some biological adaptations have evolved at the level of the multispecies system, what we call hologenomic adaptations. However, no research has yet been devoted to investigating their nature, or how these adaptations can be distinguished from adaptations at the species-level (genomic adaptations). In this paper, we cover this gap by investigating the nature of hologenomic adaptations. By drawing on the case of the evolution of sanguivory diet in vampire bats, we argue that a trait constitutes a hologenomic adaptation when its evolution can only be explained if the holobiont is considered the biological individual that manifests this adaptation, while the bacterial taxa that bear the trait are only opportunistic beneficiaries of it. We then use the philosophical notions of emergence and inter-identity to explain the nature of this form of individuality and argue why it is special of holobionts. Overall, our paper illustrates how the use of philosophical concepts can illuminate scientific discussions, in the trend of what has recently been called metaphysics of biology.

RevDate: 2020-03-19

Bredon M, Herran B, Bertaux J, et al (2020)

Isopod holobionts as promising models for lignocellulose degradation.

Biotechnology for biofuels, 13:49 pii:1683.

Background: Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion.

Results: To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota.

Conclusions: Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.

RevDate: 2020-03-17

Gaona O, Cerqueda-García D, Moya A, et al (2020)

Geographical separation and physiology drive differentiation of microbial communities of two discrete populations of the bat Leptonycteris yerbabuenae.

MicrobiologyOpen [Epub ahead of print].

In this paper, we explore how two discrete and geographically separated populations of the lesser long-nosed bat (Leptonycteris yerbabuenae)-one in central and the other in the Pacific region of Mexico-differ in their fecal microbiota composition. Considering the microbiota-host as a unity, in which extrinsic (as food availability and geography) or intrinsic factors (as physiology) play an important role in the microbiota composition, we would expect differentiation in the microbiota of two geographically separated populations. The Amplicon Sequences Variants (ASVs) of the V4 region of the 16s rRNA gene from 68 individuals were analyzed using alpha and beta diversity metrics. We obtained a total of 11 566 (ASVs). The bacterial communities in the Central and Pacific populations had a diversity of 6,939 and 4,088 ASVs, respectively, sharing a core microbiota of 539 ASVs accounting for 75% of the relative abundance, suggesting stability over evolutionary time. The Weighted UniFrac metrics tested by a PERMANOVA showed that lactating and pregnant females had significant beta diversity differences in the two populations compared with other reproductive stages. This could be a consequence of the increased energy requirements of these physiological stages, more than the variation due to geographical separation. In contrast, a positive correlation of the observed ASVs of fecal microbiota with the observed ASVs of plastids related to the diet was observed in the juveniles and adults, suggesting that in these physiological stages an extrinsic factor as the diet shapes the microbiota composition. The results provide a baseline for future studies of the microbiome in these two wild populations of the lesser long-nosed bat, the main pollinator of the Agaves from which the beverages tequila and mezcal are made.

RevDate: 2020-03-16

Clerissi C, de Lorgeril J, Petton B, et al (2020)

Microbiota Composition and Evenness Predict Survival Rate of Oysters Confronted to Pacific Oyster Mortality Syndrome.

Frontiers in microbiology, 11:311.

Pacific Oyster Mortality Syndrome (POMS) affects Crassostrea gigas oysters worldwide and causes important economic losses. Disease dynamic was recently deciphered and revealed a multiple and progressive infection caused by the Ostreid herpesvirus OsHV-1 μVar, triggering an immunosuppression followed by microbiota destabilization and bacteraemia by opportunistic bacterial pathogens. However, it remains unknown if microbiota might participate to protect oysters against POMS, and if microbiota characteristics might be predictive of oyster mortalities. To tackle this issue, we transferred full-sib progenies of resistant and susceptible oyster families from hatchery to the field during a period in favor of POMS. After 5 days of transplantation, oysters from each family were either sampled for individual microbiota analyses using 16S rRNA gene-metabarcoding or transferred into facilities to record their survival using controlled condition. As expected, all oysters from susceptible families died, and all oysters from the resistant family survived. Quantification of OsHV-1 and bacteria showed that 5 days of transplantation were long enough to contaminate oysters by POMS, but not for entering the pathogenesis process. Thus, it was possible to compare microbiota characteristics between resistant and susceptible oysters families at the early steps of infection. Strikingly, we found that microbiota evenness and abundances of Cyanobacteria (Subsection III, family I), Mycoplasmataceae, Rhodobacteraceae, and Rhodospirillaceae were significantly different between resistant and susceptible oyster families. We concluded that these microbiota characteristics might predict oyster mortalities.

RevDate: 2020-03-13

Donovan SM (2020)

Evolution of the gut microbiome in infancy within an ecological context.

Current opinion in clinical nutrition and metabolic care [Epub ahead of print].

PURPOSE OF REVIEW: Humans and their commensal microbiota coexist in a complex ecosystem molded by evolutionary and ecological factors. Ecological opportunity is the prospective, lineage-specific characteristic of an environment that contains both niche availability leading to persistence coupled with niche discordance that drives selection within that lineage. The newborn gut ecosystem presents vast ecological opportunity. Herein, factors affecting perinatal infant microbiome composition are discussed.

RECENT FINDINGS: Establishing a healthy microbiota in early life is required for immunological programming and prevention of both short-term and long-term health outcomes. The holobiont theory infers that host genetics contributes to microbiome composition. However, in most human studies, environmental factors are predominantly responsible for microbiome composition and function. Key perinatal elements are route of delivery, diet and the environment in which that infant resides. Vaginal delivery seeds an initial microbiome, and breastfeeding refines the community by providing additional microbes, human milk oligosaccharides and immunological proteins.

SUMMARY: Early life represents an opportunity to implement clinical practices that promote the optimal seeding and feeding of the gut microbial ecosystem. These include reducing nonemergent cesarean deliveries, avoiding the use of antibiotics, and promoting exclusive breastfeeding.

RevDate: 2020-03-11

Meron D, Maor-Landaw K, Eyal G, et al (2020)

The Complexity of the Holobiont in the Red Sea Coral Euphyllia paradivisa under Heat Stress.

Microorganisms, 8(3): pii:microorganisms8030372.

The recognition of the microbiota complexity and their role in the evolution of their host is leading to the popularization of the holobiont concept. However, the coral holobiont (host and its microbiota) is still enigmatic and unclear. Here, we explore the complex relations between different holobiont members of a mesophotic coral Euphyllia paradivisa. We subjected two lines of the coral-with photosymbionts, and without photosymbionts (apo-symbiotic)-to increasing temperatures and to antibiotics. The different symbiotic states were characterized using transcriptomics, microbiology and physiology techniques. The bacterial community's composition is dominated by bacteroidetes, alphaproteobacteria, and gammaproteobacteria, but is dependent upon the symbiont state, colony, temperature treatment, and antibiotic exposure. Overall, the most important parameter determining the response was whether the coral was a symbiont/apo-symbiotic, while the colony and bacterial composition were secondary factors. Enrichment Gene Ontology analysis of coral host's differentially expressed genes demonstrated the cellular differences between symbiotic and apo-symbiotic samples. Our results demonstrate the significance of each component of the holobiont consortium and imply a coherent link between them, which dramatically impacts the molecular and cellular processes of the coral host, which possibly affect its fitness, particularly under environmental stress.

RevDate: 2020-03-08

Robinson JM, MF Breed (2020)

The Lovebug Effect: Is the human biophilic drive influenced by interactions between the host, the environment, and the microbiome?.

The Science of the total environment, 720:137626 pii:S0048-9697(20)31137-2 [Epub ahead of print].

Psychological frameworks are often used to investigate the mechanisms involved with our affinity towards, and connection with nature--such as the Biophilia Hypothesis and Nature Connectedness. Recent revelations from microbiome science suggest that animal behaviour can be strongly influenced by the host's microbiome--for example, via the bidirectional communication properties of the gut-brain axis. Here, we build on this theory to hypothesise that a microbially-influenced mechanism could also contribute to the human biophilic drive - the tendency for humans to affiliate and connect with nature. Humans may be at an evolutionary advantage through health-regulating exchange of environmental microbiota, which in turn could influence our nature affinity. We present a conceptual model for microbially-influenced nature affinity, calling it the Lovebug Effect. We present an overview of the potential mechanistic pathways involved in the Lovebug Effect, and consider its dependence on the hologenome concept of evolution, direct behavioural manipulation, and host-microbiota associated phenotypes independent of these concepts. We also discuss its implications for human health and ecological resilience. Finally, we highlight several possible approaches to scrutinise the hypothesis. The Lovebug Effect could have important implications for our understanding of exposure to natural environments for health and wellbeing, and could contribute to an ecologically resilient future.

RevDate: 2020-03-05

Gignoux-Wolfsohn SA, Precht WF, Peters EC, et al (2020)

Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral Acropora cervicornis.

Diseases of aquatic organisms, 137(3):217-237.

This study is a multi-pronged description of a temperature-induced outbreak of white-band disease (WBD) that occurred in Acropora cervicornis off northern Miami Beach, Florida (USA), from July to October 2014. We describe the ecology of the disease and examine diseased corals using both histopathology and next-generation bacterial 16S gene sequencing, making it possible to better understand the effect this disease has on the coral holobiont, and to address some of the seeming contradictions among previous studies of WBD that employed either a purely histological or molecular approach. The outbreak began in July 2014, as sea surface temperatures reached 29°C, and peaked in mid-September, a month after the sea surface temperature maximum. The microscopic anatomy of apparently healthy portions of colonies displaying active disease signs appeared normal except for some tissue atrophy and dissociation of mesenterial filaments deep within the branch. Structural changes were more pronounced in visibly diseased fragments, with atrophy, necrosis, and lysing of surface and basal body wall and polyp structures at the tissue-loss margin. The only bacteria evident microscopically in both diseased and apparently healthy tissues with Giemsa staining was a Rickettsiales-like organism (RLO) occupying mucocytes. Sequencing also identified bacteria belonging to the order Rickettsiales in all fragments. When compared to apparently healthy fragments, diseased fragments had more diverse bacterial communities made up of many previously suggested potential primary pathogens and secondary (opportunistic) colonizers. Interactions between elevated seawater temperatures, the coral host, and pathogenic members of the diseased microbiome all contribute to the coral displaying signs of WBD.

RevDate: 2020-03-04

Baffy G (2020)

Gut Microbiota and Cancer of the Host: Colliding Interests.

Advances in experimental medicine and biology, 1219:93-107.

Cancer develops in multicellular organisms from cells that ignore the rules of cooperation and escape the mechanisms of anti-cancer surveillance. Tumorigenesis is jointly encountered by the host and microbiota, a vast collection of microorganisms that live on the external and internal epithelial surfaces of the body. The largest community of human microbiota resides in the gastrointestinal tract where commensal, symbiotic and pathogenic microorganisms interact with the intestinal barrier and gut mucosal lymphoid tissue, creating a tumor microenvironment in which cancer cells thrive or perish. Aberrant composition and function of the gut microbiota (dysbiosis) has been associated with tumorigenesis by inducing inflammation, promoting cell growth and proliferation, weakening immunosurveillance, and altering food and drug metabolism or other biochemical functions of the host. However, recent research has also identified several mechanisms through which gut microbiota support the host in the fight against cancer. These mechanisms include the use of antigenic mimicry, biotransformation of chemotherapeutic agents, and other mechanisms to boost anti-cancer immune responses and improve the efficacy of cancer immunotherapy. Further research in this rapidly advancing field is expected to identify additional microbial metabolites with tumor suppressing properties, map the complex interactions of host-microbe 'transkingdom network' with cancer cells, and elucidate cellular and molecular pathways underlying the impact of specific intestinal microbial configurations on immune checkpoint inhibitor therapy.

RevDate: 2020-03-04

Lima LFO, Weissman M, Reed M, et al (2020)

Modeling of the Coral Microbiome: the Influence of Temperature and Microbial Network.

mBio, 11(2): pii:mBio.02691-19.

Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.

RevDate: 2020-03-03

Yin J, Yu Y, Zhang Z, et al (2020)

Enrichment of potentially beneficial bacteria from the consistent microbial community confers canker resistance on tomato.

Microbiological research, 234:126446 pii:S0944-5013(19)31488-0 [Epub ahead of print].

The soil microbiota interacts with plants closely and exerts strong influences on plant health and productivity. However, the relationship between the microbiota and the bacterial canker of tomato that is caused by Clavibacter michiganensis subsp. michiganensis (Cmm) is still unclear. In order to establish causal relationship between the microbiota and plant phenotypes, the microbial communities of 49 tomato samples (including 15 cultivars) with different canker symptoms collected from the greenhouse in Gansu province, China were investigated via 16S ribosomal RNA sequencing. Roots exhibited a strong filter effect in the process of root colonization by microorganisms according to the α-diversity and the separation patterns of the microbiota in bulk soil, rhizosphere and endosphere. In addition, the gradually decreased cluster extent from bulk soil to endosphere indicating the selective effect of tomato on microbiota. Although the composition of the microbiota is similar, the potential beneficial bacteria and functions (e.g. antibiotics production, pollution degradation, nutrition acquisition) enriched in the rhizosphere and endosphere of healthy samples compared to those in the diseased ones. Furthermore, more robust networks occurred in the rhizosphere and endosphere of healthy samples compared to the diseased ones. Our research provided substantial evidence that although the plant genotype is the dominant factor of phenotype, the rhizosphere and endosphere microbiota, as part of phytobiomes or holobiont, could contribute to the host's phenotype. This causal relationship between microbiota and host phenotypes could guide us in rationally designing novel synthetic communities (SynComs) for tomato canker biocontrol in the near future.

RevDate: 2020-03-03

Butina TV, Khanaev IV, Kravtsova LS, et al (2020)

Metavirome datasets from two endemic Baikal sponges Baikalospongia bacillifera.

Data in brief, 29:105260 pii:105260.

Sponges are ecologically important components of marine and freshwater benthic environments; these holobionts contain a variety of microorganisms and viruses. For the metagenomic characterization of potential taxonomic and functional diversity of sponge-associated dsDNA viruses, we surveyed two samples of Baikal endemic sponge Baikalospongia bacillifera (diseased and visually healthy). In total, after quality processing, we have obtained 3 375 063 and 4 063 311 reads; of these 97 557 and 88 517 sequences, accounting for ca. 2.9 and 2.2% of datasets, have been identified as viral. We have revealed approximately 28 viral families, among which the bacteriophages of the Myoviridae, Siphoviridae and Podoviridae families, as well as the viruses of the Phycodnaviridae and Poxviridae families, dominated in the samples. Analysis of viral sequences using the COG database has indicated 22 functional categories of proteins. Viral communities of visually healthy and diseased Baikal sponges were significantly different. The metagenome sequence data were deposited to NCBI SRA as BioProject PRJNA577390.

RevDate: 2020-03-03

Glasl B, Robbins S, Frade PR, et al (2020)

Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes.

The ISME journal pii:10.1038/s41396-020-0622-6 [Epub ahead of print].

Microbially mediated processes contribute to coral reef resilience yet, despite extensive characterisation of microbial community variation following environmental perturbation, the effect on microbiome function is poorly understood. We undertook metagenomic sequencing of sponge, macroalgae and seawater microbiomes from a macroalgae-dominated inshore coral reef to define their functional potential and evaluate seasonal shifts in microbially mediated processes. In total, 125 high-quality metagenome-assembled genomes were reconstructed, spanning 15 bacterial and 3 archaeal phyla. Multivariate analysis of the genomes relative abundance revealed changes in the functional potential of reef microbiomes in relation to seasonal environmental fluctuations (e.g. macroalgae biomass, temperature). For example, a shift from Alphaproteobacteria to Bacteroidota-dominated seawater microbiomes occurred during summer, resulting in an increased genomic potential to degrade macroalgal-derived polysaccharides. An 85% reduction of Chloroflexota was observed in the sponge microbiome during summer, with potential consequences for nutrition, waste product removal, and detoxification in the sponge holobiont. A shift in the Firmicutes:Bacteroidota ratio was detected on macroalgae over summer with potential implications for polysaccharide degradation in macroalgal microbiomes. These results highlight that seasonal shifts in the dominant microbial taxa alter the functional repertoire of host-associated and seawater microbiomes, and highlight how environmental perturbation can affect microbially mediated processes in coral reef ecosystems.

RevDate: 2020-03-02

Jablaoui A, Kriaa A, Mkaouar H, et al (2020)

Fecal Serine Protease Profiling in Inflammatory Bowel Diseases.

Frontiers in cellular and infection microbiology, 10:21.

Serine proteases are extensively known to play key roles in many physiological processes. However, their dysregulation is often associated to several diseases including inflammatory bowel diseases (IBD). Here, we used specific substrates to monitor fecal protease activities in a large cohort of healthy and IBD patients. Of interest, serine protease activity was 10-fold higher in IBD fecal samples compared to healthy controls. Moreover, functional analysis of these fecal proteolytic activities revealed that the most increased activities are trypsin-like, elastase-like and cathepsin G-like. We also show for the first time, an increase of proteinase 3-like activity in these samples compared to controls. Results presented here will guide further investigations to better understand the relevance of these peptidases in IBD.

RevDate: 2020-03-02

Urayama SI, Takaki Y, Hagiwara D, et al (2020)

dsRNA-seq Reveals Novel RNA Virus and Virus-Like Putative Complete Genome Sequences from Hymeniacidon sp. Sponge.

Microbes and environments, 35(2):.

Invertebrates are a source of previously unknown RNA viruses that fill gaps in the viral phylogenetic tree. Although limited information is currently available on RNA viral diversity in the marine sponge, a primordial multicellular animal that belongs to the phylum Porifera, the marine sponge is one of the well-studied holobiont systems. In the present study, we elucidated the putative complete genome sequences of five novel RNA viruses from Hymeniacidon sponge using a combination of double-stranded RNA sequencing, called fragmented and primer ligated dsRNA sequencing, and a conventional transcriptome method targeting single-stranded RNA. We identified highly diverged RNA-dependent RNA polymerase sequences, including a potential novel RNA viral lineage, in the sponge and three viruses presumed to infect sponge cells.

RevDate: 2020-02-28

Shoguchi E, Yoshioka Y, Shinzato C, et al (2020)

Correlation between organelle genetic variation and RNA editing in dinoflagellates associated with the coral Acropora digitifera.

Genome biology and evolution pii:5762615 [Epub ahead of print].

In order to develop successful strategies for coral reef preservation, it is critical that the biology of both host corals and symbiotic algae are investigated. In the Ryukyu Archipelago, which encompasses many islands spread over approximately 500 km of the Pacific Ocean, four major populations of the coral Acropora digitifera have been studied using whole genome shotgun (WGS) sequence analysis (Shinzato et al. 2015). In contrast, the diversity of the symbiotic dinoflagellates associated with these A. digitifera populations is unknown. It is therefore unclear if these two core components of the coral holobiont share a common evolutionary history. This issue can be addressed for the symbiotic algal populations by studying the organelle genomes of their mitochondria and plastids. Here we analyzed WGS data from ∼150 adult A. digitifera, and by mapping reads to the available reference genome sequences, we extracted 2,250 sequences representing 15 organelle genes of Symbiodiniaceae. Molecular phylogenetic analyses of these mitochondrial and plastid gene sets revealed that A. digitifera from the southern Yaeyama islands harbor a different Symbiodiniaceae population than the islands of Okinawa and Kerama in the north, indicating that the distribution of symbiont populations partially matches that of the four host populations. Interestingly, we found that numerous single-nucleotide polymorphisms (SNPs) correspond to known RNA-edited sites in 14 of the Symbiodiniaceae organelle genes, with mitochondrial genes showing a stronger correspondence than plastid genes. These results suggest a possible correlation between RNA editing and SNPs in the two organelle genomes of symbiotic dinoflagellates.

RevDate: 2020-02-27

Suárez J (2020)

The stability of traits conception of the hologenome: An evolutionary account of holobiont individuality.

History and philosophy of the life sciences, 42(1):11 pii:10.1007/s40656-020-00305-2.

Bourrat and Griffiths (Hist Philos Life Sci 40(2):33, 2018) have recently argued that most of the evidence presented by holobiont defenders to support the thesis that holobionts are evolutionary individuals is not to the point and is not even adequate to discriminate multispecies evolutionary individuals from other multispecies assemblages that would not be considered evolutionary individuals by most holobiont defenders. They further argue that an adequate criterion to distinguish the two categories is fitness alignment, presenting the notion of fitness boundedness as a criterion that allows divorcing true multispecies evolutionary individuals from other multispecies assemblages and provides an adequate criterion to single out genuine evolutionary multispecies assemblages. A consequence of their criterion is that holobionts, as conventionally defined by hologenome defenders, are not evolutionary individuals except in very rare cases, and for very specific host-symbiont associations. This paper is a critical response to Bourrat and Griffiths' arguments and a defence of the arguments presented by holobiont defenders. Drawing upon the case of the hologenomic basis of the evolution of sanguivory in vampire bats (Nat Ecol Evol 2:659-668, 2018), I argue that Bourrat and Griffiths overlook some aspects of the biological nature of the microbiome that justifies the thesis that holobionts are evolutionarily different to other multispecies assemblages. I argue that the hologenome theory of evolution should not define the hologenome as a collection of genomes, but as the sum of the host genome plus some traits of the microbiome which together constitute an evolutionary individual, a conception I refer to as the stability of traits conception of the hologenome. Based on that conception I argue that the evidence presented by holobiont defenders is to the point, and supports the thesis that holobionts are evolutionary individuals. In this sense, the paper offers an account of the holobiont that aims to foster a dialogue between hologenome advocates and hologenome critics.

RevDate: 2020-02-25

Greyson-Gaito CJ, Bartley TJ, Cottenie K, et al (2020)

Into the wild: microbiome transplant studies need broader ecological reality.

Proceedings. Biological sciences, 287(1921):20192834.

Gut microbial communities (microbiomes) profoundly shape the ecology and evolution of multicellular life. Interactions between host and microbiome appear to be reciprocal, and ecological theory is now being applied to better understand how hosts and their microbiome influence each other. However, some ecological processes that underlie reciprocal host-microbiome interactions may be obscured by the current convention of highly controlled transplantation experiments. Although these approaches have yielded invaluable insights, there is a need for a broader array of approaches to fully understand host-microbiome reciprocity. Using a directed review, we surveyed the breadth of ecological reality in the current literature on gut microbiome transplants with non-human recipients. For 55 studies, we categorized nine key experimental conditions that impact the ecological reality (EcoReality) of the transplant, including host taxon match and donor environment. Using these categories, we rated the EcoReality of each transplant. Encouragingly, the breadth of EcoReality has increased over time, but some components of EcoReality are still relatively unexplored, including recipient host environment and microbiome state. The conceptual framework we develop here maps the landscape of possible EcoReality to highlight where fundamental ecological processes can be considered in future transplant experiments.

RevDate: 2020-02-25

Saurav K, Borbone N, Burgsdorf I, et al (2020)

Identification of Quorum Sensing Activators and Inhibitors in The Marine Sponge Sarcotragus spinosulus.

Marine drugs, 18(2): pii:md18020127.

Marine sponges, a well-documented prolific source of natural products, harbor highly diverse microbial communities. Their extracts were previously shown to contain quorum sensing (QS) signal molecules of the N-acyl homoserine lactone (AHL) type, known to orchestrate bacterial gene regulation. Some bacteria and eukaryotic organisms are known to produce molecules that can interfere with QS signaling, thus affecting microbial genetic regulation and function. In the present study, we established the production of both QS signal molecules as well as QS inhibitory (QSI) molecules in the sponge species Sarcotragus spinosulus. A total of eighteen saturated acyl chain AHLs were identified along with six unsaturated acyl chain AHLs. Bioassay-guided purification led to the isolation of two brominated metabolites with QSI activity. The structures of these compounds were elucidated by comparative spectral analysis of 1HNMR and HR-MS data and were identified as 3-bromo-4-methoxyphenethylamine (1) and 5,6-dibromo-N,N-dimethyltryptamine (2). The QSI activity of compounds 1 and 2 was evaluated using reporter gene assays for long- and short-chain AHL signals (Escherichia coli pSB1075 and E. coli pSB401, respectively). QSI activity was further confirmed by measuring dose-dependent inhibition of proteolytic activity and pyocyanin production in Pseudomonas aeruginosa PAO1. The obtained results show the coexistence of QS and QSI in S. spinosulus, a complex signal network that may mediate the orchestrated function of the microbiome within the sponge holobiont.

RevDate: 2020-02-25

Mohanty I, Podell S, Biggs JS, et al (2020)

Multi-Omic Profiling of Melophlus Sponges Reveals Diverse Metabolomic and Microbiome Architectures that Are Non-overlapping with Ecological Neighbors.

Marine drugs, 18(2): pii:md18020124.

Marine sponge holobionts, defined as filter-feeding sponge hosts together with their associated microbiomes, are prolific sources of natural products. The inventory of natural products that have been isolated from marine sponges is extensive. Here, using untargeted mass spectrometry, we demonstrate that sponges harbor a far greater diversity of low-abundance natural products that have evaded discovery. While these low-abundance natural products may not be feasible to isolate, insights into their chemical structures can be gleaned by careful curation of mass fragmentation spectra. Sponges are also some of the most complex, multi-organismal holobiont communities in the oceans. We overlay sponge metabolomes with their microbiome structures and detailed metagenomic characterization to discover candidate gene clusters that encode production of sponge-derived natural products. The multi-omic profiling strategy for sponges that we describe here enables quantitative comparison of sponge metabolomes and microbiomes to address, among other questions, the ecological relevance of sponge natural products and for the phylochemical assignment of previously undescribed sponge identities.

RevDate: 2020-02-22

Musella M, Wathsala R, Tavella T, et al (2020)

Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment.

The Science of the total environment, 717:137209 pii:S0048-9697(20)30719-1 [Epub ahead of print].

In this study, we characterize the structural variation of the microbiota of Mytilus galloprovincialis at the tissue scale, also exploring the connection with the microbial ecosystem of the surrounding water. Mussels were sampled within a farm located in the North-Western Adriatic Sea and microbiota composition was analyzed in gills, hemolymph, digestive glands, stomach and foot by Next Generation Sequencing marker gene approach. Mussels showed a distinctive microbiota structure, with specific declinations at the tissue level. Indeed, each tissue is characterized by a distinct pattern of dominant families, reflecting a peculiar adaptation to the respective tissue niche. For instance, the microbiota of the digestive gland is characterized by Ruminococcaceae and Lachnospiraceae, being shaped to ferment complex polysaccharides of dietary origin into short-chain fatty acids, well matching the general asset of the animal gut microbiota. Conversely, the gill and hemolymph ecosystems are dominated by marine microorganisms with aerobic oxidative metabolism, consistent with the role played by these tissues as an interface with the external environment. Our findings highlight the putative importance of mussel microbiota for different aspects of host physiology, with ultimate repercussions on mussel health and productivity.

RevDate: 2020-02-20

Lewandowska M, Hazan Y, Y Moran (2020)

Initial Virome Characterization of the Common Cnidarian Lab Model Nematostella vectensis.

Viruses, 12(2): pii:v12020218.

The role of viruses in forming a stable holobiont has been the subject of extensive research in recent years. However, many emerging model organisms still lack any data on the composition of the associated viral communities. Here, we re-analyzed seven publicly available transcriptome datasets of the starlet sea anemone Nematostella vectensis, the most commonly used anthozoan lab model, and searched for viral sequences. We applied a straightforward, yet powerful approach of de novo assembly followed by homology-based virus identification and a multi-step, thorough taxonomic validation. The comparison of different lab populations of N. vectensis revealed the existence of the core virome composed of 21 viral sequences, present in all adult datasets. Unexpectedly, we observed an almost complete lack of viruses in the samples from the early developmental stages, which together with the identification of the viruses shared with the major source of the food in the lab, the brine shrimp Artemia salina, shed new light on the course of viral species acquisition in N. vectensis. Our study provides an initial, yet comprehensive insight into N. vectensis virome and sets the first foundation for the functional studies of viruses and antiviral systems in this lab model cnidarian.

RevDate: 2020-02-13

Miyazaki J, Ikuta T, Watsuji TO, et al (2020)

Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica.

The ISME journal pii:10.1038/s41396-020-0605-7 [Epub ahead of print].

Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H2) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H2 oxidation has not yet been determined. Here, we demonstrate that the Campylobacterota endosymbionts of the gastropod Alviniconcha marisindica in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H2 in response to their physical and environmental H2 conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H2 and hydrogen sulfide (H2S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H2 oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H2 and H2S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H2- and sulfur-oxidations. These results suggest that both H2 and H2S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H2, but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of A. marisindica holobionts are dependent on H2- and sulfur-oxidation in the H2-enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H2 concentration.

RevDate: 2020-02-12

Howe-Kerr LI, Bachelot B, Wright RM, et al (2020)

Symbiont community diversity is more variable in corals that respond poorly to stress.

Global change biology [Epub ahead of print].

Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts-the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eight Acropora millepora genets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10-day experiment. Specifically, four 'best performer' coral genets were analyzed at the end of the experiment because they survived high temperature, high pCO2 , bacterial exposure, or combined stressors, whereas four 'worst performer' genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hosted Cladocopium symbionts, whereas the eighth genet was dominated by both Cladocopium and Durusdinium symbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine.

RevDate: 2020-02-10

Brodin P (2020)

New approaches to the study of immune responses in humans.

Human genetics pii:10.1007/s00439-020-02129-3 [Epub ahead of print].

The human immune system consists of multiple, layered mechanisms of sensing and responding to cellular stress, infection and tissue damage to ensure defense from pathogens, maintenance of tissue homeostasis, and the integrity of the holobiont. Every single cell in the body has a role to play, but a few dozen, specialized white blood cells are particularly important in this respect. Understanding the overall state of this multifaceted system in a single individual is challenging, and we are only beginning to do this across populations of individuals, to understand the vast range of inter-individual variation, and the influences of genes and environmental factors that collectively shape the immune system in a given individual. We are also only beginning to understand the changes occurring within this system over time, and how this relates to health and disease susceptibility. Several technological breakthroughs in recent years have enabled these developments and the emergence of a new, complementary approach to studying human immune systems, namely systems immunology. In this paradigm, the focus is shifted from the understanding of individual immune system components and their mechanisms of action, towards analyses of cell-cell interactions, and mechanisms of coordination and regulation within the human immune system.

RevDate: 2020-02-10

Baedke J, Fábregas-Tejeda A, A Nieves Delgado (2020)

The holobiont concept before Margulis.

Journal of experimental zoology. Part B, Molecular and developmental evolution [Epub ahead of print].

In recent years, Lynn Margulis has been credited in various articles as the person who introduced the concept of holobiont into biology in the early 1990s. Today, the origin of evolutionary studies on holobionts is closely linked to her name. However, Margulis was not the first person to use this concept in its current context. That honor goes to the German theoretical biologist Adolf Meyer-Abich, who introduced the holobiont concept nearly 50 years before her (in 1943). Although nearly completely forgotten today, in the 1940-60s he developed a comprehensive theory of evolutionary change through "holobiosis." It had a surprisingly modern outlook, as it not only addressed tenets of today's evolutionary developmental biology (evo-devo), like the origin of form and production of variation, but also anticipated key elements of Margulis' later endosymbiotic theory. As the holobiont concept has become an important guiding concept for organizing research, labeling conferences, and publishing articles on host-microbiota collectives and hologenomes, the field should become aware of the independent origin of this concept in the context of holistic biology of the 1940s.

RevDate: 2020-02-05

Wang GH, Berdy BM, Velasquez O, et al (2020)

Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure.

Cell host & microbe pii:S1931-3128(20)30048-2 [Epub ahead of print].

The gut is a first point of contact with ingested xenobiotics, where chemicals are metabolized directly by the host or microbiota. Atrazine is a widely used pesticide, but the role of the microbiome metabolism of this xenobiotic and the impact on host responses is unclear. We exposed successive generations of the wasp Nasonia vitripennis to subtoxic levels of atrazine and observed changes in the structure and function of the gut microbiome that conveyed atrazine resistance. This microbiome-mediated resistance was maternally inherited and increased over successive generations, while also heightening the rate of host genome selection. The rare gut bacteria Serratia marcescens and Pseudomonas protegens contributed to atrazine metabolism. Both of these bacteria contain genes that are linked to atrazine degradation and were sufficient to confer resistance in experimental wasp populations. Thus, pesticide exposure causes functional, inherited changes in the microbiome that should be considered when assessing xenobiotic exposure and as potential countermeasures to toxicity.

RevDate: 2020-02-05

Mondo E, Barone M, Soverini M, et al (2020)

Gut microbiome structure and adrenocortical activity in dogs with aggressive and phobic behavioral disorders.

Heliyon, 6(1):e03311 pii:e03311.

Accompanying human beings since the Paleolithic period, dogs has been recently regarded as a reliable model for the study of the gut microbiome connections with health and disease. In order to provide some glimpses on the connections between the gut microbiome layout and host behavior, we profiled the phylogenetic composition and structure of the canine gut microbiome of dogs with aggressive (n = 11), phobic (n = 13) and normal behavior (n = 18). Hormones' determination was made through Radio Immuno-Assay (RIA), and next generation sequencing of the V3-V4 gene region of the bacterial 16S rRNA was employed to determine gut microbiome composition. Our results did not evidence any significant differences of hormonal levels between the three groups. According to our findings, aggressive behavioral disorder was found to be characterized by a peculiar gut microbiome structure, with high biodiversity and enrichment in generally subdominant bacterial genera (i.e. Catenibacterium and Megamonas). On the other hand, phobic dogs were enriched in Lactobacillus, a bacterial genus with known probiotic and psychobiotic properties. Although further studies are needed to validate our findings, our work supports the intriguing opportunity that different behavioral phenotypes in dogs may be associated with peculiar gut microbiome layouts, suggesting possible connections between the gut microbiome and the central nervous system and indicating the possible adoption of probiotic interventions aimed at restoring a balanced host-symbiont interplay for mitigating behavioral disorders.

RevDate: 2020-02-03

Kennedy SR, Tsau S, Gillespie R, et al (2020)

Are you what you eat? A highly transient and prey-influenced gut microbiome in the grey house spider Badumna longinqua.

Molecular ecology [Epub ahead of print].

Stable core microbial communities have been described in numerous animal species and are commonly associated with fitness benefits for their hosts. Recent research, however, highlights examples of species whose microbiota are transient and environmentally derived. Here, we test the effect of diet on gut microbial community assembly in the spider Badumna longinqua. Using 16S rRNA gene amplicon sequencing combined with quantitative PCR, we analyze diversity and abundance of the spider's gut microbes, and simultaneously characterize its prey communities using nuclear rRNA markers. We find a clear correlation between community similarity of the spider's insect prey and gut microbial DNA, suggesting that microbiome assembly is primarily diet-driven. This assumption is supported by a feeding experiment, in which two types of prey - crickets and fruit flies - both substantially altered microbial diversity and community similarity between spiders, but did so in different ways. After cricket consumption, numerous cricket-derived microbes appeared in the spider's gut, resulting in a rapid homogenization of microbial communities among spiders. In contrast, few prey-associated bacteria were detected after consumption of fruit flies; instead, the microbial community was remodeled by environmentally sourced microbes, or abundance shifts of rare taxa in the spider's gut. The reshaping of the microbiota by both prey taxa mimicked a stable core microbiome in the spiders for several weeks post feeding. Our results suggest that the spider's gut microbiome undergoes pronounced temporal fluctuations, that its assembly is dictated by the consumed prey, and that different prey taxa may remodel the microbiota in drastically different ways.

RevDate: 2020-02-03

Flores-Núñez VM, Fonseca-García C, Desgarennes D, et al (2019)

Functional Signatures of the Epiphytic Prokaryotic Microbiome of Agaves and Cacti.

Frontiers in microbiology, 10:3044.

Microbial symbionts account for survival, development, fitness and evolution of eukaryotic hosts. These microorganisms together with their host form a biological unit known as holobiont. Recent studies have revealed that the holobiont of agaves and cacti comprises a diverse and structured microbiome, which might be important for its adaptation to drylands. Here, we investigated the functional signatures of the prokaryotic communities of the soil and the episphere, that includes the rhizosphere and phyllosphere, associated with the cultivated Agave tequilana and the native and sympatric Agave salmiana, Opuntia robusta and Myrtillocactus geometrizans by mining shotgun metagenomic data. Consistent with previous phylogenetic profiling, we found that Proteobacteria, Actinobacteria and Firmicutes were the main represented phyla in the episphere of agaves and cacti, and that clustering of metagenomes correlated with the plant compartment. In native plants, genes related to aerobic anoxygenic phototrophy and photosynthesis were enriched in the phyllosphere and soil, while genes coding for biofilm formation and quorum sensing were enriched in both epiphytic communities. In the episphere of cultivated A. tequilana fewer genes were identified, but they belonged to similar pathways than those found in native plants. A. tequilana showed a depletion in several genes belonging to carbon metabolism, secondary metabolite biosynthesis and xenobiotic degradation suggesting that its lower microbial diversity might be linked to functional losses. However, this species also showed an enrichment in biofilm and quorum sensing in the epiphytic compartments, and evidence for nitrogen fixation in the rhizosphere. Aerobic anoxygenic phototrophic markers were represented by Rhizobiales (Methylobacterium) and Rhodospirillales (Belnapia) in the phyllosphere, while photosystem genes were widespread in Bacillales and Cyanobacteria. Nitrogen fixation and biofilm formation genes were mostly related to Proteobacteria. These analyses support the idea of niche differentiation in the rhizosphere and phyllosphere of agaves and cacti and shed light on the potential mechanisms by which epiphytic microbial communities survive and colonize plants of arid and semiarid ecosystems. This study establishes a guideline for testing the relevance of the identified functional traits on the microbial community and the plant fitness.

RevDate: 2020-02-03

Osman EO, Suggett DJ, Voolstra CR, et al (2020)

Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities.

Microbiome, 8(1):8 pii:10.1186/s40168-019-0776-5.

BACKGROUND: The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining their resilience to future climate change. Changes in coral microbiome composition (particularly for microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters. The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity to thrive in warm waters in this region, is entirely unknown.

RESULTS: We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis, Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea spanning 4° of latitude and summer mean temperature ranges from 26.6 °C to 29.3 °C. A total of 19 distinct dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae (Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer (SML)-a compartment particularly sensitive to environmental change-varied significantly between sites, however for any given coral was species-specific.

CONCLUSION: The conserved endosymbiotic community suggests high physiological plasticity to support holobiont productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the selective and endemic nature of coral microbiomes along the northern Red Sea refugia.

RevDate: 2020-01-27

Bettenfeld P, Fontaine F, Trouvelot S, et al (2020)

Woody Plant Declines. What's Wrong with the Microbiome?.

Trends in plant science pii:S1360-1385(19)30349-8 [Epub ahead of print].

Woody plant (WP) declines have multifactorial determinants as well as a biological and economic reality. The vascular system of WPs involved in the transport of carbon, nitrogen, and water from sources to sinks has a seasonal activity, which places it at a central position for mediating plant-environment interactions from nutrient cycling to community assembly and for regulating a variety of processes. To limit effects and to fight against declines, we propose: (i) to consider the WP and its associated microbiota as an holobiont and as a set of functions; (ii) to consider simultaneously, without looking at what comes first, the physiological or pathogenic disorders; and (iii) to define pragmatic strategies, including preventive and curative agronomical practices based on microbiota engineering.

RevDate: 2020-01-23

Vincent D, Rafiqi M, D Job (2019)

The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics.

Frontiers in plant science, 10:1626.

The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.

RevDate: 2020-01-22

Motone K, Takagi T, Aburaya S, et al (2020)

A Zeaxanthin-Producing Bacterium Isolated from the Algal Phycosphere Protects Coral Endosymbionts from Environmental Stress.

mBio, 11(1): pii:mBio.01019-19.

Reef-building corals form a complex consortium with photosynthetic algae in the family Symbiodiniaceae and bacteria, collectively termed the coral holobiont. These bacteria are hypothesized to be involved in the stress resistance of the coral holobiont, but their functional roles remain largely elusive. Here, we show that cultured Symbiodiniaceae algae isolated from the reef-building coral Galaxea fascicularis are associated with novel bacteria affiliated with the family Flavobacteriaceae Antibiotic treatment eliminated the bacteria from cultured Symbiodiniaceae, resulting in a decreased maximum quantum yield of PSII (variable fluorescence divided by maximum fluorescence [Fv/Fm]) and an increased production of reactive oxygen species (ROS) under thermal and light stresses. We then isolated this bacterial strain, named GF1. GF1 inoculation in the antibiotic-treated Symbiodiniaceae cultures restored the Fv/Fm and reduced the ROS production. Furthermore, we found that GF1 produces the carotenoid zeaxanthin, which possesses potent antioxidant activity. Zeaxanthin supplementation to cultured Symbiodiniaceae ameliorated the Fv/Fm and ROS production, suggesting that GF1 mitigates thermal and light stresses in cultured Symbiodiniaceae via zeaxanthin production. These findings could advance our understanding of the roles of bacteria in Symbiodiniaceae and the coral holobiont, thereby contributing to the development of novel approaches toward coral protection through the use of symbiotic bacteria and their metabolites.IMPORTANCE Occupying less than 1% of the seas, coral reefs are estimated to harbor ∼25% of all marine species. However, the destruction of coral reefs has intensified in the face of global climate changes, such as rising seawater temperatures, which induce the overproduction of reactive oxygen species harmful to corals. Although reef-building corals form complex consortia with bacteria and photosynthetic endosymbiotic algae of the family Symbiodiniaceae, the functional roles of coral-associated bacteria remain largely elusive. By manipulating the Symbiodiniaceae bacterial community, we demonstrated that a bacterium that produces an antioxidant carotenoid could mitigate thermal and light stresses in cultured Symbiodiniaceae isolated from a reef-building coral. Therefore, this study illuminates the unexplored roles of coral-associated bacteria under stressful conditions.

RevDate: 2020-01-21

Bovio E, Sfecci E, Poli A, et al (2020)

The culturable mycobiota associated with the Mediterranean sponges Aplysina cavernicola, Crambe crambe and Phorbas tenacior.

FEMS microbiology letters pii:5710934 [Epub ahead of print].

Marine fungi are part of the huge and understudied biodiversity hosted in the sea. To broaden the knowledge on fungi inhabiting the Mediterranean Sea and their role in sponge holobiont, three sponges namely Aplysina cavernicola, Crambe crambe and Phorbas tenacior were collected in Villefranche sur Mer, (France) at about 25 m depth. The fungal communities associated with the sponges were isolated using different techniques to increase the numbers of fungi isolated. All fungi were identified to species level giving rise to 19, 13 and 3 species for P. tenacior, A. cavernicola and C. crambe, respectively. Of note, 35.7% and 50.0% of the species detected were either reported for the first time in the marine environment or in association with sponges. The mini-satellite analysis confirmed the uniqueness of the mycobiota of each sponge, leading to think that the sponge, with its metabolome, may shape the microbial community.

RevDate: 2020-01-16

Meenatchi R, Thinesh T, Brindangnanam P, et al (2019)

Revealing the impact of global mass bleaching on coral microbiome through 16S rRNA gene-based metagenomic analysis.

Microbiological research, 233:126408 pii:S0944-5013(19)31312-6 [Epub ahead of print].

Coral bleaching, a phenomenon by which the expulsion of corals' alveolate endosymbiont (zooxanthellae) occurs when experiencing thermal stress is the major cause for devastation of corals. However, apart from this obligate symbiont of Scleractinian corals, there are different kinds of microbes that exist as stable, transient or sporadic members of the holobiont which reside within various microhabitats in the coral structures. Thus, this study aims to profile the coral bacterial community composition among different coral genera (thermally-sensitive (Acropora digetifera and A. noblis) and thermally resistant (Favites abdita) coral genera analyzed by field monitoring surveys) and also in a particular coral genus (thermally sensitive coral-A. digetifera) at two different sampling times (March 2016 and January 2017). A total of about 608695 paired end reads were obtained through Illumina MiSeq Sequencing platform. The alpha diversity indices (ACE, Chao1 and Shannon) were found to be higher in A. nobilis, followed by A. digetifera and Favites abdita, and the corresponding Simpson values were also found to follow the same trend, indicating that the samples are both rich in species diversity and species evenness. Proteobacteria was found to be the most dominant phylum and Gammaproteobacteria was the predominant class present in all the coral genera studied as also during different sampling time periods. As Vibrionaceae was previously reported to increase its abundance during bleaching stress conditions, bacterial profiling among different coral genera showed the presence of 86 % Vibrionaceae in A. digetifera colonies, and it was 93 % in A. digetifera samples collected during March 2016 whereas, it was found to decrease significantly (7 %) in same tagged colonies collected during January 2017. Thus, profiling of microbiome is of prime importance while studying the holobiont organism like the corals. Stress levels experienced by Palk Bay are even depicted in this microbiome study showing high alpha diversity indices that should alarm reef managers to pay attention to this precious stress tolerant reef community.

RevDate: 2020-01-16

Matthews JL, Raina JB, Kahlke T, et al (2020)

Symbiodiniaceae-bacteria interactions: rethinking metabolite exchange in reef-building corals as multi-partner metabolic networks.

Environmental microbiology [Epub ahead of print].

The intimate relationship between scleractinian corals and their associated microorganisms is fundamental to healthy coral reef ecosystems. Coral-associated microbes (Symbiodiniaceae and other protists, bacteria, archaea, fungi, and viruses) support coral health and resilience through metabolite transfer, inter-partner signalling, and genetic exchange. However, much of our understanding of the coral holobiont relationship has come from studies that have investigated either coral-Symbiodiniaceae or coral-bacteria interactions in isolation, while relatively little research has focused on other ecological and metabolic interactions potentially occurring within the coral multi-partner symbiotic network. Recent evidences of intimate coupling between phytoplankton and bacteria have demonstrated that obligate resource exchange between partners fundamentally drives their ecological success. Here, we posit that similar associations with bacterial consortia regulate Symbiodiniaceae productivity and are in turn central to the health of corals. Indeed, we propose that this bacteria-Symbiodiniaceae-coral relationship underpins the coral holobiont's nutrition, stress tolerance, and potentially influences the future survival of coral reef ecosystems under changing environmental conditions. Resolving Symbiodiniaceae-bacteria associations is therefore a logical next step towards understanding the complex multi-partner interactions occurring in the coral holobiont. This article is protected by copyright. All rights reserved.

RevDate: 2020-01-14

Gibbin E, Banc-Prandi G, Fine M, et al (2020)

A method to disentangle and quantify host anabolic turnover in photosymbiotic holobionts with subcellular resolution.

Communications biology, 3(1):14.

A wide range of organisms host photosynthesizing symbionts. In these animals the metabolic exchange between host and symbionts has prevented in situ host anabolic turnover to be studied without the confounding effect of translocated photosynthates. Using the symbiotic coral Stylophora pistillata as a model organism and [1-13C]-pyruvate and [2,3-13C]-pyruvate in different incubation conditions (light, light + DCMU, and darkness), we employed NanoSIMS isotopic imaging to quantify host anabolism, with and without translocated metabolites from their photosynthesizing dinoflagellate symbionts. Under our experimental conditions, host de novo lipid synthesis accounted for ~40% of the total holobiont lipid reserve, and dinoflagellate recycling of metabolic 13CO2 enhanced host tissue 13C-enrichment by 13-22% in the epidermis, 40-58% in the gastrodermis, and 135-169% in host lipid bodies. Furthermore, we show that host anabolic turnover in different tissue structures differs, in a manner consistent with the localisation, function and cellular composition of these structures.

RevDate: 2020-01-10

Pontarollo G, Kiouptsi K, C Reinhardt (2020)

A holobiont view on thrombosis: unravelling the microbiota's influence on arterial thrombus growth.

Microbial cell (Graz, Austria), 7(1):28-31 pii:MIC0179E148.

The commensal microbiota has co-evolved with its host, colonizing all body surfaces. Therefore, this microbial ecosystem is intertwined with host physiology at multiple levels. While it is evident that microbes that reach the blood stream can trigger thrombus formation, it remains poorly explored if the wealth of microbes that colonize the body surfaces of the mammalian host can be regarded as a modifier of cardiovascular disease (CVD) development. To experimentally address the microbiota's role in the development of atherosclerotic lesions and arterial thrombosis, we generated a germ-free (GF) low-density lipoprotein receptor-deficient (Ldlr-/-) atherosclerosis mouse model (Kiouptsi et al., mBio, 2019) and explored the role of nutritional composition on arterial thrombogenesis.

RevDate: 2020-01-08

Chialva M, Ghignone S, Novero M, et al (2019)

Tomato RNA-seq Data Mining Reveals the Taxonomic and Functional Diversity of Root-Associated Microbiota.

Microorganisms, 8(1): pii:microorganisms8010038.

Next-generation approaches have enabled researchers to deeply study the plant microbiota and to reveal how microbiota associated with plant roots has key effects on plant nutrition, disease resistance, and plant development. Although early "omics" experiments focused mainly on the species composition of microbial communities, new "meta-omics" approaches such as meta-transcriptomics provide hints about the functions of the microbes when interacting with their plant host. Here, we used an RNA-seq dataset previously generated for tomato (Solanumlycopersicum) plants growing on different native soils to test the hypothesis that host-targeted transcriptomics can detect the taxonomic and functional diversity of root microbiota. Even though the sequencing throughput for the microbial populations was limited, we were able to reconstruct the microbial communities and obtain an overview of their functional diversity. Comparisons of the host transcriptome and the meta-transcriptome suggested that the composition and the metabolic activities of the microbiota shape plant responses at the molecular level. Despite the limitations, mining available next-generation sequencing datasets can provide unexpected results and potential benefits for microbiota research.

RevDate: 2019-12-26

Pausan MR, Csorba C, Singer G, et al (2019)

Exploring the Archaeome: Detection of Archaeal Signatures in the Human Body.

Frontiers in microbiology, 10:2796.

Due to their fundamentally different biology, archaea are consistently overlooked in conventional microbiome surveys. Using amplicon sequencing, we evaluated methodological set-ups to detect archaea in samples from five different body sites: respiratory tract (nasal cavity), digestive tract (mouth, appendix, and stool) and skin. With optimized protocols, the detection of archaeal ribosomal sequence variants (RSVs) was increased from one (found in currently used, so-called "universal" approach) to 81 RSVs in a representative sample set. The results from this extensive primer-evaluation led to the identification of the primer pair combination 344f-1041R/519F-806R which performed superior for the analysis of the archaeome of gastrointestinal tract, oral cavity and skin. The proposed protocol might not only prove useful for analyzing the human archaeome in more detail but could also be used for other holobiont samples.

RevDate: 2020-01-08

Tilstra A, El-Khaled YC, Roth F, et al (2019)

Denitrification Aligns with N2 Fixation in Red Sea Corals.

Scientific reports, 9(1):19460.

Denitrification may potentially alleviate excess nitrogen (N) availability in coral holobionts to maintain a favourable N to phosphorous ratio in the coral tissue. However, little is known about the abundance and activity of denitrifiers in the coral holobiont. The present study used the nirS marker gene as a proxy for denitrification potential along with measurements of denitrification rates in a comparative coral taxonomic framework from the Red Sea: Acropora hemprichii, Millepora dichotoma, and Pleuractis granulosa. Relative nirS gene copy numbers associated with the tissues of these common corals were assessed and compared with denitrification rates on the holobiont level. In addition, dinitrogen (N2) fixation rates, Symbiodiniaceae cell density, and oxygen evolution were assessed to provide an environmental context for denitrification. We found that relative abundances of the nirS gene were 16- and 17-fold higher in A. hemprichii compared to M. dichotoma and P. granulosa, respectively. In concordance, highest denitrification rates were measured in A. hemprichii, followed by M. dichotoma and P. granulosa. Denitrification rates were positively correlated with N2 fixation rates and Symbiodiniaceae cell densities. Our results suggest that denitrification may counterbalance the N input from N2 fixation in the coral holobiont, and we hypothesize that these processes may be limited by photosynthates released by the Symbiodiniaceae.

RevDate: 2019-12-26

Singh BK, Liu H, P Trivedi (2019)

Eco-holobiont: A new concept to identify drivers of host-associated microorganisms.

Environmental microbiology [Epub ahead of print].

Host microbiomes play a critical role in host fitness and health. Whilst the current 'holobiont' concept framework has greatly expanded eco-evolutionary and functional understanding of host-microbiome interactions, the important role of biotic interactions and microbial loop (compositional linkage between soil, plant and animal) in shaping host-microbiome are poorly understood. We proposed an 'eco-holobiont' concept to fill the knowledge gap.

RevDate: 2020-01-08

Hinzke T, Kleiner M, Breusing C, et al (2019)

Host-Microbe Interactions in the Chemosynthetic Riftia pachyptila Symbiosis.

mBio, 10(6):.

The deep-sea tubeworm Riftia pachyptila lacks a digestive system but completely relies on bacterial endosymbionts for nutrition. Although the symbiont has been studied in detail on the molecular level, such analyses were unavailable for the animal host, because sequence information was lacking. To identify host-symbiont interaction mechanisms, we therefore sequenced the Riftia transcriptome, which served as a basis for comparative metaproteomic analyses of symbiont-containing versus symbiont-free tissues, both under energy-rich and energy-limited conditions. Our results suggest that metabolic interactions include nutrient allocation from symbiont to host by symbiont digestion and substrate transfer to the symbiont by abundant host proteins. We furthermore propose that Riftia maintains its symbiont by protecting the bacteria from oxidative damage while also exerting symbiont population control. Eukaryote-like symbiont proteins might facilitate intracellular symbiont persistence. Energy limitation apparently leads to reduced symbiont biomass and increased symbiont digestion. Our study provides unprecedented insights into host-microbe interactions that shape this highly efficient symbiosis.IMPORTANCE All animals are associated with microorganisms; hence, host-microbe interactions are of fundamental importance for life on earth. However, we know little about the molecular basis of these interactions. Therefore, we studied the deep-sea Riftia pachyptila symbiosis, a model association in which the tubeworm host is associated with only one phylotype of endosymbiotic bacteria and completely depends on this sulfur-oxidizing symbiont for nutrition. Using a metaproteomics approach, we identified both metabolic interaction processes, such as substrate transfer between the two partners, and interactions that serve to maintain the symbiotic balance, e.g., host efforts to control the symbiont population or symbiont strategies to modulate these host efforts. We suggest that these interactions are essential principles of mutualistic animal-microbe associations.

RevDate: 2019-12-19

Hussien E, Juhmani AS, AlMasri R, et al (2019)

Metagenomic analysis of microbial community associated with coral mucus from the Gulf of Aqaba.

Heliyon, 5(11):e02876.

Coral-associated microbial communities contribute to a wide variety of useful roles regarding the their host, and therefore, the arrangement of the general microbiome network can emphatically impact coral wellbeing and survival. Various pollution sources can interfere and disrupt the microbial relationship with corals. Here, we adopted the bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP®) technique to investigate the shift of microbial communities associated with the mucus of the coral Stylophora pistillata collected from five sites (Marine Science Station, Industrial Complex, Oil Terminal, Public Beach, and Phosphate Port) along the Gulf of Aqaba (Red Sea). Our results revealed a high diversity in bacterial populations associated with coral mucus. Proteobacteria were observed to be the dominating phylum among all sampling sites. The identified bacterial taxa belong to the pathogenic bacteria from the genus Vibrio was presented in varying abundances at all sampling sites. Diversity and similarity analysis of microbial communists based on rarefaction curve and UniFrac cluster respectively demonstrated that there are variances in microbial groups associated with coral mucus along sites. The pollution sources among different locations along the Gulf of Aqaba seem to affect the coral-associated holobiont leading to changes in bacterial populations due to increasing human activities.

RevDate: 2019-12-22

Edwards JM, Roy S, Tomcho JC, et al (2019)

Microbiota are critical for vascular physiology: Germ-free status weakens contractility and induces sex-specific vascular remodeling in mice.

Vascular pharmacology pii:S1537-1891(19)30279-4 [Epub ahead of print].

Commensal microbiota within a holobiont contribute to the overall health of the host via mutualistic symbiosis. Disturbances in such symbiosis is prominently correlated with a variety of diseases affecting the modern society of humans including cardiovascular diseases, which are the number one contributors to human mortality. Given that a hallmark of all cardiovascular diseases is changes in vascular function, we hypothesized that depleting microbiota from a holobiont would induce vascular dysfunction. To test this hypothesis, young mice of both sexes raised in germ-free conditions were examined vascular contractility and structure. Here we observed that male and female germ-free mice presented a decrease in contraction of resistance arteries. These changes were more pronounced in germ-free males than in germ-free females mice. Furthermore, there was a distinct change in vascular remodeling between males and females germ-free mice. Resistance arteries from male germ-free mice demonstrated increased vascular stiffness, as shown by the leftward shift in the stress-strain curve and inward hypotrophic remodeling, a characteristic of chronic reduction in blood flow. On the other hand, resistance arteries from germ-free female mice were similar in the stress-strain curves to that of conventionally raised mice, but were distinctly different and showed outward hypertrophic remodeling, a characteristic seen in aging. Interestingly, we observed that reactive oxygen species (ROS) generation from bone marrow derived neutrophils is blunted in female germ-free mice, but it is exacerbated in male germ-free mice. In conclusion, these observations indicate that commensal microbiota of a holobiont are central to maintain proper vascular function and structure homeostasis, especially in males.

RevDate: 2019-12-16

Martin BC, Alarcon MS, Gleeson D, et al (2019)

Root microbiomes as indicators of seagrass health.

FEMS microbiology ecology pii:5679015 [Epub ahead of print].

The development of early warning indicators that identify ecosystem stress is a priority for improving ecosystem management. As microbial communities respond rapidly to environmental disturbance, monitoring their composition could prove one such early indicator of environmental stress. We combined 16S rRNA gene sequencing of the seagrass root microbiome of Halophila ovalis with seagrass health metrics (biomass, productivity and Fsulphide) to develop microbial indicators for seagrass condition across the Swan-Canning Estuary and the Leschenault Estuary (south-west Western Australia); the former which had experienced an unseasonal rainfall event leading to declines in seagrass health. Microbial indicators detected sites of potential stress that other seagrass health metrics failed to detect. Genera that were more abundant in 'healthy' seagrasses included putative methylotrophic bacteria (e.g. Methylotenera and Methylophaga), iron cycling bacteria (e.g. Deferrisoma and Geothermobacter) and N2 fixing bacteria (e.g. Rhizobium). Conversely, genera that were more abundant in 'stressed' seagrasses were dominated by putative sulphur-cycling bacteria, both sulphide-oxidising (e.g. Candidatus Thiodiazotropha and Candidatus Electrothrix) and sulphate-reducing (e.g. SEEP-SRB1, Desulfomonile and Desulfonema). The sensitivity of the microbial indicators developed here highlights their potential to be further developed for use in adaptive seagrass management, and emphasises their capacity to be effective early warning indicators of stress.

RevDate: 2020-01-14

Karimi E, Geslain E, KleinJan H, et al (2020)

Genome Sequences of 72 Bacterial Strains Isolated from Ectocarpus subulatus: A Resource for Algal Microbiology.

Genome biology and evolution, 12(1):3647-3655.

Brown algae are important primary producers and ecosystem engineers in the ocean, and Ectocarpus has been established as a laboratory model for this lineage. Like most multicellular organisms, Ectocarpus is associated with a community of microorganisms, a partnership frequently referred to as holobiont due to the tight interconnections between the components. Although genomic resources for the algal host are well established, its associated microbiome is poorly characterized from a genomic point of view, limiting the possibilities of using these types of data to study host-microbe interactions. To address this gap in knowledge, we present the annotated draft genome sequences of seventy-two cultivable Ectocarpus-associated bacteria. A screening of gene clusters related to the production of secondary metabolites revealed terpene, bacteriocin, NRPS, PKS-t3, siderophore, PKS-t1, and homoserine lactone clusters to be abundant among the sequenced genomes. These compounds may be used by the bacteria to communicate with the host and other microbes. Moreover, detoxification and provision of vitamin B pathways have been observed in most sequenced genomes, highlighting potential contributions of the bacterial metabolism toward host fitness and survival. The genomes sequenced in this study form a valuable resource for comparative genomic analyses and evolutionary surveys of alga-associated bacteria. They help establish Ectocarpus as a model for brown algal holobionts and will enable the research community to produce testable hypotheses about the molecular interactions within this complex system.

RevDate: 2020-01-08

Ricci F, Rossetto Marcelino V, Blackall LL, et al (2019)

Beneath the surface: community assembly and functions of the coral skeleton microbiome.

Microbiome, 7(1):159.

Coral microbial ecology is a burgeoning field, driven by the urgency of understanding coral health and slowing reef loss due to climate change. Coral resilience depends on its microbiota, and both the tissue and the underlying skeleton are home to a rich biodiversity of eukaryotic, bacterial and archaeal species that form an integral part of the coral holobiont. New techniques now enable detailed studies of the endolithic habitat, and our knowledge of the skeletal microbial community and its eco-physiology is increasing rapidly, with multiple lines of evidence for the importance of the skeletal microbiota in coral health and functioning. Here, we review the roles these organisms play in the holobiont, including nutritional exchanges with the coral host and decalcification of the host skeleton. Microbial metabolism causes steep physico-chemical gradients in the skeleton, creating micro-niches that, along with dispersal limitation and priority effects, define the fine-scale microbial community assembly. Coral bleaching causes drastic changes in the skeletal microbiome, which can mitigate bleaching effects and promote coral survival during stress periods, but may also have detrimental effects. Finally, we discuss the idea that the skeleton may function as a microbial reservoir that can promote recolonization of the tissue microbiome following dysbiosis and help the coral holobiont return to homeostasis.

RevDate: 2019-12-18

Maréchal E (2019)

Marine and Freshwater Plants: Challenges and Expectations.

Frontiers in plant science, 10:1545.

The past decades have seen an increasing interest on the biology of photosynthetic species living in aquatic environments, including diverse organisms collectively called "algae." If we consider the relative size of scientific communities, marine and freshwater plants have been overall less studied than terrestrial ones. The efforts put on land plants were motivated by agriculture and forestry, applications for human industry, easy access to terrestrial ecosystems, and convenient cultivation methods in fields or growth chambers. By contrast, the fragmentary knowledge on the biology of algae, the hope to find in this biodiversity inspiration for biotechnologies, and the emergency created by the environmental crisis affecting oceans, lakes, rivers, or melting glaciers, have stressed the importance to make up for lost time. Needed efforts embrace a broad spectrum of disciplines, from environmental and evolutionary sciences, to molecular and cell biology. In this multiscale view, functional genomics and ecophysiology occupy a pivotal position linking molecular and cellular analyses and ecosystem-level studies. Without pretending to be exhaustive and with few selected references, six grand challenges, requiring multidisciplinary approaches, are introduced below.

RevDate: 2020-01-08

Luter HM, Whalan S, Andreakis N, et al (2019)

The Effects of Crude Oil and Dispersant on the Larval Sponge Holobiont.

mSystems, 4(6):.

Accidental oil spills from shipping and during extraction can threaten marine biota, particularly coral reef species which are already under pressure from anthropogenic disturbances. Marine sponges are an important structural and functional component of coral reef ecosystems; however, despite their ecological importance, little is known about how sponges and their microbial symbionts respond to petroleum products. Here, we use a systems biology-based approach to assess the effects of water-accommodated fractions (WAF) of crude oil, chemically enhanced water-accommodated fractions of crude oil (CWAF), and dispersant (Corexit EC9500A) on the survival, metamorphosis, gene expression, and microbial symbiosis of the abundant reef sponge Rhopaloeides odorabile in larval laboratory-based assays. Larval survival was unaffected by the 100% WAF treatment (107 μg liter-1 polycyclic aromatic hydrocarbon [PAH]), whereas significant decreases in metamorphosis were observed at 13% WAF (13.9 μg liter-1 PAH). The CWAF and dispersant treatments were more toxic, with decreases in metamorphosis identified at 0.8% (0.58 μg liter-1 PAH) and 1.6% (38 mg liter-1 Corexit EC9500A), respectively. In addition to the negative impact on larval settlement, significant changes in host gene expression and disruptions to the microbiome were evident, with microbial shifts detected at the lowest treatment level (1.6% WAF; 1.7 μg liter-1 PAH), including a significant reduction in the relative abundance of a previously described thaumarchaeal symbiont. The responsiveness of the R. odorabile microbial community to the lowest level of hydrocarbon treatment highlights the utility of the sponge microbiome as a sensitive marker for exposure to crude oils and dispersants.IMPORTANCE Larvae of the sponge R. odorabile survived exposure to high concentrations of petroleum hydrocarbons; however, their ability to settle and metamorphose was adversely affected at environmentally relevant concentrations, and these effects were paralleled by marked changes in sponge gene expression and preceded by disruption of the symbiotic microbiome. Given the ecological importance of sponges, uncontrolled hydrocarbon releases from shipping accidents or production could affect sponge recruitment, which would have concomitant consequences for reef ecosystem function.

RevDate: 2019-12-05

Walker DM, Hill AJ, Albecker MA, et al (2019)

Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity.

Microbial ecology pii:10.1007/s00248-019-01456-x [Epub ahead of print].

A multicellular host and its microbial communities are recognized as a metaorganism-a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes ('clades'), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.

RevDate: 2020-01-08

Alex A, A Antunes (2019)

Comparative Genomics Reveals Metabolic Specificity of Endozoicomonas Isolated from a Marine Sponge and the Genomic Repertoire for Host-Bacteria Symbioses.

Microorganisms, 7(12): pii:microorganisms7120635.

The most recently described bacterial members of the genus Endozoicomonas have been found in association with a wide variety of marine invertebrates. Despite their ubiquity in the host holobiont, limited information is available on the molecular genomic signatures of the symbiotic association of Endozoicomonas with marine sponges. Here, we generated a draft genome of Endozoicomonas sp. OPT23 isolated from the intertidal marine sponge Ophlitaspongia papilla and performed comprehensive comparative genomics analyses. Genome-specific analysis and metabolic pathway comparison of the members of the genus Endozoicomonas revealed the presence of gene clusters encoding for unique metabolic features, such as the utilization of carbon sources through lactate, L-rhamnose metabolism, and a phenylacetic acid degradation pathway in Endozoicomonas sp. OPT23. Moreover, the genome harbors genes encoding for eukaryotic-like proteins, such as ankyrin repeats, tetratricopeptide repeats, and Sel1 repeats, which likely facilitate sponge-bacterium attachment. The genome also encodes major secretion systems and homologs of effector molecules that seem to enable the sponge-associated bacterium to interact with the sponge and deliver the virulence factors for successful colonization. In conclusion, the genome analysis of Endozoicomonas sp. OPT23 revealed the presence of adaptive genomic signatures that might favor their symbiotic lifestyle within the sponge host.

RevDate: 2020-01-15

Achlatis M, Pernice M, Green K, et al (2019)

Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter.

Proceedings. Biological sciences, 286(1916):20192153.

Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matter in the ocean and is recycled primarily by bacterial mediation. Little is known, however, about the mechanism that enables sponges to incorporate large quantities of DOM in their nutrition, unlike most other invertebrates. Here, we examine the cellular capacity for direct processing of DOM, and the fate of the processed matter, inside a dinoflagellate-hosting bioeroding sponge that is prominent on Indo-Pacific coral reefs. Integrating transmission electron microscopy with nanoscale secondary ion mass spectrometry, we track 15N- and 13C-enriched DOM over time at the individual cell level of an intact sponge holobiont. We show initial high enrichment in the filter-feeding cells of the sponge, providing visual evidence of their capacity to process DOM through pinocytosis without mediation of resident bacteria. Subsequent enrichment of the endosymbiotic dinoflagellates also suggests sharing of host nitrogenous wastes. Our results shed light on the physiological mechanism behind the ecologically important ability of sponges to cycle DOM via the recently described sponge loop.

RevDate: 2019-12-02

McIlroy SE, Cunning R, Baker AC, et al (2019)

Competition and succession among coral endosymbionts.

Ecology and evolution, 9(22):12767-12778 pii:ECE35749.

Host species often support a genetically diverse guild of symbionts, the identity and performance of which can determine holobiont fitness under particular environmental conditions. These symbiont communities are structured by a complex set of potential interactions, both positive and negative, between the host and symbionts and among symbionts. In reef-building corals, stable associations with specific symbiont species are common, and we hypothesize that this is partly due to ecological mechanisms, such as succession and competition, which drive patterns of symbiont winnowing in the initial colonization of new generations of coral recruits. We tested this hypothesis using the experimental framework of the de Wit replacement series and found that competitive interactions occurred among symbionts which were characterized by unique ecological strategies. Aposymbiotic octocoral recruits within high- and low-light environments were inoculated with one of three Symbiodiniaceae species as monocultures or with cross-paired mixtures, and we tracked symbiont uptake using quantitative genetic assays. Priority effects, in which early colonizers excluded competitive dominants, were evidenced under low light, but these early opportunistic species were later succeeded by competitive dominants. Under high light, a more consistent competitive hierarchy was established in which competitive dominants outgrew and limited the abundance of others. These findings provide insight into mechanisms of microbial community organization and symbiosis breakdown and recovery. Furthermore, transitions in competitive outcomes across spatial and temporal environmental variation may improve lifetime host fitness.

RevDate: 2020-01-08

Kamm K, Osigus HJ, Stadler PF, et al (2019)

Genome analyses of a placozoan rickettsial endosymbiont show a combination of mutualistic and parasitic traits.

Scientific reports, 9(1):17561.

Symbiotic relationships between eukaryotic hosts and bacteria range from parasitism to mutualism and may deeply influence both partners' fitness. The presence of intracellular bacteria in the metazoan phylum Placozoa has been reported several times, but without any knowledge about the nature of this relationship and possible implications for the placozoan holobiont. This information may be of crucial significance since little is known about placozoan ecology and how different species adapt to different environmental conditions, despite being almost invariable at the morphological level. We here report on the novel genome of the rickettsial endosymbiont of Trichoplax sp. H2 (strain "Panama"). The combination of eliminated and retained metabolic pathways of the bacterium indicates a potential for a mutualistic as well as for a parasitic relationship, whose outcome could depend on the environmental context. In particular we show that the endosymbiont is dependent on the host for growth and reproduction and that the latter could benefit from a supply with essential amino acids and important cofactors. These findings call for further studies to clarify the actual benefit for the placozoan host and to investigate a possible role of the endosymbiont for ecological separation between placozoan species.

RevDate: 2020-01-02

Zhang Y, Kumarasamy S, Mell B, et al (2020)

Vertical selection for nuclear and mitochondrial genomes shapes gut microbiota and modifies risks for complex diseases.

Physiological genomics, 52(1):1-14.

Here we postulate that the heritability of complex disease traits previously ascribed solely to the inheritance of the nuclear and mitochondrial genomes is broadened to encompass a third component of the holobiome, the microbiome. To test this, we expanded on the selectively bred low capacity runner/high capacity runner (LCR/HCR) rat exercise model system into four distinct rat holobiont model frameworks including matched and mismatched host nuclear and mitochondrial genomes. Vertical selection of varying nuclear and mitochondrial genomes resulted in differential acquisition of the microbiome within each of these holobiont models. Polygenic disease risk of these novel models were assessed and subsequently correlated with patterns of acquisition and contributions of their microbiomes in controlled laboratory settings. Nuclear-mitochondrial-microbiotal interactions were not for exercise as a reporter of health, but significantly noted for increased adiposity, increased blood pressure, compromised cardiac function, and loss of long-term memory as reporters of disease susceptibility. These findings provide evidence for coselection of the microbiome with nuclear and mitochondrial genomes as an important feature impacting the heritability of complex diseases.

RevDate: 2019-11-29

Cooke I, Mead O, Whalen C, et al (2019)

Molecular techniques and their limitations shape our view of the holobiont.

Zoology (Jena, Germany), 137:125695.

It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont.

RevDate: 2020-01-08

Sweet M, Burian A, Fifer J, et al (2019)

Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease.

Microbiome, 7(1):139.

BACKGROUND: Coral reefs face unprecedented declines in diversity and cover, a development largely attributed to climate change-induced bleaching and subsequent disease outbreaks. Coral-associated microbiomes may strongly influence the fitness of their hosts and alter heat tolerance and disease susceptibility of coral colonies. Here, we describe a new coral disease found in Micronesia and present a detailed assessment of infection-driven changes in the coral microbiome.

RESULTS: Combining field monitoring and histological, microscopic and next-generation barcoding assessments, we demonstrate that the outbreak of the disease, named 'grey-patch disease', is associated with the establishment of cyanobacterial biofilm overgrowing coral tissue. The disease is characterised by slow progression rates, with coral tissue sometimes growing back over the GPD biofilm. Network analysis of the corals' microbiome highlighted the clustering of specific microbes which appeared to benefit from the onset of disease, resulting in the formation of 'infection clusters' in the microbiomes of apparently healthy corals.

CONCLUSIONS: Our results appear to be in contrast to the recently proposed Anna-Karenina principle, which states that disturbances (such as disease) trigger chaotic dynamics in microbial communities and increase β-diversity. Here, we show significantly higher community similarity (compositional homogeneity) in the pathobiome of diseased corals, compared to the microbiome associated with apparently healthy tissue. A possible explanation for this pattern is strong competition between the pathogenic community and those associated with the 'healthy' coral holobiont, homogenising the composition of the pathobiome. Further, one of our key findings is that multiple agents appear to be involved in degrading the corals' defences causing the onset of this disease. This supports recent findings indicating a need for a shift from the one-pathogen-one-disease paradigm to exploring the importance of multiple pathogenic players in any given disease.

RevDate: 2020-01-08

Li Y, Tassia MG, Waits DS, et al (2019)

Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi.

BMC biology, 17(1):91.

BACKGROUND: Symbiotic relationships between microbes and their hosts are widespread and diverse, often providing protection or nutrients, and may be either obligate or facultative. However, the genetic mechanisms allowing organisms to maintain host-symbiont associations at the molecular level are still mostly unknown, and in the case of bacterial-animal associations, most genetic studies have focused on adaptations and mechanisms of the bacterial partner. The gutless tubeworms (Siboglinidae, Annelida) are obligate hosts of chemoautotrophic endosymbionts (except for Osedax which houses heterotrophic Oceanospirillales), which rely on the sulfide-oxidizing symbionts for nutrition and growth. Whereas several siboglinid endosymbiont genomes have been characterized, genomes of hosts and their adaptations to this symbiosis remain unexplored.

RESULTS: Here, we present and characterize adaptations of the cold seep-dwelling tubeworm Lamellibrachia luymesi, one of the longest-lived solitary invertebrates. We sequenced the worm's ~ 688-Mb haploid genome with an overall completeness of ~ 95% and discovered that L. luymesi lacks many genes essential in amino acid biosynthesis, obligating them to products provided by symbionts. Interestingly, the host is known to carry hydrogen sulfide to thiotrophic endosymbionts using hemoglobin. We also found an expansion of hemoglobin B1 genes, many of which possess a free cysteine residue which is hypothesized to function in sulfide binding. Contrary to previous analyses, the sulfide binding mediated by zinc ions is not conserved across tubeworms. Thus, the sulfide-binding mechanisms in sibgolinids need to be further explored, and B1 globins might play a more important role than previously thought. Our comparative analyses also suggest the Toll-like receptor pathway may be essential for tolerance/sensitivity to symbionts and pathogens. Several genes related to the worm's unique life history which are known to play important roles in apoptosis, cell proliferation, and aging were also identified. Last, molecular clock analyses based on phylogenomic data suggest modern siboglinid diversity originated in 267 mya (± 70 my) support previous hypotheses indicating a Late Mesozoic or Cenozoic origins of approximately 50-126 mya for vestimentiferans.

CONCLUSIONS: Here, we elucidate several specific adaptations along various molecular pathways that link phenome to genome to improve understanding of holobiont evolution. Our findings of adaptation in genomic mechanisms to reducing environments likely extend to other chemosynthetic symbiotic systems.

RevDate: 2020-01-16

Mitter B, Brader G, Pfaffenbichler N, et al (2019)

Next generation microbiome applications for crop production - limitations and the need of knowledge-based solutions.

Current opinion in microbiology, 49:59-65.

Plants are associated with highly diverse microbiota, which are crucial partners for their host carrying out important functions. Essentially, they are involved in nutrient supply, pathogen antagonism and protection of their host against different types of stress. The potential of microbial inoculants has been demonstrated in numerous studies, primarily under greenhouse conditions. However, field application, for example, as biofertilizer or biocontrol agent, is still a challenge as the applied microorganisms often are not provided in sufficiently high cell numbers, are rapidly outcompeted and cannot establish or require specific conditions to mediate the desired effects. We still have limited understanding on the fate of inoculants and on holobiont interactions, that is, interactions between plants, micro-biota and macro-biota and the environment, under field conditions. A better understanding will provide the basis for establishing models predicting the behaviour of strains or consortia and will help identifying microbiome members being able to establish and to mediate desired effects under certain conditions. Such models may also inform about the best management practices modulating microbiota in a desired way. Also, smart delivery approaches of microbial inoculants as well as the selection or breeding of plant genotypes better able to interact with microbiota may represent promising avenues.

RevDate: 2020-01-08

Sauvage T, Schmidt WE, Yoon HS, et al (2019)

Promising prospects of nanopore sequencing for algal hologenomics and structural variation discovery.

BMC genomics, 20(1):850.

BACKGROUND: The MinION Access Program (MAP, 2014-2016) allowed selected users to test the prospects of long nanopore reads for diverse organisms and applications through the rapid development of improving chemistries. In 2014, faced with a fragmented Illumina assembly for the chloroplast genome of the green algal holobiont Caulerpa ashmeadii, we applied to the MAP to test the prospects of nanopore reads to investigate such intricacies, as well as further explore the hologenome of this species with native and hybrid approaches.

RESULTS: The chloroplast genome could only be resolved as a circular molecule in nanopore assemblies, which also revealed structural variants (i.e. chloroplast polymorphism or heteroplasmy). Signal and Illumina polishing of nanopore-assembled organelle genomes (chloroplast and mitochondrion) reflected the importance of coverage on final quality and current limitations. In hybrid assembly, our modest nanopore data sets showed encouraging results to improve assembly length, contiguity, repeat content, and binning of the larger nuclear and bacterial genomes. Profiling of the holobiont with nanopore or Illumina data unveiled a dominant Rhodospirillaceae (Alphaproteobacteria) species among six putative endosymbionts. While very fragmented, the cumulative hybrid assembly length of C. ashmeadii's nuclear genome reached 24.4 Mbp, including 2.1 Mbp in repeat, ranging closely with GenomeScope's estimate (> 26.3 Mbp, including 4.8 Mbp in repeat).

CONCLUSION: Our findings relying on a very modest number of nanopore R9 reads as compared to current output with newer chemistries demonstrate the promising prospects of the technology for the assembly and profiling of an algal hologenome and resolution of structural variation. The discovery of polymorphic 'chlorotypes' in C. ashmeadii, most likely mediated by homing endonucleases and/or retrohoming by reverse transcriptases, represents the first report of chloroplast heteroplasmy in the siphonous green algae. Improving contiguity of C. ashmeadii's nuclear and bacterial genomes will require deeper nanopore sequencing to greatly increase the coverage of these larger genomic compartments.

RevDate: 2019-12-18

Collens A, Kelley E, LA Katz (2019)

The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis.

Journal of experimental zoology. Part B, Molecular and developmental evolution, 332(8):349-355.

John Tyler Bonner's call to re-evaluate evolutionary theory in light of major transitions in life on Earth (e.g., from the first origins of microbial life to the evolution of sex, and the origins of multicellularity) resonate with recent discoveries on epigenetics and the concept of the hologenome. Current studies of genome evolution often mistakenly focus only on the inheritance of DNA between parent and offspring. These are in line with the widely accepted Neo-Darwinian framework that pairs Mendelian genetics with an emphasis on natural selection as explanations for the evolution of biodiversity on Earth. Increasing evidence for widespread symbioses complicates this narrative, as is seen in Scott Gilbert's discussion of the concept of the holobiont in this series: Organisms across the tree of life coexist with substantial influence on one another through endosymbiosis, symbioses, and host-associated microbiomes. The holobiont theory, coupled with observations from molecular studies, also requires us to understand genomes in a new way-by considering the interactions underlain by the genome of a host plus its associated microbes, a conglomerate entity referred to as the hologenome. We argue that the complex patterns of inheritance of these genomes coupled with the influence of symbionts on host gene expression make the concept of the hologenome an epigenetic phenomenon. We further argue that the aspects of the hologenome challenge of the modern evolutionary synthesis, which requires updating to remain consistent with Darwin's intent of providing natural laws that underlie the evolution of life on Earth.

RevDate: 2019-11-14

Lucaciu R, Pelikan C, Gerner SM, et al (2019)

A Bioinformatics Guide to Plant Microbiome Analysis.

Frontiers in plant science, 10:1313.

Recent evidence for intimate relationship of plants with their microbiota shows that plants host individual and diverse microbial communities that are essential for their survival. Understanding their relatedness using genome-based and high-throughput techniques remains a hot topic in microbiome research. Molecular analysis of the plant holobiont necessitates the application of specific sampling and preparatory steps that also consider sources of unwanted information, such as soil, co-amplified plant organelles, human DNA, and other contaminations. Here, we review state-of-the-art and present practical guidelines regarding experimental and computational aspects to be considered in molecular plant-microbiome studies. We discuss sequencing and "omics" techniques with a focus on the requirements needed to adapt these methods to individual research approaches. The choice of primers and sequence databases is of utmost importance for amplicon sequencing, while the assembly and binning of shotgun metagenomic sequences is crucial to obtain quality data. We discuss specific bioinformatic workflows to overcome the limitation of genome database resources and for covering large eukaryotic genomes such as fungi. In transcriptomics, it is necessary to account for the separation of host mRNA or dual-RNAseq data. Metaproteomics approaches provide a snapshot of the protein abundances within a plant tissue which requires the knowledge of complete and well-annotated plant genomes, as well as microbial genomes. Metabolomics offers a powerful tool to detect and quantify small molecules and molecular changes at the plant-bacteria interface if the necessary requirements with regard to (secondary) metabolite databases are considered. We highlight data integration and complementarity which should help to widen our understanding of the interactions among individual players of the plant holobiont in the future.

RevDate: 2020-01-10

Staples R, LaDuca RL, Roze LV, et al (2019)

Structure and Chemical Analysis of Major Specialized Metabolites Produced by the Lichen Evernia prunastri.

Chemistry & biodiversity [Epub ahead of print].

We performed comparative profiling of four specialized metabolites in the lichen Evernia prunastri, collected at three different geographic locations, California and Maine, USA, and Yoshkar Ola, Mari El, Russia. Among the compounds produced at high concentrations that were identified in all three specimens, evernic acid, usnic acid, lecanoric acid and chloroatranorin, evernic acid was the most abundant. Two depsidones, salazinic acid and physodic acid, were detected in the Yoshkar-Ola collection only. The crystalline structure of evernic acid (2-hydroxy-4-[(2-hydroxy-4-methoxy-6-methylbenzoyl)oxy]-6-methylbenzoate) (hmb) revealed two crystallographically and conformationally distinct hmb anions, along with two monovalent sodium atoms. One hmb moiety contained an exotetradentate binding mode to sodium, whereas the other exhibited an exohexadentate binding mode to sodium. Embedded edge-sharing {Na2 O8 }n sodium-oxygen chains connected the hmb anions into the full three-dimensional crystal structure of the title compound. The crystal used for single-crystal X-ray diffraction exhibited non-merohedral twinning. The data suggest the importance of the acetyl-polymalonyl pathway products to processes of maintaining integrity of the lichen holobiont community.

RevDate: 2019-12-20

Weishaar R, Wellmann R, Camarinha-Silva A, et al (2020)

Selecting the hologenome to breed for an improved feed efficiency in pigs-A novel selection index.

Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie, 137(1):14-22.

Most traits in animal breeding, including feed efficiency traits in pigs, are affected by many genes with small effect and have a moderately high heritability between 0.1 and 0.5, which enables efficient selection. Since the microbiota composition in the gastrointestinal tract is also partly heritable and was shown to have a substantial effect on feed efficiency, the host genes affect the phenotype not only directly by altering metabolic pathways, but also indirectly by changing the microbiota composition. The effect m i of the microbiota composition on the breeding value g i of an animal i is the conditional expectation of its breeding value, given the vector φ i with microbiota frequencies, that is m i = E g i | φ i . The breeding value g i of an animal can therefore be decomposed into a heritable contribution m i that arises from an altered microbiota composition and a heritable contribution p i that arises from altered metabolic pathways within the animal, so g i = m i + p i . Instead of selecting for breeding value g ^ i , an index comprising the two components m ^ i and p ^ i with appropriate weights, that is I i = λ 1 m ^ i + λ 2 p ^ i , can be used. The present study shows how this breeding strategy can be applied in pig genomic selection breeding scheme for two feed efficiency traits and daily gain.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )