Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Horizontal Gene Transfer

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 18 Jun 2024 at 01:31 Created: 

Horizontal Gene Transfer

The pathology-inducing genes of O157:H7 appear to have been acquired, likely via prophage, by a nonpathogenic E. coli ancestor, perhaps 20,000 years ago. That is, horizontal gene transfer (HGT) can lead to the profound phenotypic change from benign commensal to lethal pathogen. "Horizontal" in this context refers to the lateral or "sideways" movement of genes between microbes via mechanisms not directly associated with reproduction. HGT among prokaryotes can occur between members of the same "species" as well as between microbes separated by vast taxonomic distances. As such, much prokaryotic genetic diversity is both created and sustained by high levels of HGT. Although HGT can occur for genes in the core-genome component of a pan-genome, it occurs much more frequently among genes in the optional, flex-genome component. In some cases, HGT has become so common that it is possible to think of some "floating" genes more as attributes of the environment in which they are useful rather than as attributes of any individual bacterium or strain or "species" that happens to carry them. For example, bacterial plasmids that occur in hospitals are capable of conferring pathogenicity on any bacterium that successfully takes them up. This kind of genetic exchange can occur between widely unrelated taxa.

Created with PubMed® Query: ( "horizontal gene transfer" OR "lateral gene transfer") NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2024-06-16
CmpDate: 2024-06-16

Miyoshi SI, Amako K, Muraoka M, et al (2024)

Mobile genetic elements associated with utilization of dichloromethane and methanol as energy sources in Cupriavidus metallidurans.

Journal of microorganism control, 29(2):55-65.

Cupriavidus metallidurans strain PD11 isolated from laboratory waste drainage can use C1 compounds, such as dichloromethane (DCM) and methanol, as a sole carbon and energy source. However, strain CH34 (a type-strain) cannot grow in the medium supplemented with DCM. In the present study, we aimed to unravel the genetic elements underlying the utilization of C1 compounds by strain PD11. The genome subtraction approach indicated that only strain PD11 had several genes highly homologous to those of Herminiimonas arsenicoxydans strain ULPAs1. Moreover, a series of polymerase chain reaction (PCR) to detect the orthologs of H. arsenicoxydans genes and the comparative study of the genomes of three strains revealed that the 87.9 kb DNA fragment corresponding to HEAR1959 to HEAR2054 might be horizontally transferred to strain PD11. The 87.9 kb DNA fragment identified was found to contain three genes whose products were putatively involved in the metabolism of formaldehyde, a common intermediate of DCM and methanol. In addition, reverse transcription PCR analysis showed that all three genes were significantly expressed when strain PD11 was cultivated in the presence of DCM or methanol. These findings suggest that strain PD11 can effectively utilize the C1 compounds because of transfer of the mobile genetic elements from other bacterial species, for instance, from H. arsenicoxydans.

RevDate: 2024-06-16

Sugimoto TN, Jouraku A, W Mitsuhashi (2024)

Search for genes gained by horizontal gene transfer in an entomopoxvirus, with special reference to the analysis of the transfer of an ABC transporter gene.

Virus research pii:S0168-1702(24)00111-4 [Epub ahead of print].

Although it is generally believed that large DNA viruses capture genes by horizontal gene transfer (HGT), the detailed manner of such transfer has not been fully elucidated. Here, we searched for genes in the coleopteran entomopoxvirus (EV) Anomala cuprea entomopoxvirus (ACEV) that might have been gained by HGT. We classified the potential source organisms for HGT into three categories: the host A. cuprea; other organisms, including viruses unrelated to EVs; and organisms with uncertain host attribution. Of the open reading frames (ORFs) of the ACEV genome, 2.1% were suggested to have been gained from the host by ACEV or its recent ancestor via HGT; 8.7% were possibly from organisms other than the host, and 3.7% were possibly from the third category of organisms via HGT. The analysis showed that ACEV contains some interesting ORFs obtained by HGT, including a large ATP-binding cassette protein (ABC transporter) ORF and a tenascin ORF (IDs ACV025 and ACV123, respectively). We then performed a detailed analysis of the HGT of the ACEV large ABC transporter ORF-the largest of the ACEV ORFs. mRNA sequences obtained by RNA-seq from fat bodies-sites of ACEV replication-and midgut tissues-sites of initial infection-of the virus's host A. cuprea larvae were subjected to BLAST analysis. One type of ABC transporter ORF from the fat bodies and two types from the midgut tissues, one of which was identical to that in the fat bodies, had the greatest identity to the ABC transporter ORF of ACEV. The two types from the host had high levels of identity to each other (approximately 95% nucleotide sequence identity), strongly suggesting that the host ABC transporter group consisting of the two types was the origin of ACV025. We then determined the sequence (12,381 bp) containing a full-length gene of the A. cuprea ABC transporter. It turned out to be a transcription template for the abovementioned mRNA found in both tissues. In addition, we determined a large part (ca. 6.9 kb) of the template sequence for the mRNA found only in the midgut tissues. The results showed that the ACEV ABC transporter ORF is missing parts corresponding to introns of the host ABC transporter genes, indicating that the ORF was likely acquired by HGT in the form of mRNA. The presence of definite duplicated sequences adjacent to the ACEV ABC transporter genes-a sign of LINE-1 retrotransposon-mediated HGT-was not observed. An approximately 2-month ACV025 transcription experiment suggested that the transporter sequence is presumed to be continuously functional. The amino acid sequence of ACV025 suggests that its product might function in the regulation of phosphatide in the host-cell membranes.

RevDate: 2024-06-17
CmpDate: 2024-06-17

Hu Q, Zhang L, Yang R, et al (2024)

Quaternary ammonium biocides promote conjugative transfer of antibiotic resistance gene in structure- and species-dependent manner.

Environment international, 189:108812.

The linkage between biocides and antibiotic resistance has been widely suggested in laboratories and various environments. However, the action mechanism of biocides on antibiotic resistance genes (ARGs) spread is still unclear. Thus, 6 quaternary ammonium biocides (QACs) with different bonded substituents or alkyl chain lengths were selected to assess their effects on the conjugation transfer of ARGs in this study. Two conjugation models with the same donor (E. coli DH5α (RP4)) into two receptors, E. coli MG1655 and pathogenic S. sonnei SE6-1, were constructed. All QACs were found to significantly promote intra- and inter-genus conjugative transfer of ARGs, and the frequency was highly impacted by their structure and receptors. At the same environmental exposure level (4 × 10[-1] mg/L), didecyl dimethyl ammonium chloride (DDAC (C10)) promoted the most frequency of conjugative transfer, while benzathine chloride (BEC) promoted the least. With the same donor, the enhanced frequency of QACs of intra-transfer is higher than inter-transfer. Then, the acquisition mechanisms of two receptors were further determined using biochemical combined with transcriptome analysis. For the recipient E. coli, the promotion of the intragenus conjugative transfer may be associated with increased cell membrane permeability, reactive oxygen species (ROS) production and proton motive force (PMF)-induced enhancement of flagellar motility. Whereas, the increase of cell membrane permeability and decreased flagellar motility due to PMF disruption but encouraged biofilm formation, maybe the main reasons for promoting intergenus conjugative transfer in the recipient S. sonnei. As one pathogenic bacterium, S. sonnei was first found to acquire ARGs by biocide exposure.

RevDate: 2024-06-15

Li W, Zeng J, Zheng N, et al (2024)

Polyvinyl chloride microplastics in the aquatic environment enrich potential pathogenic bacteria and spread antibiotic resistance genes in the fish gut.

Journal of hazardous materials, 475:134817 pii:S0304-3894(24)01396-7 [Epub ahead of print].

Microplastics and antibiotics coexist in aquatic environments, especially in freshwater aquaculture areas. However, as the second largest production of polyvinyl chloride (PVC) in the world, the effects of co-exposure to microplastics particles and antibiotics on changes in antibiotic resistance gene (ARG) profiles and the microbial community structure of aquatic organism gut microorganisms are poorly understood. Therefore, in this study, carp (Cyprinus carpio) were exposed to single or combined PVC microplastic contamination and oxytetracycline (OTC) or sulfamethazine (SMZ) for 8 weeks. PVC microplastics can enrich potential pathogenic bacteria, such as Enterobacter and Acinetobacter, among intestinal microorganisms. The presence of PVC microplastics enhanced the selective enrichment and dissemination risk of ARGs. PVC microplastics combined with OTC (OPVC) treatment significantly increased the abundance of tetracycline resistance genes (1.40-fold) compared with that in the OTC exposure treatment, revealing an obvious co-selection effect. However, compared with those in the control group, the total abundance of ARGs and MGEs in the OPVC treatment groups were significantly lower, which was correlated with the reduced abundances of the potential host Enterobacter. Overall, our results emphasized the diffusion and spread of ARGs are more influenced by PVC microplastics than by antibiotics, which may lead to antibiotic resistance in aquaculture.

RevDate: 2024-06-15

Ma Y, Xu S, Huang Y, et al (2024)

The mechanism differences between sulfadiazine degradation and antibiotic resistant bacteria inactivation by iron-based graphitic biochar and peroxydisulfate system.

Journal of hazardous materials, 475:134907 pii:S0304-3894(24)01486-9 [Epub ahead of print].

In this study, the activation of peroxydisulfate (PS) by K2FeO4-activation biochar (KFeB) and acid-picking K2FeO4-activation biochar (AKFeB) was investigated to reveal the mechanism differences between iron site and graphitic structure in sulfadiazine (SDZ) degradation and ARB inactivation, respectively. KFeB/PS and AKFeB/PS systems had similar degradation property towards SDZ, but only KFeB/PS system showed excellent bactericidal property. The mechanism study demonstrated that dissolved SDZ was degraded through electron transfer pathway mediated by graphitic structure, while suspended ARB was inactivated through free radicals generated by iron-activated PS, accompanied by excellent removal on antibiotic resistance genes (ARGs). The significant decrease in conjugative transfer frequency indicated the reduced horizontal gene transfer risk of ARGs after treatment with KFeB/PS system. Transcriptome data suggested that membrane protein channel disruption and adenosine triphosphate synthesis inhibition were key reasons for conjugative transfer frequency reduction. Continuous flow reactor of KFeB/PS system can efficiently remove antibiotics and ARB, implying the potential application in practical wastewater purification. In conclusion, this study provides novel insights for classified and collaborative control of antibiotics and ARB by carbon-based catalysts driven persulfate advanced oxidation technology.

RevDate: 2024-06-15

Chen MM, Zhang YQ, Cheng LC, et al (2024)

Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes.

Journal of hazardous materials, 475:134884 pii:S0304-3894(24)01463-8 [Epub ahead of print].

Nanoplastics (NPs), identified as emerging pollutants, pose a great risk to environment and global public health, exerting profound influences on the prevalence and dissemination of antibiotic resistance genes (ARGs). Despite evidence suggesting that nano-sized plastic particles can facilitate the horizontal gene transfer (HGT) of ARGs, it is imperative to explore strategies for inhibiting the transfer of ARGs. Currently, limited information exists regarding the characteristics of environmentally aged NPs and their impact on ARGs propagation. Herein, we investigated the impact of photo-aged NPs on the transfer of ARG-carrying plasmids into Escherichia coli (E. coli) cells. Following simulated sunlight irradiation, photo-aged nano-sized polystyrene plastics (PS NPs) exhibited multiple enzyme-like activities, including peroxidase (POD) and oxidase (OXD), leading to a burst of reactive oxygen species (ROS). At relatively low concentrations (0.1, 1 μg/mL), both pristine and aged PS NPs facilitated the transfer of pUC19 and pHSG396 plasmids within E. coli due to moderate ROS production and enhanced cell membrane permeability. Intriguingly, at relatively high concentrations (5, 10 μg/mL), aged PS NPs significantly suppressed plasmids transformation. The non-unidirectional impact of aged PS NPs involved the overproduction of ROS (•OH and •O2[-]) via nanozyme activity, directly degrading ARGs and damaging plasmid structure. Additionally, oxidative damage to bacteria resulted from the presence of much toxic free radicals, causing physical damage to cell membranes, reduction of the SOS response and restriction of adenosine-triphosphate (ATP) supply, ultimately leading to inactivation of recipient cells. This study unveils the intrinsic multienzyme-like activity of environmentally aged NPs, highlighting their potential to impede the transfer and dissemination of ARGs.

RevDate: 2024-06-15

Vidal-Quist JC, Ortego F, Rombauts S, et al (2024)

The genome-wide response of Dermatophagoides pteronyssinus to cystatin A, a peptidase inhibitor from human skin, sheds light on its digestive physiology and allergenicity.

Insect molecular biology [Epub ahead of print].

The digestive physiology of house dust mites (HDMs) is particularly relevant for their allergenicity since many of their allergens participate in digestion and are excreted into faecal pellets, a main source of exposure for allergic subjects. To gain insight into the mite dietary digestion, the genome of the HDM Dermatophagoides pteronyssinus was screened for genes encoding peptidases (n = 320), glycosylases (n = 77), lipases and esterases (n = 320), peptidase inhibitors (n = 65) and allergen-related proteins (n = 52). Basal gene expression and transcriptional responses of mites to dietary cystatin A, a cysteine endopeptidase inhibitor with previously shown antinutritional effect on mites, were analysed by RNAseq. The ingestion of cystatin A resulted in significant regulation of different cysteine endopeptidase and glycosylase genes. One Der p 1-like and two cathepsin B-like cysteine endopeptidase genes of high basal expression were induced, which suggests their prominent role in proteolytic digestion together with major allergen Der p 1. A number of genes putatively participating in the interaction of mites with their microbiota and acquired by horizontal gene transfer were repressed, including genes encoding the peptidase Der p 38, two 1,3-beta-glucanases, a lysozyme and a GH19 chitinase. Finally, the disruption of mite digestion resulted in the regulation of up to 17 allergen and isoallergen genes. Altogether, our results shed light on the putative role of specific genes in digestion and illustrate the connection between the digestive physiology of HDM and allergy.

RevDate: 2024-06-14

Sivalingam P, Sabatino R, Sbaffi T, et al (2024)

Anthropogenic pollution may enhance natural transformation in water, favouring the spread of antibiotic resistance genes.

Journal of hazardous materials, 475:134885 pii:S0304-3894(24)01464-X [Epub ahead of print].

Aquatic ecosystems are crucial in the antimicrobial resistance cycle. While intracellular DNA has been extensively studied to understand human activity's impact on antimicrobial resistance gene (ARG) dissemination, extracellular DNA is frequently overlooked. This study examines the effect of anthropogenic water pollution on microbial community diversity, the resistome, and ARG dissemination. We analyzed intracellular and extracellular DNA from wastewater treatment plant effluents and lake surface water by shotgun sequencing. We also conducted experiments to evaluate anthropogenic pollution's effect on transforming extracellular DNA (using Gfp-plasmids carrying ARGs) within a natural microbial community. Chemical analysis showed treated wastewater had higher anthropogenic pollution-related parameters than lake water. The richness of microbial community, antimicrobial resistome, and high-risk ARGs was greater in treated wastewaters than in lake waters both for intracellular and extracellular DNA. Except for the high-risk ARGs, richness was significantly higher in intracellular than in extracellular DNA. Several ARGs were associated with mobile genetic elements and located on plasmids. Furthermore, Gfp-plasmid transformation within a natural microbial community was enhanced by anthropogenic pollution levels. Our findings underscore anthropogenic pollution's pivotal role in shaping microbial communities and their antimicrobial resistome. Additionally, it may facilitate ARG dissemination through extracellular DNA plasmid uptake.

RevDate: 2024-06-16

Wang X, Li J, X Pan (2024)

How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes - A review.

The Science of the total environment, 944:173881 pii:S0048-9697(24)04029-4 [Epub ahead of print].

Plastic debris such as microplastics (MPs) and nanoplastics (NPTs), along with antibiotic resistance genes (ARGs), are pervasive in the environment and are recognized as significant global health and ecological concerns. Micro-/nano-plastics (MNPs) have been demonstrated to favor the spread of ARGs by enhancing the frequency of horizontal gene transfer (HGT) through various pathways. This paper comprehensively and systematically reviews the current study with focus on the influence of plastics on the HGT of ARGs. The critical role of MNPs in the HGT of ARGs has been well illustrated in sewage sludge, livestock farms, constructed wetlands and landfill leachate. A summary of the performed HGT assay and the underlying mechanism of plastic-mediated transfer of ARGs is presented in the paper. MNPs could facilitate or inhibit HGT of ARGs, and their effects depend on the type, size, and concentration. This review provides a comprehensive insight into the effects of MNPs on the HGT of ARGs, and offers suggestions for further study. Further research should attempt to develop a standard HGT assay and focus on investigating the impact of different plastics, including the oligomers they released, under real environmental conditions on the HGT of ARGs.

RevDate: 2024-06-13

Skalny M, Rokowska A, Szuwarzynski M, et al (2024)

Nanoscale surface defects of goethite governing DNA adsorption process and formation of the Goethite-DNA conjugates.

Chemosphere pii:S0045-6535(24)01496-6 [Epub ahead of print].

In urbanized areas, extracellular DNA (exDNA) is suspected of carrying genes with undesirable traits like virulence genes (VGs) or antibiotic resistance genes (ARGs), which can spread through horizontal gene transfer (HGT). Hence, it is crucial to develop novel approaches for the mitigation of exDNA in the environment. Our research explores the role of goethite, a common iron mineral with high adsorption capabilities, in exDNA adsorption processes. We compare well-crystalline, semi-crystalline, and nano goethites with varying particle sizes to achieve various specific surface areas (SSAs) (18.7 - 161.6 m[2]/g) and porosities. We conducted batch adsorption experiments using DNA molecules of varying chain lengths (DNA sizes: < 11 Kb, < 6 Kb, and < 3 Kb) and assessed the impact of Ca[2+] and biomacromolecules on the adsorption efficacy and mechanisms. Results show that porosity and pore structure significantly influence DNA adsorption capacity. Goethite with well-developed meso- and macroporosity demonstrated enhanced DNA adsorption. The accumulation of DNA on the goethite interface led to substantial aggregation in the system, thus the formation of DNA-goethite conjugates, indicating the bridging between mineral particles. DNA chain length, the presence of Ca[2+], and the biomacromolecule matrix also affected the adsorption capacity and mechanism. Interactions between DNA and positively charged biomacromolecules or Ca[2+] led to DNA compaction, allowing greater DNA accumulation in pores. However, a high concentration of biomacromolecules led to the saturation of the goethite surface, inhibiting DNA adsorption. AFM imaging of goethite particles after adsorption suggested the formation of the DNA multilayer. The study advances understanding of the environmental behavior of exDNA and its interaction with iron oxyhydroxides, offering insights into developing more effective methods for ARGs removal in wastewater treatment plants. By manipulating the textural properties of goethite, it's possible to enhance exDNA removal, potentially reducing the spread of biocontamination in urban and industrial environments.

RevDate: 2024-06-13
CmpDate: 2024-06-13

Kennedy NW, LE Comstock (2024)

Mechanisms of bacterial immunity, protection, and survival during interbacterial warfare.

Cell host & microbe, 32(6):794-803.

Most bacteria live in communities, often with closely related strains and species with whom they must compete for space and resources. Consequently, bacteria have acquired or evolved mechanisms to antagonize competitors through the production of antibacterial toxins. Similar to bacterial systems that combat phage infection and mechanisms to thwart antibiotics, bacteria have also acquired and evolved features to protect themselves from antibacterial toxins. Just as there is a large body of research identifying and characterizing antibacterial proteins and toxin delivery systems, studies of bacterial mechanisms to resist and survive assault from competitors' weapons have also expanded tremendously. Emerging data are beginning to reveal protective processes and mechanisms that are as diverse as the toxins themselves. Protection against antibacterial toxins can be acquired by horizontal gene transfer, receptor or target alteration, induction of protective functions, physical barriers, and other diverse processes. Here, we review recent studies in this rapidly expanding field.

RevDate: 2024-06-13

Zhang P, Wang Y, Lin H, et al (2024)

Bacterial evolution in Biofiltration of drinking water treatment plant: Different response of phage and plasmid to varied water sources.

Water research, 259:121887 pii:S0043-1354(24)00788-7 [Epub ahead of print].

Biofiltration in drinking water treatment (BDWT) are popular as it holds promise as an alternative to chemical treatments, yet our understanding of the key drivers and trends underlying bacterial evolution within this process remains limited. While plasmids and phages are recognized as the main vectors of horizontal gene transfer (HGT), their roles in shaping bacterial evolution in BDWT remain largely unknown. Here we leverage global metagenomic data to unravel the primary forces driving bacterial evolution in BDWT. Our results revealed that the primary vector of HGT varies depending on the type of source water (groundwater and surface water). Both plasmids and phages accelerated bacterial evolution in BDWT by enhancing genetic diversity within species, but they drove contrasting evolutionary trends in functional redundancy in different source water types. Specifically, trends towards and away from functional redundancy (indicated as gene-protein ratio) were observed in surface-water and groundwater biofilters, respectively. Virulent phages drove bacterial evolution through synergistic interactions with bacterial species capable of natural transformation and with certain natural compounds that disrupt bacterial cytoplasmic membranes. Genes relating to water purification (such as Mn(II)-oxidizing genes), microbial risks (antibiotic resistance genes), and chemical risk (polycyclic aromatic hydrocarbons) were enriched via HGT in BDWT, highlighting the necessity for heighted focus on these useful and risky objects. Overall, these discoveries enhance our understanding of bacterial evolution in BDWT and have implications for the optimization of water treatment strategies.

RevDate: 2024-06-11

Elsen S, Simon V, I Attrée (2024)

Cross-regulation and cross-talk of conserved and accessory two-component regulatory systems orchestrate Pseudomonas copper resistance.

PLoS genetics, 20(6):e1011325 pii:PGENETICS-D-24-00418 [Epub ahead of print].

Bacteria use diverse strategies and molecular machinery to maintain copper homeostasis and to cope with its toxic effects. Some genetic elements providing copper resistance are acquired by horizontal gene transfer; however, little is known about how they are controlled and integrated into the central regulatory network. Here, we studied two copper-responsive systems in a clinical isolate of Pseudomonas paraeruginosa and deciphered the regulatory and cross-regulation mechanisms. To do so, we combined mutagenesis, transcriptional fusion analyses and copper sensitivity phenotypes. Our results showed that the accessory CusRS two-component system (TCS) responds to copper and activates both its own expression and that of the adjacent nine-gene operon (the pcoA2 operon) to provide resistance to elevated levels of extracellular copper. The same locus was also found to be regulated by two core-genome-encoded TCSs-the copper-responsive CopRS and the zinc-responsive CzcRS. Although the target palindromic sequence-ATTCATnnATGTAAT-is the same for the three response regulators, transcriptional outcomes differ. Thus, depending on the operon/regulator pair, binding can result in different activation levels (from none to high), with the systems demonstrating considerable plasticity. Unexpectedly, although the classical CusRS and the noncanonical CopRS TCSs rely on distinct signaling mechanisms (kinase-based vs. phosphatase-based), we discovered cross-talk in the absence of the cognate sensory kinases. This cross-talk occurred between the proteins of these two otherwise independent systems. The cusRS-pcoA2 locus is part of an Integrative and Conjugative Element, and was found in other Pseudomonas strains where its expression could provide copper resistance under appropriate conditions. The results presented here illustrate how acquired genetic elements can become part of endogenous regulatory networks, providing a physiological advantage. They also highlight the potential for broader effects of accessory regulatory proteins through interference with core regulatory proteins.

RevDate: 2024-06-10

Wendt GR, JJ Collins (2024)

Horizontal gene transfer of a functional cki homolog in the human pathogen Schistosoma mansoni.

bioRxiv : the preprint server for biology.

Schistosomes are parasitic flatworms responsible for the neglected tropical disease schistosomiasis, causing devastating morbidity and mortality in the developing world. The parasites are protected by a skin-like tegument, and maintenance of this tegument is controlled by a schistosome ortholog of the tumor suppressor TP53. To understand mechanistically how p53-1 controls tegument production, we identified a cyclin dependent kinase inhibitor homolog (cki) that was co-expressed with p53-1. RNA interference of cki resulted in a hyperproliferation phenotype, that, in combination with p53-1 RNA interference yielded abundant tumor-like growths, indicating that cki and p53-1 are bona fide tumor suppressors in Schistosoma mansoni. Interestingly, cki homologs are widely present throughout parasitic flatworms but evidently absent from their free-living ancestors, suggesting this cki homolog came from an ancient horizontal gene transfer event. This in turn implies that the evolution of parasitism in flatworms may have been aided by a highly unusual means of metazoan genetic inheritance.

RevDate: 2024-06-06

Coelho MA, David-Palma M, Shea T, et al (2024)

Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis.

PLoS biology, 22(6):e3002682 pii:PBIOLOGY-D-24-00135 [Epub ahead of print].

In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.

RevDate: 2024-06-13
CmpDate: 2024-06-13

Benz F, Camara-Wilpert S, Russel J, et al (2024)

Type IV-A3 CRISPR-Cas systems drive inter-plasmid conflicts by acquiring spacers in trans.

Cell host & microbe, 32(6):875-886.e9.

Plasmid-encoded type IV-A CRISPR-Cas systems lack an acquisition module, feature a DinG helicase instead of a nuclease, and form ribonucleoprotein complexes of unknown biological functions. Type IV-A3 systems are carried by conjugative plasmids that often harbor antibiotic-resistance genes and their CRISPR array contents suggest a role in mediating inter-plasmid conflicts, but this function remains unexplored. Here, we demonstrate that a plasmid-encoded type IV-A3 system co-opts the type I-E adaptation machinery from its host, Klebsiella pneumoniae (K. pneumoniae), to update its CRISPR array. Furthermore, we reveal that robust interference of conjugative plasmids and phages is elicited through CRISPR RNA-dependent transcriptional repression. By silencing plasmid core functions, type IV-A3 impacts the horizontal transfer and stability of targeted plasmids, supporting its role in plasmid competition. Our findings shed light on the mechanisms and ecological function of type IV-A3 systems and demonstrate their practical efficacy for countering antibiotic resistance in clinically relevant strains.

RevDate: 2024-06-06

Klepa MS, diCenzo GC, M Hungria (2024)

Comparative genomic analysis of Bradyrhizobium strains with natural variability in the efficiency of nitrogen fixation, competitiveness, and adaptation to stressful edaphoclimatic conditions.

Microbiology spectrum [Epub ahead of print].

Bradyrhizobium is known for fixing atmospheric nitrogen in symbiosis with agronomically important crops. This study focused on two groups of strains, each containing eight natural variants of the parental strains, Bradyrhizobium japonicum SEMIA 586 (=CNPSo 17) or Bradyrhizobium diazoefficiens SEMIA 566 (=CNPSo 10). CNPSo 17 and CNPSo 10 were used as commercial inoculants for soybean crops in Brazil at the beginning of the crop expansion in the southern region in the 1960s-1970s. Variants derived from these parental strains were obtained in the late 1980s through a strain selection program aimed at identifying elite strains adapted to a new cropping frontier in the central-western Cerrado region, with a higher capacity of biological nitrogen fixation (BNF) and competitiveness. Here, we aimed to detect genetic variations possibly related to BNF, competitiveness for nodule occupancy, and adaptation to the stressful conditions of the Brazilian Cerrado soils. High-quality genome assemblies were produced for all strains. The core genome phylogeny revealed that strains of each group are closely related, as confirmed by high average nucleotide identity values. However, variants accumulated divergences resulting from horizontal gene transfer, genomic rearrangements, and nucleotide polymorphisms. The B. japonicum group presented a larger pangenome and a higher number of nucleotide polymorphisms than the B. diazoefficiens group, possibly due to its longer adaptation time to the Cerrado soil. Interestingly, five strains of the B. japonicum group carry two plasmids. The genetic variability found in both groups is discussed considering the observed differences in their BNF capacity, competitiveness for nodule occupancy, and environmental adaptation.IMPORTANCEToday, Brazil is a global leader in the study and use of biological nitrogen fixation with soybean crops. As Brazilian soils are naturally void of soybean-compatible bradyrhizobia, strain selection programs were established, starting with foreign isolates. Selection searched for adaptation to the local edaphoclimatic conditions, higher efficiency of nitrogen fixation, and strong competitiveness for nodule occupancy. We analyzed the genomes of two parental strains of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens and eight variant strains derived from each parental strain. We detected two plasmids in five strains and several genetic differences that might be related to adaptation to the stressful conditions of the soils of the Brazilian Cerrado biome. We also detected genetic variations in specific regions that may impact symbiotic nitrogen fixation. Our analysis contributes to new insights into the evolution of Bradyrhizobium, and some of the identified differences may be applied as genetic markers to assist strain selection programs.

RevDate: 2024-06-05

Middlebrook EA, Katani R, JM Fair (2024)

OrthoPhyl - Streamlining large scale, orthology-based phylogenomic studies of bacteria at broad evolutionary scales.

G3 (Bethesda, Md.) pii:7688438 [Epub ahead of print].

There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification, but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use-cases: E. coli/Shigella, Brucella/Ochrobactrum, and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.

RevDate: 2024-06-03

Amirfard KD, Moriyama M, Suzuki S, et al (2024)

Effect of environmental factors on conjugative transfer of antibiotic resistance genes in aquatic settings.

Journal of applied microbiology pii:7687169 [Epub ahead of print].

Antimicrobial-resistance genes (ARGs) are spread among bacteria by horizontal gene transfer (HGT), however, the effect of environmental factors on the dynamics of the ARG in water environments has not been very well understood. In this systematic review, we employed the regression tree algorithm to identify the environmental factors that facilitate/inhibit the transfer of ARGs via conjugation in planktonic/biofilm-formed bacterial cells based on the results of past relevant research. Escherichia coli strains were the most studied genus for conjugation experiments as donor/recipient in the intra-genera category. Conversely, Pseudomonas spp., Acinetobacter spp., and Salmonella spp. were studied primarily as recipients across inter-genera bacteria. The conjugation efficiency (ce) was found to be highly dependent on the incubation period. Some antibiotics, such as nitrofurantoin (at ≥ 0.2 µg ml -1) and kanamycin (at ≥ 9.5 mg l -1) as well as metallic compounds like mercury (II) chloride (HgCl2, ≥ 3 µmol l -1), and vanadium (III) chloride (VCl3, ≥ 50 µmol l -1) had enhancing effect on conjugation. The highest ce value (-0.90 log10) was achieved at 15-19 °C, with linoleic acid concentrations < 8 mg l -1, a recognized conjugation inhibitor. Identifying critical environmental factors affecting ARG dissemination in aquatic environments will accelerate strategies to control their proliferation and combat antibiotic resistance.

RevDate: 2024-06-06

Zhang X, Li P, Wang J, et al (2024)

Comparative genomic and phylogenetic analyses of mitochondrial genomes of hawthorn (Crataegus spp.) in Northeast China.

International journal of biological macromolecules, 272(Pt 1):132795 pii:S0141-8130(24)03600-6 [Epub ahead of print].

Hawthorn (Crataegus spp.) plants are major sources of health food and medicines. Twenty species and seven variations of Crataegus are present in China. A variety of unique Crataegus species was found in their natural distribution in northeast China. In the present study, we assembled and annotated the mitochondrial genomes of five Crataegus species from northeastern China. The sizes of the newly sequenced mitochondrial genomes ranged from 245,907 bp to 410,837 bp. A total of 45-55 genes, including 12-19 transfer RNA genes, three ribosomal RNA genes, and 29-33 protein-coding genes (PCGs) were encoded by these mitochondrial genomes. Seven divergent hotspot regions were identified by comparative analyses: atp6, nad3, ccmFN, matR, nad1, nad5, and rps1. The most conserved genes among the Crataegus species, according to the whole-genome correlation analysis, were nad1, matR, nad5, ccmFN, cox1, nad4, trnQ-TTG, trnK-TTT, trnE-TTC, and trnM-CAT. Horizontal gene transfer between organellar genomes was common in Crataegus plants. Based on the phylogenetic trees of mitochondrial PCGs, C. maximowiczii, C. maximowiczii var. ninganensis, and C. bretschneideri shared similar maternal relationships. This study improves Crataegus mitochondrial genome resources and offers important insights into the taxonomy and species identification of this genus.

RevDate: 2024-06-03
CmpDate: 2024-06-03

Attah V, Milner DS, Fang Y, et al (2024)

Duplication and neofunctionalization of a horizontally transferred xyloglucanase as a facet of the Red Queen coevolutionary dynamic.

Proceedings of the National Academy of Sciences of the United States of America, 121(24):e2218927121.

Oomycete protists share phenotypic similarities with fungi, including the ability to cause plant diseases, but branch in a distant region of the tree of life. It has been suggested that multiple horizontal gene transfers (HGTs) from fungi-to-oomycetes contributed to the evolution of plant-pathogenic traits. These HGTs are predicted to include secreted proteins that degrade plant cell walls, a barrier to pathogen invasion and a rich source of carbohydrates. Using a combination of phylogenomics and functional assays, we investigate the diversification of a horizontally transferred xyloglucanase gene family in the model oomycete species Phytophthora sojae. Our analyses detect 11 xyloglucanase paralogs retained in P. sojae. Using heterologous expression in yeast, we show consistent evidence that eight of these paralogs have xyloglucanase function, including variants with distinct protein characteristics, such as a long-disordered C-terminal extension that can increase xyloglucanase activity. The functional variants analyzed subtend a phylogenetic node close to the fungi-to-oomycete transfer, suggesting the horizontally transferred gene was a bona fide xyloglucanase. Expression of three xyloglucanase paralogs in Nicotiana benthamiana triggers high-reactive oxygen species (ROS) generation, while others inhibit ROS responses to bacterial immunogens, demonstrating that the paralogs differentially stimulate pattern-triggered immunity. Mass spectrometry of detectable enzymatic products demonstrates that some paralogs catalyze the production of variant breakdown profiles, suggesting that secretion of variant xyloglucanases increases efficiency of xyloglucan breakdown as well as diversifying the damage-associated molecular patterns released. We suggest that this pattern of neofunctionalization and the variant host responses represent an aspect of the Red Queen host-pathogen coevolutionary dynamic.

RevDate: 2024-06-03

Tang N, Wei D, Zeng Y, et al (2024)

Understanding the rapid spread of antimicrobial resistance genes mediated by IS26.

mLife, 3(1):101-109.

Insertion sequences (ISs) promote the transmission of antimicrobial resistance genes (ARGs) across bacterial populations. However, their contributions and dynamics during the transmission of resistance remain unclear. In this study, we selected IS26 as a representative transposable element to decipher the relationship between ISs and ARGs and to investigate their transfer features and transmission trends. We retrieved 2656 translocatable IS 26 -bounded units with ARGs (tIS26-bUs-ARGs) in complete bacterial genomes from the NCBI RefSeq database. In total, 124 ARGs spanning 12 classes of antibiotics were detected, and the average contribution rate of IS26 to these genes was 41.2%. We found that IS 26 -bounded units (IS26-bUs) mediated extensive ARG dissemination within the bacteria of the Gammaproteobacteria class, showing strong transfer potential between strains, species, and even phyla. The IS26-bUs expanded in bacterial populations over time, and their temporal expansion trend was significantly correlated with antibiotic usage. This wide dissemination could be due to the nonspecific target site preference of IS26. Finally, we experimentally confirmed that the introduction of a single copy of IS26 could lead to the formation of a composite transposon mediating the transmission of "passenger" genes. These observations extend our knowledge of the IS26 and provide new insights into the mediating role of ISs in the dissemination of antibiotic resistance.

RevDate: 2024-06-01

Peng J, Wang D, He P, et al (2024)

Seasonal Dynamics of Antibiotic Resistance Genes and Mobile Genetic Elements in a Subtropical Coastal Ecosystem: Implications for Environmental Health Risks.

Environmental research pii:S0013-9351(24)01203-9 [Epub ahead of print].

Antibiotic resistance poses a considerable global public health concern, leading to heightened rates of illness and mortality. However, the impact of seasonal variations and environmental factors on the health risks associated with antibiotic resistance genes (ARGs) and their assembly mechanisms is not fully understood. Based on metagenomic sequencing, this study investigated the antibiotic resistome, mobile genetic elements (MGEs), and microbiomes in a subtropical coastal ecosystem of the Beibu Gulf, China, over autumn and winter, and explored the factors influencing seasonal changes in ARG and MGE abundance and diversity. Results indicated that ARG abundance and diversity were higher in winter than in autumn, with beta-lactam and multidrug resistance genes being the most diverse and abundant, respectively. Similarly, MGE abundance and diversity increased in winter and were strongly correlated with ARGs. In contrast, more pronounced associations between microbial communities, especially archaea, and the antibiotic resistome were observed in autumn than in winter. The co-occurrence network identified multiple interactions between MGEs and various multidrug efflux pumps in winter, suggesting a potential for ARG dissemination. Multivariate correlation analyses and path modeling indicated that environmental factors driving microbial community changes predominantly influenced antibiotic resistome assembly in autumn, while the relative importance of MGEs increased significantly in winter. These findings suggest an elevated health risk associated with antimicrobial resistance in the Beibu Gulf during winter, attributed to the dissemination of ARGs by horizontal gene transfer. The observed seasonal variations highlight the dynamic nature of antibiotic resistance dissemination in coastal ecosystems, emphasizing the need for comprehensive surveillance and management measures to address the growing threat of antimicrobial resistance in vulnerable environments.

RevDate: 2024-05-31

Morel-Letelier I, Yuen B, Kück AC, et al (2024)

Adaptations to nitrogen availability drive ecological divergence of chemosynthetic symbionts.

PLoS genetics, 20(5):e1011295 pii:PGENETICS-D-23-01271 [Epub ahead of print].

Bacterial symbionts, with their shorter generation times and capacity for horizontal gene transfer (HGT), play a critical role in allowing marine organisms to cope with environmental change. The closure of the Isthmus of Panama created distinct environmental conditions in the Tropical Eastern Pacific (TEP) and Caribbean, offering a "natural experiment" for studying how closely related animals evolve and adapt under environmental change. However, the role of bacterial symbionts in this process is often overlooked. We sequenced the genomes of endosymbiotic bacteria in two sets of sister species of chemosymbiotic bivalves from the genera Codakia and Ctena (family Lucinidae) collected on either side of the Isthmus, to investigate how differing environmental conditions have influenced the selection of symbionts and their metabolic capabilities. The lucinid sister species hosted different Candidatus Thiodiazotropha symbionts and only those from the Caribbean had the genetic potential for nitrogen fixation, while those from the TEP did not. Interestingly, this nitrogen-fixing ability did not correspond to symbiont phylogeny, suggesting convergent evolution of nitrogen fixation potential under nutrient-poor conditions. Reconstructing the evolutionary history of the nifHDKT operon by including other lucinid symbiont genomes from around the world further revealed that the last common ancestor (LCA) of Ca. Thiodiazotropha lacked nif genes, and populations in oligotrophic habitats later re-acquired the nif operon through HGT from the Sedimenticola symbiont lineage. Our study suggests that HGT of the nif operon has facilitated niche diversification of the globally distributed Ca. Thiodiazotropha endolucinida species clade. It highlights the importance of nitrogen availability in driving the ecological diversification of chemosynthetic symbiont species and the role that bacterial symbionts may play in the adaptation of marine organisms to changing environmental conditions.

RevDate: 2024-05-31
CmpDate: 2024-05-31

Hellmuth M, PF Stadler (2024)

The Theory of Gene Family Histories.

Methods in molecular biology (Clifton, N.J.), 2802:1-32.

Most genes are part of larger families of evolutionary-related genes. The history of gene families typically involves duplications and losses of genes as well as horizontal transfers into other organisms. The reconstruction of detailed gene family histories, i.e., the precise dating of evolutionary events relative to phylogenetic tree of the underlying species has remained a challenging topic despite their importance as a basis for detailed investigations into adaptation and functional evolution of individual members of the gene family. The identification of orthologs, moreover, is a particularly important subproblem of the more general setting considered here. In the last few years, an extensive body of mathematical results has appeared that tightly links orthology, a formal notion of best matches among genes, and horizontal gene transfer. The purpose of this chapter is to broadly outline some of the key mathematical insights and to discuss their implication for practical applications. In particular, we focus on tree-free methods, i.e., methods to infer orthology or horizontal gene transfer as well as gene trees, species trees, and reconciliations between them without using a priori knowledge of the underlying trees or statistical models for the inference of phylogenetic trees. Instead, the initial step aims to extract binary relations among genes.

RevDate: 2024-06-01

Zhou Z, Liu Y, Anantharaman K, et al (2022)

The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis.

mLife, 1(4):374-381.

The division of organisms on the Tree of Life into either a three-domain (3D) tree or a two-domain (2D) tree has been disputed for a long time. Ever since the discovery of Archaea by Carl Woese in 1977 using 16S ribosomal RNA sequence as the evolutionary marker, there has been a great advance in our knowledge of not only the growing diversity of Archaea but also the evolutionary relationships between different lineages of living organisms. Here, we present this perspective to summarize the progress of archaeal diversity and changing notion of the Tree of Life. Meanwhile, we provide the latest progress in genomics/physiology-based discovery of Asgard archaeal lineages as the closest relative of Eukaryotes. Furthermore, we propose three major directions for future research on exploring the "next one" closest Eukaryote relative, deciphering the function of archaeal eukaryotic signature proteins and eukaryogenesis from both genomic and physiological aspects, and understanding the roles of horizontal gene transfer, viruses, and mobile elements in eukaryogenesis.

RevDate: 2024-05-31

Konstantinidis KT (2023)

Sequence-discrete species for prokaryotes and other microbes: A historical perspective and pending issues.

mLife, 2(4):341-349.

Whether prokaryotes, and other microorganisms, form distinct clusters that can be recognized as species remains an issue of paramount theoretical as well as practical consequence in identifying, regulating, and communicating about these organisms. In the past decade, comparisons of thousands of genomes of isolates and hundreds of metagenomes have shown that prokaryotic diversity may be predominantly organized in such sequence-discrete clusters, albeit organisms of intermediate relatedness between the identified clusters are also frequently found. Accumulating evidence suggests, however, that the latter "intermediate" organisms show enough ecological and/or functional distinctiveness to be considered different species. Notably, the area of discontinuity between clusters often-but not always-appears to be around 85%-95% genome-average nucleotide identity, consistently among different taxa. More recent studies have revealed remarkably similar diversity patterns for viruses and microbial eukaryotes as well. This high consistency across taxa implies a specific mechanistic process that underlies the maintenance of the clusters. The underlying mechanism may be a substantial reduction in the efficiency of homologous recombination, which mediates (successful) horizontal gene transfer, around 95% nucleotide identity. Deviations from the 95% threshold (e.g., species showing lower intraspecies diversity) may be caused by ecological differentiation that imposes barriers to otherwise frequent gene transfer. While this hypothesis that clusters are driven by ecological differentiation coupled to recombination frequency (i.e., higher recombination within vs. between groups) is appealing, the supporting evidence remains anecdotal. The data needed to rigorously test the hypothesis toward advancing the species concept are also outlined.

RevDate: 2024-05-31

Zhao Y, Ding WJ, Xu L, et al (2024)

A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas.

Frontiers in microbiology, 15:1395477.

Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria.

RevDate: 2024-05-31

Li L, T Zhang (2023)

Roadmap to tackle antibiotic resistance in the environment under the One Health framework.

mLife, 2(3):224-228.

Antibiotic resistance has been recognized as a major challenge worldwide for humans. "One Health" has been recognized as a key concept for containment of antibiotic resistance. Under the framework, the role of the environment in the development of antibiotic resistance genes (ARGs) has become increasingly obvious. Despite numerous efforts, response to antibiotic resistance is considered to be inadequate, which is probably due to the lack of a clear roadmap. Here, we propose a "One Health" roadmap to combat antibiotic resistance in the environment through (1) understanding environmental resistome. The environmental gene pool has long been recognized as the single largest reservoir of both known and novel ARGs. (2) Standardizing ARG quantification. Systematic joint efforts based on standardized quantification are urgently needed to understand the true tempospatial profiles of the environmental resistome. (3) Identifying mechanisms of resistome development. Horizontal gene transfer and co-selection have been recognized as the two main mechanisms contributing to the environmental resistome. (4) Establishing a risk-assessment framework. The first critical step for large-scale cost-effective targeted ARG management in the environment is the risk assessment to identify the priority ARGs for control. (5) Formulating regulatory standards. By correlating the environmental ARG profile with public health, we may identify the indicator ARGs that can be integrated into current environmental quality standards. (6) Developing control strategies. Systematic analysis of available control technologies is required to identify the most feasible ones to curtail the spread of ARGs in the environment. The proposed roadmap under the "One Health" framework provides a guide to tackle antibiotic resistance in the environment.

RevDate: 2024-05-30
CmpDate: 2024-05-31

Pontes A, Paraíso F, Silva M, et al (2024)

Extensive remodeling of sugar metabolism through gene loss and horizontal gene transfer in a eukaryotic lineage.

BMC biology, 22(1):128.

BACKGROUND: In yeasts belonging to the subphylum Saccharomycotina, genes encoding components of the main metabolic pathways, like alcoholic fermentation, are usually conserved. However, in fructophilic species belonging to the floral Wickerhamiella and Starmerella genera (W/S clade), alcoholic fermentation was uniquely shaped by events of gene loss and horizontal gene transfer (HGT).

RESULTS: Because HGT and gene losses were first identified when only eight W/S-clade genomes were available, we collected publicly available genome data and sequenced the genomes of 36 additional species. A total of 63 genomes, representing most of the species described in the clade, were included in the analyses. Firstly, we inferred the phylogenomic tree of the clade and inspected the genomes for the presence of HGT-derived genes involved in fructophily and alcoholic fermentation. We predicted nine independent HGT events and several instances of secondary loss pertaining to both pathways. To investigate the possible links between gene loss and acquisition events and evolution of sugar metabolism, we conducted phenotypic characterization of 42 W/S-clade species including estimates of sugar consumption rates and fermentation byproduct formation. In some instances, the reconciliation of genotypes and phenotypes yielded unexpected results, such as the discovery of fructophily in the absence of the cornerstone gene (FFZ1) and robust alcoholic fermentation in the absence of the respective canonical pathway.

CONCLUSIONS: These observations suggest that reinstatement of alcoholic fermentation in the W/S clade triggered a surge of innovation that goes beyond the utilization of xenologous enzymes, with fructose metabolism playing a key role.

RevDate: 2024-05-30

Wolyniak MJ, Frazier RH, Gemborys PK, et al (2024)

Malate dehydrogenase: a story of diverse evolutionary radiation.

Essays in biochemistry pii:234511 [Epub ahead of print].

Malate dehydrogenase (MDH) is a ubiquitous enzyme involved in cellular respiration across all domains of life. MDH's ubiquity allows it to act as an excellent model for considering the history of life and how the rise of aerobic respiration and eukaryogenesis influenced this evolutionary process. Here, we present the diversity of the MDH family of enzymes across bacteria, archaea, and eukarya, the relationship between MDH and lactate dehydrogenase (LDH) in the formation of a protein superfamily, and the connections between MDH and endosymbiosis in the formation of mitochondria and chloroplasts. The development of novel and powerful DNA sequencing techniques has challenged some of the conventional wisdom underlying MDH evolution and suggests a history dominated by gene duplication, horizontal gene transfer, and cryptic endosymbiosis events and adaptation to a diverse range of environments across all domains of life over evolutionary time. The data also suggest a superfamily of proteins that do not share high levels of sequential similarity but yet retain strong conservation of core function via key amino acid residues and secondary structural components. As DNA sequencing and 'big data' analysis techniques continue to improve in the life sciences, it is likely that the story of MDH will continue to refine as more examples of superfamily diversity are recovered from nature and analyzed.

RevDate: 2024-05-31
CmpDate: 2024-05-29

Breidenstein A, Lamy A, Bader CP, et al (2024)

PrgE: an OB-fold protein from plasmid pCF10 with striking differences to prototypical bacterial SSBs.

Life science alliance, 7(8):.

A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.

RevDate: 2024-05-31

Da Cunha V, Gaïa M, P Forterre (2022)

The expanding Asgard archaea and their elusive relationships with Eukarya.

mLife, 1(1):3-12.

The discovery of Asgard archaea and the exploration of their diversity over the last 6 years have deeply impacted the scientific community working on eukaryogenesis, rejuvenating an intense debate on the topology of the universal tree of life (uTol). Here, we discuss how this debate is impacted by two recent publications that expand the number of Asgard lineages and eukaryotic signature proteins (ESPs). We discuss some of the main difficulties that can impair the phylogenetic reconstructions of the uTol and suggest that the debate about its topology is not settled. We notably hypothesize the existence of horizontal gene transfers between ancestral Asgards and proto-eukaryotes that could result in the observed abnormal behaviors of some Asgard ESPs and universal marker proteins. This hypothesis is relevant regardless of the scenario considered regarding eukaryogenesis. It implies that the Asgards were already diversified before the last eukaryotic common ancestor and shared the same biotopes with proto-eukaryotes. We suggest that some Asgards might be still living in symbiosis today with modern Eukarya.

RevDate: 2024-05-29

Zhang Y, Liu M, Zhang J, et al (2024)

Large-scale comparative analysis reveals phylogenomic preference of blaNDM-1 and blaKPC-2 transmission among Klebsiella pneumoniae.

International journal of antimicrobial agents pii:S0924-8579(24)00143-2 [Epub ahead of print].

blaNDM-1 and blaKPC-2 are responsible for the global rise of carbapenem-resistant K. pneumoniae, posing a great challenge to public health. However, the impact of phylogenetic factors on blaNDM-1 and blaKPC-2 dissemination is not yet fully understood. Here, we established a global dataset of 4051 blaNDM-1+ or 10223 blaKPC-2+ K. pneumoniae genomes and compared their transmission mode on a global scale. The results showed that blaNDM-1+ K. pneumoniae genomes exhibited a broader geographical distribution and higher ST richness than blaKPC-2+, indicating higher transmissibility of the blaNDM-1 gene. Furthermore, blaNDM-1+ genomes displayed significant difference in ST lineage, antibiotic resistance genes composition, virulence genes composition, genetic environments with blaKPC-2+, suggesting their distinct dissemination mechanism. blaNDM-1+ genomes were predominantly associated with ST147 and ST16, whereas blaKPC-2+ genomes were mainly found in ST11 and ST258. Significantly different accessory genes were identified between blaNDM-1+ and blaKPC-2+ genomes. The preference for blaKPC-2 distribution across certain countries, ST lineages, and genetic environments underscores vertical spread as the primary mechanism driving the expansion of blaKPC-2. In contrast to blaKPC-2+, blaNDM-1+ genomes did not display such a strong preference, confirming that the blaNDM-1 dissemination mainly depended on horizontal gene transfer. Overall, our study demonstrates different phylogenetic drivers of blaNDM-1 and blaKPC-2 dissemination, providing new insights into their global transmission dynamic.

RevDate: 2024-05-29
CmpDate: 2024-05-29

He J, Yang Z, Wang M, et al (2024)

Integrative and conjugative elements of Pasteurella multocida: Prevalence and signatures in population evolution.

Virulence, 15(1):2359467.

Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.

RevDate: 2024-05-30

Haimlich S, Fridman Y, Khandal H, et al (2024)

Widespread horizontal gene transfer between plants and bacteria.

ISME communications, 4(1):ycae073.

Plants host a large array of commensal bacteria that interact with the host. The growth of both bacteria and plants is often dependent on nutrients derived from the cognate partners, and the bacteria fine-tune host immunity against pathogens. This ancient interaction is common in all studied land plants and is critical for proper plant health and development. We hypothesized that the spatial vicinity and the long-term relationships between plants and their microbiota may promote cross-kingdom horizontal gene transfer (HGT), a phenomenon that is relatively rare in nature. To test this hypothesis, we analyzed the Arabidopsis thaliana genome and its extensively sequenced microbiome to detect events of horizontal transfer of full-length genes that transferred between plants and bacteria. Interestingly, we detected 75 unique genes that were horizontally transferred between plants and bacteria. Plants and bacteria exchange in both directions genes that are enriched in carbohydrate metabolism functions, and bacteria transferred to plants genes that are enriched in auxin biosynthesis genes. Next, we provided a proof of concept for the functional similarity between a horizontally transferred bacterial gene and its Arabidopsis homologue in planta. The Arabidopsis DET2 gene is essential for biosynthesis of the brassinosteroid phytohormones, and loss of function of the gene leads to dwarfism. We found that expression of the DET2 homologue from Leifsonia bacteria of the Actinobacteria phylum in the Arabidopsis det2 background complements the mutant and leads to normal plant growth. Together, these data suggest that cross-kingdom HGT events shape the metabolic capabilities and interactions between plants and bacteria.

RevDate: 2024-05-27

Ji W, Ma J, Zheng Z, et al (2024)

Algae blooms with resistance in fresh water: Potential interplay between Microcystis and antibiotic resistance genes.

The Science of the total environment pii:S0048-9697(24)03675-1 [Epub ahead of print].

Microcystis, a type of cyanobacteria known for producing microcystins (MCs), is experiencing a global increase in blooms. They have been recently recognized as potential contributors to the widespread of antibiotic resistance genes (ARGs). By reviewing approximately 150 pieces of recent studies, a hypothesis has been formulated suggesting that significant fluctuations in MCs concentrations and microbial community structure during Microcystis blooms could influence the dynamics of waterborne ARGs. Among all MCs, microcystin-LR (MC-LR) is the most widely distributed worldwide, notably abundant in reservoirs during summer. MCs inhibit protein phosphatases or increase reactive oxygen species (ROS), inducing oxidative stresses, enhancing membrane permeability, and causing DNA damage. This further enhances selective pressures and horizontal gene transfer (HGT) chances of ARGs. The mechanisms by which Microcystis regulates ARG dissemination have been systematically organized for the first time, focusing on the secretion of MCs and the alterations of bacterial community structure. However, several knowledge gaps remain, particularly concerning how MCs interfere with the electron transport chain and how Microcystis facilitates HGT of ARGs. Concurrently, the predominance of Microcystis forming the algal microbial aggregates is considered a hotspot for preserving and transferring ARGs. Yet, Microcystis can deplete the nutrients from other taxa within these aggregates, thereby reducing the density of ARG-carrying bacteria. Therefore, further studies are needed to explore the 'symbiotic - competitive' relationships between Microcystis and ARG-hosting bacteria under varied nutrient conditions. Addressing these knowledge gaps is crucial to understand the impacts of the algal aggregates on dynamics of waterborne antibiotic resistome, and underscores the need for effective control of Microcystis to curb the spread of antibiotic resistance. Constructed wetlands and photocatalysis represent advantageous strategies for halting the spread of ARGs from the perspective of Microcystis blooms, as they can effectively control Microcystis and MCs while maintaining the stability of aquatic ecosystem.

RevDate: 2024-05-27
CmpDate: 2024-05-24

Puginier C, Libourel C, Otte J, et al (2024)

Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae.

Nature communications, 15(1):4452.

Mutualistic symbioses have contributed to major transitions in the evolution of life. Here, we investigate the evolutionary history and the molecular innovations at the origin of lichens, which are a symbiosis established between fungi and green algae or cyanobacteria. We de novo sequence the genomes or transcriptomes of 12 lichen algal symbiont (LAS) and closely related non-symbiotic algae (NSA) to improve the genomic coverage of Chlorophyte algae. We then perform ancestral state reconstruction and comparative phylogenomics. We identify at least three independent gains of the ability to engage in the lichen symbiosis, one in Trebouxiophyceae and two in Ulvophyceae, confirming the convergent evolution of the lichen symbioses. A carbohydrate-active enzyme from the glycoside hydrolase 8 (GH8) family was identified as a top candidate for the molecular-mechanism underlying lichen symbiosis in Trebouxiophyceae. This GH8 was acquired in lichenizing Trebouxiophyceae by horizontal gene transfer, concomitantly with the ability to associate with lichens fungal symbionts (LFS) and is able to degrade polysaccharides found in the cell wall of LFS. These findings indicate that a combination of gene family expansion and horizontal gene transfer provided the basis for lichenization to evolve in chlorophyte algae.

RevDate: 2024-05-29
CmpDate: 2024-05-24

Wranne MS, Karami N, Sriram KK, et al (2024)

Comparison of CTX-M encoding plasmids present during the early phase of the ESBL pandemic in western Sweden.

Scientific reports, 14(1):11880.

Plasmids encoding blaCTX-M genes have greatly shaped the evolution of E. coli producing extended-spectrum beta-lactamases (ESBL-E. coli) and adds to the global threat of multiresistant bacteria by promoting horizontal gene transfer (HGT). Here we screened the similarity of 47 blaCTX-M -encoding plasmids, from 45 epidemiologically unrelated and disperse ESBL-E. coli strains, isolated during the early phase (2009-2014) of the ESBL pandemic in western Sweden. Using optical DNA mapping (ODM), both similar and rare plasmids were identified. As many as 57% of the plasmids formed five ODM-plasmid groups of at least three similar plasmids per group. The most prevalent type (28%, IncIl, pMLST37) encoded blaCTX-M-15 (n = 10), blaCTX-M-3 (n = 2) or blaCTX-M-55 (n = 1). It was found in isolates of various sequence types (STs), including ST131. This could indicate ongoing local HGT as whole-genome sequencing only revealed similarities with a rarely reported, IncIl plasmid. The second most prevalent type (IncFII/FIA/FIB, F1:A2:B20) harboring blaCTX-M-27, was detected in ST131-C1-M27 isolates, and was similar to plasmids previously reported for this subclade. The results also highlight the need for local surveillance of plasmids and the importance of temporospatial epidemiological links so that detection of a prevalent plasmid is not overestimated as a potential plasmid transmission event in outbreak investigations.

RevDate: 2024-05-24

Liu T, Lee S, Kim M, et al (2024)

A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli.

Journal of hazardous materials, 473:134694 pii:S0304-3894(24)01273-1 [Epub ahead of print].

Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBL-producing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli.

RevDate: 2024-05-24

Zhou CS, Cao GL, Liu BF, et al (2024)

Deciphering the reduction of antibiotic resistance genes (ARGs) during medium-chain fatty acids production from waste activated sludge: Driven by inhibition of ARGs transmission and shift of microbial community.

Journal of hazardous materials, 473:134676 pii:S0304-3894(24)01255-X [Epub ahead of print].

Medium-chain fatty acids (MCFAs) production from waste activated sludge (WAS) by chain extension (CE) is a promising technology. However, the effects and mechanisms of CE process on the fate of antibiotic resistance genes (ARGs) remain unclear. In this study, the results showed that the removal efficiency of ARGs was 81.15 % in CE process, suggesting its efficacy in reducing environmental risks. Further, the observed decrease in mobile genetic elements (MGEs) indicated that CE process restricted the horizontal gene transfer (HGT). Complementing this, the increase in soluble organic matters and extracellular 16 S rDNA confirmed that MCFAs production caused bacterial damage. Decreased intracellular ARGs and increased extracellular ARGs further revealed that MCFAs production impaired ARGs hosts, thereby limiting the vertical gene transfer (VGT) of ARGs. Shift of microbial community combined with co-occurrence network analysis demonstrated that functional bacteria without host potential for ARGs were enriched, but potential ARGs and MGEs hosts decreased, showing the role of functional bacterial phylogeny and selection pressure of MCFAs in reducing ARGs. Finally, partial least squares path model was used to systematic verify the mechanism of ARGs removal in CE process, which was attributed to the inhibition of ARGs transmission (HGT and VGT) and shift of microbial community.

RevDate: 2024-05-24

Sabtcheva S, Stoikov I, Ivanov IN, et al (2024)

Genomic Characterization of Carbapenemase-Producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii Clinical Isolates from Bulgaria.

Antibiotics (Basel, Switzerland), 13(5):.

Carbapenemase-producing Enterobacter spp. Serratia marcescens, Citrobacter freundii, Providencia spp., and Morganella morganii (CP-ESCPM) are increasingly identified as causative agents of nosocomial infections but are still not under systematic genomic surveillance. In this study, using a combination of whole-genome sequencing and conjugation experiments, we sought to elucidate the genomic characteristics and transferability of resistance genes in clinical CP-ESCPM isolates from Bulgaria. Among the 36 sequenced isolates, NDM-1 (12/36), VIM-4 (11/36), VIM-86 (8/36), and OXA-48 (7/36) carbapenemases were identified; two isolates carried both NDM-1 and VIM-86. The majority of carbapenemase genes were found on self-conjugative plasmids. IncL plasmids were responsible for the spread of OXA-48 among E. hormaechei, C. freundii, and S. marcescens. IncM2 plasmids were generally associated with the spread of NDM-1 in C. freundii and S. marcescens, and also of VIM-4 in C. freundii. IncC plasmids were involved in the spread of the recently described VIM-86 in P. stuartii isolates. IncC plasmids carrying blaNDM-1 and blaVIM-86 were observed too. blaNDM-1 was also detected on IncX3 in S. marcescens and on IncT plasmid in M. morganii. The significant resistance transfer rates we observed highlight the role of the ESCPM group as a reservoir of resistance determinants and stress the need for strengthening infection control measures.

RevDate: 2024-05-24

Lamichhane J, Choi BI, Stegman N, et al (2024)

Macrolide Resistance in the Aerococcus urinae Complex: Implications for Integrative and Conjugative Elements.

Antibiotics (Basel, Switzerland), 13(5):.

The recognition of the Aerococcus urinae complex (AUC) as an emerging uropathogen has led to growing concerns due to a limited understanding of its disease spectrum and antibiotic resistance profiles. Here, we investigated the prevalence of macrolide resistance within urinary AUC isolates, shedding light on potential genetic mechanisms. Phenotypic testing revealed a high rate of macrolide resistance: 45%, among a total of 189 urinary AUC isolates. Genomic analysis identified integrative and conjugative elements (ICEs) as carriers of the macrolide resistance gene ermA, suggesting horizontal gene transfer as a mechanism of resistance. Furthermore, comparison with publicly available genomes of related pathogens revealed high ICE sequence homogeneity, highlighting the potential for cross-species dissemination of resistance determinants. Understanding mechanisms of resistance is crucial for developing effective surveillance strategies and improving antibiotic use. Furthermore, the findings underscore the importance of considering the broader ecological context of resistance dissemination, emphasizing the need for community-level surveillance to combat the spread of antibiotic resistance within the urinary microbiome.

RevDate: 2024-05-24

Monecke S, Burgold-Voigt S, Braun SD, et al (2024)

Characterisation of PVL-Positive Staphylococcus argenteus from the United Arab Emirates.

Antibiotics (Basel, Switzerland), 13(5):.

Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus. This includes those encoding the Panton-Valentine leukocidin (PVL), which is associated mainly with severe and/or recurrent staphylococcal skin and soft tissue infections. Here, we describe the genome sequences of two PVL-positive, mecA-negative S. argenteus sequence type (ST) 2250 isolates from the United Arab Emirates in detail. The isolates were found in a dental clinic in the United Arab Emirates (UAE). Both were sequenced using Oxford Nanopore Technology (ONT). This demonstrated the presence of temperate bacteriophages in the staphylococcal genomes, including a PVL prophage. It was essentially identical to the published sequence of phiSa2wa_st78 (GenBank NC_055048), a PVL phage from an Australian S. aureus clonal complex (CC) 88 isolate. Besides the PVL prophage, one isolate carried another prophage and the second isolate carried two additional prophages, whereby the region between these two prophages was inverted. This "flipped" region comprised about 1,083,000 bp, or more than a third of the strain's genome, and it included the PVL prophage. Prophages were induced by Mitomycin C treatment and subjected to transmission electron microscopy (TEM). This yielded, in accordance to the sequencing results, one or, respectively, two distinct populations of icosahedral phages. It also showed prolate phages which presumptively might be identified as the PVL phage. This observation highlights the significance bacteriophages have as agents of horizontal gene transfer as well as the need for monitoring emerging staphylococcal strains, especially in cosmopolitan settings such as the UAE.

RevDate: 2024-05-24
CmpDate: 2024-05-24

Brattig N, Bergquist R, Vienneau D, et al (2024)

Geography and health: role of human translocation and access to care.

Infectious diseases of poverty, 13(1):37.

Natural, geographical barriers have historically limited the spread of communicable diseases. This is no longer the case in today's interconnected world, paired with its unprecedented environmental and climate change, emphasising the intersection of evolutionary biology, epidemiology and geography (i.e. biogeography). A total of 14 articles of the special issue entitled "Geography and health: role of human translocation and access to care" document enhanced disease transmission of diseases, such as malaria, leishmaniasis, schistosomiasis, COVID-19 (Severe acute respiratory syndrome corona 2) and Oropouche fever in spite of spatiotemporal surveillance. High-resolution satellite images can be used to understand spatial distributions of transmission risks and disease spread and to highlight the major avenue increasing the incidence and geographic range of zoonoses represented by spill-over transmission of coronaviruses from bats to pigs or civets. Climate change and globalization have increased the spread and establishment of invasive mosquitoes in non-tropical areas leading to emerging outbreaks of infections warranting improved physical, chemical and biological vector control strategies. The translocation of pathogens and their vectors is closely connected with human mobility, migration and the global transport of goods. Other contributing factors are deforestation with urbanization encroaching into wildlife zones. The destruction of natural ecosystems, coupled with low income and socioeconomic status, increase transmission probability of neglected tropical and zoonotic diseases. The articles in this special issue document emerging or re-emerging diseases and surveillance of fever symptoms. Health equity is intricately connected to accessibility to health care and the targeting of healthcare resources, necessitating a spatial approach. Public health comprises successful disease management integrating spatial surveillance systems, including access to sanitation facilities. Antimicrobial resistance caused, e.g. by increased use of antibiotics in health, agriculture and aquaculture, or acquisition of resistance genes, can be spread by horizontal gene transfer. This editorial reviews the key findings of this 14-article special issue, identifies important gaps relevant to our interconnected world and makes a number of specific recommendations to mitigate the transmission risks of infectious diseases in the post-COVID-19 pandemic era.

RevDate: 2024-05-23
CmpDate: 2024-05-24

Han D, Ma S, He C, et al (2024)

Unveiling the genetic architecture and transmission dynamics of a novel multidrug-resistant plasmid harboring blaNDM-5 in E. Coli ST167: implications for antibiotic resistance management.

BMC microbiology, 24(1):178.

BACKGROUND: The emergence of multidrug-resistant (MDR) Escherichia coli strains poses significant challenges in clinical settings, particularly when these strains harbor New Delhi metallo-ß-lactamase (NDM) gene, which confer resistance to carbapenems, a critical class of last-resort antibiotics. This study investigates the genetic characteristics and implications of a novel blaNDM-5-carrying plasmid pNDM-5-0083 isolated from an E. coli strain GZ04-0083 from clinical specimen in Zhongshan, China.

RESULTS: Phenotypic and genotypic evaluations confirmed that the E. coli ST167 strain GZ04-0083 is a multidrug-resistant organism, showing resistance to diverse classes of antibiotics including ß-lactams, carbapenems, fluoroquinolones, aminoglycosides, and sulfonamides, while maintaining susceptibility to monobactams. Investigations involving S1 pulsed-field gel electrophoresis, Southern blot analysis, and conjugation experiments, alongside genomic sequencing, confirmed the presence of the blaNDM-5 gene within a 146-kb IncFIB plasmid pNDM-5-0083. This evidence underscores a significant risk for the horizontal transfer of resistance genes among bacterial populations. Detailed annotations of genetic elements-such as resistance genes, transposons, and insertion sequences-and comparative BLAST analyses with other blaNDM-5-carrying plasmids, revealed a unique architectural configuration in the pNDM-5-0083. The MDR region of this plasmid shares a conserved gene arrangement (repA-IS15DIV-blaNDM-5-bleMBL-IS91-suI2-aadA2-dfrA12) with three previously reported plasmids, indicating a potential for dynamic genetic recombination and evolution within the MDR region. Additionally, the integration of virulence factors, including the iro and sit gene clusters and enolase, into its genetic architecture poses further therapeutic challenges by enhancing the strain's pathogenicity through improved host tissue colonization, immune evasion, and increased infection severity.

CONCLUSIONS: The detailed identification and characterization of pNDM-5-0083 enhance our understanding of the mechanisms facilitating the spread of carbapenem resistance. This study illuminates the intricate interplay among various genetic elements within the novel blaNDM-5-carrying plasmid, which are crucial for the stability and mobility of resistance genes across bacterial populations. These insights highlight the urgent need for ongoing surveillance and the development of effective strategies to curb the proliferation of antibiotic resistance.

RevDate: 2024-05-23
CmpDate: 2024-05-24

Gevin M, Latifi A, E Talla (2024)

The modular architecture of sigma factors in cyanobacteria: a framework to assess their diversity and understand their evolution.

BMC genomics, 25(1):512.

BACKGROUND: Bacterial RNA polymerase holoenzyme requires sigma70 factors to start transcription by identifying promoter elements. Cyanobacteria possess multiple sigma70 factors to adapt to a wide variety of ecological niches. These factors are grouped into two categories: primary sigma factor initiates transcription of housekeeping genes during normal growth conditions, while alternative sigma factors initiate transcription of specific genes under particular conditions. However, the present classification does not consider the modular organization of their structural domains, introducing therefore multiple functional and structural biases. A comprehensive analysis of this protein family in cyanobacteria is needed to address these limitations.

RESULTS: We investigated the structure and evolution of sigma70 factors in cyanobacteria, analyzing their modular architecture and variation among unicellular, filamentous, and heterocyst-forming morphotypes. 4,193 sigma70 homologs were found with 59 distinct modular patterns, including six essential and 29 accessory domains, such as DUF6596. 90% of cyanobacteria typically have 5 to 17 sigma70 homologs and this number likely depends on the strain morphotype, the taxonomic order and the genome size. We classified sigma70 factors into 12 clans and 36 families. According to taxonomic orders and phenotypic traits, the number of homologs within the 14 main families was variable, with the A.1 family including the primary sigma factor since this family was found in all cyanobacterial species. The A.1, A.5, C.1, E.1, J.1, and K.1 families were found to be key sigma families that distinguish heterocyst-forming strains. To explain the diversification and evolution of sigma70, we propose an evolutionary scenario rooted in the diversification of a common ancestor of the A1 family. This scenario is characterized by evolutionary events including domain losses, gains, insertions, and modifications. The high occurrence of the DUF6596 domain in bacterial sigma70 proteins, and its association with the highest prevalence observed in Actinobacteria, suggests that this domain might be important for sigma70 function. It also implies that the domain could have emerged in Actinobacteria and been transferred through horizontal gene transfer.

CONCLUSION: Our analysis provides detailed insights into the modular domain architecture of sigma70, introducing a novel robust classification. It also proposes an evolutionary scenario explaining their diversity across different taxonomical orders.

RevDate: 2024-05-23

Vuruputoor VS, Starovoitov A, Cai Y, et al (2024)

Crossroads of assembling a moss genome: navigating contaminants and horizontal gene transfer in the moss Physcomitrellopsis africana.

G3 (Bethesda, Md.) pii:7680523 [Epub ahead of print].

The first chromosome-scale reference genome of the rare narrow-endemic African moss Physcomitrellopsis africana is presented here. Assembled from 73x nanopore long reads and 163x BGI-seq short reads, the 414 Mb reference comprises 26 chromosomes and 22,925 protein-coding genes (BUSCO: C:94.8%[D:13.9%]). This genome holds two genes that withstood rigorous filtration of microbial contaminants, have no homolog in other land plants and are thus interpreted as resulting from two unique horizontal gene transfers from microbes. Further, Physcomitrellopsis africana shares 176 of the 273 published HGT candidates identified in Physcomitrium patens, but lacks 98 of these, highlighting that perhaps as many as 91 genes were acquired in P. patens in the last 40 million years following its divergence from its common ancestor with P. africana. These observations suggest rather continuous gene gains via HGT followed by potential losses, during the diversification of the Funariaceae. Our findings showcase both dynamic flux in plant HGTs over evolutionarily "short" timescales, alongside enduring impacts of successful integrations, like those still functionally maintained in extant Physcomitrellopsis africana. Furthermore, this study describes the informatic processes employed to distinguish contaminants from candidate HGT events.

RevDate: 2024-05-22
CmpDate: 2024-05-22

Zhang F, Shi X, Xu J, et al (2024)

Tandem gene duplication selected by activation of horizontally transferred gene in bacteria.

Applied microbiology and biotechnology, 108(1):340.

Horizontal gene transfer occurs frequently in bacteria, but the mechanism driving activation and optimization of the expression of horizontally transferred genes (HTGs) in new recipient strains is not clear. Our previous study found that spontaneous tandem DNA duplication resulted in rapid activation of HTGs. Here, we took advantage of this finding to develop a novel technique for tandem gene duplication, named tandem gene duplication selected by activation of horizontally transferred gene in bacteria (TDAH), in which tandem duplication was selected by the activation of horizontally transferred selectable marker gene. TDAH construction does not contain any reported functional elements based on homologous or site-specific recombination and DNA amplification. TDAH only contains an essential selectable marker for copy number selection and 9-bp-microhomology border sequences for precise illegitimate recombination. One transformation and 3 days were enough to produce a high-copy strain, so its procedure is simple and fast. Without subsequent knockout of the endogenous recombination system, TDAH could also generate the relatively stable high-copy tandem duplication for plasmid-carried and genome-integrated DNA. TDAH also showed an excellent capacity for increase gene expression and worked well in different industrial bacteria. We also applied TDAH to select the optimal high copy number of ribA for vitamin B2 production in E. coli; the yield was improved by 3.5 times and remained stable even after 12 subcultures. TDAH is a useful tool for recombinant protein production and expression optimization of biosynthetic pathways. KEY POINTS: • We develop a novel and efficient technique (TDAH) for tandem gene duplication in bacterium. TDAH is based on the mechanism of HTG rapid activation. TDAH does not contain any reported functional elements based on homologous recombination and DNA amplification. TDAH only contains an essential selectable marker for copy number selection, so its construction and procedure are very simple and fast. • TDAH is the first reported selected and stable tandem-gene-duplication technique in which the selected high-copy plasmid-carried and genome-integrated DNA could remain stable without the subsequent knockout of recombination system. • TDAH showed an excellent capacity for regulating gene expression and worked well in different industrial bacteria, indicating it is a useful tool for recombinant protein production and expression optimization of biosynthetic pathways. • TDAH was applied to select the optimal high copy number of ribA for vitamin B2 production in E. coli; the yield was improved by 3.5-fold and remained stable even after 12 subcultures.

RevDate: 2024-05-21

Xu M, Gao P, Gao Y, et al (2024)

Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion.

Journal of environmental management, 360:121090 pii:S0301-4797(24)01076-4 [Epub ahead of print].

Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs.

RevDate: 2024-05-21

Kang J, Zhang C, Wan S, et al (2024)

Prevalence and characterization of aminoglycoside resistance gene aph(2")-If-carrying Campylobacter jejuni.

International journal of food microbiology, 419:110747 pii:S0168-1605(24)00191-0 [Epub ahead of print].

Campylobacter jejuni is recognized as a significant foodborne pathogen, and recent studies have indicated a rising trend of aminoglycosides resistance gene aph(2″)-If among C. jejuni isolates from food-producing animals in China. However, systematic information about aph(2″)-If-positive C. jejuni from food-producing animals and other sources worldwide based on whole-genome analysis remains a knowledge gap. In this study, we aimed to analyze the worldwide distribution, genetic environment and phylogenetic tree of aph(2″)-If by utilizing Whole Genome Sequencing (WGS) data obtained, coupled with information in the GenBank database. A total of 160C. jejuni isolates in the GenBank database and 14C. jejuni isolates in our laboratory carrying aph(2″)-If gene were performed for further analysis. WGS analysis revealed the global distribution of aph(2″)-If among C. jejuni from 6 countries. Multilocus Sequence Typing(MLST) results indicated that 70 STs were involved in the dissemination of aph(2″)-If, with ST10086 being the predominant ST. Whole-genome Multilocus Sequence Typing(wg-MLST) analysis according to times, countries, and origins of C. jejuni isolation further demonstrated a close relationship between aph(2″)-If carrying C. jejuni isolates from farm and food. The findings also revealed the existence of 32 distinct types of genetic environments surrounding aph(2″)-If among these isolates. Notably, Type 30, characterized by the arrangement ISsag10-deoD-ant(9)-hp-hp-aph(2″)-If, emerged as the predominant genetic environment. In conclusion, our analysis provides the inaugural perspective on the worldwide distribution of aph(2″)-If. This resistance gene demonstrates horizontal transferability and regional diffusion in a clonal pattern. The close association observed among aph(2″)-If-positive C. jejuni strains isolated from poultry, food, and clinical environments underscores the potential for zoonotic transmission from these isolates.

RevDate: 2024-05-21

Chong TN, L Shapiro (2024)

Bacterial cell differentiation enables population level survival strategies.

mBio [Epub ahead of print].

Clonal reproduction of unicellular organisms ensures the stable inheritance of genetic information. However, this means of reproduction lacks an intrinsic basis for genetic variation, other than spontaneous mutation and horizontal gene transfer. To make up for this lack of genetic variation, many unicellular organisms undergo the process of cell differentiation to achieve phenotypic heterogeneity within isogenic populations. Cell differentiation is either an inducible or obligate program. Induced cell differentiation can occur as a response to a stimulus, such as starvation or host cell invasion, or it can be a stochastic process. In contrast, obligate cell differentiation is hardwired into the organism's life cycle. Whether induced or obligate, bacterial cell differentiation requires the activation of a signal transduction pathway that initiates a global change in gene expression and ultimately results in a morphological change. While cell differentiation is considered a hallmark in the development of multicellular organisms, many unicellular bacteria utilize this process to implement survival strategies. In this review, we describe well-characterized cell differentiation programs to highlight three main survival strategies used by bacteria capable of differentiation: (i) environmental adaptation, (ii) division of labor, and (iii) bet-hedging.

RevDate: 2024-05-22
CmpDate: 2024-05-22

Peng X, Zhou J, Lan Z, et al (2024)

Carbonaceous particulate matter promotes the horizontal transfer of antibiotic resistance genes.

Environmental science. Processes & impacts, 26(5):915-927.

There is growing concern about the transfer of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in airborne particulate matter. In this study, we investigated the effects of various types of carbonaceous particulate matter (CPM) on the transfer of ARGs in vitro. The results showed that CPM promoted the transfer of ARGs, which was related to the concentration and particle size. Compared with the control group, the transfer frequency was 95.5, 74.7, 65.4, 14.7, and 3.8 times higher in G (graphene), CB (carbon black), NGP (nanographite powder), GP1.6 (graphite powder 1.6 micron), and GP45 (graphite powder 45 micron) groups, respectively. Moreover, the transfer frequency gradually increased with the increase in CPM concentration, while there was a negative relationship between the CPM particle size and conjugative transfer frequency. In addition, the results showed that CPM could promote the transfer of ARGs by increasing ROS, as well as activating the SOS response and expression of conjugative transfer-related genes (trbBp, trfAp, korA, kroB, and trbA). These findings are indicative of the potential risk of CPM for the transfer of ARGs in the environment, enriching our understanding of environmental pollution and further raising awareness of environmental protection.

RevDate: 2024-05-21

Tamayo-Leiva J, Alcorta J, Sepúlveda F, et al (2024)

Structure and dispersion of the conjugative mobilome in surface ocean bacterioplankton.

ISME communications, 4(1):ycae059.

Mobile genetic elements (MGEs), collectively referred to as the "mobilome", can have a significant impact on the fitness of microbial communities and therefore on ecological processes. Marine MGEs have mainly been associated with wide geographical and phylogenetic dispersal of adaptative traits. However, whether the structure of this mobilome exhibits deterministic patterns in the natural community is still an open question. The aim of this study was to characterize the structure of the conjugative mobilome in the ocean surface bacterioplankton by searching the publicly available marine metagenomes from the TARA Oceans survey, together with molecular markers, such as relaxases and type IV coupling proteins of the type IV secretion system (T4SS). The T4SS machinery was retrieved in more abundance than relaxases in the surface marine bacterioplankton. Moreover, among the identified MGEs, mobilizable elements were the most abundant, outnumbering self-conjugative sequences. Detection of a high number of incomplete T4SSs provides insight into possible strategies related to trans-acting activity between MGEs, and accessory functions of the T4SS (e.g. protein secretion), allowing the host to maintain a lower metabolic burden in the highly dynamic marine system. Additionally, the results demonstrate a wide geographical dispersion of MGEs throughout oceanic regions, while the Southern Ocean appears segregated from other regions. The marine mobilome also showed a high similarity of functions present in known plasmid databases. Moreover, cargo genes were mostly related to DNA processing, but scarcely associated with antibiotic resistance. Finally, within the MGEs, integrative and conjugative elements showed wider marine geographic dispersion than plasmids.

RevDate: 2024-05-20
CmpDate: 2024-05-20

Talat A, Khan F, AU Khan (2024)

Genome analyses of colistin-resistant high-risk blaNDM-5 producing Klebsiella pneumoniae ST147 and Pseudomonas aeruginosa ST235 and ST357 in clinical settings.

BMC microbiology, 24(1):174.

BACKGROUND: Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT).

RESULTS: This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 μg/mL), while broth microdilution identified 48 (MIC = 32-128 μg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357).

CONCLUSION: The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.

RevDate: 2024-05-20

S V, T J, E AP, et al (2024)

Antibiotic resistance of heterotrophic bacteria from the sediments of adjoining high Arctic fjords, Svalbard.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Epub ahead of print].

Antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are now considered major global threats. The Kongsfjorden and Krossfjorden are the interlinked fjords in the Arctic that are currently experiencing the effects of climate change and receiving input of pollutants from distant and regional sources. The present study focused on understanding the prevalence of antibiotic resistance of retrievable heterotrophic bacteria from the sediments of adjacent Arctic fjords Kongsfjorden and Krossfjorden. A total of 237 bacterial isolates were tested against 16 different antibiotics. The higher resistance observed towards Extended Spectrum β-lactam antibiotic (ESBL) includes ceftazidime (45.56%) followed by trimethoprim (27%) and sulphamethizole (24.05%). The extent of resistance was meagre against tetracycline (2.53%) and gentamycin (2.95%). The 16S rRNA sequencing analysis identified that Proteobacteria (56%) were the dominant antibiotic resistant phyla, followed by Firmicutes (35%), Actinobacteria (8%) and Bacteroidetes. The dominant resistant bacterial isolates are Bacillus cereus (10%), followed by Alcaligenes faecalis (6.47%), Cytobacillus firmus (5.75%) Salinibacterium sp. (5%) and Marinobacter antarcticus (5%). Our study reveals the prevalence of antibiotic resistance showed significant differences in both the inner and outer fjords of Kongsfjorden and Krossfjorden (p < 0.05). This may be the input of antibiotic resistance bacteria released into the fjords from the preserved permafrost due to the melting of glaciers, horizontal gene transfer, and human influence in the Arctic region act as a selection pressure for the development and dissemination of more antibiotic resistant bacteria in Arctic fjords.

RevDate: 2024-05-20

Mancuso CP, Baker JS, Qu E, et al (2024)

Intraspecies warfare restricts strain coexistence in human skin microbiomes.

bioRxiv : the preprint server for biology pii:2024.05.07.592803.

Determining why only a fraction of encountered or applied bacterial strains engraft in a given person's microbiome is crucial for understanding and engineering these communities [1] . Previous work has established that metabolism can determine colonization success in vivo [2-4] , but relevance of bacterial warfare in preventing engraftment has been less explored. Here, we demonstrate that intraspecies warfare presents a significant barrier to strain transmission in the skin microbiome by profiling 14,884 pairwise interactions between Staphylococcus epidermidis cultured from eighteen human subjects from six families. We find that intraspecies antagonisms are abundant; these interactions are mechanistically diverse, independent of the relatedness between strains, and consistent with rapid evolution via horizontal gene transfer. Ability to antagonize more strains is associated with reaching a higher fraction of the on-person S. epidermidis community. Moreover, antagonisms are significantly depleted among strains residing on the same person relative to random assemblages. Two notable exceptions, in which bacteria evolved to become sensitive to antimicrobials found on the same host, are explained by mutations that provide phage resistance, contextualizing the importance of warfare among other lethal selective pressures. Taken together, our results emphasize that accounting for intraspecies bacterial warfare is essential to the design of long-lasting probiotic therapeutics.

RevDate: 2024-05-21
CmpDate: 2024-05-21

Garrido V, Arrieta-Gisasola A, Migura-García L, et al (2024)

Multidrug resistance in Salmonella isolates of swine origin: mobile genetic elements and plasmids associated with cephalosporin resistance with potential transmission to humans.

Applied and environmental microbiology, 90(5):e0026424.

The emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context requiring continuous surveillance. Resistance to ciprofloxacin and cephalosporins is of particular concern. Since pigs are a relevant source of foodborne Salmonella for human beings, we studied transmissible AMR genes and MGE in a collection of 83 strains showing 9 different serovars and 15 patterns of multidrug resistant (MDR) previously isolated from pigs raised in the conventional breeding system of Northern Spain. All isolates were susceptible to ciprofloxacin and three isolates carried blaCMY-2 or blaCTX-M-9 genes responsible for cefotaxime resistance. Filter mating experiments showed that the two plasmids carrying blaCTX-M-9 were conjugative while that carrying blaCMY-2 was self-transmissible by transformation. Whole-genome sequencing and comparative analyses were performed on the isolates and plasmids. The IncC plasmid pSB109, carrying blaCMY-2, was similar to one found in S. Reading from cattle, indicating potential horizontal transfer between serovars and animal sources. The IncHI2 plasmids pSH102 in S. Heidelberg and pSTM45 in S. Typhimurium ST34, carrying blaCTX-M-9, shared similar backbones and two novel "complex class 1 integrons" containing different AMR and heavy metal genes. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.IMPORTANCEThe emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context. Since pigs are a relevant source of foodborne Salmonella for humans, in this study, we investigate different aspects of AMR in a collection of 83 Salmonella showing nine different serovars and 15 patterns of multidrug resistant (MDR) isolated from pigs raised in the conventional breeding system. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.

RevDate: 2024-05-21
CmpDate: 2024-05-21

Zhang J, Zhao L, Wang W, et al (2024)

Large language model for horizontal transfer of resistance gene: From resistance gene prevalence detection to plasmid conjugation rate evaluation.

The Science of the total environment, 931:172466.

The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.

RevDate: 2024-05-20

Tan BSY, Mohan L, Watthanaworawit W, et al (2024)

Detection of florfenicol resistance in opportunistic Acinetobacter spp. infections in rural Thailand.

Frontiers in microbiology, 15:1368813.

Florfenicol (Ff) is an antimicrobial agent belonging to the class amphenicol used for the treatment of bacterial infections in livestock, poultry, and aquaculture (animal farming). It inhibits protein synthesis. Ff is an analog of chloramphenicol, an amphenicol compound on the WHO essential medicine list that is used for the treatment of human infections. Due to the extensive usage of Ff in animal farming, zoonotic pathogens have developed resistance to this antimicrobial agent. There are numerous reports of resistance genes from organisms infecting or colonizing animals found in human pathogens, suggesting a possible exchange of genetic materials. One of these genes is floR, a gene that encodes for an efflux pump that removes Ff from bacterial cells, conferring resistance against amphenicol, and is often associated with mobile genetic elements and other resistant determinants. In this study, we analyzed bacterial isolates recovered in rural Thailand from patients and environmental samples collected for disease monitoring. Whole genome sequencing was carried out for all the samples collected. Speciation and genome annotation was performed revealing the presence of the floR gene in the bacterial genome. The minimum inhibitory concentration (MIC) was determined for Ff and chloramphenicol. Chromosomal and phylogenetic analyses were performed to investigate the acquisition pattern of the floR gene. The presence of a conserved floR gene in unrelated Acinetobacter spp. isolated from human bacterial infections and environmental samples was observed, suggesting multiple and independent inter-species genetic exchange of drug-resistant determinants. The floR was found to be in the variable region containing various mobile genetic elements and other antibiotic resistance determinants; however, no evidence of HGT could be found. The floR gene identified in this study is chromosomal for all isolates. The study highlights a plausible impact of antimicrobials used in veterinary settings on human health. Ff shares cross-resistance with chloramphenicol, which is still in use in several countries. Furthermore, by selecting for floR-resistance genes, we may be selecting for and facilitating the zoonotic and reverse zoonotic exchange of other flanking resistance markers between human and animal pathogens or commensals with detrimental public health consequences.

RevDate: 2024-05-20
CmpDate: 2024-05-17

Nguyen Q, Nguyen YTP, Ha TT, et al (2024)

Genomic insights unveil the plasmid transfer mechanism and epidemiology of hypervirulent Klebsiella pneumoniae in Vietnam.

Nature communications, 15(1):4187.

Hypervirulent Klebsiella pneumoniae (hvKp) is a significant cause of severe invasive infections in Vietnam, yet data on its epidemiology, population structure and dynamics are scarce. We screened hvKp isolates from patients with bloodstream infections (BSIs) at a tertiary infectious diseases hospital in Vietnam and healthy individuals, followed by whole genome sequencing and plasmid analysis. Among 700 BSI-causing Kp strains, 100 (14.3%) were hvKp. Thirteen hvKp isolates were identified from 350 rectal swabs of healthy adults; none from 500 rectal swabs of healthy children. The hvKp isolates were genetically diverse, encompassing 17 sequence types (STs), predominantly ST23, ST86 and ST65. Among the 113 hvKp isolates, 14 (12.6%) carried at least one antimicrobial resistance (AMR) gene, largely mediated by IncFII, IncR, and IncA/C plasmids. Notably, the acquisition of AMR conjugative plasmids facilitated horizontal transfer of the non-conjugative virulence plasmid between K. pneumoniae strains. Phylogenetic analysis demonstrated hvKp isolates from BSIs and human carriage clustered together, suggesting a significant role of intestinal carriage in hvKp transmission. Enhanced surveillance is crucial to understand the factors driving intestinal carriage and hvKp transmission dynamics for informing preventive measures. Furthermore, we advocate the clinical use of our molecular assay for diagnosing hvKp infections to guide effective management.

RevDate: 2024-05-18

Roughgarden J (2024)

Lytic/Lysogenic Transition as a Life-History Switch.

Virus evolution, 10(1):veae028.

The transition between lytic and lysogenic life cycles is the most important feature of the life-history of temperate viruses. To explain this transition, an optimal life-history model is offered based a discrete-time formulation of phage/bacteria population dynamics that features infection of bacteria by Poisson sampling of virions from the environment. The time step is the viral latency period. In this model, density-dependent viral absorption onto the bacterial surface produces virus/bacteria coexistence and density dependence in bacterial growth is not needed. The formula for the transition between lytic and lysogenic phases is termed the 'fitness switch'. According to the model, the virus switches from lytic to lysogenic when its population grows faster as prophage than as virions produced by lysis of the infected cells, and conversely for the switch from lysogenic to lytic. A prophage that benefits the bacterium it infects automatically incurs lower fitness upon exiting the bacterial genome, resulting in its becoming locked into the bacterial genome in what is termed here as a 'prophage lock'. The fitness switch qualitatively predicts the ecogeographic rule that environmental enrichment leads to microbialization with a concomitant increase in lysogeny, fluctuating environmental conditions promote virus-mediated horizontal gene transfer, and prophage-containing bacteria can integrate into the microbiome of a eukaryotic host forming a functionally integrated tripartite holobiont. These predictions accord more with the 'Piggyback-the-Winner' hypothesis than with the 'Kill-the-Winner' hypothesis in virus ecology.

RevDate: 2024-05-18
CmpDate: 2024-05-17

Pobeguts OV, Galaymina MA, Sikamov KV, et al (2024)

Unraveling the adaptive strategies of Mycoplasma hominis through proteogenomic profiling of clinical isolates.

Frontiers in cellular and infection microbiology, 14:1398706.

INTRODUCTION: Mycoplasma hominis (M. hominis) belongs to the class Mollicutes, characterized by a very small genome size, reduction of metabolic pathways, including transcription factors, and the absence of a cell wall. Despite this, they adapt well not only to specific niches within the host organism but can also spread throughout the body, colonizing various organs and tissues. The adaptation mechanisms of M. hominis, as well as their regulatory pathways, are poorly understood. It is known that, when adapting to adverse conditions, Mycoplasmas can undergo phenotypic switches that may persist for several generations.

METHODS: To investigate the adaptive properties of M. hominis related to survival in the host, we conducted a comparative phenotypic and proteogenomic analysis of eight clinical isolates of M. hominis obtained from patients with urogenital infections and the laboratory strain H-34.

RESULTS: We have shown that clinical isolates differ in phenotypic features from the laboratory strain, form biofilms more effectively and show resistance to ofloxacin. The comparative proteogenomic analysis revealed that, unlike the laboratory strain, the clinical isolates possess several features related to stress survival: they switch carbon metabolism, activating the energetically least advantageous pathway of nucleoside utilization, which allows slowing down cellular processes and transitioning to a starvation state; they reconfigure the repertoire of membrane proteins; they have integrative conjugative elements in their genomes, which are key mediators of horizontal gene transfer. The upregulation of the methylating subunit of the restriction-modification (RM) system type I and the additional components of RM systems found in clinical isolates suggest that DNA methylation may play a role in regulating the adaptation mechanisms of M. hominis in the host organism. It has been shown that based on the proteogenomic profile, namely the genome sequence, protein content, composition of the RM systems and additional subunits HsdM, HsdS and HsdR, composition and number of transposable elements, as well as the sequence of the main variable antigen Vaa, we can divide clinical isolates into two phenotypes: typical colonies (TC), which have a high growth rate, and atypical (aTC) mini-colonies, which have a slow growth rate and exhibit properties similar to persisters.

DISCUSSION: We believe that the key mechanism of adaptation of M. hominis in the host is phenotypic restructuring, leading to a slowing down cellular processes and the formation of small atypical colonies. This is due to a switch in carbon metabolism and activation the pathway of nucleoside utilization. We hypothesize that DNA methylation may play a role in regulating this switch.

RevDate: 2024-05-18
CmpDate: 2024-05-16

Fujino T, Sonoda R, Higashinagata T, et al (2024)

Ser/Leu-swapped cell-free translation system constructed with natural/in vitro transcribed-hybrid tRNA set.

Nature communications, 15(1):4143.

The Ser/Leu-swapped genetic code can act as a genetic firewall, mitigating biohazard risks arising from horizontal gene transfer in genetically modified organisms. Our prior work demonstrated the orthogonality of this swapped code to the standard genetic code using a cell-free translation system comprised of 21 in vitro transcribed tRNAs. In this study, to advance this system for protein engineering, we introduce a natural/in vitro transcribed-hybrid tRNA set. This set combines natural tRNAs from Escherichia coli (excluding Ser, Leu, and Tyr) and in vitro transcribed tRNAs, encompassing anticodon-swapped tRNA[Ser]GAG and tRNA[Leu]GGA. This approach reduces the number of in vitro transcribed tRNAs required from 21 to only 4. In this optimized system, the production of a model protein, superfolder green fluorescent protein, increases to 3.5-fold. With this hybrid tRNA set, the Ser/Leu-swapped cell-free translation system will stand as a potent tool for protein production with reduced biohazard concerns in future biological endeavors.

RevDate: 2024-05-16

Figueroa W, Cazares D, A Cazares (2024)

Phage-plasmids: missed links between mobile genetic elements.

Trends in microbiology pii:S0966-842X(24)00114-8 [Epub ahead of print].

Phages and plasmids are discrete mobile genetic elements (MGEs) with critical roles in gene dissemination across bacteria but limited scope for exchanging DNA between them. By investigating recent gene-sharing events, Pfeifer and Rocha describe how the hybrid elements phage-plasmids (P-Ps) promote gene flow between MGE types and evolve into new ones.

RevDate: 2024-05-16

Wei L, Han Y, Zheng J, et al (2024)

Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems.

The Science of the total environment pii:S0048-9697(24)03415-6 [Epub ahead of print].

Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.

RevDate: 2024-05-17
CmpDate: 2024-05-17

Macesic N, Dennis A, Hawkey J, et al (2024)

Genomic investigation of multispecies and multivariant blaNDM outbreak reveals key role of horizontal plasmid transmission.

Infection control and hospital epidemiology, 45(6):709-716.

OBJECTIVES: New Delhi metallo-β-lactamases (NDMs) are major contributors to the spread of carbapenem resistance globally. In Australia, NDMs were previously associated with international travel, but from 2019 we noted increasing incidence of NDM-positive clinical isolates. We investigated the clinical and genomic epidemiology of NDM carriage at a tertiary-care Australian hospital from 2016 to 2021.

METHODS: We identified 49 patients with 84 NDM-carrying isolates in an institutional database, and we collected clinical data from electronic medical record. Short- and long-read whole genome sequencing was performed on all isolates. Completed genome assemblies were used to assess the genetic setting of blaNDM genes and to compare NDM plasmids.

RESULTS: Of 49 patients, 38 (78%) were identified in 2019-2021 and only 11 (29%) of 38 reported prior travel, compared with 9 (82%) of 11 in 2016-2018 (P = .037). In patients with NDM infection, the crude 7-day mortality rate was 0% and the 30-day mortality rate was 14% (2 of 14 patients). NDMs were noted in 41 bacterial strains (ie, species and sequence type combinations). Across 13 plasmid groups, 4 NDM variants were detected: blaNDM-1, blaNDM-4, blaNDM-5, and blaNDM-7. We noted a change from a diverse NDM plasmid repertoire in 2016-2018 to the emergence of conserved blaNDM-1 IncN and blaNDM-7 IncX3 epidemic plasmids, with interstrain spread in 2019-2021. These plasmids were noted in 19 (50%) of 38 patients and 35 (51%) of 68 genomes in 2019-2021.

CONCLUSIONS: Increased NDM case numbers were due to local circulation of 2 epidemic plasmids with extensive interstrain transfer. Our findings underscore the challenges of outbreak detection when horizontal transmission of plasmids is the primary mode of spread.

RevDate: 2024-05-16

He Z, Dechesne A, Schreiber F, et al (2024)

Understanding Stimulation of Conjugal Gene Transfer by Nonantibiotic Compounds: How Far Are We?.

Environmental science & technology [Epub ahead of print].

A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Ortiz Charneco G, McDonnell B, Kelleher P, et al (2024)

Plasmid-mediated horizontal gene mobilisation: Insights from two lactococcal conjugative plasmids.

Microbial biotechnology, 17(5):e14421.

The distinct conjugation machineries encoded by plasmids pNP40 and pUC11B represent the most prevalent plasmid transfer systems among lactococcal strains. In the current study, we identified genetic determinants that underpin pNP40- and pUC11B-mediated, high-frequency mobilisation of other, non-conjugative plasmids. The mobilisation frequencies of the smaller, non-conjugative plasmids and the minimal sequences required for their mobilisation were determined, owing to the determination of the oriT sequences of both pNP40 and pUC11B, which allowed the identification of similar sequences in some of the non-conjugative plasmids that were shown to promote their mobilisation. Furthermore, the auxiliary gene mobC, two distinct functional homologues of which are present in several plasmids harboured by the pNP40- and pUC11B-carrying host strains, was observed to confer a high-frequency mobilisation phenotype. These findings provide mechanistic insights into how lactococcal conjugative plasmids achieve conjugation and promote mobilisation of non-conjugative plasmids. Ultimately, these insights would be harnessed to optimise conjugation and mobilisation strategies for the rapid and predictable development of robust and technologically improved strains.

RevDate: 2024-05-16

Tomasch J, Kopejtka K, Shivaramu S, et al (2024)

On the evolution of chromosomal regions with high gene strand bias in bacteria.

mBio [Epub ahead of print].

On circular bacterial chromosomes, the majority of genes are coded on the leading strand. This gene strand bias (GSB) ranges from up to 85% in some Bacillota to a little more than 50% in other phyla. The factors determining the extent of the strand bias remain to be found. Here, we report that species in the phylum Gemmatimonadota share a unique chromosome architecture, distinct from neighboring phyla: in a conserved 600-kb region around the terminus of replication, almost all genes were located on the leading strands, while on the remaining part of the chromosome, the strand preference was more balanced. The high strand bias (HSB) region harbors the rRNA clusters, core, and highly expressed genes. Selective pressure for reduction of collisions with DNA replication to minimize detrimental mutations can explain the conservation of essential genes in this region. Repetitive and mobile elements are underrepresented, suggesting reduced recombination frequency by structural isolation from other parts of the chromosome. We propose that the HSB region forms a distinct chromosomal domain. Gemmatimonadota chromosomes evolved mainly by expansion through horizontal gene transfer and duplications outside of the ancient high strand bias region. In support of our hypothesis, we could further identify two Spiroplasma strains on a similar evolutionary path.IMPORTANCEOn bacterial chromosomes, a preferred location of genes on the leading strand has evolved to reduce conflicts between replication and transcription. Despite a vast body of research, the question why bacteria show large differences in their gene strand bias is still not solved. The discovery of "hybrid" chromosomes in different phyla, including Gemmatimonadota, in which a conserved high strand bias is found exclusively in a region at ter, points toward a role of nucleoid structure, additional to replication, in the evolution of strand preferences. A fine-grained structural analysis of the ever-increasing number of available bacterial genomes could help to better understand the forces that shape the sequential and spatial organization of the cell's information content.

RevDate: 2024-05-15

Mrnjavac N, Nagies FSP, Wimmer JLE, et al (2024)

The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third.

FEBS letters [Epub ahead of print].

Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD[+], pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.

RevDate: 2024-05-15

Stindt KR, MN McClean (2024)

Tuning interdomain conjugation to enable in situ population modification in yeasts.

mSystems [Epub ahead of print].

The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to the widespread use of IDC is its limited efficiency. In this work, we manipulated metabolic and physical interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture and model how these tunable controls can predictably yield a range of IDC outcomes. Furthermore, we demonstrate that these controls can be utilized to irreversibly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.IMPORTANCEFungi are important but often unaddressed members of most natural and synthetic microbial communities. This work highlights opportunities for modifying yeast microbiome populations through bacterial conjugation. While conjugation has been recognized for its capacity to deliver engineerable DNA to a range of cells, its dependence on cell contact has limited its efficiency. Here, we find "knobs" to control DNA transfer, by engineering the metabolic dependence between bacterial donors and yeast recipients and by changing their ability to physically adhere to each other. Importantly, we functionally validate these "knobs" by irreversibly altering yeast populations. We use these controls to "rescue" a failing yeast population, demonstrate the capacity of conjugated CRISPR/Cas9 to depress or collapse populations, and show that conjugation can be easily interrupted by disrupting cell-to-cell binding. These results offer building blocks toward in situ mycobiome editing, with significant implications for clinical treatments of fungal pathogens and other fungal system engineering.

RevDate: 2024-05-15

García-Bayona L, Said N, Coyne MJ, et al (2024)

A pervasive large conjugative plasmid mediates multispecies biofilm formation in the intestinal microbiota increasing resilience to perturbations.

bioRxiv : the preprint server for biology pii:2024.04.29.590671.

Although horizontal gene transfer is pervasive in the intestinal microbiota, we understand only superficially the roles of most exchanged genes and how the mobile repertoire affects community dynamics. Similarly, little is known about the mechanisms underlying the ability of a community to recover after a perturbation. Here, we identified and functionally characterized a large conjugative plasmid that is one of the most frequently transferred elements among Bacteroidales species and is ubiquitous in diverse human populations. This plasmid encodes both an extracellular polysaccharide and fimbriae, which promote the formation of multispecies biofilms in the mammalian gut. We use a hybridization-based approach to visualize biofilms in clarified whole colon tissue with unprecedented 3D spatial resolution. These biofilms increase bacterial survival to common stressors encountered in the gut, increasing strain resiliency, and providing a rationale for the plasmid's recent spread and high worldwide prevalence.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Dewar AE, Hao C, Belcher LJ, et al (2024)

Bacterial lifestyle shapes pangenomes.

Proceedings of the National Academy of Sciences of the United States of America, 121(21):e2320170121.

Pangenomes vary across bacteria. Some species have fluid pangenomes, with a high proportion of genes varying between individual genomes. Other species have less fluid pangenomes, with different genomes tending to contain the same genes. Two main hypotheses have been suggested to explain this variation: differences in species' bacterial lifestyle and effective population size. However, previous studies have not been able to test between these hypotheses because the different features of lifestyle and effective population size are highly correlated with each other, and phylogenetically conserved, making it hard to disentangle their relative importance. We used phylogeny-based analyses, across 126 bacterial species, to tease apart the causal role of different factors. We found that pangenome fluidity was lower in i) host-associated compared with free-living species and ii) host-associated species that are obligately dependent on a host, live inside cells, and are more pathogenic and less motile. In contrast, we found no support for the competing hypothesis that larger effective population sizes lead to more fluid pangenomes. Effective population size appears to correlate with pangenome variation because it is also driven by bacterial lifestyle, rather than because of a causal relationship.

RevDate: 2024-05-14

Mies US, Hervé V, Kropp T, et al (2024)

Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates.

mBio [Epub ahead of print].

Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of Endomicrobiaceae among more than 1,700 MAGs from the gut microbiota of a wide range of termites. Phylogenomic analysis confirmed a sister position of representatives from termites and ruminants, and allowed to propose eight new genera in the radiation of Endomicrobiaceae. Comparative genome analysis documented progressive genome erosion in the new genus Endomicrobiellum, which comprises all flagellate endosymbionts characterized to date. Massive gene losses were accompanied by the acquisition of new functions by horizontal gene transfer, which led to a shift from a glucose-based energy metabolism to one based on sugar phosphates. The breakdown of glycolysis and many anabolic pathways for amino acids and cofactors in several subgroups was compensated by the independent acquisition of new uptake systems, including an ATP/ADP antiporter, from other gut microbiota. The putative donors are mostly flagellate endosymbionts from other bacterial phyla, including several, hitherto unknown lineages of uncultured Alphaproteobacteria, documenting the importance of horizontal gene transfer in the convergent evolution of these intracellular symbioses. The loss of almost all biosynthetic capacities in some lineages of Endomicrobiellum suggests that their originally mutualistic relationship with flagellates is on its decline.IMPORTANCEUnicellular eukaryotes are frequently colonized by bacterial and archaeal symbionts. A prominent example are the cellulolytic gut flagellates of termites, which harbor diverse but host-specific bacterial symbionts that occur exclusively in termite guts. One of these lineages, the so-called Endomicrobia, comprises both free-living and endosymbiotic representatives, which offers the unique opportunity to study the evolutionary processes underpinning the transition from a free-living to an intracellular lifestyle. Our results revealed a progressive gene loss in energy metabolism and biosynthetic pathways, compensated by the acquisition of new functions via horizontal gene transfer from other gut bacteria, and suggest the eventual breakdown of an initially mutualistic symbiosis. Evidence for convergent evolution of unrelated endosymbionts reflects adaptations to the intracellular environment of termite gut flagellates.

RevDate: 2024-05-15
CmpDate: 2024-05-14

Carrera Páez LC, Olivier M, Gambino AS, et al (2024)

Sporadic clone Escherichia coli ST615 as a vector and reservoir for dissemination of crucial antimicrobial resistance genes.

Frontiers in cellular and infection microbiology, 14:1368622.

There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.

RevDate: 2024-05-15

Ghaly TM, Gillings MR, Rajabal V, et al (2024)

Horizontal gene transfer in plant microbiomes: integrons as hotspots for cross-species gene exchange.

Frontiers in microbiology, 15:1338026.

Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.

RevDate: 2024-05-13
CmpDate: 2024-05-14

Blanco-Melo D, Campbell MA, Zhu H, et al (2024)

A novel approach to exploring the dark genome and its application to mapping of the vertebrate virus fossil record.

Genome biology, 25(1):120.

BACKGROUND: Genomic regions that remain poorly understood, often referred to as the dark genome, contain a variety of functionally relevant and biologically informative features. These include endogenous viral elements (EVEs)-virus-derived sequences that can dramatically impact host biology and serve as a virus fossil record. In this study, we introduce a database-integrated genome screening (DIGS) approach to investigate the dark genome in silico, focusing on EVEs found within vertebrate genomes.

RESULTS: Using DIGS on 874 vertebrate genomes, we uncover approximately 1.1 million EVE sequences, with over 99% originating from endogenous retroviruses or transposable elements that contain EVE DNA. We show that the remaining 6038 sequences represent over a thousand distinct horizontal gene transfer events across 10 virus families, including some that have not previously been reported as EVEs. We explore the genomic and phylogenetic characteristics of non-retroviral EVEs and determine their rates of acquisition during vertebrate evolution. Our study uncovers novel virus diversity, broadens knowledge of virus distribution among vertebrate hosts, and provides new insights into the ecology and evolution of vertebrate viruses.

CONCLUSIONS: We comprehensively catalog and analyze EVEs within 874 vertebrate genomes, shedding light on the distribution, diversity, and long-term evolution of viruses and reveal their extensive impact on vertebrate genome evolution. Our results demonstrate the power of linking a relational database management system to a similarity search-based screening pipeline for in silico exploration of the dark genome.

RevDate: 2024-05-13

Liao L, Qin Q, Yi D, et al (2024)

Evolution and adaptation of terrestrial plant-associated Plantibacter species into remote marine environments.

Molecular ecology [Epub ahead of print].

Microbes are thought to be distributed and circulated around the world, but the connection between marine and terrestrial microbiomes remains largely unknown. We use Plantibacter, a representative genus associated with plants, as our research model to investigate the global distribution and adaptation of plant-related bacteria in plant-free environments, particularly in the remote Southern Ocean and the deep Atlantic Ocean. The marine isolates and their plant-associated relatives shared over 98% whole-genome average nucleotide identity (ANI), indicating recent divergence and ongoing speciation from plant-related niches to marine environments. Comparative genomics revealed that the marine strains acquired new genes via horizontal gene transfer from non-Plantibacter species and refined existing genes through positive selection to improve adaptation to new habitats. Meanwhile, marine strains retained the ability to interact with plants, such as modifying root system architecture and promoting germination. Furthermore, Plantibacter species were found to be widely distributed in marine environments, revealing an unrecognized phenomenon that plant-associated microbiomes have colonized the ocean, which could serve as a reservoir for plant growth-promoting microbes. This study demonstrates the presence of an active reservoir of terrestrial plant growth-promoting bacteria in remote marine systems and advances our understanding of the microbial connections between plant-associated and plant-free environments at the genome level.

RevDate: 2024-05-13

Singh H, Gibb B, R Abdi (2024)

Abundance and diversity of methicillin-resistant bacteria from bathroom surfaces at workplaces using CHROMagar media, 16S, and dnaJ gene sequence typing.

International journal of molecular epidemiology and genetics, 15(2):12-21.

University campus communities consist of dynamic and diverse human populations originated from different regions of the country or the world. Their national/global movement to and from campus may contribute to the spread and buildup of methicillin-resistant (MR) bacteria, including MR Staphylococci (MRS) on high-touch surfaces, sinks, and toilets. However, studies on MR bacteria contamination of surfaces, sinks, and toilets are scarce in workplaces outside of healthcare settings. Hence, little is known whether university communities contaminate campus bathrooms by MR bacteria. This study evaluated the abundance, identity, and phylogenetics of MR bacteria grown on CHROMagar MRSA media from bathrooms at workplaces. We collected 21 sink and 21 toilet swab samples from 10 buildings on campus and cultured them on CHROMagar MRSA media, extracted DNA from MR bacteria colonies, sequenced PCR products of 16S and dnaJ primers, determined the sequence identities by BLAST search, and constructed a phylogenetic tree. Of 42 samples, 57.1% (24/42) harbored MR bacteria. MR bacteria were more prevalent on the sink (61.9%) than in the toilet (52.2%) and in male bathrooms (54.2%) than in female bathrooms (41.7%). The colony count on the bathroom surfaces of 42 samples varied in that 42.9% (18/42), 33.3, 14.3, and 9.5% of samples harbored 0, 100, and > 1000 MR bacteria colonies, respectively. Of MR bacteria sequenced, BLAST search and phylogenetic analysis showed that Staphylococcus accounted for 60% of the MR bacteria and the rest were non-Staphylococci. Of Staphylococcus carrying MR (n = 15), 53.3% were S. hemolyticus followed by S. lugdunensis (26.7%), S. epidermidis (8%), and a newly discovered S. borealis in 2020 (4%). Of non-Staphylococci MR bacteria, 20% accounted for Sphingomonas koreensis. Campus bathrooms serve as a reservoir for diverse bacteria carrying MR, which pose a direct risk of infection and a potential source of horizontal gene transfer. To reduce the health risk posed by MR bacteria in high traffic areas such as bathrooms additional environmental monitoring and improved decontamination practices are needed.

RevDate: 2024-05-11

Musat F, Kjeldsen KU, Rotaru AE, et al (2024)

Archaea oxidizing alkanes through alkyl-coenzyme M reductases.

Current opinion in microbiology, 79:102486 pii:S1369-5274(24)00062-6 [Epub ahead of print].

This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX-SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.

RevDate: 2024-05-11
CmpDate: 2024-05-11

Quiñonero-Coronel MDM, Devos DP, MP Garcillán-Barcia (2024)

Specificities and commonalities of the Planctomycetes plasmidome.

Environmental microbiology, 26(5):e16638.

Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.

RevDate: 2024-05-10

Wen X, Xu J, Worrich A, et al (2024)

Priority establishment of soil bacteria in rhizosphere limited the spread of tetracycline resistance genes from pig manure to soil-plant systems based on synthetic communities approach.

Environment international, 187:108732 pii:S0160-4120(24)00318-0 [Epub ahead of print].

The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.

RevDate: 2024-05-10

Lee D-H, Lee K, Kim Y-S, et al (2024)

Comprehensive genomic landscape of antibiotic resistance in Staphylococcus epidermidis.

mSystems [Epub ahead of print].

UNLABELLED: Staphylococcus epidermidis, a common commensal bacterium found on human skin, can cause infections in clinical settings, and the presence of antibiotic resistance genes (ARGs) impedes the treatment of S. epidermidis infections. However, studies characterizing the ARGs in S. epidermidis with regard to genomic and ecological diversities are limited. Thus, we performed a comprehensive and comparative analysis of 405 high-quality S. epidermidis genomes, including those of 35 environmental isolates from the Han River, to investigate the genomic diversity of antibiotic resistance in this pathogen. Comparative genomic analysis revealed the prevalence of ARGs in S. epidermidis genomes associated with multi-locus sequence types. The genes encoding dihydrofolate reductase (dfrC) and multidrug efflux pump (norA) were genome-wide core ARGs. β-Lactam class ARGs were also highly prevalent in the S. epidermidis genomes, which was consistent with the resistance phenotype observed in river isolates. Furthermore, we identified chloramphenicol acetyltransferase genes (cat) in the plasmid-like sequences of the six river isolates, which have not been reported previously in S. epidermidis genomes. These genes were identical to those harbored by the Enterococcus faecium plasmids and associated with the insertion sequence 6 family transposases, homologous to those found in Staphylococcus aureus plasmids, suggesting the possibility of horizontal gene transfer between these Gram-positive pathogens. Comparison of the ARG and virulence factor profiles between S. epidermidis and S. aureus genomes revealed that these two species were clearly distinguished, suggesting genomic demarcation despite ecological overlap. Our findings provide a comprehensive understanding of the genomic diversity of antibiotic resistance in S. epidermidis.

IMPORTANCE: A comprehensive understanding of the antibiotic resistance gene (ARG) profiles of the skin commensal bacterium and opportunistic pathogen Staphylococcus epidermidis needs to be documented from a genomic point of view. Our study encompasses a comparative analysis of entire S. epidermidis genomes from various habitats, including those of 35 environmental isolates from the Han River sequenced in this study. Our results shed light on the distribution and diversity of ARGs within different S. epidermidis multi-locus sequence types, providing valuable insights into the ecological and genetic factors associated with antibiotic resistance. A comparison between S. epidermidis and Staphylococcus aureus revealed marked differences in ARG and virulence factor profiles, despite their overlapping ecological niches.

RevDate: 2024-05-10

Yang Z, Chai Z, Wang X, et al (2024)

Comparative genomic analysis provides insights into the genetic diversity and pathogenicity of the genus Brucella.

Frontiers in microbiology, 15:1389859.

Some Brucella spp. are important pathogens. According to the latest prokaryotic taxonomy, the Brucella genus consists of facultative intracellular parasitic Brucella species and extracellular opportunistic or environmental Brucella species. Intracellular Brucella species include classical and nonclassical types, with different species generally exhibiting host preferences. Some classical intracellular Brucella species can cause zoonotic brucellosis, including B. melitensis, B. abortus, B. suis, and B. canis. Extracellular Brucella species comprise opportunistic or environmental species which belonged formerly to the genus Ochrobactrum and thus nowadays renamed as for example Brucella intermedia or Brucella anthropi, which are the most frequent opportunistic human pathogens within the recently expanded genus Brucella. The cause of the diverse phenotypic characteristics of different Brucella species is still unclear. To further investigate the genetic evolutionary characteristics of the Brucella genus and elucidate the relationship between its genomic composition and prediction of phenotypic traits, we collected the genomic data of Brucella from the NCBI Genome database and conducted a comparative genomics study. We found that classical and nonclassical intracellular Brucella species and extracellular Brucella species exhibited differences in phylogenetic relationships, horizontal gene transfer and distribution patterns of mobile genetic elements, virulence factor genes, and antibiotic resistance genes, showing the close relationship between the genetic variations and prediction of phenotypic traits of different Brucella species. Furthermore, we found significant differences in horizontal gene transfer and the distribution patterns of mobile genetic elements, virulence factor genes, and antibiotic resistance genes between the two chromosomes of Brucella, indicating that the two chromosomes had distinct dynamics and plasticity and played different roles in the survival and evolution of Brucella. These findings provide new directions for exploring the genetic evolutionary characteristics of the Brucella genus and could offer new clues to elucidate the factors influencing the phenotypic diversity of the Brucella genus.

RevDate: 2024-05-08
CmpDate: 2024-05-08

Nair S, Barker CR, Bird M, et al (2024)

Presence of phage-plasmids in multiple serovars of Salmonella enterica.

Microbial genomics, 10(5):.

Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.

RevDate: 2024-05-08

Zhang Y, Wang J, J Yu (2024)

PSA: an effective method for predicting horizontal gene transfers through parsimonious phylogenetic networks.

Cladistics : the international journal of the Willi Hennig Society [Epub ahead of print].

Horizontal gene transfer (HGT) from one organism to another, according to some researchers, can be abundant in the evolution of species. A phylogenetic network is a network structure that describes the HGTs among species. Several studies have proposed methods to construct phylogenetic networks to predict HGTs based on parsimony values. Existing definitions of parsimony values for a phylogenetic network are based on the assumption that each gene site or segment evolves independently along different trees in the network. However, in the current study, we define a novel parsimony value, denoted the p definition, for phylogenetic networks, considering that a gene as a whole typically evolves along a tree. Using Simulated Annealing, a new method called the Phylogeny with Simulated Annealing (PSA) algorithm is proposed to search for an optimal network based on the p definition. The PSA method is tested on the simulated data. The results reveal that the parsimonious networks constructed using PSA can better represent the evolutionary relationships of species involving HGTs. Additionally, the HGTs predicted using PSA are more accurate than those predicted using other methods. The PSA algorithm is publicly accessible at

RevDate: 2024-05-09
CmpDate: 2024-05-08

Cheewapat R, Redkimned J, Lekuthai S, et al (2024)

Genomic Landscape Reveals Chromosomally-Mediated Antimicrobial Resistome and Virulome of a High-Risk International Clone II Acinetobacter baumannii AB073 from Thailand.

Global health, epidemiology and genomics, 2024:8872463.

This study utilized integrative bioinformatics' tools together with phenotypic assays to understand the whole-genome features of a carbapenem-resistant international clone II Acinetobacter baumannii AB073. Overall, we found the isolate to be resistant to seven antibiotic classes, penicillins, β-lactam/β-lactamase inhibitor combinations, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and folate pathway antagonists. These resistance phenotypes are related to various chromosomal-located antibiotic resistance determinants involved in different mechanisms such as reduced permeability, antibiotic target protection, antibiotic target alteration, antibiotic inactivation, and antibiotic efflux. IC2 A. baumannii AB073 could not transfer antibiotic resistance by conjugation experiments. Likewise, mobilome analysis found that AB073 did not carry genetic determinants involving horizontal gene transfer. Moreover, this isolate also carried multiple genes associated with the ability of iron uptake, biofilm formation, immune invasion, virulence regulations, and serum resistance. In addition, the genomic epidemiological study showed that AB073-like strains were successful pathogens widespread in various geographic locations and clinical sources. In conclusion, the comprehensive analysis demonstrated that AB073 contained multiple genomic determinants which were important characteristics to classify this isolate as a successful international clone II obtained from Thailand.

RevDate: 2024-05-07

Wang S, Tian R, Bi Y, et al (2024)

A review of distribution and functions of extracellular DNA in the environment and wastewater treatment systems.

Chemosphere pii:S0045-6535(24)01157-3 [Epub ahead of print].

Extracellular DNA referred to DNA fragments existing outside the cell, originating from various cell release mechanisms, including active secretion, cell lysis, and phage-mediated processes. Extracellular DNA serves as a vital environmental biomarker, playing crucial ecological and environmental roles in water bodies. This review is summarized the mechanisms of extracellular DNA release, including pathways involving cell lysis, extracellular vesicles, and type IV secretion systems. Then, the extraction and detection methods of extracellular DNA from water, soil, and biofilm are described and analyzed. Finally, we emphasize the role of extracellular DNA in microbial community systems, including its significant contributions to biofilm formation, biodiversity through horizontal gene transfer (HGT), and electron transfer processes. This review offers a comprehensive insight into the sources, distribution, functions, and impacts of extracellular DNA within aquatic environments, aiming to foster further exploration and understanding of extracellular DNA dynamics in aquatic environments as well as other environments.

RevDate: 2024-05-07

Wang YL, Ikuma K, Brown AMV, et al (2024)

Global survey of hgcA-carrying genomes in marine and freshwater sediments: Insights into mercury methylation processes.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(24)00831-5 [Epub ahead of print].

Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.

RevDate: 2024-05-08

Fidopiastis PM, Childs C, Esin JJ, et al (2024)

Corrected and republished from: "Vibrio fischeri Possesses Xds and Dns Nucleases That Differentially Influence Phosphate Scavenging, Aggregation, Competence, and Symbiotic Colonization of Squid".

Applied and environmental microbiology [Epub ahead of print].

Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed a complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates upon prolonged incubation. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research.IMPORTANCEFrom soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts the construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well-documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between Vibrio fischeri and its squid host Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.

RevDate: 2024-05-07

Muelbaier H, Arthen F, Collins G, et al (2024)

Genomic evidence for the widespread presence of GH45 cellulases among soil invertebrates.

Molecular ecology [Epub ahead of print].

Lignocellulose is a major component of vascular plant biomass. Its decomposition is crucial for the terrestrial carbon cycle. Microorganisms are considered primary decomposers, but evidence increases that some invertebrates may also decompose lignocellulose. We investigated the taxonomic distribution and evolutionary origins of GH45 hydrolases, important enzymes for the decomposition of cellulose and hemicellulose, in a collection of soil invertebrate genomes. We found that these genes are common in springtails and oribatid mites. Phylogenetic analysis revealed that cellulase genes were acquired early in the evolutionary history of these groups. Domain architectures and predicted 3D enzyme structures indicate that these cellulases are functional. Patterns of presence and absence of these genes across different lineages prompt further investigation into their evolutionary and ecological benefits. The ubiquity of cellulase genes suggests that soil invertebrates may play a role in lignocellulose decomposition, independently or in synergy with microorganisms. Understanding the ecological and evolutionary implications might be crucial for understanding soil food webs and the carbon cycle.

RevDate: 2024-05-07

Buck CB, Welch N, Belford AK, et al (2024)

Widespread Horizontal Gene Transfer Among Animal Viruses.

bioRxiv : the preprint server for biology pii:2024.03.25.586562.

The initial objective of this study was to shed light on the evolution of small DNA tumor viruses by analyzing de novo assemblies of publicly available deep sequencing datasets. The survey generated a searchable database of contig snapshots representing more than 100,000 Sequence Read Archive records. Using modern structure-aware search tools, we iteratively broadened the search to include an increasingly wide range of other virus families. The analysis revealed a surprisingly diverse range of chimeras involving different virus groups. In some instances, genes resembling known DNA-replication modules or known virion protein operons were paired with unrecognizable sequences that structural predictions suggest may represent previously unknown replicases and novel virion architectures. Discrete clades of an emerging group called adintoviruses were discovered in datasets representing humans and other primates. As a proof of concept, we show that the contig database is also useful for discovering RNA viruses and candidate archaeal phages. The ancillary searches revealed additional examples of chimerization between different virus groups. The observations support a gene-centric taxonomic framework that should be useful for future virus-hunting efforts.

RevDate: 2024-05-06

Zuo Y, Yang J, Zhang H, et al (2024)

Genome comparison of long-circulating field CnmeGV isolates from the same region.

Virus research pii:S0168-1702(24)00083-2 [Epub ahead of print].

Cnaphalocrocis medinalis granulovirus (CnmeGV), belonging to Betabaculovirus cnamedinalis, can infect the rice pest, the rice leaf roller. In 1979, a CnmeGV isolate, CnmeGV-EP, was collected from Enping County, China. In 2014, we collected another CnmeGV isolate, CnmeGV-EPDH3, at the same location and obtained the complete virus genome sequence using Illumina and ONT sequencing technologies. By combining these two virus isolates, we updated the genome annotation of CnmeGV and conducted an in-depth analysis of its genome features. CnmeGV genome contains abundant tandem repeat sequences, and the repeating units in the homologous regions (hrs) exhibit overlapping and nested patterns. The genetic variations within EPDH3 population show the high stability of CnmeGV genome, and tandem repeats are the only region of high genetic variation in CnmeGV genome replication. Some defective viral genomes formed by recombination were found within the population. Comparison analysis of the two virus isolates collected from Enping showed that the proteins encoded by the CnmeGV-specific genes were less conserved relative to the baculovirus core genes. At the genomic level, there are a large number of SNPs and InDels between the two virus isolates, especially in and around the bro genes and hrs. Additionally, we discovered that CnmeGV acquired a segment of non-ORF sequence from its host, which does not provide any new proteins but rather serves as redundant genetic material integrated into the viral genome. Furthermore, we observed that the host's transposon piggyBac has inserted into some virus genes. Together, dsDNA viruses could acquire non-coding genetic material from their hosts to expand the size of their genomes. These findings provide new insights into the evolution of dsDNA viruses.

RevDate: 2024-05-06

Zhao F, J Wang (2024)

Another piece of the puzzle for the human microbiome: the gut virome under dietary modulation.

Journal of genetics and genomics = Yi chuan xue bao pii:S1673-8527(24)00098-5 [Epub ahead of print].

The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and consequently shorting of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community, preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.

RevDate: 2024-05-07

Cochran JP, Zhang L, Parrott BB, et al (2024)

Plasmid size determines adsorption to clay and breakthrough in a saturated sand column.

Heliyon, 10(9):e29679.

Horizontal gene transfer (HGT) is a major factor in the spread of antibiotic resistant genes (ARG). Transformation, one mode of HGT, involves the acquisition and expression of extracellular DNA (eDNA). eDNA in soils is degraded rapidly by extracellular nucleases. However, if bound to a clay particle, eDNA can persist for long periods of time without losing its transformation ability. To better understand the mechanism of eDNA persistence in soil, this experiment assessed the effects of 1) clay mineralogy, 2) mixed salt solution, 3) plasmid size on DNA adsorption to clay and 4) breakthrough behavior of three differently sized plasmids in an environmentally relevant solution. Batch test methods were used to determine adsorption trends of three differently sized DNA plasmids, pUC19, pBR322, and pTYB21, to several pure clay minerals, goethite (α-FeOOH), illite, and kaolinite, and one environmental soil sample. Results show not all sorbents have equal adsorption capacity based on surface area with adsorption capacities decreasing from goethite > illite = kaolinite > bulk soil, and low ionic strength solutions will likely not significantly alter sorption trends. Additionally, plasmid DNA size (i.e., length) was shown to be a significant predictor of adsorption efficiency and that size affects DNA breakthrough, with breakthroughs occurring later with larger plasmids. Given that DNA persistence is linked to its adsorption to soil constituents and breakthrough, eDNA size is likely an important contributor to the spread of ARG within natural microbial communities.

RevDate: 2024-05-07
CmpDate: 2024-05-07

Wilson CG, Pieszko T, Nowell RW, et al (2024)

Recombination in bdelloid rotifer genomes: asexuality, transfer and stress.

Trends in genetics : TIG, 40(5):422-436.

Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.

RevDate: 2024-05-05
CmpDate: 2024-05-05

Bui QTN, Kim HS, JS Ki (2024)

Polyphyletic origin of saxitoxin biosynthesis genes in the marine dinoflagellate Alexandrium revealed by comparative transcriptomics.

Harmful algae, 134:102620.

The marine dinoflagellate Alexandrium is known to form harmful algal blooms, and at least 14 species within the genus can produce saxitoxins (STXs). STX biosynthesis genes (sxt) are individually revealed in toxic dinoflagellates; however, the evolutionary history remains controversial. Herein, we determined the transcriptome sequences of toxic Alexandrium (A. catenella and A. pacificum) and non-toxic Alexandrium (A. fraterculus and A. fragae) and characterized their sxt by focusing on evolutionary events and STX production. Comparative transcriptome analysis revealed higher homology of the sxt in toxic Alexandrium than in non-toxic species. Notably, non-toxic Alexandrium spp. were found to have lost two sxt core genes, namely sxtA4 and sxtG. Expression levels of 28 transcripts related to eight sxt core genes showed that sxtA, sxtG, and sxtI were relatively high (>1.5) in the toxic group compared to the non-toxic group. In contrast, the non-toxic group showed high expression levels in sxtU (1.9) and sxtD (1.7). Phylogenetic tree comparisons revealed distinct evolutionary patterns between 28S rDNA and sxtA, sxtB, sxtI, sxtD, and sxtU. However, similar topology was observed between 28S rDNA, sxtS, and sxtH/T. In the sxtB and sxtI phylogeny trees, toxic Alexandrium and cyanobacteria were clustered together, separating from non-toxic species. These suggest that Alexandrium may acquire sxt genes independently via horizontal gene transfer from toxic cyanobacteria and other multiple sources, demonstrating monocistronic transcripts of sxt in dinoflagellates.

RevDate: 2024-05-05

Xu Q, Ali S, Afzal M, et al (2024)

Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications.

The Science of the total environment pii:S0048-9697(24)03114-0 [Epub ahead of print].

The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.

RevDate: 2024-05-04
CmpDate: 2024-05-04

Kobakhidze S, Koulouris S, Kakabadze N, et al (2024)

Genetic recombination-mediated evolutionary interactions between phages of potential industrial importance and prophages of their hosts within or across the domains of Escherichia, Listeria, Salmonella, Campylobacter, and Staphylococcus.

BMC microbiology, 24(1):155.

BACKGROUND: The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts.

METHODS: A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages.

RESULTS: The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins.

CONCLUSIONS: It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.


SUPPORT ESP: Order from Amazon
The ESP project will earn a commission.

If you thought that the history of life could be organized into a simple tree and that genes only moved from parents to progeny, think again. Recent science has shown that sometimes genes move sideways, skipping the reproductive process, and the tree of life looks more like a tangled bush. David Quammen, a masterful science writer, explains these new findings and more. Read this book and you'll learn about the discovery of the archaea — an entirely different form of life, living right here on this planet, and not noticed until Carl Woese found them, by being among the first to use molecular tools to look at organismal relationships. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.


ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.


Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )