Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biodiversity and Metagenomics

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 28 Mar 2024 at 01:30 Created: 

Biodiversity and Metagenomics

If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.

Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-03-26
CmpDate: 2024-03-25

Kunasegaran T, Balasubramaniam VRMT, Thirunavuk Arasoo VJ, et al (2024)

Diet, lifestyle and gut microbiota composition among Malaysian women with gestational diabetes mellitus: a prospective cohort study.

Scientific reports, 14(1):6891.

The study addressed a significant gap in the profiling and understanding of the gut microbiota's influence on Malaysian Malay women with gestational diabetes mellitus (GDM). This prospective cohort study aimed to explore the intricate relationship between gut microbiota, dietary choices, and lifestyle factors among Malay women, both with and without GDM. The research specifically focused on participants during the second (T0) and third (T1) trimesters of pregnancy in Johor Bahru, Malaysia. In Part 1 of the study, a diverse pool of pregnant women at T0 was categorized into two groups: those diagnosed with GDM and those without GDM, with a total sample size of 105 individuals. The assessments encompassed demographic, clinical, lifestyle, and dietary factors at the T0 and T1 trimesters. Part 2 of the study delved into microbiome analysis, targeting a better understanding of the gut microbiota among the participants. Stool samples were randomly collected from 50% of the individuals in each group (GDM and non-GDM) at T0 and T1. The collected samples underwent processing, and 16s rRNA metagenomic analysis was employed to study the microbial composition. The results suggested an association between elevated body weight and glucose levels, poor sleep quality, lack of physical activity, greater intake of iron and meat, and reduced fruit consumption among women with GDM compared to non-GDM groups. The microbiome analysis revealed changes in microbial composition over time, with reduced diversity observed in the GDM group during the third trimester. The genera Lactiplantibacillus, Parvibacter, Prevotellaceae UCG001, and Vagococcus positively correlated with physical activity levels in GDM women in the second trimester. Similarly, the genus Victivallis exhibited a strong positive correlation with gravida and parity. On the contrary, the genus Bacteroides and Roseburia showed a negative correlation with omega-3 polyunsaturated fatty acids (PUFAs) in women without GDM in the third trimester. The study highlighted the multifaceted nature of GDM, involving a combination of lifestyle factors, dietary choices, and changes in gut microbiota composition. The findings emphasized the importance of considering these interconnected elements in understanding and managing gestational diabetes among Malaysian Malay women. Further exploration is essential to comprehend the mechanisms underlying this relationship and develop targeted interventions for effective GDM management.

RevDate: 2024-03-27
CmpDate: 2024-03-27

Carter KA, France MT, Rutt L, et al (2024)

Sexual transmission of urogenital bacteria: whole metagenome sequencing evidence from a sexual network study.

mSphere, 9(3):e0003024.

Sexual transmission of the urogenital microbiota may contribute to adverse sexual and reproductive health outcomes. The extent of sexual transmission of the urogenital microbiota is unclear as prior studies largely investigated specific pathogens. We used epidemiologic data and whole metagenome sequencing to characterize urogenital microbiota strain concordance between participants of a sexual network study. Individuals who screened positive for genital Chlamydia trachomatis were enrolled and referred their sexual contacts from the prior 60-180 days. Snowball recruitment of sexual contacts continued for up to four waves. Vaginal swabs and penile urethral swabs were collected for whole metagenome sequencing. We evaluated bacterial strain concordance using inStrain and network analysis. We defined concordance as ≥99.99% average nucleotide identity over ≥50% shared coverage; we defined putative sexual transmission as concordance between sexual contacts with <5 single-nucleotide polymorphisms per megabase. Of 138 participants, 74 (54%) were female; 120 (87%) had genital chlamydia; and 43 (31%) were recruited contacts. We identified 115 strain-concordance events among 54 participants representing 25 bacterial species. Seven events (6%) were between sexual contacts including putative heterosexual transmission of Fannyhessea vaginae, Gardnerella leopoldii, Prevotella amnii, Sneathia sanguinegens, and Sneathia vaginalis (one strain each), and putative sexual transmission of Lactobacillus iners between female contacts. Most concordance events (108, 94%) were between non-contacts, including eight female participants connected through 18 Lactobacillus crispatus and 3 Lactobacillus jensenii concordant strains, and 14 female and 2 male participants densely interconnected through 52 Gardnerella swidsinskii concordance events.IMPORTANCEEpidemiologic evidence consistently indicates bacterial vaginosis (BV) is sexually associated and may be sexually transmitted, though sexual transmission remains subject to debate. This study is not capable of demonstrating BV sexual transmission; however, we do provide strain-level metagenomic evidence that strongly supports heterosexual transmission of BV-associated species. These findings strengthen the evidence base that supports ongoing investigations of concurrent male partner treatment for reducing BV recurrence. Our data suggest that measuring the impact of male partner treatment on F. vaginae, G. leopoldii, P. amnii, S. sanguinegens, and S. vaginalis may provide insight into why a regimen does or does not perform well. We also observed a high degree of strain concordance between non-sexual-contact female participants. We posit that this may reflect limited dispersal capacity of vaginal bacteria coupled with individuals' comembership in regional transmission networks where transmission may occur between parent and child at birth, cohabiting individuals, or sexual contacts.

RevDate: 2024-03-25
CmpDate: 2024-03-25

Liu J, Yan Q, Li S, et al (2024)

Integrative metagenomic and metabolomic analyses reveal the potential of gut microbiota to exacerbate acute pancreatitis.

NPJ biofilms and microbiomes, 10(1):29.

Early dysbiosis in the gut microbiota may contribute to the severity of acute pancreatitis (AP), however, a comprehensive understanding of the gut microbiome, potential pathobionts, and host metabolome in individuals with AP remains elusive. Hence, we employed fecal whole-metagenome shotgun sequencing in 82 AP patients and 115 matched healthy controls, complemented by untargeted serum metabolome and lipidome profiling in a subset of participants. Analyses of the gut microbiome in AP patients revealed reduced diversity, disrupted microbial functions, and altered abundance of 77 species, influenced by both etiology and severity. AP-enriched species, mostly potential pathobionts, correlated positively with host liver function and serum lipid indicators. Conversely, many AP-depleted species were short-chain fatty acid producers. Gut microflora changes were accompanied by shifts in the serum metabolome and lipidome. Specifically, certain gut species, like enriched Bilophila wadsworthia and depleted Bifidobacterium spp., appeared to contribute to elevated triglyceride levels in biliary or hyperlipidemic AP patients. Through culturing and whole-genome sequencing of bacterial isolates, we identified virulence factors and clinically relevant antibiotic resistance in patient-derived strains, suggesting a predisposition to opportunistic infections. Finally, our study demonstrated that gavage of specific pathobionts could exacerbate pancreatitis in a caerulein-treated mouse model. In conclusion, our comprehensive analysis sheds light on the gut microbiome and serum metabolome in AP, elucidating the role of pathobionts in disease progression. These insights offer valuable perspectives for etiologic diagnosis, prevention, and intervention in AP and related conditions.

RevDate: 2024-03-26
CmpDate: 2024-03-26

Gottscho AD, Mulcahy DG, Leaché AD, et al (2024)

Population genomics of flat-tailed horned lizards (Phrynosoma mcallii) informs conservation and management across a fragmented Colorado Desert landscape.

Molecular ecology, 33(7):e17308.

Phrynosoma mcallii (flat-tailed horned lizards) is a species of conservation concern in the Colorado Desert of the United States and Mexico. We analysed ddRADseq data from 45 lizards to estimate population structure, infer phylogeny, identify migration barriers, map genetic diversity hotspots, and model demography. We identified the Colorado River as the main geographic feature contributing to population structure, with the populations west of this barrier further subdivided by the Salton Sea. Phylogenetic analysis confirms that northwestern populations are nested within southeastern populations. The best-fit demographic model indicates Pleistocene divergence across the Colorado River, with significant bidirectional gene flow, and a severe Holocene population bottleneck. These patterns suggest that management strategies should focus on maintaining genetic diversity on both sides of the Colorado River and the Salton Sea. We recommend additional lands in the United States and Mexico that should be considered for similar conservation goals as those in the Rangewide Management Strategy. We also recommend periodic rangewide genomic sampling to monitor ongoing attrition of diversity, hybridization, and changing structure due to habitat fragmentation, climate change, and other long-term impacts.

RevDate: 2024-03-26
CmpDate: 2024-03-26

Molina-Hoyos K, Montoya-Ruíz C, Aguilar PV, et al (2024)

Virome analyses of Amblyomma cajennense and Rhipicephalus microplus ticks collected in Colombia.

Acta tropica, 253:107158.

Tick-borne viruses (TBV) have gained public health relevance in recent years due to the recognition of human-associated fatal cases and the increase in tick-borne disease and transmission. However, many tick species have not been studied for their potential to transmit pathogenic viruses, especially those found in Latin America. To gain better understanding of the tick virome, we conducted targeted amplification using broadly-reactive consensus-degenerate pan-viral targeting viruses from the genera Flavivirus, Bandavirus, Uukuvirus, and Orthonairovirus genus. Additionally, we conducted unbiased metagenomic analyses to investigate the presence of viral RNA sequences in Amblyomma cajennense, A. patinoi and Rhipicephalus microplus ticks collected from a horse slaughter plant in Medellín, Colombia. While no viral products were detected by PCR, results of the metagenomic analyses revealed the presence of viral genomes belonging to the genera Phlebovirus, Bandavirus, and Uukuvirus, including Lihan Tick Virus (LTV), which was previously reported in Rhipicephalus microplus from Colombia. Overall, the results emphasized the enormous utility of the next-generation sequencing in identifying virus genetic diversity presents in ticks and other species of vectors and reservoirs.

RevDate: 2024-03-22

Mousa WK, Abu-Izneid T, A Salah-Tantawy (2024)

High-throughput sequencing reveals the structure and metabolic resilience of desert microbiome confronting climate change.

Frontiers in plant science, 15:1294173.

INTRODUCTION: Desert ecosystems harbor a unique microbial diversity that is crucial for ecological stability and biogeochemical cycles. An in-depth understanding of the biodiversity, compositions, and functions of these microbial communities is imperative to navigate global changes and confront potential threats and opportunities applicable to agricultural ecosystems amid climate change.

METHODS: This study explores microbial communities in the rhizosphere and endosphere of desert plants native to the Arabian Peninsula using next-generation sequencing of the 16S rRNA gene (V3-V4 hypervariable region).

RESULTS: Our results reveal that each microbial community has a diverse and unique microbial composition. Based on alpha and beta diversity indices, the rhizosphere microbiome is significantly diverse and richer in microbial taxa compared to the endosphere. The data reveals a shift towards fast-growing microbes with active metabolism, involvement in nutrient cycling, nitrogen fixation, and defense pathways. Our data reveals the presence of habitat-specific microbial communities in the desert, highlighting their remarkable resilience and adaptability to extreme environmental conditions. Notably, we observed the existence of radiation-resistant microbes such as Deinococcus radiotolerans, Kocuria sp., and Rubrobacter radiotolerans which can tolerate high levels of ionizing radiation. Additionally, examples of microbes exhibiting tolerance to challenging conditions include Nocardioides halotolerans, thriving in high-salinity environments, and hyperthermophilic microbes such as Quasibacillus thermotolerans. Moreover, functional analysis reveals enrichment in chaperon biosynthesis pathways associated with correct protein folding under heat stress conditions.

DISCUSSION: Our research sheds light on the unique diversity of desert microbes and underscores their potential applications to increase the resilience of agriculture ecosystems, offering a promising strategy to fortify crops against the challenges posed by climate change, ultimately supporting sustainable food production for our ever-expanding global population.

RevDate: 2024-03-21

Yang S, Zhang W, Yang B, et al (2024)

Metagenomic evidence for antibiotic-associated actinomycetes in the Karamay Gobi region.

Frontiers in microbiology, 15:1330880.

Due to the misuse of antibiotics, there is an increasing emergence and spread of multidrug-resistant (MDR) bacteria, leading to a human health crisis. To address clinical antibiotic resistance and prevent/control pathogenic microorganisms, the development of novel antibiotics is essential. This also offers a new approach to discovering valuable actinobacterial flora capable of producing natural bioactive products. In this study, we employed bioinformatics and macro-genome sequencing to collect 15 soil samples from three different locations in the Karamay Gobi region. First, we assessed the diversity of microorganisms in soil samples from different locations, analyzing the content of bacteria, archaea, actinomycetes, and fungi. The biodiversity of soil samples from outside the Gobi was found to be higher than that of soil samples from within and in the center of the Gobi. Second, through microbial interaction network analysis, we identified actinomycetes as the dominant group in the system. We have identified the top four antibiotic genes, such as Ecol_fabG_TRC, Efac_liaR_DAP, tetA (58), and macB, by CARD. These genes are associated with peptide antibiotics, disinfecting agents and antiseptics, tetracycline antibiotics, and macrolide antibiotics. In addition, we also obtained 40 other antibiotic-related genes through CARD alignment. Through in-depth analysis of desert soil samples, we identified several unstudied microbial species belonging to different families, including Erythrobacteriaceae, Solirubrobacterales, Thermoleophilaceae, Gaiellaceae, Nocardioidaceae, Actinomycetia, Egibacteraceae, and Acidimicrobiales. These species have the capability to produce peptide antibiotics, macrolide antibiotics, and tetracycline antibiotics, as well as disinfectants and preservatives. This study provides valuable theoretical support for future in-depth research.

RevDate: 2024-03-23
CmpDate: 2024-03-21

Wu E, Mallawaarachchi V, Zhao J, et al (2024)

Contigs directed gene annotation (ConDiGA) for accurate protein sequence database construction in metaproteomics.

Microbiome, 12(1):58.

BACKGROUND: Microbiota are closely associated with human health and disease. Metaproteomics can provide a direct means to identify microbial proteins in microbiota for compositional and functional characterization. However, in-depth and accurate metaproteomics is still limited due to the extreme complexity and high diversity of microbiota samples. It is generally recommended to use metagenomic data from the same samples to construct the protein sequence database for metaproteomic data analysis. Although different metagenomics-based database construction strategies have been developed, an optimization of gene taxonomic annotation has not been reported, which, however, is extremely important for accurate metaproteomic analysis.

RESULTS: Herein, we proposed an accurate taxonomic annotation pipeline for genes from metagenomic data, namely contigs directed gene annotation (ConDiGA), and used the method to build a protein sequence database for metaproteomic analysis. We compared our pipeline (ConDiGA or MD3) with two other popular annotation pipelines (MD1 and MD2). In MD1, genes were directly annotated against the whole bacterial genome database; in MD2, contigs were annotated against the whole bacterial genome database and the taxonomic information of contigs was assigned to the genes; in MD3, the most confident species from the contigs annotation results were taken as reference to annotate genes. Annotation tools, including BLAST, Kaiju, and Kraken2, were compared. Based on a synthetic microbial community of 12 species, it was found that Kaiju with the MD3 pipeline outperformed the others in the construction of protein sequence database from metagenomic data. Similar performance was also observed with a fecal sample, as well as in silico mixed datasets of the simulated microbial community and the fecal sample.

CONCLUSIONS: Overall, we developed an optimized pipeline for gene taxonomic annotation to construct protein sequence databases. Our study can tackle the current taxonomic annotation reliability problem in metagenomics-derived protein sequence database and can promote the in-depth metaproteomic analysis of microbiome. The unique metagenomic and metaproteomic datasets of the 12 bacterial species are publicly available as a standard benchmarking sample for evaluating various analysis pipelines. The code of ConDiGA is open access at GitHub for the analysis of microbiota samples. Video Abstract.

RevDate: 2024-03-21
CmpDate: 2024-03-21

Rosay T, Jimenez AG, V Sperandio (2024)

Glucuronic acid confers colonization advantage to enteric pathogens.

Proceedings of the National Academy of Sciences of the United States of America, 121(13):e2400226121.

Glucuronidation is a detoxification process to eliminate endo- and xeno-biotics and neurotransmitters from the host circulation. Glucuronosyltransferase binds these compounds to glucuronic acid (GlcA), deactivating them and allowing their elimination through the gastrointestinal (GI) tract. However, the microbiota produces β-glucuronidases that release GlcA and reactivate these compounds. Enteric pathogens such as enterohemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium sense and utilize galacturonic acid (GalA), an isomer of GlcA, to outcompete the microbiota promoting gut colonization. However, the role of GlcA in pathogen colonization has not been explored. Here, we show that treatment of mice with a microbial β-glucuronidase inhibitor (GUSi) decreased C. rodentium's colonization of the GI tract, without modulating bacterial virulence or host inflammation. Metagenomic studies indicated that GUSi did not change the composition of the intestinal microbiota in these animals. GlcA confers an advantage for pathogen expansion through its utilization as a carbon source. Congruently mutants unable to catabolize GlcA depict lower GI colonization compared to wild type and are not sensitive to GUSi. Germfree mice colonized with a commensal E. coli deficient for β-glucuronidase production led to a decrease of C. rodentium tissue colonization, compared to animals monocolonized with an E. coli proficient for production of this enzyme. GlcA is not sensed as a signal and doesn't activate virulence expression but is used as a metabolite. Because pathogens can use GlcA to promote their colonization, inhibitors of microbial β-glucuronidases could be a unique therapeutic against enteric infections without disturbing the host or microbiota physiology.

RevDate: 2024-03-25
CmpDate: 2024-03-25

Russ L, Andreo Jimenez B, Nijhuis E, et al (2024)

Rhizoctonia solani disease suppression: addition of keratin-rich soil amendment leads to functional shifts in soil microbial communities.

FEMS microbiology ecology, 100(4):.

Promoting soil suppressiveness against soil borne pathogens could be a promising strategy to manage crop diseases. One way to increase the suppression potential in agricultural soils is via the addition of organic amendments. This microbe-mediated phenomenon, although not fully understood, prompted our study to explore the microbial taxa and functional properties associated with Rhizoctonia solani disease suppression in sugar beet seedlings after amending soil with a keratin-rich waste stream. Soil samples were analyzed using shotgun metagenomics sequencing. Results showed that both amended soils were enriched in bacterial families found in disease suppressive soils before, indicating that the amendment of keratin-rich material can support the transformation into a suppressive soil. On a functional level, genes encoding keratinolytic enzymes were found to be abundant in the keratin-amended samples. Proteins enriched in amended soils were those potentially involved in the production of secondary metabolites/antibiotics, motility, keratin-degradation, and contractile secretion system proteins. We hypothesize these taxa contribute to the amendment-induced suppression effect due to their genomic potential to produce antibiotics, secrete effectors via the contractile secretion system, and degrade oxalate-a potential virulence factor of R. solani-while simultaneously possessing the ability to metabolize keratin.

RevDate: 2024-03-25
CmpDate: 2024-03-25

Gunjur A, Shao Y, Rozday T, et al (2024)

A gut microbial signature for combination immune checkpoint blockade across cancer types.

Nature medicine, 30(3):797-809.

Immune checkpoint blockade (ICB) targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce remarkable, yet unpredictable, responses across a variety of cancers. Studies suggest that there is a relationship between a cancer patient's gut microbiota composition and clinical response to ICB; however, defining microbiome-based biomarkers that generalize across cohorts has been challenging. This may relate to previous efforts quantifying microbiota to species (or higher taxonomic rank) abundances, whereas microbial functions are often strain specific. Here, we performed deep shotgun metagenomic sequencing of baseline fecal samples from a unique, richly annotated phase 2 trial cohort of patients with diverse rare cancers treated with combination ICB (n = 106 discovery cohort). We demonstrate that strain-resolved microbial abundances improve machine learning predictions of ICB response and 12-month progression-free survival relative to models built using species-rank quantifications or comprehensive pretreatment clinical factors. Through a meta-analysis of gut metagenomes from a further six comparable studies (n = 364 validation cohort), we found cross-cancer (and cross-country) validity of strain-response signatures, but only when the training and test cohorts used concordant ICB regimens (anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). This suggests that future development of gut microbiome diagnostics or therapeutics should be tailored according to ICB treatment regimen rather than according to cancer type.

RevDate: 2024-03-25
CmpDate: 2024-03-25

Jangi S, Hsia K, Zhao N, et al (2024)

Dynamics of the Gut Mycobiome in Patients With Ulcerative Colitis.

Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association, 22(4):821-830.e7.

BACKGROUND & AIMS: Intestinal fungi have been implicated in the pathogenesis of ulcerative colitis (UC). However, it remains unclear if fungal composition is altered during active versus quiescent disease.

METHODS: We analyzed clinical and metagenomic data from the Study of a Prospective Adult Research Cohort with Inflammatory Bowel Disease (SPARC IBD), available via the IBD Plexus Program of the Crohn's & Colitis Foundation. We evaluated the fungal composition of fecal samples from 421 patients with UC during clinical activity and remission. Within a longitudinal subcohort (n = 52), we assessed for dynamic taxonomic changes across alterations in clinical activity over time. We examined if fungal amplicon sequence variants and fungal-bacterial relationships were altered during activity versus remission. Finally, we classified activity in UC using a supervised machine learning random forest model trained on fungal abundance data.

RESULTS: During clinical activity, the relative abundance of genus Candida was increased 3.5-fold (P-adj < 1 × 10[-4]) compared with during remission. Patients with longitudinal reductions in clinical activity demonstrated parallel reductions in Candida relative abundance (P < .05). Candida relative abundance correlated with Parabacteroides diastonis, Faecalibacterium prausnitzii, and Bacteroides dorei relative abundance (P < .05) during remission; however, these correlations were disrupted during activity. Fungal abundance data successfully classified patients with active or quiescent UC (area under the curve ∼0.80), with Candida relative abundance critical to the success of the model.

CONCLUSIONS: Clinical activity in UC is associated with an increased relative abundance of Candida, cross-sectionally and dynamically over time. The role of fecal Candida as a target for therapeutics in UC should be evaluated.

RevDate: 2024-03-21
CmpDate: 2024-03-19

Sekeresova Kralova J, Donic C, Dassa B, et al (2024)

Competitive fungal commensalism mitigates candidiasis pathology.

The Journal of experimental medicine, 221(5):.

The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here, we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines. K. weizmannii exposure prevented Candida albicans colonization and significantly reduced the commensal C. albicans burden in colonized animals. Following immunosuppression of C. albicans colonized mice, competitive fungal commensalism thereby mitigated fatal candidiasis. Metagenome analysis revealed K. heterogenica or K. weizmannii presence among human commensals. Our results reveal competitive fungal commensalism within the intestinal microbiota, independent of bacteria and immune responses, that could bear potential therapeutic value for the management of C. albicans-mediated diseases.

RevDate: 2024-03-22
CmpDate: 2024-03-22

Shahzad M, Saeed M, Amin H, et al (2024)

The oral microbiome of newly diagnosed tuberculosis patients; a pilot study.

Genomics, 116(2):110816.

BACKGROUND: Changes in oral microbiota composition (dysbiosis) have long been known to play a key role in the pathogenesis of oral and systemic diseases including respiratory diseases. However, till now, no study has assessed changes in oral microbiota following tuberculosis (TB) infection in humans.

AIMS: This is the first study of its kind that aimed to investigate oral microbial dysbiosis in newly diagnosed, treatment naïve, TB patients.

METHODS: Oral swab samples were collected from newly diagnosed TB patients (n = 20) and age, gender and ethnicity matched healthy controls (n = 10). DNA was extracted and microbiota analyzed by sequencing the hypervariable (V3-V4) region of the bacterial 16S rRNA gene using Illumina MiSeq platform. Bioinformatics and statistical analyses were performed using QIIME and R.

RESULTS: Bacterial richness, diversity and community composition were significantly different between TB patients and healthy controls. The two groups also exhibit differential abundance at phylum, class, genus and species levels. LEfSe analysis revealed enrichment (LDA scores (log10) >2, P < 0.05) of Firmicutes (especially Streptococcus) and Actinobacteriota (especially Rothia) in TB patients relative to healthy controls. Gene function prediction analysis showed upregulation of metabolic pathways related to carbohydrates (butanoate, galactose) and fatty acids metabolism, antibiotics biosynthesis, proteosome and immune system signaling.

CONCLUSION: These observations suggest significant variations in diversity, relative abundance and functional potential of oral microbiota of TB patients compared to healthy controls thereby suggesting potential role of oral bacterial dysbiosis in TB pathogenesis. However, longitudinal studies using powerful metagenomic and transcriptomic approaches are crucial to more fully understand and confrim these findings.

RevDate: 2024-03-22
CmpDate: 2024-03-22

Li J, Chen Z, Wang Q, et al (2024)

Microbial and metabolic profiles unveil mutualistic microbe-microbe interaction in obesity-related colorectal cancer.

Cell reports. Medicine, 5(3):101429.

Obesity is a risk factor for colorectal cancer (CRC), and the involvement of gut microbiota in the pathogenesis of obesity and CRC is widely recognized. However, the landscape of fecal microbiome and metabolome distinguishing patients with obesity-related CRC from obesity remains unknown. Here, we utilize metagenomic sequencing and metabolomics from 522 patients with CRC and healthy controls to identify the characteristics of obese CRC. Our integrated analysis reveals that obesity-related CRC is characterized by elevated Peptostreptococcus stomatis, dysregulated fatty acids and phospholipids, and altered Kyoto Encyclopedia of Genes and Genomes pathways involving glycerophospholipid metabolism and lipopolysaccharide synthesis. Correlation analysis unveils microbial interactions in obesity, where the probiotic Faecalibacterium prausnitzii and the tumor-promoting species P. stomatis may engage in cross-feeding, thereby promoting tumorigenesis. In vitro experiments affirm enhanced growth under cross-feeding conditions. The mutualistic microbe-microbe interaction may contribute to the association between obesity and elevated CRC risk. Additionally, diagnostic models incorporating BMI-specific microbial biomarkers display promise for precise CRC screening.

RevDate: 2024-03-22
CmpDate: 2024-03-22

Huang KD, Amend L, Gálvez EJC, et al (2024)

Establishment of a non-Westernized gut microbiota in men who have sex with men is associated with sexual practices.

Cell reports. Medicine, 5(3):101426.

The human gut microbiota is influenced by various factors, including health status and environmental conditions, yet considerable inter-individual differences remain unexplained. Previous studies identified that the gut microbiota of men who have sex with men (MSM) is distinct from that of non-MSM. Here, we reveal through species-level microbiota analysis using shotgun metagenomics that the gut microbiota of many MSM with Western origin resembles gut microbial communities of non-Westernized populations. Specifically, MSM gut microbiomes are frequently dominated by members of the Prevotellaceae family, including co-colonization of species from the Segatella copri complex and unknown Prevotellaceae members. Questionnaire-based analysis exploring inter-individual differences in MSM links specific sexual practices to microbiota composition. Moreover, machine learning identifies microbial features associated with sexual activities in MSM. Together, this study shows associations of sexual activities with gut microbiome alterations in MSM, which may have a large impact on population-based microbiota studies.

RevDate: 2024-03-22
CmpDate: 2024-03-22

Kondo M, Torisu T, Nagasue T, et al (2024)

Duodenal microbiome in chronic kidney disease.

Clinical and experimental nephrology, 28(4):263-272.

BACKGROUND: The intestinal microbiome is involved in the pathogenesis of chronic kidney disease (CKD). Despite its importance, the microbiome of the small intestinal mucosa has been little studied due to sampling difficulties, and previous studies have mainly focused on fecal sources for microbiome studies. We aimed to characterize the small intestinal microbiome of CKD patients by studying the microbiome collected from duodenal and fecal samples of CKD patients and healthy controls.

METHODS: Overall, 28 stage 5 CKD patients and 21 healthy participants were enrolled. Mucosal samples were collected from the deep duodenum during esophagogastroduodenoscopy and fecal samples were also collected. The 16S ribosomal RNA gene sequencing using Qiime2 was used to investigate and compare the microbial structure and metagenomic function of the duodenal and fecal microbiomes.

RESULTS: The duodenal flora of CKD patients had decreased alpha diversity compared with the control group. On the basis of taxonomic composition, Veillonella and Prevotella were significantly reduced in the duodenal flora of CKD patients. The tyrosine and tryptophan metabolic pathways were enhanced in the urea toxin-related metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes database.

CONCLUSION: The small intestinal microbiome in CKD patients is significantly altered, indicating that increased intestinal permeability and production of uremic toxin may occur in the upper small intestine of CKD patients.

RevDate: 2024-03-20
CmpDate: 2024-03-19

Maritan E, Quagliariello A, Frago E, et al (2024)

The role of animal hosts in shaping gut microbiome variation.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 379(1901):20230071.

Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.

RevDate: 2024-03-20
CmpDate: 2024-03-18

Moreno-Pino M, Manrique-de-la-Cuba MF, López-Rodríguez M, et al (2024)

Unveiling microbial guilds and symbiotic relationships in Antarctic sponge microbiomes.

Scientific reports, 14(1):6371.

Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Malakar S, Sutaoney P, Madhyastha H, et al (2024)

Understanding gut microbiome-based machine learning platforms: A review on therapeutic approaches using deep learning.

Chemical biology & drug design, 103(3):e14505.

Human beings possess trillions of microbial cells in a symbiotic relationship. This relationship benefits both partners for a long time. The gut microbiota helps in many bodily functions from harvesting energy from digested food to strengthening biochemical barriers of the gut and intestine. But the changes in microbiota composition and bacteria that can enter the gastrointestinal tract can cause infection. Several approaches like culture-independent techniques such as high-throughput and meta-omics projects targeting 16S ribosomal RNA (rRNA) sequencing are popular methods to investigate the composition of the human gastrointestinal tract microbiota and taxonomically characterizing microbial communities. The microbiota conformation and diversity should be provided by whole-genome shotgun metagenomic sequencing of site-specific community DNA associating genome mapping, gene inventory, and metabolic remodelling and reformation, to ease the functional study of human microbiota. Preliminary examination of the therapeutic potency for dysbiosis-associated diseases permits investigation of pharmacokinetic-pharmacodynamic changes in microbial communities for escalation of treatment and dosage plan. Gut microbiome study is an integration of metagenomics which has influenced the field in the last two decades. And the incorporation of artificial intelligence and deep learning through "omics-based" methods and microfluidic evaluation enhanced the capability of identification of thousands of microbes.

RevDate: 2024-03-21
CmpDate: 2024-03-21

Yang Y, Xu N, Zhang Z, et al (2024)

Deciphering Microbial Community and Nitrogen Fixation in the Legume Rhizosphere.

Journal of agricultural and food chemistry, 72(11):5659-5670.

Nitrogen is the most limiting factor in crop production. Legumes establish a symbiotic relationship with rhizobia and enhance nitrogen fixation. We analyzed 1,624 rhizosphere 16S rRNA gene samples and 113 rhizosphere metagenomic samples from three typical legumes and three non-legumes. The rhizosphere microbial community of the legumes had low diversity and was enriched with nitrogen-cycling bacteria (Sphingomonadaceae, Xanthobacteraceae, Rhizobiaceae, and Bacillaceae). Furthermore, the rhizosphere microbiota of legumes exhibited a high abundance of nitrogen-fixing genes, reflecting a stronger nitrogen-fixing potential, and Streptomycetaceae and Nocardioidaceae were the predominant nitrogen-fixing bacteria. We also identified helper bacteria and confirmed through metadata analysis and a pot experiment that the synthesis of riboflavin by helper bacteria is the key factor in promoting nitrogen fixation. Our study emphasizes that the construction of synthetic communities of nitrogen-fixing bacteria and helper bacteria is crucial for the development of efficient nitrogen-fixing microbial fertilizers.

RevDate: 2024-03-21
CmpDate: 2024-03-21

Huang J, Wu Y, Gao Q, et al (2024)

Metagenomic exploration of the rhizosphere soil microbial community and their significance in facilitating the development of wild-simulated ginseng.

Applied and environmental microbiology, 90(3):e0233523.

Panax ginseng, a prized medicinal herb, has faced increasingly challenging field production due to soil degradation and fungal diseases in Northeast China. Wild-simulated cultivation has prevailed because of its sustainable soil management and low disease incidence. Despite the recognized benefits of rhizosphere microorganisms in ginseng cultivation, their genomic and functional diversity remain largely unexplored. In this work, we utilized shotgun metagenomic analysis to reveal that Pseudomonadota, Actinomycetota, and Acidobacteriota were dominant in the ginseng rhizobiome and recovered 14 reliable metagenome-assembled genomes. Functional analysis indicated an enrichment of denitrification-associated genes, potentially contributing to the observed decline in soil fertility, while genes associated with aromatic carbon degradation may be linked to allelochemical degradation. Further analysis demonstrated enrichment of Actinomycetota in 9-year-old wild-simulated ginseng (WSG), suggesting the need for targeted isolation of Actinomycetota bacteria. Among these, at least three different actinomycete strains were found to play a crucial role in fungal disease resistance, with Streptomyces spp. WY144 standing out for its production of actinomycin natural products active against the pathogenic fungus Ilyonectria robusta. These findings not only enhance our understanding of the rhizobiome of WSG but also present promising avenues for combating detrimental fungal pathogens, underscoring the importance of ginseng in both medicinal and agricultural contexts.IMPORTANCEWild-simulated ginseng, growing naturally without human interference, is influenced by its soil microbiome. Using shotgun metagenomics, we analyzed the rhizospheric soil microbiome of 7- and 9-year-old wild-simulated ginseng. The study aimed to reveal its composition and functions, exploring the microbiome's key roles in ginseng growth. Enrichment analysis identified Streptomycetes in ginseng soil, with three strains inhibiting plant pathogenic fungi. Notably, one strain produced actinomycins, suppressing the ginseng pathogenic fungus Ilyonectria robusta. This research accelerates microbiome application in wild-simulated ginseng cultivation, offering insights into pathogen protection and supporting microbiome utilization in agriculture.

RevDate: 2024-03-21
CmpDate: 2024-03-21

Cho EJ, Kim B, Yu SJ, et al (2024)

Urinary microbiome-based metagenomic signature for the noninvasive diagnosis of hepatocellular carcinoma.

British journal of cancer, 130(6):970-975.

BACKGROUND: Gut microbial dysbiosis is implicated in chronic liver disease and hepatocellular carcinoma (HCC), but the role of microbiomes from various body sites remains unexplored. We assessed disease-specific alterations in the urinary microbiome in HCC patients, investigating their potential as diagnostic biomarkers.

METHODS: We performed cross-sectional analyses of urine samples from 471 HCC patients and 397 healthy controls and validated the results in an independent cohort of 164 HCC patients and 164 healthy controls. Urinary microbiomes were analyzed by 16S rRNA gene sequencing. A microbial marker-based model distinguishing HCC from controls was built based on logistic regression, and its performance was tested.

RESULTS: Microbial diversity was significantly reduced in the HCC patients compared with the controls. There were significant differences in the abundances of various bacteria correlated with HCC, thus defining a urinary microbiome-derived signature of HCC. We developed nine HCC-associated genera-based models with robust diagnostic accuracy (area under the curve [AUC], 0.89; balanced accuracy, 81.2%). In the validation, this model detected HCC with an AUC of 0.94 and an accuracy of 88.4%.

CONCLUSIONS: The urinary microbiome might be a potential biomarker for the detection of HCC. Further clinical testing and validation of these results are needed in prospective studies.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Martínez-Álvaro M, Mattock J, González-Recio Ó, et al (2024)

Including microbiome information in a multi-trait genomic evaluation: a case study on longitudinal growth performance in beef cattle.

Genetics, selection, evolution : GSE, 56(1):19.

BACKGROUND: Growth rate is an important component of feed conversion efficiency in cattle and varies across the different stages of the finishing period. The metabolic effect of the rumen microbiome is essential for cattle growth, and investigating the genomic and microbial factors that underlie this temporal variation can help maximize feed conversion efficiency at each growth stage.

RESULTS: By analysing longitudinal body weights during the finishing period and genomic and metagenomic data from 359 beef cattle, our study demonstrates that the influence of the host genome on the functional rumen microbiome contributes to the temporal variation in average daily gain (ADG) in different months (ADG1, ADG2, ADG3, ADG4). Five hundred and thirty-three additive log-ratio transformed microbial genes (alr-MG) had non-zero genomic correlations (rg) with at least one ADG-trait (ranging from |0.21| to |0.42|). Only a few alr-MG correlated with more than one ADG-trait, which suggests that a differential host-microbiome determinism underlies ADG at different stages. These alr-MG were involved in ribosomal biosynthesis, energy processes, sulphur and aminoacid metabolism and transport, or lipopolysaccharide signalling, among others. We selected two alternative subsets of 32 alr-MG that had a non-uniform or a uniform rg sign with all the ADG-traits, regardless of the rg magnitude, and used them to develop a microbiome-driven breeding strategy based on alr-MG only, or combined with ADG-traits, which was aimed at shaping the rumen microbiome towards increased ADG at all finishing stages. Combining alr-MG information with ADG records increased prediction accuracy of genomic estimated breeding values (GEBV) by 11 to 22% relative to the direct breeding strategy (using ADG-traits only), whereas using microbiome information, only, achieved lower accuracies (from 7 to 41%). Predicted selection responses varied consistently with accuracies. Restricting alr-MG based on their rg sign (uniform subset) did not yield a gain in the predicted response compared to the non-uniform subset, which is explained by the absence of alr-MG showing non-zero rg at least with more than one of the ADG-traits.

CONCLUSIONS: Our work sheds light on the role of the microbial metabolism in the growth trajectory of beef cattle at the genomic level and provides insights into the potential benefits of using microbiome information in future genomic breeding programs to accurately estimate GEBV and increase ADG at each finishing stage in beef cattle.

RevDate: 2024-03-20
CmpDate: 2024-03-20

Chen T, Mo C, Yuan Y, et al (2024)

Short-, long-read metagenome and virome reveal the profile of phage-mediated ARGs in anoxic-oxic processes for swine wastewater treatment.

Journal of hazardous materials, 468:133789.

Phages are among the most widely spread viruses, but their profiles and the antibiotic resistance genes (ARGs) they carry in swine wastewater remain underexplored. The present study investigated the distribution characteristics of phages and their ARG risk in anoxic/oxic (A/O) wastewater treatment processes of swine farms using short- and long-read metagenome and virome. The results demonstrated that the virome could extract more phage sequences than the total metagenome; thus, it was more suited for studying phages in wastewater settings. Intriguingly, phages had significantly lower abundance of ARG than ARGs harbored by total microorganisms (P < 0.01). Eleven ARGs co-occurred with phages and bacteria (R > 0.6 and P < 0.05), with Siphoviridae being the phage co-occurring with the most ARGs (5). Horizontal gene transfer (HGT) events were observed between Proteobacteria and the major phyla except for Bacteroidota. Furthermore, there were prophage sequences and ARGs on the same contig in bacterial MAGs. These data strongly demonstrate that phages promote horizontal transfer of ARG between bacterial hosts in A/O processes for swine wastewater treatment. Therefore, the risk of phage-mediated horizontal transfer of ARGs cannot be overlooked despite the low abundance of phage ARGs (pARG).

RevDate: 2024-03-20
CmpDate: 2024-03-20

Zhong J, Osborn T, Del Rosario Hernández T, et al (2024)

Increasing transposase abundance with ocean depth correlates with a particle-associated lifestyle.

mSystems, 9(3):e0006724.

Transposases are mobile genetic elements that move within and between genomes, promoting genomic plasticity in microorganisms. In marine microbial communities, the abundance of transposases increases with depth, but the reasons behind this trend remain unclear. Our analysis of metagenomes from the Tara Oceans and Malaspina Expeditions suggests that a particle-associated lifestyle is the main covariate for the high occurrence of transposases in the deep ocean, and this trend holds true for individual genomes as well as in a community-wide sense. We observed a strong and depth-independent correlation between transposase abundance and the presence of biofilm-associated genes, as well as the prevalence of secretory enzymes. This suggests that mobile genetic elements readily propagate among microbial communities within crowded biofilms. Furthermore, we show that particle association positively correlates with larger genome size, which is in turn associated with higher transposase abundance. Cassette sequences associated with transposons are enriched with genes related to defense mechanisms, which are more highly expressed in the deep sea. Thus, while transposons spread at the expense of their microbial hosts, they also introduce novel genes and potentially benefit the hosts in helping to compete for limited resources. Overall, our results suggest a new understanding of deep ocean particles as highways for gene sharing among defensively oriented microbial genomes.IMPORTANCEGenes can move within and between microbial genomes via mobile genetic elements, which include transposases and transposons. In the oceans, there is a puzzling increase in transposase abundance in microbial genomes as depth increases. To gain insight into this trend, we conducted an extensive analysis of marine microbial metagenomes and metatranscriptomes. We found a significant correlation between transposase abundance and a particle-associated lifestyle among marine microbes at both the metagenome and genome-resolved levels. We also observed a link between transposase abundance and genes related to defense mechanisms. These results suggest that as microbes become densely packed into crowded particles, mobile genes are more likely to spread and carry genetic material that provides a competitive advantage in crowded habitats. This may enable deep sea microbes to effectively compete in such environments.

RevDate: 2024-03-20
CmpDate: 2024-03-20

Dindhoria K, Kumar R, Bhargava B, et al (2024)

Metagenomic assembled genomes indicated the potential application of hypersaline microbiome for plant growth promotion and stress alleviation in salinized soils.

mSystems, 9(3):e0105023.

UNLABELLED: Climate change is causing unpredictable seasonal variations globally. Due to the continuously increasing earth's surface temperature, the rate of water evaporation is enhanced, conceiving a problem of soil salinization, especially in arid and semi-arid regions. The accumulation of salt degrades soil quality, impairs plant growth, and reduces agricultural yields. Salt-tolerant, plant-growth-promoting microorganisms may offer a solution, enhancing crop productivity and soil fertility in salinized areas. In the current study, genome-resolved metagenomic analysis has been performed to investigate the salt-tolerating and plant growth-promoting potential of two hypersaline ecosystems, Sambhar Lake and Drang Mine. The samples were co-assembled independently by Megahit, MetaSpades, and IDBA-UD tools. A total of 67 metagenomic assembled genomes (MAGs) were reconstructed following the binning process, including 15 from Megahit, 26 from MetaSpades, and 26 from IDBA_UD assembly tools. As compared to other assemblers, the MAGs obtained by MetaSpades were of superior quality, with a completeness range of 12.95%-96.56% and a contamination range of 0%-8.65%. The medium and high-quality MAGs from MetaSpades, upon functional annotation, revealed properties such as salt tolerance (91.3%), heavy metal tolerance (95.6%), exopolysaccharide (95.6%), and antioxidant (60.86%) biosynthesis. Several plant growth-promoting attributes, including phosphate solubilization and indole-3-acetic acid (IAA) production, were consistently identified across all obtained MAGs. Conversely, characteristics such as iron acquisition and potassium solubilization were observed in a substantial majority, specifically 91.3%, of the MAGs. The present study indicates that hypersaline microflora can be used as bio-fertilizing agents for agricultural practices in salinized areas by alleviating prevalent stresses.

IMPORTANCE: The strategic implementation of metagenomic assembled genomes (MAGs) in exploring the properties and harnessing microorganisms from ecosystems like hypersaline niches has transformative potential in agriculture. This approach promises to redefine our comprehension of microbial diversity and its ecosystem roles. Recovery and decoding of MAGs unlock genetic resources, enabling the development of new solutions for agricultural challenges. Enhanced understanding of these microbial communities can lead to more efficient nutrient cycling, pest control, and soil health maintenance. Consequently, traditional agricultural practices can be improved, resulting in increased yields, reduced environmental impacts, and heightened sustainability. MAGs offer a promising avenue for sustainable agriculture, bridging the gap between cutting-edge genomics and practical field applications.

RevDate: 2024-03-20
CmpDate: 2024-03-20

Schaan AP, Vidal A, Zhang A-N, et al (2024)

Temporal dynamics of gut microbiomes in non-industrialized urban Amazonia.

mSystems, 9(3):e0070723.

Increasing levels of industrialization have been associated with changes in gut microbiome structure and loss of features thought to be crucial for maintaining gut ecological balance. The stability of gut microbial communities over time within individuals seems to be largely affected by these changes but has been overlooked among transitioning populations from low- to middle-income countries. Here, we used metagenomic sequencing to characterize the temporal dynamics in gut microbiomes of 24 individuals living an urban non-industrialized lifestyle in the Brazilian Amazon. We further contextualized our data with 165 matching longitudinal samples from an urban industrialized and a rural non-industrialized population. We show that gut microbiome composition and diversity have greater variability over time among non-industrialized individuals when compared to industrialized counterparts and that taxa may present diverse temporal dynamics across human populations. Enterotype classifications show that community types are generally stable over time despite shifts in microbiome structure. Furthermore, by tracking genomes over time, we show that levels of bacterial population replacements are more frequent among Amazonian individuals and that non-synonymous variants accumulate in genes associated with degradation of host dietary polysaccharides. Taken together, our results suggest that the stability of gut microbiomes is influenced by levels of industrialization and that tracking microbial population dynamics is important to understand how the microbiome will adapt to these transitions.IMPORTANCEThe transition from a rural or non-industrialized lifestyle to urbanization and industrialization has been linked to changes in the structure and function of the human gut microbiome. Understanding how the gut microbiomes changes over time is crucial to define healthy states and to grasp how the gut microbiome interacts with the host environment. Here, we investigate the temporal dynamics of gut microbiomes from an urban and non-industrialized population in the Amazon, as well as metagenomic data sets from urban United States and rural Tanzania. We showed that healthy non-industrialized microbiomes experience greater compositional shifts over time compared to industrialized individuals. Furthermore, bacterial strain populations are more frequently replaced in non-industrialized microbiomes, and most non-synonymous mutations accumulate in genes associated with the degradation of host dietary components. This indicates that microbiome stability is affected by transitions to industrialization, and that strain tracking can elucidate the ecological dynamics behind such transitions.

RevDate: 2024-03-20
CmpDate: 2024-03-20

Zhang Y, Si L, Gao J, et al (2024)

Serial passage of PDCoV in cell culture reduces its pathogenicity and its damage of gut microbiota homeostasis in piglets.

mSystems, 9(3):e0134623.

Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus that mainly causes diarrhea in suckling piglets, and also has the potential for cross-species transmission. However, there are still no commercial vaccines available to prevent and control PDCoV infection. In this study, PDCoV strain HNZK-02 was serially propagated in vitro for up to 150 passages and the amino acid changes have mainly occurred in the S protein during serial passage which caused structure change. PDCoV HNZK-02-passage 5 (P5)-infected piglets exhibited acute and severe watery diarrhea, an obvious intestinal damage, while the piglets infected with PDCoV HNZK-02-P150 showed no obvious clinical signs, weak intestinal lesions, and lower viral loads in rectal swabs and various tissues. Compared with the PDCoV HNZK-02-P5 infection, HNZK-02-P150 infection resulted in a decrease in intestinal mucosal permeability and pro-inflammatory cytokines. Moreover, PDCoV HNZK-02-P5 infection had significantly reduced bacterial diversity and increased relative abundance of opportunistic pathogens, while PDCoV HNZK-02-P150 infection did not significantly affect the bacterial diversity, and the relative abundance of probiotics increased. Furthermore, the alterations of gut microbiota were closely related to the change of pro-inflammatory factor. Metagenomics prediction analysis demonstrated that HNZK-02-P150 modulated the tyrosine metabolism, Nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway, and lipopolysaccharide biosynthesis, which coincided with lower inflammatory response and intestinal permeability in the piglets infected with HNZK-02-P150. In conclusion, the PDCoV HNZK-02 was successfully attenuated by serial passage in vitro, and the changes of S gene, metabolic function, and gut microbiota may contribute to the attenuation. The PDCoV HNZK-02-P150 may have the potential for developing live-attenuated vaccine.IMPORTANCEPorcine deltacoronavirus (PDCoV) is an enteropathogen causing severe diarrhea, dehydration, and death in nursing piglets, devastating great economic losses for the global swine industry, and has cross-species transmission and zoonotic potential. There are currently no approved treatments or vaccines available for PDCoV. In addition, gut microbiota has an important relationship with the development of many diseases. Here, the PDCoV virulent HNZK-02 strain was successfully attenuated by serial passage on cell cultures, and the pathogenesis and effects on the gut microbiota composition and metabolic function of the PDCoV HNZK-02-P5 and P150 strains were investigated in piglets. We also found the genetic changes in the S protein during passage in vitro and the gut microbiota may contribute to the pathogenesis of PDCoV, while their interaction molecular mechanism would need to be explored further.

RevDate: 2024-03-20
CmpDate: 2024-03-20

Zhan K, Wu H, Xu Y, et al (2024)

The function of the gut microbiota-bile acid-TGR5 axis in diarrhea-predominant irritable bowel syndrome.

mSystems, 9(3):e0129923.

UNLABELLED: Imbalanced gut microbiota (GM) and abnormal fecal bile acid (BA) are thought to be the key factors for diarrhea-predominant irritable bowel syndrome (IBS-D), but the underlying mechanism remains unclear. Herein, we explore the influence of the GM-BA-Takeda G-protein-coupled receptor 5 (TGR5) axis on IBS-D. Twenty-five IBS-D patients and fifteen healthy controls were recruited to perform BA-related metabolic and metagenomic analyses. Further, the microbiota-humanized IBS-D rat model was established by fecal microbial transplantation (FMT) to investigate the GM-BA-TGR5 axis effects on the colonic barrier and visceral hypersensitivity (VH) in IBS-D. Finally, we used chenodeoxycholic acid (CDCA), an important BA screened out by metabolome, to evaluate whether it affected diarrhea and VH via the TGR5 pathway. Clinical research showed that GM associated with bile salt hydrolase (BSH) activity such as Bacteroides ovatus was markedly reduced in the GM of IBS-D, accompanied by elevated total and primary BA levels. Moreover, we found that CDCA not only was increased as the most important primary BA in IBS-D patients but also could induce VH through upregulating TGR5 in the colon and ileum of normal rats. TGR5 inhibitor could reverse the phenotype, depression-like behaviors, pathological change, and level of fecal BSH in a microbiota-humanized IBS-D rat model. Our findings proved that human-associated FMT could successfully induce the IBS-D rat model, and the imbalanced GM-BA-TGR5 axis may promote colonic mucosal barrier dysfunction and enhance VH in IBS-D.

IMPORTANCE: Visceral hypersensitivity and intestinal mucosal barrier damage are important factors that cause abnormal brain-gut interaction in diarrhea-predominant irritable bowel syndrome (IBS-D). Recently, it was found that the imbalance of the gut microbiota-bile acid axis is closely related to them. Therefore, understanding the structure and function of the gut microbiota and bile acids and the underlying mechanisms by which they shape visceral hypersensitivity and mucosal barrier damage in IBS-D is critical. An examination of intestinal feces from IBS-D patients revealed that alterations in gut microbiota and bile acid metabolism underlie IBS-D and symptom onset. We also expanded beyond existing knowledge of well-studied gut microbiota and bile acid and found that Bacteroides ovatus and chenodeoxycholic acid may be potential bacteria and bile acid involved in the pathogenesis of IBS-D. Moreover, our data integration reveals the influence of the microbiota-bile acid-TGR5 axis on barrier function and visceral hypersensitivity.

RevDate: 2024-03-20
CmpDate: 2024-03-20

Dong J-H, Xu X, Ren Z-X, et al (2024)

The adaptation of bumblebees to extremely high elevation associated with their gut microbiota.

mSystems, 9(3):e0121923.

Bumblebees are among the most abundant and important pollinators for sub-alpine and alpine flowering plant species in the Northern Hemisphere, but little is known about their adaptations to high elevations. In this article, we focused on two bumblebee species, Bombus friseanus and Bombus prshewalskyi, and their respective gut microbiota. The two species, distributed through the Hengduan Mountains of southwestern China, show species replacement at different elevations. We performed genome sequencing based on 20 worker bee samples of each species. Applying evolutionary population genetics and metagenomic approaches, we detected genes under selection and analyzed functional pathways between bumblebees and their gut microbes. We found clear genetic differentiation between the two host species and significant differences in their microbiota. Species replacement occurred in both hosts and their bacteria (Snodgrassella) with an increase in elevation. These extremely high-elevation bumblebees show evidence of positive selection related to diverse biological processes. Positively selected genes involved in host immune systems probably contributed to gut microbiota changes, while the butyrate generated by gut microbiota may influence both host energy metabolism and immune systems. This suggests a close association between the genomes of the host species and their microbiomes based on some degree of natural selection.IMPORTANCETwo closely related and dominant bumblebee species, distributed at different elevations through the Hengduan Mountains of southwestern China, showed a clear genomic signature of adaptation to elevation at the molecular level and significant differences in their respective microbiota. Species replacement occurred in both hosts and their bacteria (Snodgrassella) with an increase in elevation. Bumblebees' adaptations to higher elevations are closely associated with their gut microbiota through two biological processes: energy metabolism and immune response. Information allowing us to understand the adaptive mechanisms of species to extreme conditions is implicit if we are to conserve them as their environments change.

RevDate: 2024-03-20
CmpDate: 2024-03-20

Ramos JGVDS, Richter CP, Silva MA, et al (2024)

Effects of ciprofloxacin on biogas production and microbial community composition in anaerobic digestion of swine wastewater in ASBR type reactor.

Environmental technology, 45(10):2076-2088.

In swine farming, antibiotics are often used to reduce disease and promote animal growth. Part of these compounds is not absorbed by the swine body, being excreted and later reaching the treatment systems, soil, and nearby waterbodies. This research sought to investigate the influence of adding ciprofloxacin (CIP) on the anaerobic digestion of swine wastewater. For that, a bench-scale anaerobic sequential batch reactor (ASBR) was used, with 5 L of working volume in six different phases, with volumetric organic loading rate (VOLR) and CIP dosage variation. According to the results, the optimal VOLR for the reactor was 0.60 ± 0.11 gSV L[-1] d[-1], resulting in biogas productivity of 0.51 ± 0.03 Lbiogas L[-1] d[-1]. After initial stability, adding substrate with 0.5 mgCIP L[-1] resulted in an abrupt drop of 82% in the productivity from the 7[th] to 11[th] day of addition, coinciding with volatile acids accumulation. Afterward, the reactor recovered and reached apparent stability, with productivity similar to the previous step without the drug. For 2.5 mgCIP L[-1] in the substrate, the biogas productivity at equilibrium was 11.8% lower than in the phases with the same VOLR and 0.0 and 0.5 mgCIP L[-1]. Organic matter removals near 80% were achieved for both dosages. The 16S rRNA metagenomic analyses showed an increase in the relative abundance of most of the phyla found, indicating that the dosages used allowed the acclimatization of microorganisms and possibly the compound biodegradation.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Wang F, Liu X, Huang F, et al (2024)

Gut microbiota-derived gamma-aminobutyric acid from metformin treatment reduces hepatic ischemia/reperfusion injury through inhibiting ferroptosis.

eLife, 12:.

Hepatic ischemia/reperfusion injury (HIRI) is a common and inevitable factor leading to poor prognosis in various liver diseases, making the outcomes of current treatments in clinic unsatisfactory. Metformin has been demonstrated to be beneficial to alleviate HIRI in recent studies, however, the underpinning mechanism remains unclear. In this study, we found metformin mitigates HIRI-induced ferroptosis through reshaped gut microbiota in mice, which was confirmed by the results of fecal microbiota transplantation treatment but showed the elimination of the beneficial effects when gut bacteria were depleted using antibiotics. Detailedly, through 16S rRNA and metagenomic sequencing, we identified that the metformin-reshaped microbiota was characterized by the increase of gamma-aminobutyric acid (GABA) producing bacteria. This increase was further confirmed by the elevation of GABA synthesis key enzymes, glutamic acid decarboxylase and putrescine aminotransferase, in gut microbes of metformin-treated mice and healthy volunteers. Furthermore, the benefit of GABA against HIRI-induced ferroptosis was demonstrated in GABA-treated mice. Collectively, our data indicate that metformin can mitigate HIRI-induced ferroptosis by reshaped gut microbiota, with GABA identified as a key metabolite.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Lian Q, Song X, Yang J, et al (2024)

Alterations of lung microbiota in lung transplant recipients with pneumocystis jirovecii pneumonia.

Respiratory research, 25(1):125.

BACKGROUND: Increasing evidence revealed that lung microbiota dysbiosis was associated with pulmonary infection in lung transplant recipients (LTRs). Pneumocystis jirovecii (P. jirovecii) is an opportunistic fungal pathogen that frequently causes lethal pneumonia in LTRs. However, the lung microbiota in LTRs with P. jirovecii pneumonia (PJP) remains unknow.

METHODS: In this prospective observational study, we performed metagenomic next-generation sequencing (mNGS) on 72 bronchoalveolar lavage fluid (BALF) samples from 61 LTRs (20 with PJP, 22 with PJC, 19 time-matched stable LTRs, and 11 from LTRs after PJP recovery). We compared the lung microbiota composition of LTRs with and without P. jirovecii, and analyzed the related clinical variables.

RESULTS: BALFs collected at the episode of PJP showed a more discrete distribution with a lower species diversity, and microbiota composition differed significantly compared to P. jirovecii colonization (PJC) and control group. Human gammaherpesvirus 4, Phreatobacter oligotrophus, and Pseudomonas balearica were the differential microbiota species between the PJP and the other two groups. The network analysis revealed that most species had a positive correlation, while P. jirovecii was correlated negatively with 10 species including Acinetobacter venetianus, Pseudomonas guariconensis, Paracandidimonas soli, Acinetobacter colistiniresistens, and Castellaniella defragrans, which were enriched in the control group. The microbiota composition and diversity of BALF after PJP recovery were also different from the PJP and control groups, while the main components of the PJP recovery similar to control group. Clinical variables including age, creatinine, total protein, albumin, IgG, neutrophil, lymphocyte, CD3[+]CD45[+], CD3[+]CD4[+] and CD3[+]CD8[+] T cells were deeply implicated in the alterations of lung microbiota in LTRs.

CONCLUSIONS: This study suggests that LTRs with PJP had altered lung microbiota compared to PJC, control, and after recovery groups. Furthermore, lung microbiota is related to age, renal function, nutritional and immune status in LTRs.

RevDate: 2024-03-19
CmpDate: 2024-03-19

Xie Z, Huang J, Sun G, et al (2024)

Integrated multi-omics analysis reveals gut microbiota dysbiosis and systemic disturbance in major depressive disorder.

Psychiatry research, 334:115804.

Major depressive disorder (MDD) involves systemic changes in peripheral blood and gut microbiota, but the current understanding is incomplete. Herein, we conducted a multi-omics analysis of fecal and blood samples obtained from an observational cohort including MDD patients (n = 99) and healthy control (HC, n = 50). 16S rRNA sequencing of gut microbiota showed structural alterations in MDD, as characterized by increased Enterococcus. Metagenomics sequencing of gut microbiota showed substantial functional alterations including upregulation in the superpathway of the glyoxylate cycle and fatty acid degradation and downregulation in various metabolic pathways in MDD. Plasma metabolomics revealed decreased amino acids and bile acids, together with increased sphingolipids and cholesterol esters in MDD. Notably, metabolites involved in arginine and proline metabolism were decreased while sphingolipid metabolic pathway were increased. Mass cytometry analysis of blood immune cell subtypes showed rises in proinflammatory immune subsets and declines in anti-inflammatory immune subsets in MDD. Furthermore, our findings revealed disease severity-related factors of MDD. Interestingly, we classified MDD into two immune subtypes that were highly correlated with disease relapse. Moreover, we established discriminative signatures that differentiate MDD from HC. These findings contribute to a comprehensive understanding of the MDD pathogenesis and provide valuable resources for the discovery of biomarkers.

RevDate: 2024-03-19
CmpDate: 2024-03-19

Erhardt R, Steels E, Harnett JE, et al (2024)

Effects of a prebiotic formulation on the composition of the faecal microbiota of people with functional constipation.

European journal of nutrition, 63(3):777-784.

PURPOSE: Prebiotics are defined as substances which selectively promote beneficial gut microbes leading to a health benefit for the host. Limited trials have been carried out investigating their effect on the microbiota composition of individuals afflicted by functional constipation with equivocal outcomes. In a 21-day randomised, controlled clinical trial involving 61 adults with functional constipation, a prebiotic formulation with partially hydrolysed guar gum and acacia gum as its main ingredients, significantly increased complete spontaneous bowel motions in the treatment group. This follow-up exploratory analysis investigated whether the prebiotic was associated with changes to the composition, richness, and diversity of the faecal microbiota.

METHODS: Participants provided a faecal specimen at baseline and on day 21 of the intervention period. Whole genome metagenomic shotgun sequencing comprehensively assessed taxonomic and functional composition of the microbiota.

RESULTS: Linear mixed effects regression models adjusted for potential confounders showed a significant reduction in species richness of 28.15 species (95% CI - 49.86, - 6.43) and Shannon diversity of 0.29 units (95% CI - 0.56, - 0.02) over the trial period in the prebiotic group. These changes were not observed in the control group, and functional composition was unchanged in both groups.

CONCLUSION: In adults with functional constipation, the intake of a prebiotic formulation was associated with a decline of species richness and Shannon diversity. Further research regarding the associations between prebiotics and the composition and function of the gut microbiota is warranted.

RevDate: 2024-03-19
CmpDate: 2024-03-19

Zou Y, Ro KS, Jiang C, et al (2024)

The anti-hyperuricemic and gut microbiota regulatory effects of a novel purine assimilatory strain, Lactiplantibacillus plantarum X7022.

European journal of nutrition, 63(3):697-711.

PURPOSE: Probiotics have been reported to effectively alleviate hyperuricemia and regulate the gut microbiota. The aim of this work was to study the in vivo anti-hyperuricemic properties and the mechanism of a novel strain, Lactiplantibacillus plantarum X7022.

METHODS: Purine content and mRNA expression of purine assimilation related enzymes were determined by HPLC and qPCR, respectively. Hyperuricemic mice were induced by potassium oxonate and hypoxanthine. Uric acid (UA), blood urea nitrogen, creatinine and renal inflammation were examined by kits. The expression of renal UA transporters was subjected to western blotting. Kidney tissues were sectioned for histological analysis. The fecal short-chain fatty acids (SCFAs) were determined by HPLC, and gut microbiota was investigated using the 16S rDNA metagenomic sequencing.

RESULTS: L. plantarum X7022 possesses a complete purine assimilation pathway and can exhaust xanthine, guanine, and adenine by 82.1%, 33.1%, and 12.6%, respectively. The strain exhibited gastrointestinal viability as 44% at the dose of 10[9] CFU/mL in mice. After four-week administration of the strain, a significant decrease of 35.5% in the serum UA level in hyperuricemic mice was achieved. The diminished contents of fecal propionate and butyrate were dramatically boosted. The treatment also alleviated renal inflammation and restored renal damage. The above physiological changes may due to the inhibited xanthine oxidase (XO) activity, as well as the expressional regulation of UA transporters (GLUT9, URAT1 and OAT1) to the normal level. Notably, gut microbiota dysbiosis in hyperuricemic mice was improved with the inflammation and hyperuricemia related flora depressed, and SCFAs production related flora promoted.

CONCLUSION: The strain is a promising probiotic strain for ameliorating hyperuricemia.

RevDate: 2024-03-16
CmpDate: 2024-03-15

Fronton F, Villemur R, Robert D, et al (2024)

Divergent bacterial landscapes: unraveling geographically driven microbiomes in Atlantic cod.

Scientific reports, 14(1):6088.

Establishing microbiome signatures is now recognized as a critical step toward identifying genetic and environmental factors shaping animal-associated microbiomes and informing the health status of a given host. In the present work, we prospectively collected 63 blood samples of the Atlantic cod population of the Southern Gulf of Saint Lawrence (GSL) and characterized their 16S rRNA circulating microbiome signature. Our results revealed that the blood microbiome signature was dominated at the phylum level by Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria, a typical signature for fish populations inhabiting the GSL and other marine ecosystems. At the genus level, however, we identified two distinct cod groups. While the microbiome signature of the first group was dominated by Pseudoalteromonas, a genus we previously found in the microbiome signature of Greenland and Atlantic halibut populations of the GSL, the second group had a microbiome signature dominated by Nitrobacter and Sediminibacterium (approximately 75% of the circulating microbiome). Cods harboring a Nitrobacter/Sediminibacterium-rich microbiome signature were localized in the most southern part of the GSL, just along the northern coast of Cape Breton Island. Atlantic cod microbiome signatures did not correlate with the weight, length, relative condition, depth, temperature, sex, and salinity, as previously observed in the halibut populations. Our study provides, for the first time, a unique snapshot of the circulating microbiome signature of Atlantic cod populations and the potential existence of dysbiotic signatures associated with the geographical distribution of the population, probably linked with the presence of nitrite in the environment.

RevDate: 2024-03-16
CmpDate: 2024-03-15

Sato Y, Sato R, Fukui E, et al (2024)

Impact of rumen microbiome on cattle carcass traits.

Scientific reports, 14(1):6064.

Rumen microbes are crucial in the anaerobic fermentation of plant polysaccharides to produce volatile fatty acids. However, limited information exists about the specific microbial species and strains in the rumen that affect carcass traits, and it is unclear whether there is a relationship between rumen metabolic functions and these traits. This study investigated the relationship between the rumen microbiome and carcass traits in beef cattle using 16S rRNA amplicon and shotgun sequencing. Metagenomic sequencing was used to compare the rumen microbiome between high-carcass weight (HW) and low-carcass weight (LW) cattle, and high-marbling (HM) and low-marbling (LM) cattle. Prokaryotic communities in the rumen of HW vs. LW and HM vs. LM were separated using 16S rRNA amplicon sequencing. Notably, shotgun metagenomic sequencing revealed that HW cattle had more methane-producing bacteria and ciliate protozoa, suggesting higher methane emissions. Additionally, variations were observed in the abundances of certain glycoside hydrolases and polysaccharide lyases involved in the ruminal degradation of plant polysaccharides between HW and LW. From our metagenome dataset, 807 non-redundant metagenome-assembled genomes (MAGs) of medium to high quality were obtained. Among these, 309 and 113 MAGs were associated with carcass weight and marbling, respectively.

RevDate: 2024-03-14
CmpDate: 2024-03-14

Kumar V, Roy S, Parida SN, et al (2024)

Deciphering the impact of endoparasitic infection on immune response and gut microbial composition of Channa punctata.

Frontiers in cellular and infection microbiology, 14:1296769.

Intestinal parasitic infections caused by helminths are globally distributed and are a major cause of morbidity worldwide. Parasites may modulate the virulence, gut microbiota diversity and host responses during infection. Despite numerous works, little is known about the complex interaction between parasites and the gut microbiota. In the present study, the complex interplay between parasites and the gut microbiota was investigated. A total of 12 bacterial strains across four major families, including Enterobacteriaceae, Morganellaceae, Flavobacteriaceae, and Pseudomonadaceae, were isolated from Channa punctata, infected with the nematode species Aporcella sp., Axonchium sp., Tylencholaimus mirabilis, and Dioctophyme renale. The findings revealed that nematode infection shaped the fish gut bacterial microbiota and significantly affected their virulence levels. Nematode-infected fish bacterial isolates are more likely to be pathogenic, with elevated hemolytic activity and biofilm formation, causing high fish mortality. In contrast, isolates recovered further from non-parasitised C. punctata were observed to be non-pathogenic and had negligible hemolytic activity and biofilm formation. Antibiogram analysis of the bacterial isolates revealed a disproportionately high percentage of bacteria that were either marginally or multidrug resistant, suggesting that parasitic infection-induced stress modulates the gut microenvironment and enables colonization by antibiotic-resistant strains. This isolation-based study provides an avenue to unravel the influence of parasitic infection on gut bacterial characteristics, which is valuable for understanding the infection mechanism and designing further studies aimed at optimizing treatment strategies. In addition, the cultured isolates can supplement future gut microbiome studies by providing wet lab specimens to compare (meta)genomic information discovered within the gut microenvironment of fish.

RevDate: 2024-03-15
CmpDate: 2024-03-14

Fernandez-Sanjurjo M, Fernandez J, Martinez-Camblor P, et al (2024)

Dynamics of Gut Microbiota and Short-Chain Fatty Acids during a Cycling Grand Tour Are Related to Exercise Performance and Modulated by Dietary Intake.

Nutrients, 16(5):.

BACKGROUND: Regular exercise has been described to modify both the diversity and the relative abundance of certain bacterial taxa. To our knowledge, the effect of a cycling stage race, which entails extreme physiological and metabolic demands, on the gut microbiota composition and its metabolic activity has not been analysed.

OBJECTIVE: The aim of this cohort study was to analyse the dynamics of faecal microbiota composition and short-chain fatty acids (SCFAs) content of professional cyclists over a Grand Tour and their relationship with performance and dietary intake.

METHODS: 16 professional cyclists competing in La Vuelta 2019 were recruited. Faecal samples were collected at four time points: the day before the first stage (A); after 9 stages (B); after 15 stages (C); and on the last stage (D). Faecal microbiota populations and SCFA content were analysed using 16S rRNA sequencing and gas chromatography, respectively. A principal component analysis (PCA) followed by Generalised Estimating Equation (GEE) models were carried out to explore the dynamics of microbiota and SCFAs and their relationship with performance.

RESULTS: Bifidobacteriaceae, Coriobacteriaceae, Erysipelotrichaceae, and Sutterellaceae dynamics showed a strong final performance predictive value (r = 0.83, ranking, and r = 0.81, accumulated time). Positive correlations were observed between Coriobacteriaceae with acetate (r = 0.530) and isovalerate (r = 0.664) and between Bifidobacteriaceae with isobutyrate (r = 0.682). No relationship was observed between SCFAs and performance. The abundance of Erysipelotrichaceae at the beginning of La Vuelta was directly related to the previous intake of complex-carbohydrate-rich foods (r = 0.956), while during the competition, the abundance of Bifidobacteriaceae was negatively affected by the intake of simple carbohydrates from supplements (r = -0.650).

CONCLUSIONS: An ecological perspective represents more realistically the relationship between gut microbiota composition and performance compared to single-taxon approaches. The composition and periodisation of diet and supplementation during a Grand Tour, particularly carbohydrates, could be designed to modulate gut microbiota composition to allow better performance.

RevDate: 2024-03-15
CmpDate: 2024-03-14

Ng HY, Liao Y, Zhang R, et al (2024)

The Predictive Value of Gut Microbiota Composition for Sustained Immunogenicity following Two Doses of CoronaVac.

International journal of molecular sciences, 25(5):.

CoronaVac immunogenicity decreases with time, and we aimed to investigate whether gut microbiota associate with longer-term immunogenicity of CoronaVac. This was a prospective cohort study recruiting two-dose CoronaVac recipients from three centres in Hong Kong. We collected blood samples at baseline and day 180 after the first dose and used chemiluminescence immunoassay to test for neutralizing antibodies (NAbs) against the receptor-binding domain (RBD) of wild-type SARS-CoV-2 virus. We performed shotgun metagenomic sequencing performed on baseline stool samples. The primary outcome was the NAb seroconversion rate (seropositivity defined as NAb ≥ 15AU/mL) at day 180. Linear discriminant analysis [LDA] effect size analysis was used to identify putative bacterial species and metabolic pathways. A univariate logistic regression model was used to derive the odds ratio (OR) of seropositivity with bacterial species. Of 119 CoronaVac recipients (median age: 53.4 years [IQR: 47.8-61.3]; male: 39 [32.8%]), only 8 (6.7%) remained seropositive at 6 months after vaccination. Bacteroides uniformis (log10LDA score = 4.39) and Bacteroides eggerthii (log10LDA score = 3.89) were significantly enriched in seropositive than seronegative participants. Seropositivity was associated with B. eggerthii (OR: 5.73; 95% CI: 1.32-29.55; p = 0.022) and B. uniformis with borderline significance (OR: 3.27; 95% CI: 0.73-14.72; p = 0.110). Additionally, B. uniformis was positively correlated with most enriched metabolic pathways in seropositive vaccinees, including the superpathway of adenosine nucleotide de novo biosynthesis I (log10LDA score = 2.88) and II (log10LDA score = 2.91), as well as pathways related to vitamin B biosynthesis, all of which are known to promote immune functions. In conclusion, certain gut bacterial species (B. eggerthii and B. uniformis) and metabolic pathways were associated with longer-term CoronaVac immunogenicity.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Carasso S, Zaatry R, Hajjo H, et al (2024)

Inflammation and bacteriophages affect DNA inversion states and functionality of the gut microbiota.

Cell host & microbe, 32(3):322-334.e9.

Reversible genomic DNA inversions control the expression of numerous gut bacterial molecules, but how this impacts disease remains uncertain. By analyzing metagenomic samples from inflammatory bowel disease (IBD) cohorts, we identified multiple invertible regions where a particular orientation correlated with disease. These include the promoter of polysaccharide A (PSA) of Bacteroides fragilis, which induces regulatory T cells (Tregs) and ameliorates experimental colitis. The PSA promoter was mostly oriented "OFF" in IBD patients, which correlated with increased B. fragilis-associated bacteriophages. Similarly, in mice colonized with a healthy human microbiota and B. fragilis, induction of colitis caused a decline of PSA in the "ON" orientation that reversed as inflammation resolved. Monocolonization of mice with B. fragilis revealed that bacteriophage infection increased the frequency of PSA in the "OFF" orientation, causing reduced PSA expression and decreased Treg cells. Altogether, we reveal dynamic bacterial phase variations driven by bacteriophages and host inflammation, signifying bacterial functional plasticity during disease.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Wang R, Li X, Lv F, et al (2024)

Sesame bacterial wilt significantly alters rhizosphere soil bacterial community structure, function, and metabolites in continuous cropping systems.

Microbiological research, 282:127649.

Bacterial wilt is the leading disease of sesame and alters the bacterial community composition, function, and metabolism of sesame rhizosphere soil. However, its pattern of change is unclear. Here, the purpose of this study was to investigate how these communities respond to three differing severities of bacterial wilt in mature continuously cropped sesame plants by metagenomic and metabolomic techniques, namely, absence (WH), moderate (WD5), and severe (WD9) wilt. The results indicated that bacterial wilt could significantly change the bacterial community structure in the rhizosphere soil of continuously cropped sesame plants. The biomarker species with significant differences will also change with increasing disease severity. In particular, the gene expression levels of Ralstonia solanacearum in the WD9 and WD5 treatments increased by 25.29% and 33.61%, respectively, compared to those in the WH treatment (4.35 log10 copies g-1). The occurrence of bacterial wilt significantly altered the functions of the bacterial community in rhizosphere soil. KEEG and CAZy functional annotations revealed that the number of significantly different functions in WH was greater than that in WD5 and WD9. Bacterial wilt significantly affected the relative content of metabolites, especially acids, in the rhizosphere soil, and compared with those in the rhizosphere soil from WH, 10 acids (including S-adenosylmethionine, N-acetylleucine, and desaminotyrosine, etc.) in the rhizosphere soil from WD5 or WD9 significantly increased. In comparison, the changes in the other 10 acids (including hypotaurine, erucic acid, and 6-hydroxynicotinic acid, etc.) were reversed. The occurrence of bacterial wilt also significantly inhibited metabolic pathways such as ABC transporter and amino acid biosynthesis pathways in rhizosphere soil and had a significant impact on two key enzymes (1.1.1.11 and 2.6.1.44). In conclusion, sesame bacterial wilt significantly alters the rhizosphere soil bacterial community structure, function, and metabolites. This study enhances the understanding of sesame bacterial wilt mechanisms and lays the groundwork for future prevention and control strategies against this disease.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Wang G, Feng Z, Yin X, et al (2024)

Biogenic manganese oxides promote metal(loid) remediation by shaping microbial communities in biological aqua crust.

Water research, 253:121287.

Biological aqua crust (biogenic aqua crust-BAC) is a potentially sustainable solution for metal(loid) bioremediation in global water using solar energy. However, the key geochemical factors and underlying mechanisms shaping microbial communities in BAC remain poorly understood. The current study aimed at determining the in situ metal(loid) distribution and the key geochemical factors related to microbial community structure and metal(loid)-related genes in BAC of a representative Pb/Zn tailing pond. Here we showed that abundant metal(loid)s (e.g. Pb, As) were co-distributed with Mn/Fe-rich minerals (e.g. biogenic Mn oxide, FeOOH) in BAC. Biogenic Mn oxide (i.e. Mn) was the most dominant factor in shaping microbial community structure in BAC and source tailings. Along with the fact that keystone species (e.g. Burkholderiales, Haliscomenobacter) have the potential to promote Mn ion oxidization and particle agglomeration, as well as Mn is highly associated with metal(loid)-related genes, especially genes related to As redox (e.g. arsC, aoxA), and Cd transport (e.g. zipB), biogenic Mn oxides thus effectively enhance metal(loid) remediation by accelerating the formation of organo-mineral aggregates in biofilm-rich BAC system. Our study indicated that biogenic Mn oxides may play essential roles in facilitating in situ metal(loid) bioremediation in BAC of mine drainage.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Deng C, Chen T, Qiu Z, et al (2024)

A mixed blessing of influent leachate microbes in downstream biotreatment systems of a full-scale landfill leachate treatment plant.

Water research, 253:121310.

In landfill leachate treatment plants (LLTPs), the microbiome plays a pivotal role in the decomposition of organic compounds, reduction in nutrient levels, and elimination of toxins. However, the effects of microbes in landfill leachate influents on downstream treatment systems remain poorly understood. To address this knowledge gap, we collected 23 metagenomic and 12 metatranscriptomic samples from landfill leachate and activated sludge from various treatment units in a full-scale LLTP. We successfully recovered 1,152 non-redundant metagenome-assembled genomes (MAGs), encompassing a wide taxonomic range, including 48 phyla, 95 classes, 166 orders, 247 families, 238 genera, and 1,152 species. More diverse microbes were observed in the influent leachate than in the downstream biotreatment systems, among which, an unprecedented ∼30 % of microbes with transcriptional expression migrated from the influent to the biological treatment units. Network analysis revealed that 399 shared MAGs across the four units exhibited high node centrality and degree, thus supporting enhanced interactions and increased stability of microbial communities. Functional reconstruction and genome characterization of MAGs indicated that these shared MAGs possessed greater capabilities for carbon, nitrogen, sulfur, and arsenic metabolism compared to non-shared MAGs. We further identified a novel species of Zixibacteria in the leachate influent with discrete lineages from those in other environments that accounted for up to 17 % of the abundance of the shared microbial community and exhibited notable metabolic versatility. Meanwhile, we presented groundbreaking evidence of the involvement of Zixibacteria-encoded genes in the production of harmful gas emissions, such as N2O and H2S, at the transcriptional level, thus suggesting that influent microbes may pose safety risks to downstream treatment systems. In summary, this study revealed the complex impact of the influent microbiome on LLTP and emphasizes the need to consider these microbial characteristics when designing treatment technologies and strategies for landfill leachate management.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Chen Q, Wu C, Xu J, et al (2024)

Donor-recipient intermicrobial interactions impact transfer of subspecies and fecal microbiota transplantation outcome.

Cell host & microbe, 32(3):349-365.e4.

Studies on fecal microbiota transplantation (FMT) have reported inconsistent connections between clinical outcomes and donor strain engraftment. Analyses of subspecies-level crosstalk and its influences on lineage transfer in metagenomic FMT datasets have proved challenging, as single-nucleotide polymorphisms (SNPs) are generally not linked and are often absent. Here, we utilized species genome bin (SGB), which employs co-abundance binning, to investigate subspecies-level microbiome dynamics in patients with autism spectrum disorder (ASD) who had gastrointestinal comorbidities and underwent encapsulated FMT (Chinese Clinical Trial: 2100043906). We found that interactions between donor and recipient microbes, which were overwhelmingly phylogenetically divergent, were important for subspecies transfer and positive clinical outcomes. Additionally, a donor-recipient SGB match was indicative of a high likelihood of strain transfer. Importantly, these ecodynamics were shared across FMT datasets encompassing multiple diseases. Collectively, these findings provide detailed insight into specific microbial interactions and dynamics that determine FMT success.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Cha G, Zhu KJ, Fischer JM, et al (2024)

Metagenomic evaluation of the performance of passive Moore swabs for sewage monitoring relative to composite sampling over time resolved deployments.

Water research, 253:121269.

Moore swabs have re-emerged as a versatile tool in the field of wastewater-based epidemiology during the COVID-19 pandemic and offer unique advantages for monitoring pathogens in sewer systems, especially at the neighborhood-level. However, whether Moore swabs provide comparable results to more commonly used composite samples remains to be rigorously tested including the optimal duration of Moore swab deployment. This study provides new insights into these issues by comparing the results from Moore swab samples to those of paired composite samples collected from the same sewer lines continuously over six to seventy-two hours post-deployment, during low COVID-19 prevalence periods. Our results show that Moore swabs accumulated approximately 10-fold higher PMMoV concentrations (on a basis of mL of Moore swab squeezed filtrate to mL of composite sewage) and showed comparable trends in terms of bacterial species abundance when compared to composite samples. Moore swabs also generally captured higher SARS-CoV-2 N1/N2 RNA concentrations than composite samples. Moore swabs showed comparable trends in terms of abundance dynamics of the sewage microbiome to composite samples and variable signs of saturation over time that were site and/or microbial population-specific. Based on our dual ddRT-PCR and shotgun metagenomic approach, we find that Moore swabs at our sites were optimally deployed for 6 h at a time at two sites.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Zhu Z, Ding J, Du R, et al (2024)

Systematic tracking of nitrogen sources in complex river catchments: Machine learning approach based on microbial metagenomics.

Water research, 253:121255.

Tracking nitrogen pollution sources is crucial for the effective management of water quality; however, it is a challenging task due to the complex contaminative scenarios in the freshwater systems. The contaminative pattern variations can induce quick responses of aquatic microorganisms, making them sensitive indicators of pollution origins. In this study, the soil and water assessment tool, accompanied by a detailed pollution source database, was used to detect the main nitrogen pollution sources in each sub-basin of the Liuyang River watershed. Thus, each sub-basin was assigned to a known class according to SWAT outputs, including point source pollution-dominated area, crop cultivation pollution-dominated area, and the septic tank pollution-dominated area. Based on these outputs, the random forest (RF) model was developed to predict the main pollution sources from different river ecosystems using a series of input variable groups (e.g., natural macroscopic characteristics, river physicochemical properties, 16S rRNA microbial taxonomic composition, microbial metagenomic data containing taxonomic and functional information, and their combination). The accuracy and the Kappa coefficient were used as the performance metrics for the RF model. Compared with the prediction performance among all the input variable groups, the prediction performance of the RF model was significantly improved using metagenomic indices as inputs. Among the metagenomic data-based models, the combination of the taxonomic information with functional information of all the species achieved the highest accuracy (0.84) and increased median Kappa coefficient (0.70). Feature importance analysis was used to identify key features that could serve as indicators for sudden pollution accidents and contribute to the overall function of the river system. The bacteria Rhabdochromatium marinum, Frankia, Actinomycetia, and Competibacteraceae were the most important species, whose mean decrease Gini indices were 0.0023, 0.0021, 0.0019, and 0.0018, respectively, although their relative abundances ranged only from 0.0004 to 0.1 %. Among the top 30 important variables, functional variables constituted more than half, demonstrating the remarkable variation in the microbial functions among sites with distinct pollution sources and the key role of functionality in predicting pollution sources. Many functional indicators related to the metabolism of Mycobacterium tuberculosis, such as K24693, K25621, K16048, and K14952, emerged as significant important factors in distinguishing nitrogen pollution origins. With the shortage of pollution source data in developing regions, this suggested approach offers an economical, quick, and accurate solution to locate the origins of water nitrogen pollution using the metagenomic data of microbial communities.

RevDate: 2024-03-14
CmpDate: 2024-03-14

Li CL, Zhang F, Wang LD, et al (2024)

[Soil Microbial Community Structure and Functional Diversity Character of Abandoned Farmland in Minqin Oasis].

Huan jing ke xue= Huanjing kexue, 45(3):1821-1829.

To clarify the impact of the structure and function of soil microbial communities in the stage of abandoned farmland, three different stages of land abandoned in desert oasis areas were selected as the research objects. We used metagenomic sequencing technology to research soil microbial community structure and functional diversity characteristics of different stages of abandoned farmland. The results showed that there were significant differences in the relative abundance of the dominant phyla Actinobacteria, Proteobacteria, and Gemmatimonadetes in the soil of the three stages of returning farmland. Compared with that in the early stage of abandoned farmland, the later stage of abandoned farmland restoration increased the gene proportion involved in Quorum sensing, porphyrin and chlorophyll metabolism, pantothenate and CoA biosynthesis, and styrene degradation, and there was a significant difference in relative abundance (P<0.05), which indicated that different stages of abandoned farmland had changed the functional potential of the nutrient cycle and energy metabolism in soil microbial communities. The RDA results showed that EC, AK, and TN had a significant impact on the functional composition of soil microbes, and soil EC had the greatest impact on microbial functional composition. The results showed that different stages of abandoned farmland had a significant impact on the soil microbial community structure and functional composition. In the ecological restoration of abandoned farmland in Minqin Oasis, the sensitivity of microbial community structure and functional composition to soil restoration at different stages should be considered using comprehensive relevant indicators.

RevDate: 2024-03-15
CmpDate: 2024-03-13

Alemasi A, Gu L, Y Zhou (2024)

Gut microbiota in the association between obesity and kidney function decline: a metagenomics-based study in a rat model.

Renal failure, 46(1):2328320.

OBJECTIVES: Obesity can induce dysbiosis in the gut microbiota and is considered a separate risk factor for kidney function decline. Nonetheless, the precise function of intestinal microorganisms in facilitating the connection between obesity and kidney function decline remains uncertain. Hence, the objective of this study was to investigate the alterations in the gut microbiota composition that take place during obesity and their correlations with renal function utilizing a rat model.

METHODS: For 20 weeks, 25 Sprague-Dawley rats were fed either a high-fat diet (HFD) or a normal-fat normal diet (ND). Physiological indices, peripheral plasma, kidney tissue, and colon contents were collected for comparison between groups. Metagenomic analysis of intestinal flora was performed.

RESULTS: The HFD group demonstrated significantly increased levels of creatinine and urea nitrogen in the peripheral blood. Additionally, the HFD rats exhibited a significantly larger glomerular diameter compared to the ND group, accompanied by the presence of glomerulosclerosis, tubular vacuolar transformation, and other pathological changes in certain glomeruli. Metagenomics analysis revealed a notable rise in the prevalence of the Firmicutes phylum within the HFD group, primarily comprising the Rumenococcus genus. Functional analysis indicated that the gut microbiota in the HFD group primarily correlated with infectious diseases, signal transduction, and signaling molecules and interactions.

CONCLUSIONS: This study provides evidence that the consumption of a HFD induces modifications in the composition and functionality of the gut microbiome in rats, which may serve as a potential mechanism underlying the relationship between obesity and the progression of kidney function decline.

RevDate: 2024-03-15
CmpDate: 2024-03-15

Doolin ML, MD Dearing (2024)

Differential Effects of Two Common Antiparasitics on Microbiota Resilience.

The Journal of infectious diseases, 229(3):908-917.

BACKGROUND: Parasitic infections challenge vertebrate health worldwide, and off-target effects of antiparasitic treatments may be an additional obstacle to recovery. However, there have been few investigations of the effects of antiparasitics on the gut microbiome in the absence of parasites.

METHODS: We investigated whether two common antiparasitics-albendazole (ALB) and metronidazole (MTZ)-significantly alter the gut microbiome of parasite-free mice. We treated mice with ALB or MTZ daily for 7 days and sampled the fecal microbiota immediately before and after treatment and again after a two-week recovery period.

RESULTS: ALB did not immediately change the gut microbiota, while MTZ decreased microbial richness by 8.5% and significantly changed community structure during treatment. The structural changes caused by MTZ included depletion of the beneficial family Lachnospiraceae, and predictive metagenomic analysis revealed that these losses likely depressed microbiome metabolic function. Separately, we compared the fecal microbiotas of treatment groups after recovery, and there were minor differences in community structure between the ALB, MTZ, and sham-treated control groups.

CONCLUSIONS: These results suggest that a healthy microbiome is resilient after MTZ-induced depletions of beneficial gut microbes, and ALB may cause slight, latent shifts in the microbiota but does not deplete healthy gut microbiota diversity.

RevDate: 2024-03-15
CmpDate: 2024-03-15

Hoang J, Gilbertson-White S, Cady N, et al (2024)

Preliminary Analysis of Gut Microbiome and Gastrointestinal Symptom Burden in Breast Cancer Patients Receiving Chemotherapy Compared to Healthy Controls.

Biological research for nursing, 26(2):219-230.

BACKGROUND: Alterations in the naturally occurring bacteria of the gut, known as the gastrointestinal (GI) microbiome, may influence GI symptoms in women with breast cancer.

OBJECTIVE: This work aims to describe GI symptom occurrence, duration, severity, and distress and measures of the GI microbiome among women with breast cancer receiving chemotherapy compared to age- and sex-matched healthy controls.

INTERVENTIONS/METHODS: 22 women with breast cancer receiving chemotherapy and 17 healthy control women provided stool specimens and GI symptom data using the modified Memorial Symptom Assessment Scale (MSAS). The fecal microbiome was profiled by metagenomic sequencing of 16S Ribosomal RNA (rRNA). GI microbiome was compared between groups using alpha-diversity (Observed OTU number and Shannon index), beta-diversity (UniFrac distances), and relative abundance of select genera.

RESULTS: GI symptoms with high symptom reports among breast cancer patients included nausea, diarrhea, flatulence, dry mouth, taste change, and poor appetite. Indices of differential abundance (beta diversity) significantly distinguished between breast cancer patients and healthy controls. Unique bacterial features differentiating the 2 groups were Prevotella_9, Akkermansia, Lachnospira, Lachnospiraceae_NK4A136, Lachnoclostridium, and Oscillibacter.

CONCLUSIONS: Gut bacteria are associated with GI inflammation and mucus degradation, suggesting the potential role of the GI microbiome in GI symptom burden. Understanding the influence of GI bacteria on gut health and symptoms will help harness the enormous potential of the GI microbiome as a future diagnostic and therapeutic agent to reduce the symptom burden associated with chemotherapy.

RevDate: 2024-03-14
CmpDate: 2024-03-13

d'Humières C, Delavy M, Alla L, et al (2024)

Perturbation and resilience of the gut microbiome up to 3 months after β-lactams exposure in healthy volunteers suggest an important role of microbial β-lactamases.

Microbiome, 12(1):50.

BACKGROUND: Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the β-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience.

RESULTS: While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of β-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the β-lactamase activity of the microbiota. The level of β-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools.

CONCLUSIONS: In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous β-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.

RevDate: 2024-03-13
CmpDate: 2024-03-13

Watai K, Suda W, Kurokawa R, et al (2024)

Metagenomic gut microbiome analysis of Japanese patients with multiple chemical sensitivity/idiopathic environmental intolerance.

BMC microbiology, 24(1):84.

BACKGROUND: Although the pathology of multiple chemical sensitivity (MCS) is unknown, the central nervous system is reportedly involved. The gut microbiota is important in modifying central nervous system diseases. However, the relationship between the gut microbiota and MCS remains unclear. This study aimed to identify gut microbiota variations associated with MCS using shotgun metagenomic sequencing of fecal samples.

METHODS: We prospectively recruited 30 consecutive Japanese female patients with MCS and analyzed their gut microbiomes using shotgun metagenomic sequencing. The data were compared with metagenomic data obtained from 24 age- and sex-matched Japanese healthy controls (HC).

RESULTS: We observed no significant difference in alpha and beta diversity of the gut microbiota between the MCS patients and HC. Focusing on the important changes in the literatures, at the genus level, Streptococcus, Veillonella, and Akkermansia were significantly more abundant in MCS patients than in HC (p < 0.01, p < 0.01, p = 0.01, respectively, fold change = 4.03, 1.53, 2.86, respectively). At the species level, Akkermansia muciniphila was significantly more abundant (p = 0.02, fold change = 3.3) and Faecalibacterium prausnitzii significantly less abundant in MCS patients than in HC (p = 0.03, fold change = 0.53). Functional analysis revealed that xylene and dioxin degradation pathways were significantly enriched (p < 0.01, p = 0.01, respectively, fold change = 1.54, 1.46, respectively), whereas pathways involved in amino acid metabolism and synthesis were significantly depleted in MCS (p < 0.01, fold change = 0.96). Pathways related to antimicrobial resistance, including the two-component system and cationic antimicrobial peptide resistance, were also significantly enriched in MCS (p < 0.01, p < 0.01, respectively, fold change = 1.1, 1.2, respectively).

CONCLUSIONS: The gut microbiota of patients with MCS shows dysbiosis and alterations in bacterial functions related to exogenous chemicals and amino acid metabolism and synthesis. These findings may contribute to the further development of treatment for MCS.

TRIAL REGISTRATION: This study was registered with the University Hospital Medical Information Clinical Trials Registry as UMIN000031031. The date of first trial registration: 28/01/2018.

RevDate: 2024-03-12

Ma J, Yao Z, Zhang M, et al (2024)

Microbial and environmental medium-driven responses to phosphorus fraction changes in the sediments of different lake types during the freezing period.

Environmental science and pollution research international [Epub ahead of print].

The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.

RevDate: 2024-03-13
CmpDate: 2024-03-13

Sonthiphand P, Rueangmongkolrat N, Uthaipaisanwong P, et al (2024)

Soil Microbiomes and their Arsenic Functional Genes in Chronically High-Arsenic Contaminated Soils.

Bulletin of environmental contamination and toxicology, 112(3):49.

Microbial arsenic transformations play essential roles in controlling pollution and ameliorating risk. This study combined high-throughput sequencing and PCR-based approaches targeting both the 16 S rRNA and arsenic functional genes to investigate the temporal and spatial dynamics of the soil microbiomes impacted by high arsenic contamination (9.13 to 911.88 mg/kg) and to investigate the diversity and abundance of arsenic functional genes in soils influenced by an arsenic gradient. The results showed that the soil microbiomes were relatively consistent and mainly composed of Actinobacteria (uncultured Gaiellales and an unknown_67 - 14 bacterium), Proteobacteria, Firmicutes (particularly, Bacillus), Chloroflexi, and Acidobacteria (unknown_Subgroup_6). Although a range of arsenic functional genes (e.g., arsM, arsC, arrA, and aioA) were identified by shotgun metagenomics, only the arsM gene was detected by the PCR-based method. The relative abundance of the arsM gene accounted for 0.20%-1.57% of the total microbial abundance. Combining all analyses, arsenic methylation mediated by the arsM gene was proposed to be a key process involved in the arsenic biogeochemical cycle and mitigation of arsenic toxicity. This study advances our knowledge about arsenic mechanisms over the long-term in highly contaminated soils.

RevDate: 2024-03-14
CmpDate: 2024-03-14

Zhang IH, Borer B, Zhao R, et al (2024)

Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential.

mBio, 15(3):e0291823.

UNLABELLED: Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found in an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise a sizeable fraction of the archaeal community within marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes (MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and the Arabian Sea. We find these archaea to be permanent, stable residents of all three major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25%-50% of archaea as estimated from read mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs.

IMPORTANCE: Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the three global marine oxygen-deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.

RevDate: 2024-03-14
CmpDate: 2024-03-14

Xu Q, Li L, Guo J, et al (2024)

Active microbial population dynamics and life strategies drive the enhanced carbon use efficiency in high-organic matter soils.

mBio, 15(3):e0017724.

Microbial carbon use efficiency (CUE) is a critical parameter that controls carbon storage in soil, but many uncertainties remain concerning adaptations of microbial communities to long-term fertilization that impact CUE. Based on H2[18]O quantitative stable isotope probing coupled with metagenomic sequencing, we disentangled the roles of active microbial population dynamics and life strategies for CUE in soils after a long-term (35 years) mineral or organic fertilization. We found that the soils rich in organic matter supported high microbial CUE, indicating a more efficient microbial biomass formation and a greater carbon sequestration potential. Organic fertilizers supported active microbial communities characterized by high diversity and a relative increase in net growth rate, as well as an anabolic-biased carbon cycling, which likely explains the observed enhanced CUE. Overall, these results highlight the role of population dynamics and life strategies in understanding and predicting microbial CUE and sequestration in soil.IMPORTANCEMicrobial CUE is a major determinant of global soil organic carbon storage. Understanding the microbial processes underlying CUE can help to maintain soil sustainable productivity and mitigate climate change. Our findings indicated that active microbial communities, adapted to long-term organic fertilization, exhibited a relative increase in net growth rate and a preference for anabolic carbon cycling when compared to those subjected to chemical fertilization. These shifts in population dynamics and life strategies led the active microbes to allocate more carbon to biomass production rather than cellular respiration. Consequently, the more fertile soils may harbor a greater microbially mediated carbon sequestration potential. This finding is of great importance for manipulating microorganisms to increase soil C sequestration.

RevDate: 2024-03-14
CmpDate: 2024-03-14

Podar NA, Carrell AA, Cassidy KA, et al (2024)

From wolves to humans: oral microbiome resistance to transfer across mammalian hosts.

mBio, 15(3):e0334223.

The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.

RevDate: 2024-03-11

Möller L, Vainshtein Y, Meyer B, et al (2024)

Rich microbial and depolymerising diversity in Antarctic krill gut.

Microbiology spectrum [Epub ahead of print].

With almost a quadrillion individuals, the Antarctic krill processes five million tons of organic carbon every day during austral summer. This high carbon flux requires a broad range of hydrolytic enzymes to decompose the diverse food-derived biopolymers. While krill itself possesses numerous such enzymes, it is unclear, to what extent the endogenous microbiota contribute to the hydrolytic potential of the gut environment. Here we applied amplicon sequencing, shotgun metagenomics, cultivation, and physiological assays to characterize the krill gut microbiota. The broad bacterial diversity (273 families, 919 genera, and 2,309 species) also included a complex potentially anaerobic sub-community. Plate-based assays with 198 isolated pure cultures revealed widespread capacities to utilize lipids (e.g., tributyrin), followed by proteins (casein) and to a lesser extent by polysaccharides (e.g., alginate and chitin). While most isolates affiliated with the genera Pseudoalteromonas and Psychrobacter, also Rubritalea spp. (Verrucomicrobia) were observed. The krill gut microbiota growing on marine broth agar plates possess 13,012 predicted hydrolyses; 15-fold more than previously predicted from a transcriptome-proteome compendium of krill. Cultivation-independent and -dependent approaches indicated members of the families Flavobacteriaceae and Pseudoalteromonadaceae to dominate the capacities for lipid/protein hydrolysis and to provide a plethora of carbohydrate-active enzymes, sulfatases, and laminarin- or porphyrin-depolymerizing hydrolases. Notably, also the potential to hydrolyze plastics such as polyethylene terephthalate and polylactatide was observed, affiliating mostly with Moraxellaceae. Overall, this study shows extensive microbial diversity in the krill gut, and suggests that the microbiota likely play a significant role in the nutrient acquisition of the krill by enriching its hydrolytic enzyme repertoire.IMPORTANCEThe Antarctic krill (Euphausia superba) is a keystone species of the Antarctic marine food web, connecting the productivity of phyto- and zooplankton with the nutrition of the higher trophic levels. Accordingly, krill significantly contributes to biomass turnover, requiring the decomposition of seasonally varying plankton-derived biopolymers. This study highlights the likely role of the krill gut microbiota in this ecosystem function by revealing the great number of diverse hydrolases that microbes contribute to the krill gut environment. The here resolved repertoire of hydrolytic enzymes could contribute to the overall nutritional resilience of krill and to the general organic matter cycling under changing environmental conditions in the Antarctic sea water. Furthermore, the krill gut microbiome could serve as a valuable resource of cold-adapted hydrolytic enzymes for diverse biotechnological applications.

RevDate: 2024-03-10

Rossi A, Marroni F, Renoldi N, et al (2024)

An integrated approach to explore the microbial biodiversity of natural milk cultures for cheesemaking.

Journal of dairy science pii:S0022-0302(24)00535-6 [Epub ahead of print].

The use of natural milk culture (NMC) represents a key factor in PDO Montasio cheeses, contributing to its distinctive sensory profile. The complex microbial ecosystem of NMCs is the result of heat treatment and incubation conditions, which can vary considerably among different production plants. In this study, the microbiota of NMCs collected from 10 PDO Montasio cheese dairies was investigated employing colony counts and metagenomic analysis. Furthermore, residual sugars, organic acids, and volatile profiles were quantitatively investigated. Results showed that Streptococcus thermophilus was the dominant species in all NMCs, and a subdominant population made of other streptococci and L. salivarius was also present. The incubation temperature appeared to be the main driver of biodiversity in NMCs. Metagenomics allowed us to evidence the presence of minor species involving safety (e.g., Staph. aureus) as well as possible functional aspects (Next Generation Probiotics). Statistical analysis based on residual sugars, organic acids, and volatiles' content allowed to correlate the presence of specific microbial groups with metabolites of great technological and sensory relevance, which can contribute to giving value to the artisanal production procedures of NMCs and clarify their role in the creation of the characteristics of PDO Montasio cheese.

RevDate: 2024-03-12
CmpDate: 2024-03-11

Papp M, Tóth AG, Békési L, et al (2024)

Apis mellifera filamentous virus from a honey bee gut microbiome survey in Hungary.

Scientific reports, 14(1):5803.

In Hungary, as part of a nationwide, climatically balanced survey for a next-generation sequencing-based study of the honey bee (Apis mellifera) gut microbiome, repeated sampling was carried out during the honey production season (March and May 2019). Among other findings, the presence of Apis mellifera filamentous virus (AmFV) was detected in all samples, some at very high levels. AmFV-derived reads were more abundant in the March samples than in the May samples. In March, a higher abundance of AmFV-originated reads was identified in samples collected from warmer areas compared to those collected from cooler areas. A lower proportion of AmFV-derived reads were identified in samples collected in March from the wetter areas than those collected from the drier areas. AmFV-read abundance in samples collected in May showed no significant differences between groups based on either environmental temperature or precipitation. The AmFV abundance correlated negatively with Bartonella apihabitans, Bartonella choladocola, and positively with Frischella perrara, Gilliamella apicola, Gilliamella sp. ESL0443, Lactobacillus apis, Lactobacillus kullabergensis, Lactobacillus sp. IBH004. De novo metagenome assembly of four samples resulted in almost the complete AmFV genome. According to phylogenetic analysis based on DNA polymerase, the Hungarian strains are closest to the strain CH-05 isolated in Switzerland.

RevDate: 2024-03-08

Coelho LP, Santos-Júnior CD, C de la Fuente-Nunez (2024)

Challenges in computational discovery of bioactive peptides in 'omics data.

Proteomics [Epub ahead of print].

Peptides have a plethora of activities in biological systems that can potentially be exploited biotechnologically. Several peptides are used clinically, as well as in industry and agriculture. The increase in available 'omics data has recently provided a large opportunity for mining novel enzymes, biosynthetic gene clusters, and molecules. While these data primarily consist of DNA sequences, other types of data provide important complementary information. Due to their size, the approaches proven successful at discovering novel proteins of canonical size cannot be naïvely applied to the discovery of peptides. Peptides can be encoded directly in the genome as short open reading frames (smORFs), or they can be derived from larger proteins by proteolysis. Both of these peptide classes pose challenges as simple methods for their prediction result in large numbers of false positives. Similarly, functional annotation of larger proteins, traditionally based on sequence similarity to infer orthology and then transferring functions between characterized proteins and uncharacterized ones, cannot be applied for short sequences. The use of these techniques is much more limited and alternative approaches based on machine learning are used instead. Here, we review the limitations of traditional methods as well as the alternative methods that have recently been developed for discovering novel bioactive peptides with a focus on prokaryotic genomes and metagenomes.

RevDate: 2024-03-13
CmpDate: 2024-03-13

Domínguez-Maldonado JA, Solís-Pereira SE, Valle-Gough RE, et al (2024)

Microbial communities present in Sargassum spp. leachates from the Mexican Caribbean which are involved in their degradation in the environment, a tool to tackle the problem.

Environmental science and pollution research international, 31(13):19904-19916.

The Sargassum phenomenon is currently affecting the Caribbean in several ways; one of them is the increase of greenhouse gases due to the decomposition process of this macroalgae; these processes also produce large amounts of pollutant leachates, in which several microbial communities are involved. To understand these processes, we conducted a 150-day study on the Sargassum spp environmental degradation under outdoor conditions, during which leachates were collected at 0, 30, 90, and 150 days. Subsequently, a metagenomic study of the microorganisms found in the leachates was carried out, in which changes in the microbial community were observed over time. The results showed that anaerobic bacterial genera such as Thermofilum and Methanopyrus were predominant at the beginning of this study (0 and 30 days), degrading sugars of sulfur polymers such as fucoidan, but throughout the experiment, the microbial communities were changed also, with the genera Fischerella and Dolichospermum being the most predominant at days 90 and 150, respectively. A principal component analysis (PCA) indicated, with 94% variance, that genera were positively correlated at 30 and 90 days, but not with initial populations, indicating changes in community structure due to sargassum degradation were present. Finally, at 150 days, the leachate volume decreased by almost 50% and there was a higher abundance of the genera Desulfobacter and Dolichospemum. This is the first work carried out to understand the degradation of Sargassum spp, which will serve, together with other works, to understand and provide a solution to this serious environmental problem in the Caribbean.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Pigani E, Mele BH, Campese L, et al (2024)

Deviation from neutral species abundance distributions unveils geographical differences in the structure of diatom communities.

Science advances, 10(10):eadh0477.

In recent years, the application of metagenomics techniques has advanced our understanding of plankton communities and their global distribution. Despite this progress, the relationship between the abundance distribution of diatom species and varying marine environmental conditions remains poorly understood. This study, leveraging data from the Tara Oceans expedition, tests the hypothesis that diatoms in sampled stations display a consistent species abundance distribution structure, as though they were sampled from a single ocean-wide metacommunity. Using a neutral sampling theory, we thus develop a framework to estimate the structure and diversity of diatom communities at each sampling station given the shape of the species abundance distribution of the metacommunity and the information of a reference station. Our analysis reveals a substantial temperature gradient in the discrepancies between predicted and observed biodiversity across the sampled stations. These findings challenge the hypothesis of a single neutral metacommunity, indicating that environmental differences substantially influence both the composition and structure of diatom communities.

RevDate: 2024-03-12
CmpDate: 2024-03-12

Wang N, Wang H, Bai Y, et al (2024)

Metagenomic Analysis Reveals Difference of Gut Microbiota in ADHD.

Journal of attention disorders, 28(5):872-879.

OBJECTIVE: Although ADHD is highly heritable, some environmental factors contribute to its development. Given the growing evidence that gut microbiota was involved in psychiatric disorders, we aimed to identify the characteristic composition of the gut microbiota in ADHD.

METHODS: We recruited 47 medication-naive children and adolescents with ADHD, and 60 healthy controls (HCs). We used shotgun metagenomics to measure the structure of the gut microbiota and analyzed the difference in bacterial taxa between ADHD and HCs.

RESULTS: Significant differences were found between the ADHD and HC groups in both alpha diversity indices (Simpson index, p = .025 and Shannon index, p = .049) and beta diversity indices (Euclidean distance, Bray-Curtis distance, and JSD distance, p < 2.2e-16). Nine representative species best explain the difference.

CONCLUSION: Patients with ADHD showed significant differences in the composition of the gut microbiota compared with HCs. These results may help identify potential biomarkers of ADHD.

RevDate: 2024-03-09

Renzi S, Nenciarini S, Bacci G, et al (2024)

Yeast metagenomics: analytical challenges in the analysis of the eukaryotic microbiome.

Microbiome research reports, 3(1):2.

Even if their impact is often underestimated, yeasts and yeast-like fungi represent the most prevalent eukaryotic members of microbial communities on Earth. They play numerous roles in natural ecosystems and in association with their hosts. They are involved in the food industry and pharmaceutical production, but they can also cause diseases in other organisms, making the understanding of their biology mandatory. The ongoing loss of biodiversity due to overexploitation of environmental resources is a growing concern in many countries. Therefore, it becomes crucial to understand the ecology and evolutionary history of these organisms to systematically classify them. To achieve this, it is essential that our knowledge of the mycobiota reaches a level similar to that of the bacterial communities. To overcome the existing challenges in the study of fungal communities, the first step should be the establishment of standardized techniques for the correct identification of species, even from complex matrices, both in wet lab practices and in bioinformatic tools.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Lavecchia A, Fosso B, Engelen AH, et al (2024)

Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism.

Microbiome, 12(1):47.

BACKGROUND: Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules.

RESULTS: To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites.

CONCLUSION: The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Li C, Jin S, Lv O, et al (2024)

Comparative analysis of the vaginal bacteriome and virome in healthy women living in high-altitude and sea-level areas.

European journal of medical research, 29(1):157.

The vaginal microbiota plays an important role in the health of the female reproductive tract and is closely associated with various pregnancy outcomes and sexually transmitted diseases. Plenty of internal and external factors have strong influence on the changes in a woman's vaginal microbiome. However, the effect of a high-altitude on female vaginal microbiota has not been described. In this study, we characterized the vaginal bacteriome and virome of 13 and 34 healthy women living in high-altitude and sea-level areas, using whole-metagenome shotgun sequencing of their vaginal mucus samples. The results revealed that the vaginal bacteriomes of high-altitude individuals are featured by a significant increase of species diversity, depletion of Lactobacillus crispatus, and more abundant of some anaerobic bacteria, such as Chlamydia trachomatis, Mageeibacillus indolicus, Dialister micraerophilus, and Sneathia amnii). In addition, the vagina samples of sea-level subjects harbor more Lactobacillus strains, whereas the anaerobic bacteroidetes strains mostly appeared in high-altitude subjects. Identified and assembled 191 virus operational taxonomic units (vOTUs), there were significant differences in the abundance of 107 vOTUs between the two groups. Together, the results of this study raised the understanding of bacteriome and virome in the vagina of women at different elevations, and demonstrated that the vaginal microbiome is related to the high-altitude geographic adaptation.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Vázquez X, Lumbreras-Iglesias P, Rodicio MR, et al (2024)

Study of the intestinal microbiota composition and the effect of treatment with intensive chemotherapy in patients recovered from acute leukemia.

Scientific reports, 14(1):5585.

A dataset comprising metagenomes of outpatients (n = 28) with acute leukemia (AL) and healthy controls (n = 14) was analysed to investigate the associations between gut microbiota composition and metabolic activity and AL. According to the results obtained, no significant differences in the microbial diversity between AL outpatients and healthy controls were found. However, significant differences in the abundance of specific microbial clades of healthy controls and AL outpatients were found. We found some differences at taxa level. The relative abundance of Enterobacteriaceae, Prevotellaceae and Rikenellaceae was increased in AL outpatients, while Bacteirodaceae, Bifidobacteriaceae and Lachnospiraceae was decreased. Interestingly, the abundances of several taxa including Bacteroides and Faecalibacterium species showed variations based on recovery time from the last cycle of chemotherapy. Functional annotation of metagenome-assembled genomes (MAGs) revealed the presence of functional domains corresponding to therapeutic enzymes including L-asparaginase in a wide range of genera including Prevotella, Ruminococcus, Faecalibacterium, Alistipes, Akkermansia. Metabolic network modelling revealed potential symbiotic relationships between Veillonella parvula and Levyella massiliensis and several species found in the microbiota of AL outpatients. These results may contribute to develop strategies for the recovery of microbiota composition profiles in the treatment of patients with AL.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Bergfeldt N, Kırdök E, Oskolkov N, et al (2024)

Identification of microbial pathogens in Neolithic Scandinavian humans.

Scientific reports, 14(1):5630.

With the Neolithic transition, human lifestyle shifted from hunting and gathering to farming. This change altered subsistence patterns, cultural expression, and population structures as shown by the archaeological/zooarchaeological record, as well as by stable isotope and ancient DNA data. Here, we used metagenomic data to analyse if the transitions also impacted the microbiome composition in 25 Mesolithic and Neolithic hunter-gatherers and 13 Neolithic farmers from several Scandinavian Stone Age cultural contexts. Salmonella enterica, a bacterium that may have been the cause of death for the infected individuals, was found in two Neolithic samples from Battle Axe culture contexts. Several species of the bacterial genus Yersinia were found in Neolithic individuals from Funnel Beaker culture contexts as well as from later Neolithic context. Transmission of e.g. Y. enterocolitica may have been facilitated by the denser populations in agricultural contexts.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Du Z, SF Behrens (2024)

Effect of target gene sequence evenness and dominance on real-time PCR quantification of artificial sulfate-reducing microbial communities.

PloS one, 19(3):e0299930.

Quantitative real-time PCR of phylogenetic and functional marker genes is among the most commonly used techniques to quantify the abundance of microbial taxa in environmental samples. However, in most environmental applications, the approach is a rough assessment of population abundance rather than an exact absolute quantification method because of PCR-based estimation biases caused by multiple factors. Previous studies on these technical issues have focused on primer or template sequence features or PCR reaction conditions. However, how target gene sequence characteristics (e.g., evenness and dominance) in environmental samples affect qPCR quantifications has not been well studied. Here, we compared three primer sets targeting the beta subunit of the dissimilatory sulfite reductase (dsrB) to investigate qPCR quantification performance under different target gene sequence evenness and dominance conditions using artificial gBlock template mixtures designed accordingly. Our results suggested that the qPCR quantification performance of all tested primer sets was determined by the comprehensive effect of the target gene sequence evenness and dominance in environmental samples. Generally, highly degenerate primer sets have equivalent or better qPCR quantification results than a more target-specific primer set. Low template concentration in this study (~105 copies/L) will exaggerate the qPCR quantification results difference among tested primer sets. Improvements to the accuracy and reproducibility of qPCR assays for gene copy number quantification in environmental microbiology and microbial ecology studies should be based on prior knowledge of target gene sequence information acquired by metagenomic analysis or other approaches, careful selection of primer sets, and proper reaction conditions optimization.

RevDate: 2024-03-08
CmpDate: 2024-03-08

Bustos-Diaz ED, Cruz-Perez A, Garfias-Gallegos D, et al (2024)

Phylometagenomics of cycad coralloid roots reveals shared symbiotic signals.

Microbial genomics, 10(3):.

Cycads are known to host symbiotic cyanobacteria, including Nostocales species, as well as other sympatric bacterial taxa within their specialized coralloid roots. Yet, it is unknown if these bacteria share a phylogenetic origin and/or common genomic functions that allow them to engage in facultative symbiosis with cycad roots. To address this, we obtained metagenomic sequences from 39 coralloid roots sampled from diverse cycad species and origins in Australia and Mexico. Culture-independent shotgun metagenomic sequencing was used to validate sub-community co-cultures as an efficient approach for functional and taxonomic analysis. Our metanalysis shows a host-independent microbiome core consisting of seven bacterial orders with high species diversity within the identified taxa. Moreover, we recovered 43 cyanobacterial metagenome-assembled genomes, and in addition to Nostoc spp., symbiotic cyanobacteria of the genus Aulosira were identified for the first time. Using this robust dataset, we used phylometagenomic analysis to reveal three monophyletic cyanobiont clades, two host-generalist and one cycad-specific that includes Aulosira spp. Although the symbiotic clades have independently arisen, they are enriched in certain functional genes, such as those related to secondary metabolism. Furthermore, the taxonomic composition of associated sympatric bacterial taxa remained constant. Our research quadruples the number of cycad cyanobiont genomes and provides a robust framework to decipher cyanobacterial symbioses, with the potential of improving our understanding of symbiotic communities. This study lays a solid foundation to harness cyanobionts for agriculture and bioprospection, and assist in conservation of critically endangered cycads.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Moreno Y, Moreno-Mesonero L, Soler P, et al (2024)

Influence of drinking water biofilm microbiome on water quality: Insights from a real-scale distribution system.

The Science of the total environment, 921:171086.

Biofilms, constituting over 95 % of the biomass in drinking water distribution systems, form an ecosystem impacting both the aesthetic and microbiological quality of water. This study investigates the microbiome of biofilms within a real-scale drinking water distribution system in eastern Spain, utilizing amplicon-based metagenomics. Forty-one biofilm samples underwent processing and sequencing to analyze both bacterial and eukaryotic microbiomes, with an assessment of active biomass. Genus-level analysis revealed considerable heterogeneity, with Desulfovibrio, Ralstonia, Bradyrhizobium, Methylocystis, and Bacillus identified as predominant genera. Notably, bacteria associated with corrosion processes, including Desulfovibrio, Sulfuricella, Hyphomicrobium, and Methylobacterium, were prevalent. Potentially pathogenic bacteria such as Helicobacter, Pseudomonas, and Legionella were also detected. Among protozoa, Opisthokonta and Archaeplastida were the most abundant groups in biofilm samples, with potential pathogenic eukaryotes (Acanthamoeba, Naegleria, Blastocystis) identified. Interestingly, no direct correlation between microbiota composition and pipe materials was observed. The study suggests that the usual concentration of free chlorine in bulk water proved insufficient to prevent the presence of undesirable bacteria and protozoa in biofilms, which exhibited a high concentration of active biomass.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Yadav R, M Dharne (2024)

Utility of metagenomics for bioremediation: a comprehensive review on bioremediation mechanisms and microbial dynamics of river ecosystem.

Environmental science and pollution research international, 31(12):18422-18434.

Global industrialization has contributed substantial amounts of chemical pollutants in rivers, resulting in an uninhabitable state and impacting different life forms. Moreover, water macrophytes, such as water hyacinths, are abundantly present in polluted rivers, significantly affecting the overall water biogeochemistry. Bioremediation involves utilizing microbial metabolic machinery and is one of the most viable approaches for removing toxic pollutants. Conventional techniques generate limited information on the indigenous microbial population and their xenobiotic metabolism, failing the bioremediation process. Metagenomics can overcome these limitations by providing in-depth details of microbial taxa and functionality-related information required for successful biostimulation and augmentation. An in-depth summary of the findings related to pollutant metabolizing genes and enzymes in rivers still needs to be collated. The present study details bioremediation genes and enzymes functionally mined from polluted river ecosystems worldwide using a metagenomic approach. Several studies reported a wide variety of pollutant-degrading enzymes involved in the metabolism of dyes, plastics, persistent organic pollutants, and aromatic hydrocarbons. Additionally, few studies also noted a shift in the microbiome of the rivers upon exposure to contaminants, crucially affecting the ecological determinant processes. Furthermore, minimal studies have focused on the role of water-hyacinth-associated microbes in the bioremediation potentials, suggesting the need for the bioprospecting of these lesser-studied microbes. Overall, our study summarizes the prospects and utilities of the metagenomic approach and proposes the need to employ it for efficient bioremediation.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Parvin N, Mandal S, J Rath (2024)

Microbiome of seventh-century old Parsurameswara stone monument of India and role of desiccation-tolerant cyanobacterium Lyngbya corticicola on its biodeterioration.

Biofouling, 40(1):40-53.

The Parsurameswara stone monument, built in the seventh century, is one of the oldest stone monuments in Odisha, India. Metagenomic analysis of the biological crust samples collected from the stone monument revealed 17 phyla in the microbiome, with Proteobacteria being the most dominant phylum, followed by cyanobacteria. Eight cyanobacteria were isolated. Lyngbya corticicola was the dominant cyanobacterium in all crust samples and could tolerate six months of desiccation in vitro. With six months of desiccation, chlorophyll-a decreased; however, carotenoid and cellular carbohydrate contents of this organism increased in the desiccated state. Resistance to desiccation, high carotenoid content, and effective trehalose biosynthesis in this cyanobacterium provide a distinct advantage over other microbiomes. Comparative metabolic profiles of the biological crust and L. corticicola show strongly corrosive organic acids such as dichloroacetic acid, which might be responsible for the biocorrosion of stone monuments.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Yu X, Gu C, Guo X, et al (2024)

Dynamic changes of microbiota and metabolite of traditional Hainan dregs vinegar during fermentation based on metagenomics and metabolomics.

Food chemistry, 444:138641.

Hainan dregs vinegar (HNDV) is a traditional fermented food in China that is renowned for its unique flavor. HNDV is one of the most popular vinegars in Southeast Asia. However, research on the microorganisms and characteristic metabolites specific to HNDV is lacking. This study investigated the changes in microbial succession, volatile flavor compounds and characteristic non-volatile flavor compounds during HNDV fermentation based on metagenomics and metabolomics. The predominant microbial genera were Lactococcus, Limosilactobacillus, Lactiplantibacillus, and Saccharomyces. Unlike traditional vinegar, l-lactic acid was identified as the primary organic acid in HNDV. Noteworthy flavor compounds specific to HNDV included 3-methylthiopropanol and dl-phenylalanine. Significant associations were observed between six predominant microorganisms and six characteristic volatile flavor compounds, as well as seven characteristic non-volatile flavor compounds. The present results contribute to the development of starter cultures and the enhancement of HNDV quality.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Jasmin MY, Isa NM, Kamarudin MS, et al (2024)

Evaluating Bacillus flexus as bioremediators for ammonia removal in shrimp culture water and wastewater and characterizing microbial communities in shrimp pond sludge.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 55(1):529-536.

The accumulation of nitrogen compounds in shrimp farming water and effluent presents a major challenge. Ammonia is a form of nitrogen that limits shrimp growth due to its potential toxicity and effects on shrimp health and water quality. This study is aimed at identifying promising bioremediators from shrimp pond sludge to mitigate ammonia levels in both culture water and wastewater and at determining major bacterial communities in sludge using metagenomic analysis. A sludge sample was collected from a shrimp pond in Selangor, Malaysia, to isolate potential ammonia-removing bacteria. Out of 64 isolated strains, Bacillus flexus SS2 showed the highest growth in synthetic basal media (SBM) containing ammonium sulfate at a concentration of 70 mg/L as the sole nitrogen source. The strain was then incubated in SBM with varying pH levels and showed optimal growth at pH 6.5-7. After 24 h of incubation, B. flexus SS2 reduced the ammonia concentration from an initial concentration of 5 to 0.01 mg/L, indicating a 99.61% reduction rate, which was highest in SBM at pH 7. Moreover, the strain showed ammonia removal ability at concentrations ranging from 5 to 70 mg/L. Metagenomic analysis revealed that Proteobacteria was the most abundant phylum in the sludge, followed by Cyanobacteria, Actinobacteria, Chloraflexi, Firmicutes, and Campilobacterota. Bacillus flexus SS2 belongs to the Bacillota phylum and has the potential to serve as a bioremediator for removing ammonia from shrimp culture water and wastewater.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Koh C, MC Saleh (2024)

Mosquito core viromes: do they exist?.

Trends in parasitology, 40(3):203-204.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Russo AE, Memon A, S Ahmed (2024)

Bladder Cancer and the Urinary Microbiome-New Insights and Future Directions: A Review.

Clinical genitourinary cancer, 22(2):434-444.

The presence of a microbiome in the urinary system has been established through recent advancements in technology and investigation of microbial communities in the human body. The study of the taxonomic and genomic ecology of microbial communities has been greatly improved by the use of metagenomics. The research in this area has expanded our understanding of microbial ecosystems and shows that the urinary tract contains over 100 species from over 50 genera, with Lactobacillus, Gardnerella, and Streptococcus being the most common. Previous studies have suggested that the microbiota in the urinary tract may play a role in carcinogenesis by causing chronic inflammation and genotoxicity, but more research is needed to reach a definite conclusion. This is a narrative review. We conducted a search for relevant publications by using the databases Medline/PubMed and Google Scholar. The search was based on keywords such as "urinary microbiome," "bladder cancer," "carcinogenesis," "urothelial carcinoma," and "next-generation sequencing." The retrieved publications were then reviewed to study the contribution of the urinary microbiome in the development of bladder cancer. The results have been categorized into four sections to enhance understanding of the urinary microbiome and to highlight its role in the emergence of bladder cancer through alterations in the immune response that involve T-cells and antibodies. The immune system and microbiome play crucial roles in maintaining health and preventing disease. Manipulating the immune system is a key aspect of various cancer treatments, and certain gut bacteria have been linked to positive responses to immunotherapies. However, the impact of these treatments on the urinary microbiome, and how diet and lifestyle affect it, are not well understood. Research in this area could have significant implications for improving bladder cancer treatment and patient outcomes.

RevDate: 2024-03-11
CmpDate: 2024-03-11

De Coninck L, J Matthijnssens (2024)

The mosquito core virome: beyond the buzz.

Trends in parasitology, 40(3):201-202.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Zimmermann P, Pittet LF, Jakob W, et al (2024)

The Effect of Bacille Calmette-Guérin Vaccination on the Composition of the Intestinal Microbiome in Neonates From the MIS BAIR Trial.

The Pediatric infectious disease journal, 43(4):378-389.

INTRODUCTION: The early-life intestinal microbiome plays an important role in the development and regulation of the immune system. It is unknown whether the administration of vaccines influences the composition of the intestinal microbiome.

OBJECTIVE: To investigate whether Bacille Calmette-Guérin (BCG) vaccine given in the first few days of life influences the abundance of bacterial taxa and metabolic pathways in the intestinal microbiome at 1 week of age.

METHODS: Healthy, term-born neonates were randomized at birth to receive BCG or no vaccine within the first few days of life. Stool samples were collected at 1 week of age from 335 neonates and analyzed using shotgun metagenomic sequencing and functional analyses.

RESULTS: The composition of the intestinal microbiome was different between neonates born by cesarean section (CS) and those born vaginally. Differences in the composition between BCG-vaccinated and BCG-naïve neonates were only minimal. CS-born BCG-vaccinated neonates had a higher abundance of Staphylococcus lugdunensis compared with CS-born BCG-naïve neonates. The latter had a higher abundance of Streptococcus infantis and Trabulsiella guamensis . Vaginally-born BCG-vaccinated neonates had a higher abundance of Clostridiaceae and Streptococcus parasanguinis compared with vaginally-born BCG-naïve neonates, and a lower abundance of Veillonella atypica and Butyricimonas faecalis. Metabolic pathways that were differently abundant between BCG-vaccinated and BCG-naïve neonates were mainly those involved in sugar degradation and nucleotide/nucleoside biosynthesis.

CONCLUSION: BCG given in the first few days of life has little effect on the composition of the intestinal microbiome at 1 week of age but does influence the abundance of certain metabolic pathways.

RevDate: 2024-03-11
CmpDate: 2024-03-11

Favale N, Farina R, Carrieri A, et al (2024)

Functional profile of oral plaque microbiome: Further insight into the bidirectional relationship between type 2 diabetes and periodontitis.

Molecular oral microbiology, 39(2):62-79.

Increasing evidence support the association between the oral microbiome and human systemic diseases. This association may be attributed to the ability of many oral microbes to influence the inflammatory microenvironment. Herein, we focused our attention on the bidirectional relationship between periodontitis and type 2 diabetes using high-resolution whole metagenomic shotgun analysis to explore the composition and functional profile of the subgingival microbiome in diabetics and non-diabetics subjects with different periodontal conditions. In the present study, the abundance of metabolic pathways encoded by oral microbes was reconstructed from the metagenome, and we identified a set of dysregulated metabolic pathways significantly enriched in the periodontitis and/or diabetic patients. These pathways were mainly involved in branched and aromatic amino acids metabolism, fatty acid biosynthesis and adipocytokine signaling pathways, ferroptosis and iron homeostasis, nucleotide metabolism, and finally in the peptidoglycan and lipopolysaccharides synthesis. Overall, the results of the present study provide evidence in favor of the hypothesis that during the primary inflammatory challenge, regardless of whether it is induced by periodontitis or diabetes, endotoxemia and/or the release of inflammatory cytokines cause a change in precursor and/or in circulating innate immune cells. Dysbiosis and inflammation, also via oral-gut microbiome axis or adipose tissue, reduce the efficacy of the host immune response, while fueling inflammation and can induce that metabolic/epigenetic reprogramming of chromatin accessibility of genes related to the immune response. Moreover, the presence of an enhanced ferroptosis and an imbalance in purine/pyrimidine metabolism provides new insights into the role of ferroptotic death in this comorbidity.

RevDate: 2024-03-09
CmpDate: 2024-03-08

Zakharevich NV, Morozov MD, Kanaeva VA, et al (2024)

Systemic metabolic depletion of gut microbiome undermines responsiveness to melanoma immunotherapy.

Life science alliance, 7(5):.

Immunotherapy has proven to be a boon for patients battling metastatic melanoma, significantly improving their clinical condition and overall quality of life. A compelling link between the composition of the gut microbiome and the efficacy of immunotherapy has been established in both animal models and human patients. However, the precise biological mechanisms by which gut microbes influence treatment outcomes remain poorly understood. Using a robust dataset of 680 fecal metagenomes from melanoma patients, a detailed catalog of metagenome-assembled genomes (MAGs) was constructed to explore the compositional and functional properties of the gut microbiome. Our study uncovered significant findings that deepen the understanding of the intricate relationship between gut microbes and the efficacy of melanoma immunotherapy. In particular, we discovered the specific metagenomic profile of patients with favorable treatment outcomes, characterized by a prevalence of MAGs with increased overall metabolic potential and proficiency in polysaccharide utilization, along with those responsible for cobalamin and amino acid production. Furthermore, our investigation of the biosynthetic pathways of short-chain fatty acids, known for their immunomodulatory role, revealed a differential abundance of these pathways among the specific MAGs. Among others, the cobalamin-dependent Wood-Ljungdahl pathway of acetate synthesis was directly associated with responsiveness to melanoma immunotherapy.

RevDate: 2024-03-06

Wang Y, Zhang Z, Kang J, et al (2024)

Phages in different habitats and their ability to carry antibiotic resistance genes.

Journal of hazardous materials, 469:133941 pii:S0304-3894(24)00520-X [Epub ahead of print].

As the most abundant organisms on Earth, phages play a key role in the evolution of bacterial antibiotic resistance. Although previous studies have demonstrated the molecular mechanisms of horizontal gene transfer mediated by mobile genetic elements, our understanding of the intertwined relationships between antibiotic resistance genes (ARGs) and phages is limited. In this study, we analysed 2781 metagenomic samples to reveal the composition and species interactions of phage communities in different habitats as well as their capacity to carry ARGs with health risks. The composition of phage communities varies in different habitats and mainly depends on environmental conditions. Terrestrial habitats display more complex and robust interactions between phages than aquatic and human-associated habitats, resulting in the highest biodiversity of phages. Several types of phages in certain taxa (4.95-7.67%, mainly belonging to Caudoviricetes) have the capacity to carry specific ARGs and display a high potential risk to human health, especially in human-associated habitats. Overall, our results provide insights into the assembly mechanisms of phage communities and their effects on the dissemination of antibiotic resistance.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Ni Y, Chu T, Yan S, et al (2024)

Forty-nine metagenomic-assembled genomes from an aquatic virome expand Caudoviricetes by 45 potential new families and the newly uncovered Gossevirus of Bamfordvirae.

The Journal of general virology, 105(3):.

Twenty complete genomes (29-63 kb) and 29 genomes with an estimated completeness of over 90 % (30-90 kb) were identified for novel dsDNA viruses in the Yangshan Harbor metavirome. These newly discovered viruses contribute to the expansion of viral taxonomy by introducing 46 potential new families. Except for one virus, all others belong to the class Caudoviricetes. The exception is a novel member of the recently characterized viral group known as Gossevirus. Fifteen viruses were predicted to be temperate. The predicted hosts for the viruses appear to be involved in various aspects of the nitrogen cycle, including nitrogen fixation, oxidation and denitrification. Two viruses were identified to have a host of Flavobacterium and Tepidimonas fonticaldi, respectively, by matching CRISPR spacers with viral protospacers. Our findings provide an overview for characterizing and identifying specific viruses from Yangshan Harbor. The Gossevirus-like virus uncovered emphasizes the need for further comprehensive isolation and investigation of polinton-like viruses.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Heumel S, de Rezende Rodovalho V, Urien C, et al (2024)

Shotgun metagenomics and systemic targeted metabolomics highlight indole-3-propionic acid as a protective gut microbial metabolite against influenza infection.

Gut microbes, 16(1):2325067.

The gut-to-lung axis is critical during respiratory infections, including influenza A virus (IAV) infection. In the present study, we used high-resolution shotgun metagenomics and targeted metabolomic analysis to characterize influenza-associated changes in the composition and metabolism of the mouse gut microbiota. We observed several taxonomic-level changes on day (D)7 post-infection, including a marked reduction in the abundance of members of the Lactobacillaceae and Bifidobacteriaceae families, and an increase in the abundance of Akkermansia muciniphila. On D14, perturbation persisted in some species. Functional scale analysis of metagenomic data revealed transient changes in several metabolic pathways, particularly those leading to the production of short-chain fatty acids (SCFAs), polyamines, and tryptophan metabolites. Quantitative targeted metabolomics analysis of the serum revealed changes in specific classes of gut microbiota metabolites, including SCFAs, trimethylamine, polyamines, and indole-containing tryptophan metabolites. A marked decrease in indole-3-propionic acid (IPA) blood level was observed on D7. Changes in microbiota-associated metabolites correlated with changes in taxon abundance and disease marker levels. In particular, IPA was positively correlated with some Lactobacillaceae and Bifidobacteriaceae species (Limosilactobacillus reuteri, Lactobacillus animalis) and negatively correlated with Bacteroidales bacterium M7, viral load, and inflammation markers. IPA supplementation in diseased animals reduced viral load and lowered local (lung) and systemic inflammation. Treatment of mice with antibiotics targeting IPA-producing bacteria before infection enhanced viral load and lung inflammation, an effect inhibited by IPA supplementation. The results of this integrated metagenomic-metabolomic analysis highlighted IPA as an important contributor to influenza outcomes and a potential biomarker of disease severity.

RevDate: 2024-03-06

Suo B, Castro MP, MY Sreenivasa (2024)

Editorial: Microbiota biodiversity of traditional fermented products.

Frontiers in microbiology, 15:1380205.

RevDate: 2024-03-08
CmpDate: 2024-03-08

Isali I, Helstrom EK, Uzzo N, et al (2024)

Current Trends and Challenges of Microbiome Research in Bladder Cancer.

Current oncology reports, 26(3):292-298.

PURPOSE OF THE REVIEW: Microbiome research has provided valuable insights into the associations between microbial communities and bladder cancer. However, this field faces significant challenges that hinder the interpretation, generalization, and translation of findings into clinical practice. This review aims to elucidate these challenges and highlight the importance of addressing them for the advancement of microbiome research in bladder cancer.

RECENT FINDINGS: Recent findings underscore the complexities involved in microbiome research, particularly in the context of bladder cancer. Challenges include low microbial biomass in urine samples, potential contamination issues during collection and processing, variability in sequencing methods and primer selection, and the difficulty of establishing causality between microbiota and bladder cancer. Studies have shown the impact of sample storage conditions and DNA isolation kits on microbiome analysis, emphasizing the need for standardization. Additionally, variations in urine collection methods can introduce contamination and affect results. The choice of 16S rRNA gene amplicon sequencing or shotgun metagenomic sequencing introduces technical challenges, including primer selection and sequencing read length. Establishing causality between the microbiota and bladder cancer requires experimental methods like fecal microbiota transplantation and human microbiota-associated murine models, which face their own set of challenges. Translating microbiome research into therapeutic applications is hindered by methodological variability, incomplete understanding of bioactive molecules, imperfect animal models, and the inherent heterogeneity of microbiome communities among individuals. Microbiome research in bladder cancer presents significant challenges stemming from technical and conceptual complexities. Addressing these challenges through standardization, improved experimental models, and advanced analytical approaches is essential for advancing our understanding of the microbiome's role in bladder cancer and its potential clinical applications. Achieving this goal can lead to improved patient outcomes and novel therapeutic strategies in the future.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Yerke A, Fry Brumit D, AA Fodor (2024)

Proportion-based normalizations outperform compositional data transformations in machine learning applications.

Microbiome, 12(1):45.

BACKGROUND: Normalization, as a pre-processing step, can significantly affect the resolution of machine learning analysis for microbiome studies. There are countless options for normalization scheme selection. In this study, we examined compositionally aware algorithms including the additive log ratio (alr), the centered log ratio (clr), and a recent evolution of the isometric log ratio (ilr) in the form of balance trees made with the PhILR R package. We also looked at compositionally naïve transformations such as raw counts tables and several transformations that are based on relative abundance, such as proportions, the Hellinger transformation, and a transformation based on the logarithm of proportions (which we call "lognorm").

RESULTS: In our evaluation, we used 65 metadata variables culled from four publicly available datasets at the amplicon sequence variant (ASV) level with a random forest machine learning algorithm. We found that different common pre-processing steps in the creation of the balance trees made very little difference in overall performance. Overall, we found that the compositionally aware data transformations such as alr, clr, and ilr (PhILR) performed generally slightly worse or only as well as compositionally naïve transformations. However, relative abundance-based transformations outperformed most other transformations by a small but reliably statistically significant margin.

CONCLUSIONS: Our results suggest that minimizing the complexity of transformations while correcting for read depth may be a generally preferable strategy in preparing data for machine learning compared to more sophisticated, but more complex, transformations that attempt to better correct for compositionality. Video Abstract.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Yu MK, Fogarty EC, AM Eren (2024)

Diverse plasmid systems and their ecology across human gut metagenomes revealed by PlasX and MobMess.

Nature microbiology, 9(3):830-847.

Plasmids alter microbial evolution and lifestyles by mobilizing genes that often confer fitness in changing environments across clades. Yet our ecological and evolutionary understanding of naturally occurring plasmids is far from complete. Here we developed a machine-learning model, PlasX, which identified 68,350 non-redundant plasmids across human gut metagenomes and organized them into 1,169 evolutionarily cohesive 'plasmid systems' using our sequence containment-aware network-partitioning algorithm, MobMess. Individual plasmids were often country specific, yet most plasmid systems spanned across geographically distinct human populations. Cargo genes in plasmid systems included well-known determinants of fitness, such as antibiotic resistance, but also many others including enzymes involved in the biosynthesis of essential nutrients and modification of transfer RNAs, revealing a wide repertoire of likely fitness determinants in complex environments. Our study introduces computational tools to recognize and organize plasmids, and uncovers the ecological and evolutionary patterns of diverse plasmids in naturally occurring habitats through plasmid systems.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Ho CW, Chen PY, Liao YT, et al (2024)

Uncovering the microbiome landscape in sashimi delicacies.

Scientific reports, 14(1):5454.

It is widely believed that a significant portion of the gut microbiota, which play crucial roles in overall health and disease, originates from the food we consume. Sashimi is a type of popular raw seafood cuisine. Its microbiome, however, remained to be thoroughly explored. The objective of this study is to explore the microbiome composition in sashimi at the time when it is served and ready to be eaten. Specifically, our tasks include investigating the diversity and characteristics of microbial profiles in sashimi with respect to the fish types. We utilized the Sanger-sequencing based DNA barcoding technology for fish species authentication and next-generation sequencing for sashimi microbiome profiling. We investigated the microbiome profiles of amberjack, cobia, salmon, tuna and tilapia sashimi, which were all identified using the MT-CO1 DNA sequences regardless of their menu offering names. Chao1 and Shannon indexes, as well as Bray-Curtis dissimilarity index were used to evaluate the alpha and beta diversities of sashimi microbiome. We successfully validated our previous observation that tilapia sashimi has a significantly higher proportions of Pseudomonas compared to other fish sashimi, using independent samples (P = 0.0010). Salmon sashimi exhibited a notably higher Chao1 index in its microbiome in contrast to other fish species (P = 0.0031), indicating a richer and more diverse microbial ecosystem. Non-Metric Multidimensional Scaling (NMDS) based on Bray-Curtis dissimilarity index revealed distinct clusters of microbiome profiles with respect to fish types. Microbiome similarity was notably observed between amberjack and tuna, as well as cobia and salmon. The relationship of microbiome similarity can be depicted as a tree which resembles partly the phylogenetic tree of host species, emphasizing the close relationship between host evolution and microbial composition. Moreover, salmon exhibited a pronounced relative abundance of the Photobacterium genus, significantly surpassing tuna (P = 0.0079), observed consistently across various restaurant sources. In conclusion, microbiome composition of Pseudomonas is significantly higher in tilapia sashimi than in other fish sashimi. Salmon sashimi has the highest diversity of microbiome among all fish sashimi that we analyzed. The level of Photobacterium is significantly higher in salmon than in tuna across all the restaurants we surveyed. These findings provide critical insights into the intricate relationship between the host evolution and the microbial composition. These discoveries deepen our understanding of sashimi microbiota, facilitating our decision in selecting raw seafood.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Dzofou Ngoumelah D, Heggeset TMB, Haugen T, et al (2024)

Effect of model methanogens on the electrochemical activity, stability, and microbial community structure of Geobacter spp. dominated biofilm anodes.

NPJ biofilms and microbiomes, 10(1):17.

Combining anaerobic digestion (AD) and microbial electrochemical technologies (MET) in AD-MET holds great potential. Methanogens have been identified as one cause of decreased electrochemical activity and deterioration of Geobacter spp. biofilm anodes. A better understanding of the different interactions between methanogenic genera/species and Geobacter spp. biofilms is needed to shed light on the observed reduction in electrochemical activity and stability of Geobacter spp. dominated biofilms as well as observed changes in microbial communities of AD-MET. Here, we have analyzed electrochemical parameters and changes in the microbial community of Geobacter spp. biofilm anodes when exposed to three representative methanogens with different metabolic pathways, i.e., Methanosarcina barkeri, Methanobacterium formicicum, and Methanothrix soehngenii. M. barkeri negatively affected the performance and stability of Geobacter spp. biofilm anodes only in the initial batches. In contrast, M. formicicum did not affect the stability of Geobacter spp. biofilm anodes but caused a decrease in maximum current density of ~37%. M. soehngenii induced a coloration change of Geobacter spp. biofilm anodes and a decrease in the total transferred charge by ~40%. Characterization of biofilm samples after each experiment by 16S rRNA metabarcoding, whole metagenome nanopore sequencing, and shotgun sequencing showed a higher relative abundance of Geobacter spp. after exposure to M. barkeri as opposed to M. formicicum or M. soehngenii, despite the massive biofilm dispersal observed during initial exposure to M. barkeri.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Xie P, Zhou X, Li Y, et al (2024)

Gut microbial CAZymes markers for depression.

Translational psychiatry, 14(1):135.

Major depressive disorder (MDD) is a serious mental illness, characterized by disturbances of gut microbiome, it is required to further explore how the carbohydrate-active enzymes (CAZymes) were changed in MDD. Here, using the metagenomic data from patients with MDD (n = 118) and heath controls (HC, n = 118), we found that the whole CAZymes signatures of MDD were significantly discriminated from that in HC. α-diversity indexes of the two groups were also significantly different. The patients with MDD were characterized by enriched Glycoside Hydrolases (GHs) and Polysaccharide Lyases (PLs) relative to HC. A panel of makers composed of 9 CAZymes mainly belonging to GHs enabled to discriminate the patients with MDD and HC with AUC of 0.824. In addition, this marker panel could classify blinded test samples from the two groups with an AUC of 0.736. Moreover, we found that baseline 4 CAZymes levels also could predict the antidepressant efficacy after adjusted confounding factors and times of depressive episode. Our findings showed that MDD was associated with disturbances of gut CAZymes, which may help to develop diagnostic and predictive tools for depression.

RevDate: 2024-03-06
CmpDate: 2024-03-06

Eisenhofer R, Wright S, L Weyrich (2024)

Benchmarking a targeted 16S ribosomal RNA gene enrichment approach to reconstruct ancient microbial communities.

PeerJ, 12:e16770.

The taxonomic characterization of ancient microbiomes is a key step in the rapidly growing field of paleomicrobiology. While PCR amplification of the 16S ribosomal RNA (rRNA) gene is a widely used technique in modern microbiota studies, this method has systematic biases when applied to ancient microbial DNA. Shotgun metagenomic sequencing has proven to be the most effective method in reconstructing taxonomic profiles of ancient dental calculus samples. Nevertheless, shotgun sequencing approaches come with inherent limitations that could be addressed through hybridization enrichment capture. When employed together, shotgun sequencing and hybridization capture have the potential to enhance the characterization of ancient microbial communities. Here, we develop, test, and apply a hybridization enrichment capture technique to selectively target 16S rRNA gene fragments from the libraries of ancient dental calculus samples generated with shotgun techniques. We simulated data sets generated from hybridization enrichment capture, indicating that taxonomic identification of fragmented and damaged 16S rRNA gene sequences was feasible. Applying this enrichment approach to 15 previously published ancient calculus samples, we observed a 334-fold increase of ancient 16S rRNA gene fragments in the enriched samples when compared to unenriched libraries. Our results suggest that 16S hybridization capture is less prone to the effects of background contamination than 16S rRNA amplification, yielding a higher percentage of on-target recovery. While our enrichment technique detected low abundant and rare taxa within a given sample, these assignments may not achieve the same level of specificity as those achieved by unenriched methods.

RevDate: 2024-03-06
CmpDate: 2024-03-06

Madhav A, Bousfield R, Pereira-Dias J, et al (2024)

A metagenomic prospective cohort study on gut microbiome composition and clinical infection in small bowel transplantation.

Gut microbes, 16(1):2323232.

Two-thirds of small-bowel transplantation (SBT) recipients develop bacteremia, with the majority of infections occurring within 3 months post-transplant. Sepsis-related mortality occurs in 31% of patients and is commonly caused by bacteria of gut origin, which are thought to translocate across the implanted organ. Serial post-transplant surveillance endoscopies provide an opportunity to study whether the composition of the ileal and colonic microbiota can predict the emergence as well as the pathogen of subsequent clinical infections in the SBT patient population. Five participants serially underwent aspiration of ileal and colonic bowel effluents at transplantation and during follow-up endoscopy either until death or for up to 3 months post-SBT. We performed whole-metagenome sequencing (WMS) of 40 bowel effluent samples and compared the results with clinical infection episodes. Microbiome composition was concordant between participants and timepoint-matched ileal and colonic samples. Four out of five (4/5) participants had clinically significant infections thought to be of gut origin. Bacterial translocation from the gut was observed in 3/5 patients with bacterial infectious etiologies. In all three cases, the pathogens had demonstrably colonized the gut between 1-10 days prior to invasive clinical infection. Recipients with better outcomes received donor grafts with higher alpha diversity. There was an increase in the number of antimicrobial resistance genes associated with longer hospital stay for all participants. This metagenomic study provides preliminary evidence to support the pathogen translocation hypothesis of gut-origin sepsis in the SBT cohort. Ileal and colonic microbiome compositions were concordant; therefore, fecal metagenomic analysis could be a useful surveillance tool for impeding infection with specific gut-residing pathogens.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Burcham ZM, Belk AD, McGivern BB, et al (2024)

A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables.

Nature microbiology, 9(3):595-613.

Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Vasileva SS, Yang Y, Baker A, et al (2024)

Associations of the Gut Microbiome With Treatment Resistance in Schizophrenia.

JAMA psychiatry, 81(3):292-302.

IMPORTANCE: There is growing interest in the role of gut microbiome composition in schizophrenia. However, lifestyle factors are often neglected, and few studies have investigated microbiome composition in treatment-resistant schizophrenia.

OBJECTIVE: To explore associations between the gut microbiome and schizophrenia diagnosis, treatment resistance, clozapine response, and treatment-related adverse effects while adjusting for demographic and lifestyle factors.

In this case-control study of adults aged 20 to 63 years, stool samples and data on demographic characteristics, lifestyle, and medication use were collected and gut microbiome measures obtained using shotgun metagenomics. Participants with a schizophrenia diagnosis were referred through psychiatric inpatient units and outpatient clinics. Data were collected for 4 distinct groups: control individuals without a psychiatric diagnosis (past or present), individuals with treatment-responsive schizophrenia taking nonclozapine antipsychotic medications, clozapine-responsive individuals with treatment-resistant schizophrenia, and clozapine-nonresponsive individuals with treatment-resistant schizophrenia. Participants were recruited between November 2020 and November 2021. Control individuals were recruited in parallel through posters and online advertisements and matched for age, sex, and body mass index (BMI) to the individuals with schizophrenia. Participants were excluded if taking antibiotics in the past 2 months, if unable to communicate in English or otherwise follow study instructions, were pregnant or planning to become pregnant, or had any concomitant disease or condition making them unsuited to the study per investigator assessment. Data were analyzed from January 2022 to March 2023.

MAIN OUTCOMES AND MEASURES: Omics relationship matrices, α and β diversity, and relative abundance of microbiome features.

RESULTS: Data were collected for 97 individuals (71 [74%] male; mean [SD] age, 40.4 [10.3] years; mean [SD] BMI, 32.8 [7.4], calculated as weight in kilograms divided by height in meters squared). Significant microbiome associations with schizophrenia were observed at multiple taxonomic and functional levels (eg, common species: b2, 30%; SE, 13%; adjusted P = .002) and treatment resistance (eg, common species: b2, 27%; SE, 16%; adjusted P = .03). In contrast, limited evidence was found for microbiome associations with clozapine response, constipation, or metabolic syndrome. Significantly decreased microbial richness was found in individuals with schizophrenia compared to control individuals (t95 = 4.25; P < .001; mean [SD] for control individuals, 151.8 [32.31]; mean [SD] for individuals with schizophrenia, 117.00 [36.2]; 95% CI, 18.6-51.0), which remained significant after a covariate and multiple comparison correction. However, limited evidence was found for differences in β diversity (weighted UniFrac) for schizophrenia diagnosis (permutational multivariate analysis of variance [PERMANOVA]: R2, 0.03; P = .02), treatment resistance (R2, 0.02; P = .18), or clozapine response (R2, 0.04; P = .08). Multiple differentially abundant bacterial species (19) and metabolic pathways (162) were found in individuals with schizophrenia, which were primarily associated with treatment resistance and clozapine exposure.

CONCLUSIONS AND RELEVANCE: The findings in this study are consistent with the idea that clozapine induces alterations to gut microbiome composition, although the possibility that preexisting microbiome differences contribute to treatment resistance cannot be ruled out. These findings suggest that prior reports of microbiome alterations in individuals with chronic schizophrenia may be due to medication or lifestyle factors and that future studies should incorporate these variables in their design and interpretation.

RevDate: 2024-03-07
CmpDate: 2024-03-07

Achberger AM, Jones R, Jamieson J, et al (2024)

Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity.

Nature microbiology, 9(3):657-668.

Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of [14]C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin-Benson-Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )