Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Archaea

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 12 Nov 2024 at 01:30 Created: 

Archaea

In 1977, Carl Woese and George Fox applied molecular techniques to biodiversity and discovered that life on Earth consisted of three, not two (prokaryotes and eukaryotes), major lineages, tracing back nearly to the very origin of life on Earth. The third lineage has come to be known as the Archaea. Organisms now considered Archaea were originally thought to be a kind of prokaryote, but Woese and Fox showed that they were as different from prokaryotes as they were from eukaryotes. To understand life on Earth one must also understand the Archaea .

Created with PubMed® Query: ( archaea[TITLE] OR archaebacteria[TITLE] ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-11-05
CmpDate: 2024-11-05

Takamiya H, Kouduka M, Kato S, et al (2024)

Genome-resolved metaproteogenomic and nanosolid characterization of an inactive vent chimney densely colonized by enigmatic DPANN archaea.

The ISME journal, 18(1):.

Recent successes in the cultivation of DPANN archaea with their hosts have demonstrated an episymbiotic lifestyle, whereas the lifestyle of DPANN archaea in natural habitats is largely unknown. A free-living lifestyle is speculated in oxygen-deprived fluids circulated through rock media, where apparent hosts of DPANN archaea are lacking. Alternatively, DPANN archaea may be detached from their hosts and/or rock surfaces. To understand the ecology of rock-hosted DPANN archaea, rocks rather than fluids should be directly characterized. Here, we investigated a deep-sea hydrothermal vent chimney without fluid venting where our previous study revealed the high proportion of Pacearchaeota, one of the widespread and enigmatic lineages of DPANN archaea. Using spectroscopic methods with submicron soft X-ray and infrared beams, the microbial habitat was specified to be silica-filled pores in the inner chimney wall comprising chalcopyrite. Metagenomic analysis of the inner wall revealed the lack of biosynthetic genes for nucleotides, amino acids, cofactors, and lipids in the Pacearchaeota genomes. Genome-resolved metaproteomic analysis clarified the co-occurrence of a novel thermophilic lineage actively fixing carbon and nitrogen and thermophilic archaea in the inner chimney wall. We infer that the shift in metabolically active microbial populations from the thermophiles to the mesophilic DPANN archaea occurs after the termination of fluid venting. The infilling of mineral pores by hydrothermal silica deposition might be a preferred environmental factor for the colonization of free-living Pacearchaeota with ultrasmall cells depending on metabolites synthesized by the co-occurring thermophiles during fluid venting.

RevDate: 2024-11-05

Medvedeva S, Borrel G, S Gribaldo (2024)

Sheaths are diverse and abundant cell surface layers in archaea.

The ISME journal pii:7876407 [Epub ahead of print].

Prokaryotic cells employ multiple protective layers crucial for defense, structural integrity, and cellular interactions in the environment. Archaea often feature an S-layer, with some species possessing additional and remarkably resistant sheaths. The archaeal sheath has been studied in Methanothrix and Methanospirillum, revealing a complex structure consisting of amyloid proteins organized into rings. Here, we conducted a comprehensive survey of sheath-forming proteins (SH proteins) across archaeal genomes. Structural modeling reveals a rich diversity of SH proteins, indicating the presence of a sheath in members of the TACK superphylum (Thermoprotei), as well as in the methanotrophic ANME-1. SH proteins are present in up to 40 copies per genome and display diverse domain arrangements suggesting multifunctional roles within the sheath, and potential involvement in cell-cell interaction with syntrophic partners. We uncover a complex evolutionary dynamic, indicating active exchange of SH proteins in archaeal communities. We find that viruses infecting sheathed archaea encode a diversity of SH-like proteins and we use them as markers to identify 580 vOTUs potentially associated with sheathed archaea. Structural modeling suggests that viral SH proteins can form complexes with the host SH proteins. We propose a previously unreported egress strategy where the expression of viral SH-like proteins may disrupt the integrity of the host sheath and facilitate viral exit during lysis. Together, our results significantly expand knowledge of the diversity and evolution of the archaeal sheath, which has been largely understudied but might have an important role in shaping microbial communities.

RevDate: 2024-11-04
CmpDate: 2024-11-04

Ma X, Hu Y, Hou J, et al (2024)

Genome-Based Classification of 'Haloarcula aidinensis' and Description of Three Novel Halophilic Archaea Isolated from an Inland Saline Lake, Coastal Saline Soil, and a Marine Solar Saltern.

Current microbiology, 81(12):442.

'Haloarcula aidinensis' was described by a pioneer Chinese scientist focused on halophilic archaea thirty years ago, and the type strain of 'Haloarcula aidinensis' was recently classified based on phylogenetic, phylogenomic, and comparative genomic analyses. Other three novel halophilic archaeal strains, CK38[T], DT43[T], and SYNS111[T], isolated from diverse saline environments in China, were simultaneously subjected to polyphasic classification. 'Haloarcula aidinensis' A5 was found to be related to Haloarcula amylolytica, while strains CK38[T], DT43[T], and SYNS111[T] represented three novel species of Haloarcula based on phylogenetic, phylogenomic, and comparative genomic analyses. These strains can be distinguished from other species within the genus Haloarcula based on multiple phenotypic characteristics. The major phospholipids, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, and phosphatidylglycerol sulfate can be detected in these strains, while the glycolipid profiles of these strains are diverse. Strains A5 and DT43[T] contained glucosyl mannosyl glucosyl diether and a diglycosyl diether, while other strains CK38[T] and SYNS111[T] had sulfated mannosyl glucosyl diether and mannosyl glucosyl diether. Thus, strain A5 should be a reference strain of Har. amylolytica and three novel species of Haloarcula, Haloarcula sediminis sp. nov., Haloarcula brevis sp. nov., and Haloarcula regularis sp. nov. are proposed to accommodate strains CK38[T] (= CGMCC 1.62732[T] = JCM 36675[T]), DT43[T] (= CGMCC 1.18924[T] = JCM 36146[T]), and SYNS111[T] (= CGMCC 1.62601[T] = JCM 36149[T]).

RevDate: 2024-11-03

Li T, Coker OO, Sun Y, et al (2024)

Multi-cohort analysis reveals altered archaea in colorectal cancer fecal samples across populations.

Gastroenterology pii:S0016-5085(24)05596-3 [Epub ahead of print].

BACKGROUND AND AIM: Archaea are important components of the host microbiome, but their roles in colorectal cancer (CRC) remain largely unclear. We aimed to elucidate the contribution of gut archaea to CRC across multiple populations.

METHODS: This study incorporated fecal metagenomic data from 10 independent cohorts from 7 countries and an additional in-house cohort, totaling 2101 metagenomes (748 CRC, 471 adenoma, and 882 healthy controls (HC)). Taxonomic profiling was performed using Kraken2 against the Genome Taxonomy Database. Alterations of archaeal communities and their interactions with bacteria and methanogenic functions were analyzed. Random Forest model was used to identify multicohort diagnostic microbial biomarkers in CRC.

RESULTS: The overall archaeal alpha diversity shifted from HC, adenoma patients to CRC patients with Methanobacteriota phylum enriched while order Methanomassiliicoccales depleted. At the species level, Methanobrevibacter_A smithii and Methanobrevibacter_A sp002496065 were enriched, while 8 species, including Methanosphaera stadtmanae and Methanomassiliicoccus_A intestinalis, were depleted in CRC patients across multiple cohorts. Among them, M. stadmanae, Methanobrevibacter_A sp900314695 and Methanocorpusculum sp001940805 exhibited a progressive decrease in the HC-adenoma-CRC sequence. CRC-depleted methanogenic archaea exhibited enhanced co-occurring interactions with butyrate-producing bacteria. Consistently, methanogenesis-related genes and pathways were enriched in CRC patients. A model incorporating archaeal and bacterial biomarkers outperformed single-kingdom models in discriminating CRC patients from healthy individuals with AUC ranging from 0.744 to 0.931 in leave-one-cohort-out analysis.

CONCLUSIONS: This multicohort analysis uncovered significant alterations in gut archaea and their interactions with bacteria in healthy individuals, adenoma patients and CRC patients. Archaeal biomarkers, combined with bacterial features, have potential as non-invasive diagnostic biomarkers for CRC.

RevDate: 2024-11-01

Ma JY, Jiang YQ, Liu XY, et al (2024)

Amplified selenite toxicity in methanogenic archaea mediated by cysteine.

Ecotoxicology and environmental safety, 287:117263 pii:S0147-6513(24)01339-3 [Epub ahead of print].

The challenge of understanding the interaction between trace elements and microbial life is critical for assessing environmental and ecological impacts. Nevertheless, cysteine (Cys), a low molecular weight thiol substance prevalent in the ecosystem, is able to influence the fate of certain trace elements, which increases the complexity of the interaction between trace elements and microorganisms. Therefore, we chose Cys, selenite and the model methanogenic archaeon Methanosarcina acetivorans C2A as research targets, and comprehensively explored the intricate role of Cys in modulating the biological effects of selenite on M. acetivorans C2A in terms of population growth, methane production and oxidative stress. Our results demonstrate that Cys significantly exacerbates the inhibitory effects of selenite on growth and methane production in M. acetivorans C2A. This increased toxicity is linked to heightened membrane permeability and oxidative stress, with a marked upregulation in reactive oxygen species and changes in NADPH levels. Transcriptomic analysis reveals alterations in genes associated with transmembrane transport and methanogenesis. Intriguingly, we also observed a potential interaction between selenite and phosphate transmembrane transporters, suggesting a novel pathway for selenite entry into cells. These findings highlight the complex interplay between trace elements and microbial processes, with significant implications for understanding environmental risks and developing remediation strategies.

RevDate: 2024-10-28
CmpDate: 2024-10-28

Ortjohann M, P Schönheit (2024)

Sugar alcohol degradation in Archaea: uptake and degradation of mannitol and sorbitol in Haloarcula hispanica.

Extremophiles : life under extreme conditions, 28(3):48.

The halophilic archaeon Haloarcula hispanica utilizes the sugar alcohols mannitol and sorbitol as carbon and energy sources. Genes, enzymes, and transcriptional regulators involved in uptake and degradation of these sugar alcohols were identified by growth experiments with deletion mutants and enzyme characterization. It is shown that both mannitol and sorbitol are taken up via a single ABC transporter of the CUT1 transporter family. Then, mannitol and sorbitol are oxidized to fructose by two distinct dehydrogenases. Fructose is further phosphorylated to fructose-1-phosphate by a haloarchaeal ketohexokinase, providing the first evidence for a physiological function of ketohexokinase in prokaryotes. Finally, fructose-1-phosphate is phosphorylated via fructose-1-phosphate kinase to fructose-1,6-bisphosphate, which is cleaved to triosephosphates by a Class I fructose-1,6-bisphosphate aldolase. Two distinct transcriptional regulators, acting as activators, have been identified: an IclR-like regulator involved in activating genes for sugar alcohol uptake and oxidation to fructose, and a GfcR-like regulator that likely activates genes involved in the degradation of fructose to pyruvate. This is the first comprehensive analysis of a sugar alcohol degradation pathway in Archaea.

RevDate: 2024-10-25
CmpDate: 2024-10-25

Pan YC, Zhao JW, Niu HJ, et al (2024)

[Effects of Vegetable Planting Ages on Community Structure of Ammonia-oxidizing Archaea and Ammonia-oxidizing Bacteria in Greenhouse Vegetable Fields].

Huan jing ke xue= Huanjing kexue, 45(10):6077-6085.

The ammonia oxidation process driven by microorganisms is a dominant source for nitrous oxide (N2O) emissions. Here, we examined the influence of greenhouse vegetable planting ages on soil ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), which is of great significance for assessing the soil quality status and greenhouse gas transformations. A field study was conducted at different times (1, 5, 10, and 20 a) in greenhouse vegetable soils of Gaoyi, Hebei Province. Chemical analysis and Illumina NovaSeq high-throughput sequencing were used to analyze the soil physicochemical properties and community structures and diversity of AOA and AOB. The variation in AOA and AOB communities and the driving factors in greenhouse soils at different ages were also investigated. The results showed that the contents of total nitrogen, organic matter, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium first increased and then decreased with the prolongation of growth. The contents of nitrate nitrogen, ammonium nitrogen, and electrical conductivity first decreased and then increased with the prolongation of growth. The pH value of soils decreased with the prolongation of growth. The abundance and diversity index of AOA and AOB first decreased and then increased with the prolongation of growth. Nitrososphaeria, unclassified Thaumarchaeota, and Candidatus Nitrosocaldus were the dominant species of AOA, while Betaproteobacteria and Nitrosospira were the dominant species of AOB. The composition of the soil AOA community varied greatly compared to that of AOB with the prolongation of growth. Correlation analysis showed that the changes in soil nutrient factors had a significant correlation with AOA and AOB communities. Redundancy analysis indicated that ammonium nitrogen, alkali-hydrolyzable nitrogen, and nitrate nitrogen were key factors of AOA communities, while electrical conductivity, available potassium, and nitrate nitrogen were key factors for AOB. In summary, long-term planting of greenhouse vegetables significantly affected the abundance and composition of soil AOA and AOB communities. Our results provide a theoretical basis for further studies on the greenhouse gas transformation and microbial mechanisms of the nitrogen cycle in greenhouse soils.

RevDate: 2024-10-22

Zhang L, Yang J, Ge AH, et al (2024)

Salinity drives niche differentiation of soil bacteria and archaea in Hetao Plain, China.

Journal of environmental management, 370:122977 pii:S0301-4797(24)02963-3 [Epub ahead of print].

Soil salinization is a critical environmental issue that limits plant productivity and disrupts ecosystem functions. As important indicators of soil environment, soil microbes play essential roles in driving nutrient cycling and sustaining ecosystem services. Therefore, understanding how microbial communities and their functional potentials respond to varying levels of soil salinization across different land use types is crucial for the restoration and management of salt-affected ecosystems. In this study, we randomly selected 63 sites across the Hetao Plain, covering an area of ∼2500 km[2]. Our results showed that both salinity- and fertility-related soil parameters were significantly correlated with bacterial and archaeal diversities, with soil salinity emerging as the stronger predictor of prokaryotic diversity. Intriguingly, bacterial and archaeal communities were tightly interlinked but displayed opposite trends in response to environmental factors, indicating a clear microbial niche differentiation driven by soil salinity. Moreover, the generalist functions of bacteria and archaea (e.g., chemoheterotrophy) exhibited contrasting responses to environmental parameters, while their specialist functions (e.g., nitrification) responded consistently. These findings highlight the pivotal role of soil salinity in shaping the niche differentiation of bacterial and archaeal communities in saline soils, providing insights to guide salinity-centered restoration strategies for effective marginal land management.

RevDate: 2024-10-22
CmpDate: 2024-10-22

Dong XY, Mao YL, Zhang QK, et al (2024)

Genome‑based classification of the family Natrialbaceae and description of four novel halophilic archaea from three saline lakes and a saline-alkaline land.

Extremophiles : life under extreme conditions, 28(3):47.

The current representatives of the family Natrialbaceae within the class Halobacteria were subjected to phylogenetic, phylogenomic, and comparative genomic analyses. The current species of Halobiforma and Halomontanus were found to be related to those of Natronobacterium and Natronoglomus, respectively. According to the cutoff value of average amino acid identity (AAI) (≤ 76%) proposed to differentiate genera within the family Natrialbaceae, Halobiforma, and Natronoglomus should be merged with Natronobacterium and Halomontanus, respectively. Beyond these, four novel halophilic archaeal strains, CCL63[T], AD-5[T], CG52[T], and KLK7[T], isolated from three saline lakes and a saline-alkaline land in China, were simultaneously subjected to polyphasic classification. The phenotypic, phylogenetic, phylogenomic, and comparative genomic analyses indicated that strain CCL63[T] (= CGMCC 1.18663[T] = JCM 35096[T]) represents a novel genus of the family Natrialbaceae, strains AD-5[T] (= CGMCC 1.13783[T] = JCM 33734[T]) and CG52[T] (= CGMCC 1.17139[T] = JCM 34160[T]) represent two novel species of the genus Natronococcus, and strain KLK7[T] (= MCCC 4K00128[T] = KCTC 4307[T]) represents a novel species of Haloterrigena. Halovalidus salilacus gen. nov., sp. nov., Natronococcus wangiae sp. nov., Natronococcus zhouii sp. nov., and Haloterrigena salinisoli sp. nov. are further proposed based on these type strains accordingly.

RevDate: 2024-10-21
CmpDate: 2024-10-21

Lemaire ON, Wegener G, T Wagner (2024)

Ethane-oxidising archaea couple CO2 generation to F420 reduction.

Nature communications, 15(1):9065.

The anaerobic oxidation of alkanes is a microbial process that mitigates the flux of hydrocarbon seeps into the oceans. In marine archaea, the process depends on sulphate-reducing bacterial partners to exhaust electrons, and it is generally assumed that the archaeal CO2-forming enzymes (CO dehydrogenase and formylmethanofuran dehydrogenase) are coupled to ferredoxin reduction. Here, we study the molecular basis of the CO2-generating steps of anaerobic ethane oxidation by characterising native enzymes of the thermophile Candidatus Ethanoperedens thermophilum obtained from microbial enrichment. We perform biochemical assays and solve crystal structures of the CO dehydrogenase and formylmethanofuran dehydrogenase complexes, showing that both enzymes deliver electrons to the F420 cofactor. Both multi-metalloenzyme harbour electronic bridges connecting CO and formylmethanofuran oxidation centres to a bound flavin-dependent F420 reductase. Accordingly, both systems exhibit robust coupled F420-reductase activities, which are not detected in the cell extract of related methanogens and anaerobic methane oxidisers. Based on the crystal structures, enzymatic activities, and metagenome mining, we propose a model in which the catabolic oxidising steps would wire electron delivery to F420 in this organism. Via this specific adaptation, the indirect electron transfer from reduced F420 to the sulphate-reducing partner would fuel energy conservation and represent the driving force of ethanotrophy.

RevDate: 2024-10-16

Wang M, Peñuelas J, Sardans J, et al (2024)

Conversion of coastal marsh to aquaculture ponds decreased the potential of methane production by altering soil chemical properties and methanogenic archaea community structure.

Water research, 268(Pt A):122608 pii:S0043-1354(24)01507-0 [Epub ahead of print].

Coastal wetlands are among the most productive and dynamic ecosystems globally, contributing significantly to atmospheric methane (CH4) emissions. The widespread conversion of these wetlands into aquaculture ponds degrades these ecosystems, yet its effects on CH4 production and associated microbial mechanisms are not well understood. This study aimed to assess the impact of land conversion on CH4 production potential, total and active soil organic C (SOC) content, and microbial communities. We conducted a comparative study on three brackish marshes and adjacent aquaculture ponds in southeastern China. Compared to costal marshes, aquaculture ponds exhibited significantly (P < 0.05) lower CH4 production potential (0.05 vs. 0.02 μg kg[-1] h[-1]), SOC (17.64 vs. 6.97 g kg[-1]), total nitrogen (TN) content (1.62 vs. 1.24 g kg[-1]) and carbon/nitrogen (C/N) ratio (10.85 vs. 5.66). CH4 production potential in aquaculture ponds was influenced by both microbial and abiotic factors. Specifically, the relative abundance of Methanosarcina slightly decreased in aquaculture ponds, while the potential for CH4 production declined with lower SOC contents and C/N ratio. Overall, our findings demonstrate that converting natural coastal marshes into aquaculture ponds reduces CH4 production by altering key soil properties and the structure and diversity of methanogenic archaea communities. These results provide empirical evidence to enhance global carbon models, improving predictions of carbon feedback from wetland land conversion in the context of climate change.

RevDate: 2024-10-15

Valentin-Alvarado LE, Shi LD, Appler KE, et al (2024)

Complete genomes of Asgard archaea reveal diverse integrated and mobile genetic elements.

Genome research pii:gr.279480.124 [Epub ahead of print].

Asgard archaea are of great interest as the progenitors of Eukaryotes, but little is known about the mobile genetic elements (MGEs) that may shape their ongoing evolution. Here, we describe MGEs that replicate in Atabeyarchaeia, a wetland Asgard archaea lineage represented by two complete genomes. We used soil depth-resolved population metagenomic data sets to track 18 MGEs for which genome structures were defined and precise chromosome integration sites could be identified for confident host linkage. Additionally, we identified a complete 20.67 kbp circular plasmid and two family-level groups of viruses linked to Atabeyarchaeia, via CRISPR spacer targeting. Closely related 40 kbp viruses possess a hypervariable genomic region encoding combinations of specific genes for small cysteine-rich proteins structurally similar to restriction-homing endonucleases. One 10.9 kbp integrative conjugative element (ICE) integrates genomically into the Atabeyarchaeum deiterrae-1 chromosome and has a 2.5 kbp circularizable element integrated within it. The 10.9 kbp ICE encodes an expressed Type IIG restriction-modification system with a sequence specificity matching an active methylation motif identified by Pacific Biosciences (PacBio) high-accuracy long-read (HiFi) metagenomic sequencing. Restriction-modification of Atabeyarchaeia differs from that of another coexisting Asgard archaea, Freyarchaeia, which has few identified MGEs but possesses diverse defense mechanisms, including DISARM and Hachiman, not found in Atabeyarchaeia. Overall, defense systems and methylation mechanisms of Asgard archaea likely modulate their interactions with MGEs, and integration/excision and copy number variation of MGEs in turn enable host genetic versatility.

RevDate: 2024-10-15

Villa EA, JC Escalante-Semerena (2024)

Corrinoid salvaging and cobamide remodeling in bacteria and archaea.

Journal of bacteriology [Epub ahead of print].

Cobamides (Cbas) are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life as co-catalyst of diverse reactions. There are several structural features that distinguish Cbas from one another. The most relevant of those features discussed in this review is the lower ligand, which is the nucleobase of a ribotide located in the lower face of the cyclic tetrapyrrole ring. The above-mentioned ribotide is known as the nucleotide loop, which is attached to the ring by a short linker. In Cbas, the nucleobase of the ribotide can be benzimidazole or derivatives of it, purine or derivatives of it, or phenolic compounds. Given the importance of Cbas in prokaryotic metabolism, it is not surprising that prokaryotes have evolved enzymes that cleave part or the entire nucleotide loop. This function is advantageous when Cbas contain nucleobases that somehow interfere with the function of Cba-dependent enzymes in the organism. After cleavage, Cbas are rebuilt via the nucleotide loop assembly (NLA) pathway, which includes enzymes that activate the nucleobase and the ring intermediate, followed by condensation of activated intermediates and a final dephosphorylation reaction. This exchange of nucleobases is known as Cba remodeling. The NLA pathway is used to salvage Cba precursors from the environment.

RevDate: 2024-10-14
CmpDate: 2024-10-15

Bobbo T, Biscarini F, Yaddehige SK, et al (2024)

Machine learning classification of archaea and bacteria identifies novel predictive genomic features.

BMC genomics, 25(1):955.

BACKGROUND: Archaea and Bacteria are distinct domains of life that are adapted to a variety of ecological niches. Several genome-based methods have been developed for their accurate classification, yet many aspects of the specific genomic features that determine these differences are not fully understood. In this study, we used publicly available whole-genome sequences from bacteria (N = 2546) and archaea (N = 109). From these, a set of genomic features (nucleotide frequencies and proportions, coding sequences (CDS), non-coding, ribosomal and transfer RNA genes (ncRNA, rRNA, tRNA), Chargaff's, topological entropy and Shannon's entropy scores) was extracted and used as input data to develop machine learning models for the classification of archaea and bacteria.

RESULTS: The classification accuracy ranged from 0.993 (Random Forest) to 0.998 (Neural Networks). Over the four models, only 11 examples were misclassified, especially those belonging to the minority class (Archaea). From variable importance, tRNA topological and Shannon's entropy, nucleotide frequencies in tRNA, rRNA and ncRNA, CDS, tRNA and rRNA Chargaff's scores have emerged as the top discriminating factors. In particular, tRNA entropy (both topological and Shannon's) was the most important genomic feature for classification, pointing at the complex interactions between the genetic code, tRNAs and the translational machinery.

CONCLUSIONS: tRNA, rRNA and ncRNA genes emerged as the key genomic elements that underpin the classification of archaea and bacteria. In particular, higher nucleotide diversity was found in tRNA from bacteria compared to archaea. The analysis of the few classification errors reflects the complex phylogenetic relationships between bacteria, archaea and eukaryotes.

RevDate: 2024-10-13

Nagar DN, Mani K, JM Braganca (2024)

Author Correction: Genomic insights on carotenoid synthesis by extremely halophilic archaea Haloarcularubripromontorii BS2, Haloferaxlucentense BBK2 and Halogeometricumborinquense E3 isolated from the solar salterns of India.

Scientific reports, 14(1):23750 pii:10.1038/s41598-024-74079-z.

RevDate: 2024-10-11

PLOS ONE Editors (2024)

Correction: A Versatile Medium for Cultivating Methanogenic Archaea.

PloS one, 19(10):e0312093.

[This corrects the article DOI: 10.1371/journal.pone.0061563.].

RevDate: 2024-10-03

Mühling L, Baur T, B Molitor (2024)

Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production.

Advances in biochemical engineering/biotechnology [Epub ahead of print].

Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.

RevDate: 2024-10-03

Han S, Kim S, Sedlacek CJ, et al (2024)

Adaptive traits of Nitrosocosmicus clade ammonia-oxidizing archaea.

mBio [Epub ahead of print].

UNLABELLED: Nitrification is a core process in the global nitrogen (N) cycle mediated by ammonia-oxidizing microorganisms, including ammonia-oxidizing archaea (AOA) as a key player. Although much is known about AOA abundance and diversity across environments, the genetic drivers of the ecophysiological adaptations of the AOA are often less clearly defined. This is especially true for AOA within the genus Nitrosocosmicus, which have several unique physiological traits (e.g., high substrate tolerance, low substrate affinity, and large cell size). To better understand what separates the physiology of Nitrosocosmicus AOA, we performed comparative genomics with genomes from 39 cultured AOA, including five Nitrosocosmicus AOA. The absence of a canonical high-affinity type ammonium transporter and typical S-layer structural genes was found to be conserved across all Nitrosocosmicus AOA. In agreement, cryo-electron tomography confirmed the absence of a visible outermost S-layer structure, which has been observed in other AOA. In contrast to other AOA, the cryo-electron tomography highlighted the possibility that Nitrosocosmicus AOA may possess a glycoprotein or glycolipid-based glycocalyx cell covering outer layer. Together, the genomic, physiological, and metabolic properties revealed in this study provide insight into niche adaptation mechanisms and the overall ecophysiology of members of the Nitrosocosmicus clade in various terrestrial ecosystems.

IMPORTANCE: Nitrification is a vital process within the global biogeochemical nitrogen cycle but plays a significant role in the eutrophication of aquatic ecosystems and the production of the greenhouse gas nitrous oxide (N2O) from industrial agriculture ecosystems. While various types of ammonia-oxidizing microorganisms play a critical role in the N cycle, ammonia-oxidizing archaea (AOA) are often the most abundant nitrifiers in natural environments. Members of the genus Nitrosocosmicus are one of the prevalent AOA groups detected in undisturbed terrestrial ecosystems and have previously been reported to possess a range of physiological characteristics that set their physiology apart from other AOA species. This study provides significant progress in understanding these unique physiological traits and their genetic drivers. Our results highlight how physiological studies based on comparative genomics-driven hypotheses can contribute to understanding the unique niche of Nitrosocosmicus AOA.

RevDate: 2024-10-04

Pereira O, Qin W, Galand PE, et al (2024)

Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing.

mLife, 3(3):417-429.

Ammonia-oxidizing archaea (AOA) play crucial roles in marine carbon and nitrogen cycles by fixing inorganic carbon and performing the initial step of nitrification. Evaluation of carbon and nitrogen metabolism popularly relies on functional genes such as amoA and accA. Increasing studies suggest that quorum sensing (QS) mainly studied in biofilms for bacteria may serve as a universal communication and regulatory mechanism among prokaryotes; however, this has yet to be demonstrated in marine planktonic archaea. To bridge this knowledge gap, we employed a combination of metabolic activity markers (amoA, accA, and grs) to elucidate the regulation of AOA-mediated nitrogen, carbon processes, and their interactions with the surrounding heterotrophic population. Through co-transcription investigations linking metabolic markers to potential key QS genes, we discovered that QS molecules could regulate AOA's carbon, nitrogen, and lipid metabolisms under different conditions. Interestingly, specific AOA ecotypes showed a preference for employing distinct QS systems and a distinct QS circuit involving a typical population. Overall, our data demonstrate that QS orchestrates nitrogen and carbon metabolism, including the exchange of organic metabolites between AOA and surrounding heterotrophic bacteria, which has been previously overlooked in marine AOA research.

RevDate: 2024-09-30
CmpDate: 2024-09-30

Lehtovirta-Morley LE, Ge C, Ross J, et al (2024)

Nitrosotalea devaniterrae gen. nov., sp. nov. and Nitrosotalea sinensis sp. nov., two acidophilic ammonia oxidising archaea isolated from acidic soil, and proposal of the new order Nitrosotaleales ord. nov. within the class Nitrososphaeria of the phylum Nitrososphaerota.

International journal of systematic and evolutionary microbiology, 74(9):.

Two obligately acidophilic, mesophilic and aerobic soil ammonia-oxidising archaea were isolated from a pH 4.5 arable sandy loam (UK) and pH 4.7 acidic sulphate paddy soil (PR China) and designated strains Nd1[T] and Nd2[T], respectively. The strains shared more than 99 % 16S rRNA gene sequence identity and their genomes were both less than 2 Mb in length, sharing 79 % average nucleotide identity, 81 % average amino acid identity and a DNA G+C content of approximately 37 mol%. Both strains were chemolithotrophs that fixed carbon dioxide and gained energy by oxidising ammonia to nitrite, with no evidence of mixotrophic growth. Neither strain was capable of using urea as a source of ammonia. Both strains were non-motile in culture, although Nd1[T] does possess genes encoding flagella components and therefore may be motile under certain conditions. Cells of Nd1[T] were small angular rods 0.5-1 µm in length and grew at pH 4.2-5.6 and at 20-30 °C. Cells of Nd1[T] were small angular rods 0.5-1 µm in length and grew at pH 4.0-6.1 and at 20-42 °C. Nd1[T] and Nd2[T] are distinct with respect to genomic and physiological features and are assigned as the type strains for the species Nitrosotalea devaniterrae sp. nov. (type strain, Nd1[T]=NCIMB 15248[T]=DSM 110862[T]) and Nitrosotalea sinensis sp. nov. (type strain, Nd2[T]=NCIMB 15249[T]=DSM 110863[T]), respectively, within the genus Nitrosotalea gen. nov. The family Nitrosotaleaceae fam. nov. and order Nitrosotaleales ord. nov. are also proposed officially.

RevDate: 2024-09-20

Zhang QK, Zhu LR, Dong XY, et al (2024)

Salinirarus marinus gen. nov., sp. nov., Haloplanus salilacus sp. nov., Haloplanus pelagicus sp. nov., Haloplanus halophilus sp. nov., Haloplanus halobius sp. nov., halophilic archaea isolated from commercial coarse salts with potential as starter cultures for salt-fermented foods.

FEMS microbiology letters pii:7762964 [Epub ahead of print].

Five halophilic archaeal strains, XH8T, CK5-1T, GDY1T, HW8-1T, and XH21T, were isolated from commercial coarse salt produced in different regions of China. Their 16S rRNA and rpoB' gene sequences indicated that four of the strains (CK5-1T, GDY1T, HW8-1T, and XH21T) represent distinct species within the genus Haloplanus (family Haloferacaceae), while strain XH8T represents a novel genus within the same family. These assignments were supported by phylogenetic and phylogenomic analyses, which showed that strains CK5-1T, GDY1T, HW8-1T, and XH21T cluster with the current species of the genus Haloplanus, while strain XH8T forms a separate branch from the genus Haloplanus. The digital DNA-DNA hybridization and average amino acid identity (AAI) values among these four strains and the current members of the genus Haloplanus were 23.1-35.2% and 75.9-83.8%, respectively; and those values between strain XH8T and other genera in the family Haloferacaceae were 18.8-33.6% and 59.8-66.6%, respectively, much lower than the threshold values for species demarcation. Strain XH8T may represent a novel genus of the family Haloferacaceae according to the cut-off value of AAI (≤72.1%) proposed to differentiate genera within the family Haloferacaceae. These five strains could be distinguished from the related species according to differential phenotypic characteristics. Based on these results, it is proposed that strain XH8T represents a novel genus within the family Haloferacaceae, and strains CK5-1T, GDY1T, HW8-1T, and XH21T represent four novel species of the genus Haloplanus, respectively. Additionally, these five strains possess genes encoding enzymes critical for the fermentation process in salt-fermented foods, indicating their potential as starter cultures for these applications.

RevDate: 2024-09-21
CmpDate: 2024-09-20

Lezcano MÁ, Bornemann TLV, Sánchez-García L, et al (2024)

Hyperexpansion of genetic diversity and metabolic capacity of extremophilic bacteria and archaea in ancient Andean lake sediments.

Microbiome, 12(1):176.

BACKGROUND: The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth. Here we examine the microbial diversity and function in ancient sediments (10.3-11 kyr BP (before present)) from a terrace profile of Laguna Lejía, a sulfur- and metal/metalloid-rich saline lake in the Chilean Altiplano. We also evaluate the physical and chemical changes of the lake over time by studying the mineralogy and geochemistry of the terrace profile.

RESULTS: The mineralogy and geochemistry of the terrace profile revealed large water level fluctuations in the lake, scarcity of organic carbon, and high concentration of SO4[2-]-S, Na, Cl and Mg. Lipid biomarker analysis indicated the presence of aquatic/terrestrial plant remnants preserved in the ancient sediments, and genome-resolved metagenomics unveiled a diverse prokaryotic community with still active microorganisms based on in silico growth predictions. We reconstructed 591 bacterial and archaeal metagenome-assembled genomes (MAGs), of which 98.8% belonged to previously unreported species. The most abundant and widespread metabolisms among MAGs were the reduction and oxidation of S, N, As, and halogenated compounds, as well as aerobic CO oxidation, possibly as a key metabolic trait in the organic carbon-depleted sediments. The broad redox and CO2 fixation pathways among phylogenetically distant bacteria and archaea extended the knowledge of metabolic capacities to previously unknown taxa. For instance, we identified genomic potential for dissimilatory sulfate reduction in Bacteroidota and α- and γ-Proteobacteria, predicted an enzyme for ammonia oxidation in a novel Actinobacteriota, and predicted enzymes of the Calvin-Benson-Bassham cycle in Planctomycetota, Gemmatimonadota, and Nanoarchaeota.

CONCLUSIONS: The high number of novel bacterial and archaeal MAGs in the Laguna Lejía indicates the wide prokaryotic diversity discovered. In addition, the detection of genes in unexpected taxonomic groups has significant implications for the expansion of microorganisms involved in the biogeochemical cycles of carbon, nitrogen, and sulfur. Video Abstract.

RevDate: 2024-10-16
CmpDate: 2024-09-19

Obayori OS, Salam LB, Ashade AO, et al (2024)

An animal charcoal contaminated cottage industry soil highlighted by halophilic archaea dominance and decimation of bacteria.

World journal of microbiology & biotechnology, 40(10):327.

An animal charcoal contaminated cottage industry soil in Lagos, Nigeria (ACGT) was compared in an ex post facto study with a nearby unimpacted soil (ACGC). Hydrocarbon content was higher than regulatory limits in ACGT (180.2 mg/kg) but lower in ACGC (19.28 mg/kg). Heavy metals like nickel, cadmium, chromium and lead were below detection limit in ACGC. However, all these metals, except cadmium, were detected in ACGT, but at concentrations below regulatory limits. Furthermore, copper (253.205 mg/kg) and zinc (422.630 mg/kg) were above regulatory limits in ACGT. Next generation sequencing revealed that the procaryotic community was dominated by bacteria in ACGC (62%) while in ACGT archaea dominated (76%). Dominant phyla in ACGC were Euryarchaeota (37%), Pseudomonadota (16%) and Actinomycetota (12%). In ACGT it was Euryarchaeota (76%), Bacillota (9%), Pseudomonadota (7%) and Candidatus Nanohaloarchaeota (5%). Dominant Halobacteria genera in ACGT were Halobacterium (16%), Halorientalis (16%), unranked halophilic archaeon (13%) Salarchaeum (6%) and Candidatus Nanohalobium (5%), whereas ACGC showed greater diversity dominated by bacterial genera Salimicrobium (7%) and Halomonas (3%). Heavy metals homeostasis genes, especially for copper, were fairly represented in both soils but with bacterial taxonomic affiliations. Sites like ACGT, hitherto poorly studied and understood, could be sources of novel bioresources.

RevDate: 2024-09-20

Vershinin Z, Zaretsky M, J Eichler (2024)

N-glycosylation in Archaea - Expanding the process, components and roles of a universal post-translational modification.

BBA advances, 6:100120.

While performed by all three domains of life, N-glycosylation in Archaea is less well described than are the parallel eukaryal and bacterial processes. Still, what is known of the archaeal version of this universal post-translational modification reveals numerous seemingly domain-specific traits. Specifically, the biosynthesis of archaeal N-linked glycans relies on distinct pathway steps and components, rare sugars and sugar modifications, as well as unique lipid carriers upon which N-linked glycans are assembled. At the same time, Archaea possess the apparently unique ability to simultaneously modify their glycoproteins with very different N-linked glycans. In addition to these biochemical aspects of archaeal N-glycosylation, such post-translational modification has been found to serve a wide range of roles possibly unique to Archaea, including allowing these microorganisms to not only cope with the harsh physical conditions of the niches they can inhabit but also providing the ability to adapt to transient changes in such environments.

RevDate: 2024-09-20

Hernández-Magaña E, B Kraft (2024)

Nitrous oxide production and consumption by marine ammonia-oxidizing archaea under oxygen depletion.

Frontiers in microbiology, 15:1410251.

Ammonia-oxidizing archaea (AOA) are key players in the nitrogen cycle and among the most abundant microorganisms in the ocean, thriving even in oxygen-depleted ecosystems. AOA produce the greenhouse gas nitrous oxide (N2O) as a byproduct of ammonia oxidation. Additionally, the recent discovery of a nitric oxide dismutation pathway in the AOA isolate Nitrosopumilus maritimus points toward other N2O production and consumption pathways in AOA. AOA that perform NO dismutation when exposed to oxygen depletion, produce oxygen and dinitrogen as final products. Based on the transient accumulation of N2O coupled with oxygen accumulation, N2O has been proposed as an intermediate in this novel archaeal pathway. In this study, we spiked N2O to oxygen-depleted incubations with pure cultures of two marine AOA isolates that were performing NO dismutation. By using combinations of N compounds with different isotopic signatures ([15]NO2 [-] pool +[44]N2O spike and [14]NO2 [-] pool +[46]N2O spike), we evaluated the N2O spike effects on the production of oxygen and the isotopic signature of N2 and N2O. The experiments confirmed that N2O is an intermediate in NO dismutation by AOA, distinguishing it from similar pathways in other microbial clades. Furthermore, we showed that AOA rapidly reduce high concentrations of spiked N2O to N2. These findings advance our understanding of microbial N2O production and consumption in oxygen-depleted settings and highlight AOA as potentially important key players in N2O turnover.

RevDate: 2024-09-17

Mattick JSA, Bromley RE, Watson KJ, et al (2024)

Deciphering transcript architectural complexity in bacteria and archaea.

mBio, 15(10):e0235924 [Epub ahead of print].

RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict transcripts (mRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria), Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated Oxford Nanopore Technologies direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli K12 proteins. While the number of predicted transcripts varied by strain based on the amount of sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7 kbp, while the median size of the 5'- and 3'-untranslated regions (UTRs) were 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions were of novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the presentation of transcripts, and UTR predictions alongside coding sequences and protein predictions in bacterial genome annotation as important resources for the research community.IMPORTANCEOur understanding of bacterial and archaeal genes and genomes is largely focused on proteins since there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with studies on the human genome, where transcripts were sequenced prior to the release of the human genome over two decades ago. We developed software for the quick, easy, and reproducible prediction of bacterial and archaeal transcripts from Oxford Nanopore Technologies direct RNA sequencing data. These predictions are urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.

RevDate: 2024-09-18

Ben Hamad Bouhamed S, Chaari M, Baati H, et al (2024)

Extreme halophilic Archaea: Halobacterium salinarum carotenoids characterization and antioxidant properties.

Heliyon, 10(17):e36832.

Important marine microorganisms are resources of renewable energy that may face global population growth and needs. The application of biomass metabolites, such as carotenoids and their derivatives, may solve some agro-food health problems. Herein, a new halophilic Archaea Halobacterium salinarum producing carotenoid was screened from a Tunisian solar Saltworks (Sfax). The identification of the carotenoid pigments was carried out using HPLC-MS/MS. The predominant pigments produced by this Halobacterium were bacterioruberin and its derivatives and the carotenoids production was found to be of 21.51 mg/mL. Moreover, the data revealed that the carotenoids extract exhibited a high antioxidant activity across four oxidizing assays. The present results suggested that carotenoids extracted from halophilic Archaea are interesting sources of natural antioxidants for future innovative applications in agro-food, cosmetic and health fields.

RevDate: 2024-09-18
CmpDate: 2024-09-18

Chatziargyri AG, Stasi EA, Tsirigos KI, et al (2024)

CW-PRED: Prediction of C-terminal surface anchoring sorting signals in bacteria and Archaea.

Journal of bioinformatics and computational biology, 22(4):2450021.

Sorting signals are crucial for the anchoring of proteins to the cell surface in archaea and bacteria. These proteins often feature distinct motifs at their C-terminus, cleaved by sortase or sortase-like enzymes. Gram-positive bacteria exhibit the LPXTGX consensus motif, cleaved by sortases, while Gram-negative bacteria employ exosortases recognizing motifs like PEP. Archaea utilize exosortase homologs known as archaeosortases for signal anchoring. Traditionally identification of such C-terminal sorting signals was performed with profile Hidden Markov Models (pHMMs). The Cell-Wall PREDiction (CW-PRED) method introduced for the first time a custom-made class HMM for proteins in Gram-positive bacteria that contain a cell wall sorting signal which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues. Here we present a new and updated version of CW-PRED for predicting C-terminal sorting signals in Archaea, Gram-positive, and Gram-negative bacteria. We used a large training set and several model enhancements that improve motif identification in order to achieve better discrimination between C-terminal signals and other proteins. Cross-validation demonstrates CW-PRED's superiority in sensitivity and specificity compared to other methods. Application of the method in reference proteomes reveals a large number of potential surface proteins not previously identified. The method is available for academic use at http://195.251.108.230/apps.compgen.org/CW-PRED/ and as standalone software.

RevDate: 2024-10-16
CmpDate: 2024-08-31

Tejedor-Sanz S, Song YE, ER Sundstrom (2024)

Utilization of formic acid by extremely thermoacidophilic archaea species.

Microbial biotechnology, 17(9):e70003.

The exploration of novel hosts with the ability to assimilate formic acid, a C1 substrate that can be produced from renewable electrons and CO2, is of great relevance for developing novel and sustainable biomanufacturing platforms. Formatotrophs can use formic acid or formate as a carbon and/or reducing power source. Formatotrophy has typically been studied in neutrophilic microorganisms because formic acid toxicity increases in acidic environments below the pKa of 3.75 (25°C). Because of this toxicity challenge, utilization of formic acid as either a carbon or energy source has been largely unexplored in thermoacidophiles, species that possess the ability to produce a variety of metabolites and enzymes of high biotechnological relevance. Here we investigate the capacity of several thermoacidophilic archaea species from the Sulfolobales order to tolerate and metabolize formic acid. Metallosphaera prunae, Sulfolobus metallicus and Sulfolobus acidocaldarium were found to metabolize and grow with 1-2 mM of formic acid in batch cultivations. Formic acid was co-utilized by this species alongside physiological electron donors, including ferrous iron. To enhance formic acid utilization while maintaining aqueous concentrations below the toxicity threshold, we developed a bioreactor culturing method based on a sequential formic acid feeding strategy. By dosing small amounts of formic acid sequentially and feeding H2 as co-substrate, M. prunae could utilize a total of 16.3 mM of formic acid and grow to higher cell densities than when H2 was supplied as a sole electron donor. These results demonstrate the viability of culturing thermoacidophilic species with formic acid as an auxiliary substrate in bioreactors to obtain higher cell densities than those yielded by conventional autotrophic conditions. Our work underscores the significance of formic acid metabolism in extreme habitats and holds promise for biotechnological applications in the realm of sustainable energy production and environmental remediation.

RevDate: 2024-10-12
CmpDate: 2024-08-30

Nagar DN, Mani K, JM Braganca (2024)

Genomic insights on carotenoid synthesis by extremely halophilic archaea Haloarcula rubripromontorii BS2, Haloferax lucentense BBK2 and Halogeometricum borinquense E3 isolated from the solar salterns of India.

Scientific reports, 14(1):20214.

Haloarchaeal cultures were isolated from solar salterns of Goa and Tamil Nadu and designated as BS2, BBK2 and E3. These isolates grew with a characteristic bright orange to pink pigmentation and were capable of growing in media containing upto 25% (w/vol) NaCl. Whole genome sequencing (WGS) of the three haloarchaeal strains BS2, BBK2 and E3 indicated an assembled genomic size of 4.1 Mb, 3.8 Mb and 4 Mb with G + C content of 61.8, 65.6 and 59.8% respectively. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the archaeal isolates belong to Haloarcula, Haloferax and Halogeometricum genera. Haloarcula rubripromontorii BS2 was predicted to have 4292 genes with 4242 CDS regions, 46 tRNAs, 6 rRNAs and 3 misc_RNAs. In case of Haloferax lucentense BBK2,, 3840 genes with 3780 CDS regions were detected along with 52 tRNAs, 5 rRNAs and 3 misc_RNAs. Halogeometricum borinquense E3 contained 4101 genes, 4043 CDS regions, 52 tRNAs, 4 rRNAs, and 2 misc_RNAs. The functional annotation and curation of the haloarchaeal genome, revealed C50 carotenoid biosynthetic genes like phytoene desaturase/carotenoid 3' -4' desaturase (crtI), lycopene elongase (ubiA/lyeJ) and carotenoid biosynthesis membrane protein (cruF) in the three isolates. Whereas crtD (C-3',4' desaturase), crtY (lycopene cyclase) and brp/blh (β-carotene dioxygenase) genes were identified only in BS2.

RevDate: 2024-09-19
CmpDate: 2024-09-19

da Costa Soares S, Vezzani FM, Favaretto N, et al (2024)

Effect of long-term liquid dairy manure application on activity and structure of bacteria and archaea in no-till soils depends on plant in development.

Environmental science and pollution research international, 31(42):54713-54728.

This study aimed to evaluate the impact of long-term liquid dairy manure (LDM) application on the activity and structure of soil bacterial and archaea communities in two cropping seasons over 1 year of a no-till crop rotation system. The experiment was run in a sandy clay loam texture Oxisol, in Brazil, including LDM doses of 60, 120, and 180 m[3] ha[-1] year[-1], installed in 2005. Soil sampling was conducted during spring 2018 and autumn 2019 at 0-10-cm depth. Microbial biomass carbon and nitrogen, 16S rRNA gene sequencing, microbial respiration and quotient were performed. Over the 14-year period, LDM application increased soil microbial community activity. Analysis of 16S rRNA gene sequencing revealed dominance by Proteobacteria, Acidobacteria, and Actinobacteria phyla (67% in spring and 70% in autumn). Genera Pirulla and Nitrososphaera showed enrichment at LDM doses of 120 and 180 m[3] ha[-1] year[-1] doses, respectively. During spring, following black oat cropping, shifts in the relative abundance of Bacteroidetes, Proteobacteria, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Chloroflexi, Actinobacteria, and AD3 phyla were observed due to LDM application, correlating with soil chemical indicators such as pH, K, Ca, Mn, and Zn. Our findings indicate that plant development strongly influences microbial community composition, potentially outweighing the impact of LDM. Our findings indicate that the application of liquid dairy manure alters the soil bacterial activity and community; however, this effect depends on the developing plant.

RevDate: 2024-08-29

Baker BJ, N Sarno (2024)

Small archaea may form intimate partnerships to maximize their metabolic potential.

mBio, 15(10):e0034724 [Epub ahead of print].

DPANN archaea have characteristically small cells and unique genomes that were long overlooked in diversity surveys. Their reduced genomes often lack essential metabolic pathways, requiring symbiotic relationships with other archaeal and bacterial hosts for survival. Yet a long-standing question remains, what is the advantage of maintaining ultrasmall cells. A recent study by Zhang et al. examined genomes of DPANN archaea from marine oxygen deficient zones (ODZs) (I. H. Zhang, B. Borer, R. Zhao, S. Wilbert, et al., mBio 15:e02918-23, 2024, https://doi.org/10.1128/mbio.02918-23). Surprisingly, these genomes contain a broad array of metabolic pathways including genes predicted to be involved in nitrous oxide (N2O) reduction. However, N2O levels are likely too low in ODZs to make this metabolically feasible. Modeling co-localization of DPANN archaea (N2O consumers) with other larger cells (N2O producers) demonstrates that N2O uptake rates can be optimized by maximizing the producer-to-consumer size ratio and proximity of consumer cells to producers. This may explain why such a diversity of archaea maintain extremely small cell sizes.

RevDate: 2024-09-01

Bai C, Wang Q, Xu J, et al (2024)

Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea.

Microorganisms, 12(8):.

Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22-56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms' relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments.

RevDate: 2024-09-21
CmpDate: 2024-09-19

Nakagawa S, Sakai HD, Shimamura S, et al (2024)

N-linked protein glycosylation in Nanobdellati (formerly DPANN) archaea and their hosts.

Journal of bacteriology, 206(9):e0020524.

Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.

RevDate: 2024-10-13
CmpDate: 2024-10-08

Gutiérrez-Preciado A, Dede B, Baker BA, et al (2024)

Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines.

Nature ecology & evolution, 8(10):1856-1869.

Few described archaeal, and fewer bacterial, lineages thrive under salt-saturating conditions, such as solar saltern crystallizers (salinity above 30% w/v). They accumulate molar K[+] cytoplasmic concentrations to maintain osmotic balance ('salt-in' strategy) and have proteins adaptively enriched in negatively charged acidic amino acids. Here we analysed metagenomes and metagenome-assembled genomes from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Danakil Depression. Normalized abundances of universal single-copy genes confirmed that haloarchaea and Nanohaloarchaeota encompass 99% of microbial communities in the near-life-limiting conditions of the Western-Canyon Lakes. Danakil metagenome- and metagenome-assembled-genome-inferred proteomes, compared with those of freshwater, seawater and solar saltern ponds up to saturation (6-14-32% salinity), showed that Western-Canyon Lake archaea encode the most acidic proteomes ever observed (median protein isoelectric points ≤4.4). We identified previously undescribed haloarchaeal families as well as an Aenigmatarchaeota family and a bacterial phylum independently adapted to extreme halophily. Despite phylum-level diversity decreasing with increasing salinity-chaotropicity, and unlike in solar salterns, adapted archaea exceedingly diversified in Danakil ecosystems, challenging the notion of decreasing diversity under extreme conditions. Metabolic flexibility to utilize multiple energy and carbon resources generated by local hydrothermalism along feast-and-famine strategies seemingly shapes microbial diversity in these ecosystems near life limits.

RevDate: 2024-10-08
CmpDate: 2024-10-08

Carilo I, Senju Y, Yokoyama T, et al (2024)

Intercompatibility of eukaryotic and Asgard archaea ribosome-translocon machineries.

The Journal of biological chemistry, 300(9):107673.

In all domains of life, the ribosome-translocon complex inserts nascent transmembrane proteins into, and processes and transports signal peptide-containing proteins across, membranes. Eukaryotic translocons are anchored in the endoplasmic reticulum, while the prokaryotic complexes reside in cell membranes. Phylogenetic analyses indicate the inheritance of eukaryotic Sec61/oligosaccharyltransferase/translocon-associated protein translocon subunits from an Asgard archaea ancestor. However, the mechanism for translocon migration from a peripheral membrane to an internal cellular compartment (the proto-endoplasmic reticulum) during eukaryogenesis is unknown. Here we show compatibility between the eukaryotic ribosome-translocon complex and Asgard signal peptides and transmembrane proteins. We find that Asgard translocon proteins from Candidatus Prometheoarchaeum syntrophicum strain Candidatus Prometheoarchaeum syntrophicum strain MK-D1, a Lokiarchaeon confirmed to contain no internal cellular membranes, are targeted to the eukaryotic endoplasmic reticulum on ectopic expression. Furthermore, we show that the cytoplasmic domain of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 oligosaccharyltransferase 1 (ribophorin I) can interact with eukaryotic ribosomes. Our data indicate that the location of existing ribosome-translocon complexes, at the protein level, determines the future placement of yet-to-be-translated translocon subunits. This principle predicts that during eukaryogenesis, under positive selection pressure, the relocation of a few translocon complexes to the proto-endoplasmic reticulum will have contributed to propagating the new translocon location, leading to their loss from the cell membrane.

RevDate: 2024-09-10
CmpDate: 2024-09-10

Zhao Z, Qin W, Li L, et al (2024)

Discovery of Candidatus Nitrosomaritimum as a New Genus of Ammonia-Oxidizing Archaea Widespread in Anoxic Saltmarsh Intertidal Aquifers.

Environmental science & technology, 58(36):16040-16054.

Ammonia-oxidizing archaea (AOA) are widely distributed in marine and terrestrial habitats, contributing significantly to global nitrogen and carbon cycles. However, their genomic diversity, ecological niches, and metabolic potentials in the anoxic intertidal aquifers remain poorly understood. Here, we discovered and named a novel AOA genus, Candidatus Nitrosomaritimum, from the intertidal aquifers of Yancheng Wetland, showing close metagenomic abundance to the previously acknowledged dominant Nitrosopumilus AOA. Further construction of ammonia monooxygenase-based phylogeny demonstrated the widespread distribution of Nitrosomaritimum AOA in global estuarine-coastal niches and marine sediment. Niche differentiation among sublineages of this new genus in anoxic intertidal aquifers is driven by salinity and dissolved oxygen gradients. Comparative genomics revealed that Candidatus Nitrosomaritimum has the genetic capacity to utilize urea and possesses high-affinity phosphate transporter systems (phnCDE) for surviving phosphorus-limited conditions. Additionally, it contains putative nosZ genes encoding nitrous-oxide (N2O) reductase for reducing N2O to nitrogen gas. Furthermore, we gained first genomic insights into the archaeal phylum Hydrothermarchaeota populations residing in intertidal aquifers and revealed their potential hydroxylamine-detoxification mutualism with AOA through utilizing the AOA-released extracellular hydroxylamine using hydroxylamine oxidoreductase. Together, this study unravels the overlooked role of priorly unknown but abundant AOA lineages of the newly discovered genus Candidatus Nitrosomaritimum in biological nitrogen transformation and their potential for nitrogen pollution mitigation in coastal environments.

RevDate: 2024-10-05
CmpDate: 2024-08-18

Manesh MJH, Willard DJ, John KM, et al (2024)

Chalcopyrite bioleaching efficacy by extremely thermoacidophilic archaea leverages balanced iron and sulfur biooxidation.

Bioresource technology, 408:131198.

Factors that contribute to optimal chalcopyrite bioleaching by extremely thermoacidophilic archaea were examined for ten species belonging to the order Sulfolobales from the genera Acidianus (A. brierleyi), Metallosphaera (M. hakonensis, M. sedula, M. prunae), Sulfuracidifex (S. metallicus, S. tepriarius), Sulfolobus (S. acidocaldarius), Saccharlobus (S. solfataricus) and Sulfurisphaera (S. ohwakuensis, S. tokodaii). Only A. brierleyi, M. sedula, S. metallicus, S. tepriarius, S. ohwakuensis, and S. tokodai exhibited significant amounts of bioleaching and were investigated further. At 70-75 °C, Chalcopyrite loadings of 10 g/l were leached for 21 days during which pH, redox potential, planktonic cell density, iron concentrations and sulfate levels were monitored, in addition to copper mobilization. S. ohwakuensis proved to be the most prolific bioleacher. This was attributed to balanced iron and sulfur oxidation, thereby reducing by-product (e.g., jarosites) formation and minimizing surface passivation. Comparative genomics suggest markers for bioleaching potential, but the results here point to the need for experimental verification.

RevDate: 2024-08-03

Blombach F, F Werner (2024)

Chromatin and gene regulation in archaea.

Molecular microbiology [Epub ahead of print].

The chromatinisation of DNA by nucleoid-associated proteins (NAPs) in archaea 'formats' the genome structure in profound ways, revealing both striking differences and analogies to eukaryotic chromatin. However, the extent to which archaeal NAPs actively regulate gene expression remains poorly understood. The dawn of quantitative chromatin mapping techniques and first NAP-specific occupancy profiles in different archaea promise a more accurate view. A picture emerges where in diverse archaea with very different NAP repertoires chromatin maintains access to regulatory motifs including the gene promoter independently of transcription activity. Our re-analysis of genome-wide occupancy data of the crenarchaeal NAP Cren7 shows that these chromatin-free regions are flanked by increased Cren7 binding across the transcription start site. While bacterial NAPs often form heterochromatin-like regions across islands with xenogeneic genes that are transcriptionally silenced, there is little evidence for similar structures in archaea and data from Haloferax show that the promoters of xenogeneic genes remain accessible. Local changes in chromatinisation causing wide-ranging effects on transcription restricted to one chromosomal interaction domain (CID) in Saccharolobus islandicus hint at a higher-order level of organisation between chromatin and transcription. The emerging challenge is to integrate results obtained at microscale and macroscale, reconciling molecular structure and function with dynamic genome-wide chromatin landscapes.

RevDate: 2024-08-03
CmpDate: 2024-07-31

Leão P, Little ME, Appler KE, et al (2024)

Asgard archaea defense systems and their roles in the origin of eukaryotic immunity.

Nature communications, 15(1):6386.

Dozens of new antiviral systems have been recently characterized in bacteria. Some of these systems are present in eukaryotes and appear to have originated in prokaryotes, but little is known about these defense mechanisms in archaea. Here, we explore the diversity and distribution of defense systems in archaea and identify 2610 complete systems in Asgardarchaeota, a group of archaea related to eukaryotes. The Asgard defense systems comprise 89 unique systems, including argonaute, NLR, Mokosh, viperin, Lassamu, and CBASS. Asgard viperin and argonaute proteins have structural homology to eukaryotic proteins, and phylogenetic analyses suggest that eukaryotic viperin proteins were derived from Asgard viperins. We show that Asgard viperins display anti-phage activity when heterologously expressed in bacteria. Eukaryotic and bacterial argonaute proteins appear to have originated in Asgardarchaeota, and Asgard argonaute proteins have argonaute-PIWI domains, key components of eukaryotic RNA interference systems. Our results support that Asgardarchaeota played important roles in the origin of antiviral defense systems in eukaryotes.

RevDate: 2024-09-23
CmpDate: 2024-07-31

Valentin-Alvarado LE, Appler KE, De Anda V, et al (2024)

Asgard archaea modulate potential methanogenesis substrates in wetland soil.

Nature communications, 15(1):6384.

The roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of genes for [NiFe]-hydrogenases, pyruvate oxidation and carbon fixation via the Wood-Ljungdahl pathway. Also expressed are genes encoding enzymes for amino acid metabolism, anaerobic aldehyde oxidation, hydrogen peroxide detoxification and carbohydrate breakdown to acetate and formate. Overall, soil-associated Asgard archaea are predicted to include non-methanogenic acetogens, highlighting their potential role in carbon cycling in terrestrial environments.

RevDate: 2024-09-20
CmpDate: 2024-09-20

Hayashi M, Wada Y, Yamamura A, et al (2024)

Evaluation of the enzymatic properties of DNA (cytosine-5)-methyltransferase M.ApeKI from archaea in the presence of metal ions.

Bioscience, biotechnology, and biochemistry, 88(10):1155-1163.

We previously identified M.ApeKI from Aeropyum pernix K1 as a highly thermostable DNA (cytosine-5)-methyltransferase. M.ApeKI uses the type II restriction-modification system (R-M system), among the best-studied R-M systems. Although endonucleases generally utilize Mg (II) as a cofactor, several reports have shown that MTases exhibit different reactions in the presence of metal ions. This study aim was to evaluate the enzymatic properties of DNA (cytosine-5)-methyltransferase M.ApeKI from archaea in the presence of metal ions. We evaluated the influence of metal ions on the catalytic activity and DNA binding of M.ApeKI. The catalytic activity was inhibited by Cu (II), Mg (II), Mn (II), and Zn (II), each at 5 m m. DNA binding was more strongly inhibited by 5 m m Cu (II) and 10 m m Zn (II). To our knowledge, this is the first report showing that DNA binding of type II MTase is inhibited by metal ions.

RevDate: 2024-08-01

Kaneko M, Omori T, Igai K, et al (2024)

Facultative endosymbiosis between cellulolytic protists and methanogenic archaea in the gut of the Formosan termite Coptotermes formosanus.

ISME communications, 4(1):ycae097.

Anaerobic protists frequently harbour methanogenic archaea, which apparently contribute to the hosts' fermentative metabolism by consuming excess H2. However, the ecological properties of endosymbiotic methanogens remain elusive in many cases. Here we investigated the ecology and genome of the endosymbiotic methanogen of the Cononympha protists in the hindgut of the termite Coptotermes formosanus. Microscopic and 16S rRNA amplicon sequencing analyses revealed that a single species, designated here "Candidatus Methanobrevibacter cononymphae", is associated with both Cononympha leidyi and Cononympha koidzumii and that its infection rate in Cononympha cells varied from 0.0% to 99.8% among termite colonies. Fine-scale network analysis indicated that multiple 16S rRNA sequence variants coexisted within a single host cell and that identical variants were present in both Cononympha species and also on the gut wall. Thus, "Ca. Methanobrevibacter cononymphae" is a facultative endosymbiont, transmitted vertically with frequent exchanges with the gut environment. Indeed, transmission electron microscopy showed escape or uptake of methanogens from/by a Cononympha cell. The genome of "Ca. Methanobrevibacter cononymphae" showed features consistent with its facultative lifestyle: i.e., the genome size (2.7 Mbp) comparable to those of free-living relatives; the pseudogenization of the formate dehydrogenase gene fdhA, unnecessary within the non-formate-producing host cell; the dependence on abundant acetate in the host cell as an essential carbon source; and the presence of a catalase gene, required for colonization on the microoxic gut wall. Our study revealed a versatile endosymbiosis between the methanogen and protists, which may be a strategy responding to changing conditions in the termite gut.

RevDate: 2024-08-22
CmpDate: 2024-08-20

Rasmussen AN, CA Francis (2024)

Dynamics and activity of an ammonia-oxidizing archaea bloom in South San Francisco Bay.

The ISME journal, 18(1):.

Transient or recurring blooms of ammonia-oxidizing archaea (AOA) have been reported in several estuarine and coastal environments, including recent observations of AOA blooms in South San Francisco Bay. Here, we measured nitrification rates, quantified AOA abundance, and analyzed both metagenomic and metatranscriptomic data to examine the dynamics and activity of nitrifying microorganisms over the course of an AOA bloom in South San Francisco Bay during the autumn of 2018 and seasonally throughout 2019. Nitrification rates were correlated with AOA abundance in quantitative polymerase chain reaction (PCR) data, and both increased several orders of magnitude between the autumn AOA bloom and spring and summer seasons. From bloom samples, we recovered an extremely abundant, high-quality Candidatus Nitrosomarinus catalina-like AOA metagenome-assembled genome that had high transcript abundance during the bloom and expressed >80% of genes in its genome. We also recovered a putative nitrite-oxidizing bacteria metagenome-assembled genome from within the Nitrospinaceae that was of much lower abundance and had lower transcript abundance than AOA. During the AOA bloom, we observed increased transcript abundance for nitrogen uptake and oxidative stress genes in non-nitrifier metagenome-assembled genomes. This study confirms AOA are not only abundant but also highly active during blooms oxidizing large amounts of ammonia to nitrite-a key intermediate in the microbial nitrogen cycle-and producing reactive compounds that may impact other members of the microbial community.

RevDate: 2024-10-09
CmpDate: 2024-09-09

Lin MG, Yen CY, Shen YY, et al (2024)

Unraveling the structure and function of a novel SegC protein interacting with the SegAB chromosome segregation complex in Archaea.

Nucleic acids research, 52(16):9966-9977.

Genome segregation is a fundamental process that preserves the genetic integrity of all organisms, but the mechanisms driving genome segregation in archaea remain enigmatic. This study delved into the unknown function of SegC (SSO0033), a novel protein thought to be involved in chromosome segregation in archaea. Using fluorescence polarization DNA binding assays, we discovered the ability of SegC to bind DNA without any sequence preference. Furthermore, we determined the crystal structure of SegC at 2.8 Å resolution, revealing the multimeric configuration and forming a large positively charged surface that can bind DNA. SegC has a tertiary structure folding similar to those of the ThDP-binding fold superfamily, but SegC shares only 5-15% sequence identity with those proteins. Unexpectedly, we found that SegC has nucleotide triphosphatase (NTPase) activity. We also determined the SegC-ADP complex structure, identifying the NTP binding pocket and relative SegC residues involved in the interaction. Interestingly, images from negative-stain electron microscopy revealed that SegC forms filamentous structures in the presence of DNA and NTPs. Further, more uniform and larger SegC-filaments are observed, when SegA-ATP was added. Notably, the introduction of SegB disrupts these oligomers, with ATP being essential for regulating filament formation. These findings provide insights into the functional and structural role of SegC in archaeal chromosome segregation.

RevDate: 2024-07-30

Sakoula D, Schatteman A, Blom P, et al (2024)

Activity-based labelling of ammonia- and alkane-oxidizing microorganisms including ammonia-oxidizing archaea.

ISME communications, 4(1):ycae092.

Recently, an activity-based labelling protocol for the in vivo detection of ammonia- and alkane-oxidizing bacteria became available. This functional tagging technique enabled targeted studies of these environmentally widespread functional groups, but it failed to capture ammonia-oxidizing archaea (AOA). Since their first discovery, AOA have emerged as key players within the biogeochemical nitrogen cycle, but our knowledge regarding their distribution and abundance in natural and engineered ecosystems is mainly derived from PCR-based and metagenomic studies. Furthermore, the archaeal ammonia monooxygenase is distinctly different from its bacterial counterparts and remains poorly understood. Here, we report on the development of an activity-based labelling protocol for the fluorescent detection of all ammonia- and alkane-oxidizing prokaryotes, including AOA. In this protocol, 1,5-hexadiyne is used as inhibitor of ammonia and alkane oxidation and as bifunctional enzyme probe for the fluorescent labelling of cells via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction. Besides efficient activity-based labelling of ammonia- and alkane-oxidizing microorganisms, this method can also be employed in combination with deconvolution microscopy for determining the subcellular localization of their ammonia- and alkane-oxidizing enzyme systems. Labelling of these enzymes in diverse ammonia- and alkane-oxidizing microorganisms allowed their visualization on the cytoplasmic membranes, the intracytoplasmic membrane stacks of ammonia- and methane-oxidizing bacteria, and, fascinatingly, on vesicle-like structures in one AOA species. The development of this novel activity-based labelling method for ammonia- and alkane-oxidizers will be a valuable addition to the expanding molecular toolbox available for research of nitrifying and alkane-oxidizing microorganisms.

RevDate: 2024-10-15
CmpDate: 2024-07-27

Harada M, Endo A, Wada S, et al (2024)

Ubiquity of methanogenic archaea in the trunk of coniferous and broadleaved tree species in a mountain forest.

Antonie van Leeuwenhoek, 117(1):107.

Wetwood of living trees is a habitat of methanogenic archaea, but the ubiquity of methanogenic archaea in the trunk of various trees has not been revealed. The present study analysed methanogenic archaeal communities inside coniferous and broadleaved trees in a cold temperate mountain forest by culture-dependent or independent techniques. Heartwood and sapwood segments were obtained from the trunk of seven tree species, Cryptomeria japonica, Quercus crispula, Fraxinus mandshurica, Acer pictum, Aesculus turbinata, Magnolia obovata, and Populus tremula. Amplicon sequencing analysis of 16S rRNA genes showed that Methanobacteriaceae predominated the archaeal communities and Methanomassiliicoccaceae also inhabited some trees. Real-time PCR analysis detected methanogenic archaeal mcrA genes from all the tree species, with a maximum of 10[7] copies g[-1] dry wood. Digital PCR analysis also detected mcrA genes derived from Methanobacterium spp. and Methanobrevibacter spp. from several samples, with a maximum of 10[5] and 10[4] copies g[-1] dry wood. The enumeration by the most probable number method demonstrated the inhabitation of viable methanogenic archaea inside the trees; 10[6] cells g[-1] dry wood was enumerated from a heartwood sample of C. japonica. Methanogenic archaea related to Methanobacterium beijingense were cultivated from a heartwood sample of Q. crispula and F. mandshurica. The present study demonstrated that the inside of various trees is a common habitat for methanogenic archaeal communities and a potential source of methane in forest ecosystems.

RevDate: 2024-08-16
CmpDate: 2024-08-16

Yan A, Pan Z, Liang Y, et al (2024)

Archaea communities in aerobic granular sludge: A mini-review.

The Science of the total environment, 949:174974.

Recent research on the archaea community in aerobic granular sludge (AGS) has attracted considerable attention. This review summarizes the existing literature on composition, distribution, and related functions of archaea community in AGS. Furthermore, the effects of granulation, substrate, temperature, process types, and aeration models on the archaea community were discussed. Significantly, the layered structure of AGS facilitates the enrichment of archaea, including methanogenic archaea and ammonia-oxidizing archaea. Archaea engage in metabolic interactions with other microorganisms, enhancing the ecological functionalities of AGS and its tolerance to adverse conditions. Future investigations should focus on minimizing greenhouse gas emissions and exploring the roles and interactive mechanisms of archaea and other microorganisms within AGS.

RevDate: 2024-07-25

Tenorio-Salgado S, Villalpando-Aguilar JL, Hernandez-Guerrero R, et al (2024)

Exploring the enzymatic repertoires of Bacteria and Archaea and their associations with metabolic maps.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Epub ahead of print].

The evolution, survival, and adaptation of microbes are consequences of gene duplication, acquisition, and divergence in response to environmental challenges. In this context, enzymes play a central role in the evolution of organisms, because they are fundamental in cell metabolism. Here, we analyzed the enzymatic repertoire in 6,467 microbial genomes, including their abundances, and their associations with metabolic maps. We found that the enzymes follow a power-law distribution, in relation to the genome sizes. Therefore, we evaluated the total proportion enzymatic classes in relation to the genomes, identifying a descending-order proportion: transferases (EC:2.-), hydrolases (EC:3.-), oxidoreductases (EC:1.-), ligases (EC:6.-), lyases (EC:4.-), isomerases (EC:5.-), and translocases (EC:7-.). In addition, we identified a preferential use of enzymatic classes in metabolism pathways for xenobiotics, cofactors and vitamins, carbohydrates, amino acids, glycans, and energy. Therefore, this analysis provides clues about the functional constraints associated with the enzymatic repertoire of functions in Bacteria and Archaea.

RevDate: 2024-10-03
CmpDate: 2024-09-16

Gemler BT, Warner BR, Bundschuh R, et al (2024)

Identification of leader-trailer helices of precursor ribosomal RNA in all phyla of bacteria and archaea.

RNA (New York, N.Y.), 30(10):1264-1276.

Ribosomal RNAs are transcribed as part of larger precursor molecules. In Escherichia coli, complementary RNA segments flank each rRNA and form long leader-trailer (LT) helices, which are crucial for subunit biogenesis in the cell. A previous study of 15 representative species suggested that most but not all prokaryotes contain LT helices. Here, we use a combination of in silico folding and covariation methods to identify and characterize LT helices in 4464 bacterial and 260 archaeal organisms. Our results suggest that LT helices are present in all phyla, including Deinococcota, which had previously been suspected to lack LT helices. In very few organisms, our pipeline failed to detect LT helices for both 16S and 23S rRNA. However, a closer case-by-case look revealed that LT helices are indeed present but escaped initial detection. Over 3600 secondary structure models, many well supported by nucleotide covariation, were generated. These structures show a high degree of diversity. Yet, all exhibit extensive base-pairing between the leader and trailer strands, in line with a common and essential function.

RevDate: 2024-08-02
CmpDate: 2024-07-23

Duller S, C Moissl-Eichinger (2024)

Archaea in the Human Microbiome and Potential Effects on Human Infectious Disease.

Emerging infectious diseases, 30(8):1505-1513.

Archaea represent a separate domain of life, next to bacteria and eukarya. As components of the human microbiome, archaea have been associated with various diseases, including periodontitis, endodontic infections, small intestinal bacterial overgrowth, and urogenital tract infections. Archaea are generally considered nonpathogenic; the reasons are speculative because of limited knowledge and gene annotation challenges. Nevertheless, archaeal syntrophic principles that shape global microbial networks aid both archaea and potentially pathogenic bacteria. Evaluating archaea interactions remains challenging, requiring clinical studies on inflammatory potential and the effects of archaeal metabolism. Establishing a culture collection is crucial for investigating archaea functions within the human microbiome, which could improve health outcomes in infectious diseases. We summarize potential reasons for archaeal nonpathogenicity, assess the association with infectious diseases in humans, and discuss the necessary experimental steps to enable mechanistic studies involving archaea.

RevDate: 2024-08-23
CmpDate: 2024-08-21

Echeveste Medrano MJ, Leu AO, Pabst M, et al (2024)

Osmoregulation in freshwater anaerobic methane-oxidizing archaea under salt stress.

The ISME journal, 18(1):.

Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-β-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-β-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.

RevDate: 2024-08-12
CmpDate: 2024-07-05

Imachi H, Nobu MK, Kato S, et al (2024)

Promethearchaeum syntrophicum gen. nov., sp. nov., an anaerobic, obligately syntrophic archaeon, the first isolate of the lineage 'Asgard' archaea, and proposal of the new archaeal phylum Promethearchaeota phyl. nov. and kingdom Promethearchaeati regn. nov.

International journal of systematic and evolutionary microbiology, 74(7):.

An anaerobic, mesophilic, syntrophic, archaeon strain MK-D1[T], was isolated as a pure co-culture with Methanogenium sp. strain MK-MG from deep-sea methane seep sediment. This organism is, to our knowledge, the first cultured representative of 'Asgard' archaea, an archaeal group closely related to eukaryotes. Here, we describe the detailed physiology and phylogeny of MK-D1[T] and propose Promethearchaeum syntrophicum gen. nov., sp. nov. to accommodate this strain. Cells were non-motile, small cocci, approximately 300-750 nm in diameter and produced membrane vesicles, chains of blebs and membrane-based protrusions. MK-D1[T] grew at 4-30 °C with optimum growth at 20 °C. The strain grew chemoorganotrophically with amino acids, peptides and yeast extract with obligate dependence on syntrophy with H2-/formate-utilizing organisms. MK-D1[T] showed the fastest growth and highest maximum cell yield when grown with yeast extract as the substrate: approximately 3 months to full growth, reaching up to 6.7×10[6] 16S rRNA gene copies ml[-1]. MK-D1[T] had a circular 4.32 Mb chromosome with a DNA G+C content of 31.1 mol%. The results of phylogenetic analyses of the 16S rRNA gene and conserved marker proteins indicated that the strain is affiliated with 'Asgard' archaea and more specifically DHVC1/DSAG/MBG-B and 'Lokiarchaeota'/'Lokiarchaeia'. On the basis of the results of 16S rRNA gene sequence analysis, the most closely related isolated relatives were Infirmifilum lucidum 3507LT[T] (76.09 %) and Methanothermobacter tenebrarum RMAS[T] (77.45 %) and the closest relative in enrichment culture was Candidatus 'Lokiarchaeum ossiferum' (95.39 %). The type strain of the type species is MK-D1[T] (JCM 39240[T] and JAMSTEC no. 115508). We propose the associated family, order, class, phylum, and kingdom as Promethearchaeaceae fam. nov., Promethearchaeales ord. nov., Promethearchaeia class. nov., Promethearchaeota phyl. nov., and Promethearchaeati regn. nov., respectively. These are in accordance with ICNP Rules 8 and 22 for nomenclature, Rule 30(3)(b) for validation and maintenance of the type strain, and Rule 31a for description as a member of an unambiguous syntrophic association.

RevDate: 2024-08-16
CmpDate: 2024-08-14

Willard DJ, H Manesh MJ, Bing RG, et al (2024)

Phenotype-driven assessment of the ancestral trajectory of sulfur biooxidation in the thermoacidophilic archaea Sulfolobaceae.

mBio, 15(8):e0103324.

Certain members of the family Sulfolobaceae represent the only archaea known to oxidize elemental sulfur, and their evolutionary history provides a framework to understand the development of chemolithotrophic growth by sulfur oxidation. Here, we evaluate the sulfur oxidation phenotype of Sulfolobaceae species and leverage comparative genomic and transcriptomic analysis to identify the key genes linked to sulfur oxidation. Metabolic engineering of the obligate heterotroph Sulfolobus acidocaldarius revealed that the known cytoplasmic components of sulfur oxidation alone are not sufficient to drive prolific sulfur oxidation. Imaging analysis showed that Sulfolobaceae species maintain proximity to the sulfur surface but do not necessarily contact the substrate directly. This indicates that a soluble form of sulfur must be transported to initiate cytoplasmic sulfur oxidation. Conservation patterns and transcriptomic response implicate an extracellular tetrathionate hydrolase and putative thiosulfate transporter in a newly proposed mechanism of sulfur acquisition in the Sulfolobaceae.IMPORTANCESulfur is one of the most abundant elements on earth (2.9% by mass), so it makes sense that the earliest biology found a way to use sulfur to create and sustain life. However, beyond evolutionary significance, sulfur and the molecules it comprises have important technological significance, not only in chemicals such as sulfuric acid and in pyritic ores containing critical metals but also as a waste product from oil and gas production. The thermoacidophilic Sulfolobaceae are unique among the archaea as sulfur oxidizers. The trajectory for how sulfur biooxidation arose and evolved can be traced using experimental and bioinformatic analyses of the available genomic data set. Such analysis can also inform the process by which extracellular sulfur is acquired and transported by thermoacidophilic archaea, a phenomenon that is critical to these microorganisms but has yet to be elucidated.

RevDate: 2024-07-04
CmpDate: 2024-07-01

Martínez-Espinosa RM (2024)

Halophilic archaea as tools for bioremediation technologies.

Applied microbiology and biotechnology, 108(1):401.

Haloarchaea are extremophilic microorganisms belonging to the Archaea domain that require high salt concentrations to be alive, thus inhabiting ecosystems like salty ponds, salty marshes, or extremely salty lagoons. They are more abundantly and widely distributed worldwide than initially expected. Most of them are grouped into two families: Halobacteriaceae and Haloferacaceae. The extreme conditions under which haloarchaea survive contribute to their metabolic and molecular adaptations, thus making them good candidates for the design of bioremediation strategies to treat brines, salty water, and saline soils contaminated with toxic compounds such as nitrate, nitrite, oxychlorates such as perchlorate and chlorate, heavy metals, hydrocarbons, and aromatic compounds. New advances in understanding haloarchaea physiology, metabolism, biochemistry, and molecular biology suggest that biochemical pathways related to nitrogen and carbon, metals, hydrocarbons, or aromatic compounds can be used for bioremediation proposals. This review analyses the novelty of the most recent results showing the capability of some haloarchaeal species to assimilate, modify, or degrade toxic compounds for most living beings. Several examples of the role of these microorganisms in the treatment of polluted brine or salty soils are also discussed in connection with circular economy-based processes. KEY POINTS: • Haloarchaea are extremophilic microorganisms showing genuine metabolism • Haloarchaea can metabolise compounds that are highly toxic to most living beings • These metabolic capabilities are useful for designing soil and water bioremediation strategies.

RevDate: 2024-09-23
CmpDate: 2024-06-26

Schoelmerich MC, Ly L, West-Roberts J, et al (2024)

Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires.

Nature communications, 15(1):5414.

Borgs are huge extrachromosomal elements (ECE) of anaerobic methane-consuming "Candidatus Methanoperedens" archaea. Here, we used nanopore sequencing to validate published complete genomes curated from short reads and to reconstruct new genomes. 13 complete and four near-complete linear genomes share 40 genes that define a largely syntenous genome backbone. We use these conserved genes to identify new Borgs from peatland soil and to delineate Borg phylogeny, revealing two major clades. Remarkably, Borg genes encoding nanowire-like electron-transferring cytochromes and cell surface proteins are more highly expressed than those of host Methanoperedens, indicating that Borgs augment the Methanoperedens activity in situ. We reconstructed the first complete 4.00 Mbp genome for a Methanoperedens that is inferred to be a Borg host and predicted its methylation motifs, which differ from pervasive TC and CC methylation motifs of the Borgs. Thus, methylation may enable Methanoperedens to distinguish their genomes from those of Borgs. Very high Borg to Methanoperedens ratios and structural predictions suggest that Borgs may be capable of encapsulation. The findings clearly define Borgs as a distinct class of ECE with shared genomic signatures, establish their diversification from a common ancestor with genetic inheritance, and raise the possibility of periodic existence outside of host cells.

RevDate: 2024-06-26
CmpDate: 2024-06-26

Lawruk-Desjardins C, Storck V, Ponton DE, et al (2024)

A genome catalogue of mercury-methylating bacteria and archaea from sediments of a boreal river facing human disturbances.

Environmental microbiology, 26(6):e16669.

Methyl mercury, a toxic compound, is produced by anaerobic microbes and magnifies in aquatic food webs, affecting the health of animals and humans. The exploration of mercury methylators based on genomes is still limited, especially in the context of river ecosystems. To address this knowledge gap, we developed a genome catalogue of potential mercury-methylating microorganisms. This was based on the presence of hgcAB from the sediments of a river affected by two run-of-river hydroelectric dams, logging activities and a wildfire. Through the use of genome-resolved metagenomics, we discovered a unique and diverse group of mercury methylators. These were dominated by members of the metabolically versatile Bacteroidota and were particularly rich in microbes that ferment butyrate. By comparing the diversity and abundance of mercury methylators between sites subjected to different disturbances, we found that ongoing disturbances, such as the input of organic matter related to logging activities, were particularly conducive to the establishment of a mercury-methylating niche. Finally, to gain a deeper understanding of the environmental factors that shape the diversity of mercury methylators, we compared the mercury-methylating genome catalogue with the broader microbial community. The results suggest that mercury methylators respond to environmental conditions in a manner similar to the overall microbial community. Therefore, it is crucial to interpret the diversity and abundance of mercury methylators within their specific ecological context.

RevDate: 2024-09-03
CmpDate: 2024-09-03

Shi LD, West-Roberts J, Schoelmerich MC, et al (2024)

Methanotrophic Methanoperedens archaea host diverse and interacting extrachromosomal elements.

Nature microbiology, 9(9):2422-2433.

Methane emissions are mitigated by anaerobic methane-oxidizing archaea, including Methanoperedens. Some Methanoperedens host huge extrachromosomal genetic elements (ECEs) called Borgs that may modulate their activity, yet the broader diversity of Methanoperedens ECEs is understudied. Here we report small enigmatic linear ECEs, circular viruses and unclassified ECEs that are predicted to replicate within Methanoperedens. Linear ECEs have inverted terminal repeats, tandem repeats and coding patterns that are strongly reminiscent of Borgs, but they are only 52-145 kb in length. As they share proteins with Borgs and Methanoperedens, we refer to them as mini-Borgs. Mini-Borgs are genetically diverse and can be assigned to at least five family-level groups. We identify eight families of Methanoperedens viruses, some of which encode multi-haem cytochromes, and circular ECEs encoding transposon-associated TnpB genes with proximal population-heterogeneous CRISPR arrays. These ECEs exchange genetic information with each other and with Methanoperedens, probably impacting their archaeal host activity and evolution.

RevDate: 2024-06-28
CmpDate: 2024-06-25

Dueholm MKD, Andersen KS, Korntved AC, et al (2024)

MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters.

Nature communications, 15(1):5361.

Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84-99% and 18-61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.

RevDate: 2024-07-01
CmpDate: 2024-06-20

Murali R, Pace LA, Sanford RA, et al (2024)

Diversity and evolution of nitric oxide reduction in bacteria and archaea.

Proceedings of the National Academy of Sciences of the United States of America, 121(26):e2316422121.

Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.

RevDate: 2024-06-22
CmpDate: 2024-06-19

Li Y, Yu T, Feng X, et al (2024)

Biosynthesis of GMGT lipids by a radical SAM enzyme associated with anaerobic archaea and oxygen-deficient environments.

Nature communications, 15(1):5256.

Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs). The enzyme, which we name GMGT synthase (Gms), catalyzes the formation of a C(sp[3])-C(sp[3]) linkage between the two isoprenoid chains of glycerol dialkyl glycerol tetraethers (GDGTs). This conclusion is supported by heterologous expression of gene gms from a GMGT-producing species in a methanogen, as well as demonstration of in vitro activity using purified Gms enzyme. Additionally, we show that genes encoding putative Gms homologs are present in obligate anaerobic archaea and in metagenomes obtained from oxygen-deficient environments, and appear to be absent in metagenomes from oxic settings.

RevDate: 2024-07-21
CmpDate: 2024-07-06

Huang B, Xiao Y, Y Zhang (2024)

Asgard archaeal selenoproteome reveals a roadmap for the archaea-to-eukaryote transition of selenocysteine incorporation machinery.

The ISME journal, 18(1):.

Selenocysteine (Sec) is encoded by the UGA codon that normally functions as a stop signal and is specifically incorporated into selenoproteins via a unique recoding mechanism. The translational recoding of UGA as Sec is directed by an unusual RNA structure, the SECIS element. Although archaea and eukaryotes adopt similar Sec encoding machinery, the SECIS elements have no similarities to each other with regard to sequence and structure. We analyzed >400 Asgard archaeal genomes to examine the occurrence of both Sec encoding system and selenoproteins in this archaeal superphylum, the closest prokaryotic relatives of eukaryotes. A comprehensive map of Sec utilization trait has been generated, providing the most detailed understanding of the use of this nonstandard amino acid in Asgard archaea so far. By characterizing the selenoproteomes of all organisms, several selenoprotein-rich phyla and species were identified. Most Asgard archaeal selenoprotein genes possess eukaryotic SECIS-like structures with varying degrees of diversity. Moreover, euryarchaeal SECIS elements might originate from Asgard archaeal SECIS elements via lateral gene transfer, indicating a complex and dynamic scenario of the evolution of SECIS element within archaea. Finally, a roadmap for the transition of eukaryotic SECIS elements from archaea was proposed, and selenophosphate synthetase may serve as a potential intermediate for the generation of ancestral eukaryotic SECIS element. Our results offer new insights into a deeper understanding of the evolution of Sec insertion machinery.

RevDate: 2024-07-16
CmpDate: 2024-07-16

Du Toit A (2024)

Gassy archaea.

Nature reviews. Microbiology, 22(8):456.

RevDate: 2024-07-15
CmpDate: 2024-06-18

Cui L, Hu Y, Li XX, et al (2024)

Halobacterium yunchengense sp. nov., Natronomonas amylolytica sp. nov., Halorientalis halophila sp. nov., Halobellus salinisoli sp. nov., halophilic archaea isolated from a saline lake and inland saline soil.

Extremophiles : life under extreme conditions, 28(2):28.

Four halophilic archaeal strains YCN1[T], YCN58[T], LT38[T], and LT62[T] were isolated from Yuncheng Salt Lake (Shanxi, China) and Tarim Basin (Xinjiang, China), respectively. Phylogenetic and phylogenomic analyses showed that these four strains tightly cluster with related species of Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively. The AAI, ANI, and dDDH values between these four strains and their related species of respective genera were lower than the proposed threshold values for species delineation. Strains YCN1[T], YCN58[T], LT38[T], and LT62[T] could be differentiated from the current species of Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively, based on the comparison of diverse phenotypic characteristics. The polar lipid profiles of these four strains were closely similar to those of respective relatives within the genera Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively. The phenotypic, phylogenetic, and genome-based analyses indicated that strains YCN1[T], YCN58[T], LT38[T], and LT62[T] represent respective novel species within the genera Halobacterium, Natronomonas, Halorentalis, and Halobellus, for which the names Halobacterium yunchengense sp. nov., Natronomonas amylolytica sp. nov., Halorientalis halophila sp. nov., and Halobellus salinisoli sp. nov. are proposed, respectively.

RevDate: 2024-06-19

Rekadwad BN, Gonzalez JM, WJ Li (2024)

Editorial: Last universal common ancestor and origin of life: what uncultivated Bacteria, Archaea, and extremophiles can tell us.

Frontiers in microbiology, 15:1412625.

RevDate: 2024-07-23
CmpDate: 2024-07-23

Lv PL, Jia C, Wei CH, et al (2024)

Biochar modulates intracellular electron transfer for nitrate reduction in denitrifying anaerobic methane oxidizing archaea.

Bioresource technology, 406:130998.

Denitrifying anaerobic methane oxidizing (DAMO) archaea plays a significant role in simultaneously nitrogen removal and methane mitigation, yet its limited metabolic activity hinders engineering applications. This study employed biochar to explore its potential for enhancing the metabolic activity and nitrate reduction capacity of DAMO microorganisms. Sawdust biochar (7 g/L) was found to increase the nitrate reduction rate by 2.85 times, although it did not affect the nitrite reduction rate individually. Scanning electron microscopy (SEM) and fluorescence excitation-emission matrix (EEM) analyses revealed that biochar promoted microbial aggregation, and stimulated the secretion of extracellular polymeric substances (EPS). Moreover, biochar bolstered the redox capacity and conductivity of the biofilm, notably enhancing the activity of the electron transfer system by 1.65 times. Key genes involved in intracellular electron transport (Hdr, MHC, Rnf) and membrane transport proteins (BBP, ABC, NDH) of archaea were significantly up-regulated. These findings suggest that biochar regulates electrons generated by reverse methanogenesis to the membrane for nitrate reduction.

RevDate: 2024-10-15

Hu Y, Ma X, Tan S, et al (2024)

Correction: Genome-based classification of genera Halosegnis and Salella, and description of four novel halophilic archaea isolated from a tidal flat.

Antonie van Leeuwenhoek, 117(1):90 pii:10.1007/s10482-024-01983-9.

RevDate: 2024-07-03
CmpDate: 2024-06-21

Greening C, Cabotaje PR, Valentin Alvarado LE, et al (2024)

Minimal and hybrid hydrogenases are active from archaea.

Cell, 187(13):3357-3372.e19.

Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.

RevDate: 2024-08-08
CmpDate: 2024-08-08

Kong L, Wang Y, Cui D, et al (2024)

Application of single-cell Raman-deuterium isotope probing to reveal the resistance of marine ammonia-oxidizing archaea SCM1 against common antibiotics.

Chemosphere, 362:142500.

Antimicrobial resistance (AMR) in oceans poses a significant threat to human health through the seafood supply chain. Ammonia-oxidizing archaea (AOA) are important marine microorganisms and play a key role in the biogeochemical nitrogen cycle around the world. However, the AMR of marine AOA to aquicultural antibiotics is poorly explored. Here, Raman-deuterium isotope probing (Raman-DIP), a single-cell tool, was developed to reveal the AMR of a typical marine species of AOA, Nitrosopumilus maritimus (designated SCM1), against six antibiotics, including erythromycin, tetracycline, novobiocin, neomycin, bacitracin, and vancomycin. The D2O concentration (30% v/v) and culture period (9 days) were optimized for the precise detection of metabolic activity in SCM1 cells through Raman-DIP. The relative metabolic activity of SCM1 upon exposure to antibiotics was semi-quantitatively calculated based on single-cell Raman spectra. SCM1 exhibited high resistance to erythromycin, tetracycline, novobiocin, neomycin, and vancomycin, with minimum inhibitory concentration (MIC) values between 100 and 400 mg/L, while SCM1 is very sensitive to bacitracin (MIC: 0.8 mg/L). Notably, SCM1 cells were completely inactive under the metabolic activity minimum inhibitory concentration conditions (MA-MIC: 1.6-800 mg/L) for the six antibiotics. Further genomic analysis revealed the antibiotic resistance genes (ARGs) of SCM1, including 14 types categorized into 33 subtypes. This work increases our knowledge of the AMR of marine AOA by linking the resistant phenome to the genome, contributing to the risk assessment of AMR in the underexplored ocean environment. As antibiotic resistance in marine microorganisms is significantly affected by the concentration of antibiotics in coastal environments, we encourage more studies concentrating on both the phenotypic and genotypic antibiotic resistance of marine archaea. This may facilitate a comprehensive evaluation of the capacity of marine microorganisms to spread AMR and the implementation of suitable control measures to protect environmental safety and human health.

RevDate: 2024-09-24
CmpDate: 2024-07-24

Ma Y, Sun Z, Yang H, et al (2024)

The biosynthesis mechanism of bacterioruberin in halophilic archaea revealed by genome and transcriptome analysis.

Applied and environmental microbiology, 90(7):e0054024.

UNLABELLED: Halophilic archaea are promising microbial cell factories for bacterioruberin (BR) production. BR is a natural product with multi-bioactivities, allowing potential application in many fields. In the previous work, a haloarchaeon Halorubrum sp. HRM-150 with a high proportion of BR (about 85%) was isolated, but the low yield impeded its large-scale production. This work figured out BR synthesis characteristics and mechanisms, and proposed strategies for yield improvement. First, glucose (10 g/L) and tryptone (15 g/L) were tested to be better sources for BR production. Besides, the combination of glucose and starch achieved the diauxic growth, and the biomass and BR productivity increased by 85% and 54% than using glucose. Additionally, this work first proposed the BR synthesis pattern, which differs from that of other carotenoids. As a structural component of cell membranes, the BR synthesis is highly coupled with growth, which was most active in the logarithm phase. Meanwhile, the osmotic down shock at the logarithm phase could increase the BR productivity without sacrificing the biomass. Moreover, the de-novo pathway for BR synthesis with a key gene of lyeJ, and its competitive pathways (notably tetraether lipids and retinal) were revealed through genome, transcriptome, and osmotic down shock. Therefore, the BR yield is expected to be improved through mutant construction, such as the overexpression of key gene lyeJ and the knockout of competitive genes, which need to be further explored. The findings will contribute to a better understanding of the metabolism mechanism in haloarchaea and the development of haloarchaea as microbial cell factories.

IMPORTANCE: Recent studies have revealed that halophilic microorganism is a promising microbial factory for the next-generation industrialization. Among them, halophilic archaea are advantageous as microbial factories due to their low contamination risk and low freshwater consumption. The halophilic archaea usually accumulate long chain C50 carotenoids, which are barely found in other organisms. Bacterioruberin (BR), the major C50 carotenoid, has multi-bioactivities, allowing potential application in food, cosmetic, and biomedical industries. However, the low yield impedes its large-scale application. This work figured out the BR synthesis characteristics and mechanism, and proposed several strategies for BR yield improvement, encouraging halophilic archaea to function as microbial factories for BR production. Meanwhile, the archaea have special evolutionary status and unique characteristics in taxonomy, the revelation of BR biosynthesis mechanism is beneficial for a better understanding of archaea.

RevDate: 2024-08-09
CmpDate: 2024-06-03

Orgler E, Baumgartner M, Duller S, et al (2024)

Archaea influence composition of endoscopically visible ileocolonic biofilms.

Gut microbes, 16(1):2359500.

The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.

RevDate: 2024-07-08
CmpDate: 2024-07-08

Rahn HP, Sun J, Li Z, et al (2024)

Isoprenoid CARTs: In Vitro and In Vivo mRNA Delivery by Charge-Altering Releasable Transporters Functionalized with Archaea-inspired Branched Lipids.

Biomacromolecules, 25(7):4305-4316.

The delivery of oligonucleotides across biological barriers is a challenge of unsurpassed significance at the interface of materials science and medicine, with emerging clinical utility in prophylactic and therapeutic vaccinations, immunotherapies, genome editing, and cell rejuvenation. Here, we address the role of readily available branched lipids in the design, synthesis, and evaluation of isoprenoid charge-altering releasable transporters (CARTs), a pH-responsive oligomeric nanoparticle delivery system for RNA. Systematic variation of the lipid block reveals an emergent relationship between the lipid block and the neutralization kinetics of the polycationic block. Unexpectedly, iA21A11, a CART with the smallest lipid side chain, isoamyl-, was identified as the lead isoprenoid CART for the in vitro transfection of immortalized lymphoblastic cell lines. When administered intramuscularly in a murine model, iA21A11-mRNA complexes induce higher protein expression levels than our previous lead CART, ONA. Isoprenoid CARTs represent a new delivery platform for RNA vaccines and other polyanion-based therapeutics.

RevDate: 2024-06-25
CmpDate: 2024-06-06

von Kügelgen A, Cassidy CK, van Dorst S, et al (2024)

Membraneless channels sieve cations in ammonia-oxidizing marine archaea.

Nature, 630(8015):230-236.

Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle[1,2]. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.

RevDate: 2024-06-28
CmpDate: 2024-05-28

Cheng M, Li XX, Hou J, et al (2024)

Halomarina litorea sp. nov., Halomarina pelagica sp. nov., Halomarina halobia sp. nov., and Halomarina ordinaria sp. nov., Halophilic Archaea Isolated from Coastal and Inland Saline Soil.

Current microbiology, 81(7):194.

Four halophilic archaeal strains, BCD28[T], BND7[T], PSR21[T], and PSRA2[T], were isolated from coastal and inland saline soil, respectively. The 16S rRNA and rpoB' gene sequence similarities among these four strains and current species of Halomarina were 95.9-96.6% and 86.9-90.3%, respectively. Phylogenetic and phylogenomic analyses revealed that these four strains tightly cluster with the current species of the genus Halomarina. The AAI, ANI, and dDDH values among these four strains and current species of Halomarina were 65.3-68.4%, 75.8-77.7%, and 20.3-22.0%, respectively, clearly below the threshold values for species demarcation. Strains BCD28[T], BND7[T], PSR21[T], and PSRA2[T] could be differentiated from the current species of Halomarina based on the comparison of diverse phenotypic characteristics. The major polar lipids of these four strains were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), and four to five glycolipids. Phosphatidylglycerol sulfate (PGS) was only detected in strain BND7[T]. The phenotypic, phylogenetic, and genome-based analyses suggested that strains BCD28[T] (= CGMCC 1.18776[T] = JCM 34908[T]), BND7[T] (= CGMCC 1.18778[T] = JCM 34910[T]), PSR21[T] (= CGMCC 1.17027[T] = JCM 34147[T]), and PSRA2[T] (= CGMCC 1.17214[T] = JCM 34148[T]) represent four novel species of the genus Halomarina, for which the names Halomarina litorea sp. nov., Halomarina pelagica sp. nov., Halomarina halobia sp. nov., and Halomarina ordinaria sp. nov. are proposed.

RevDate: 2024-05-27

Anonymous (2024)

Expression of Concern: Haloferax massiliensis sp. nov., the first human-associated halophilic archaea.

New microbes and new infections, 59:101323.

RevDate: 2024-05-21

Basu S, L Kurgan (2024)

Taxonomy-specific assessment of intrinsic disorder predictions at residue and region levels in higher eukaryotes, protists, archaea, bacteria and viruses.

Computational and structural biotechnology journal, 23:1968-1977.

Intrinsic disorder predictors were evaluated in several studies including the two large CAID experiments. However, these studies are biased towards eukaryotic proteins and focus primarily on the residue-level predictions. We provide first-of-its-kind assessment that comprehensively covers the taxonomy and evaluates predictions at the residue and disordered region levels. We curate a benchmark dataset that uniformly covers eukaryotic, archaeal, bacterial, and viral proteins. We find that predictive performance differs substantially across taxonomy, where viruses are predicted most accurately, followed by protists and higher eukaryotes, while bacterial and archaeal proteins suffer lower levels of accuracy. These trends are consistent across predictors. We also find that current tools, except for flDPnn, struggle with reproducing native distributions of the numbers and sizes of the disordered regions. Moreover, analysis of two variants of disorder predictions derived from the AlphaFold2 predicted structures reveals that they produce accurate residue-level propensities for archaea, bacteria and protists. However, they underperform for higher eukaryotes and generally struggle to accurately identify disordered regions. Our results motivate development of new predictors that target bacteria and archaea and which produce accurate results at both residue and region levels. We also stress the need to include the region-level assessments in future assessments.

RevDate: 2024-09-04
CmpDate: 2024-06-19

Zhang Y, Xiang Y, Yang Z, et al (2024)

Co-occurrence of dominant bacteria and methanogenic archaea and their metabolic traits in a thermophilic anaerobic digester.

Environmental science and pollution research international, 31(25):36716-36727.

Thermophilic anaerobic digestion (TAD) represents a promising biotechnology for both methane energy production and waste stream treatment. However, numerous critical microorganisms and their metabolic characteristics involved in this process remain unidentified due to the limitations of culturable isolates. This study investigated the phylogenetic composition and potential metabolic traits of bacteria and methanogenic archaea in a TAD system using culture-independent metagenomics. Predominant microorganisms identified in the stable phase of TAD included hydrogenotrophic methanogens (Methanothermobacter and Methanosarcina) and hydrogen-producing bacteria (Coprothermobacter, Acetomicrobium, and Defluviitoga). Nine major metagenome-assembled genomes (MAGs) associated with the dominant genera were selected to infer their metabolic potentials. Genes related to thermal resistance were widely found in all nine major MAGs, such as the molecular chaperone genes, Clp protease gene, and RNA polymerase genes, which may contribute to their predominance under thermophilic condition. Thermophilic temperatures may increase the hydrogen partial pressure of Coprothermobacter, Acetomicrobium, and Defluviitoga, subsequently altering the primary methanogenesis pathway from acetoclastic pathway to hydrogenotrophic pathway in the TAD. Consequently, genes encoding the hydrogenotrophic methanogenesis pathway were the most abundant in the recovered archaeal MAGs. The potential interaction between hydrogen-producing bacteria and hydrogenotrophic methanogens may play critical roles in TAD processes.

RevDate: 2024-05-29

Liu X, Su D, Huan H, et al (2024)

Corrigendum to "Rice-fish coculture without phosphorus addition improves paddy soil nitrogen availability by shaping ammonia-oxidizing archaea and bacteria in subtropical regions of South China" [Sci. Total Environ. 927 (2024): 171642].

The Science of the total environment, 933:172946.

RevDate: 2024-06-09
CmpDate: 2024-06-09

Musat F, Kjeldsen KU, Rotaru AE, et al (2024)

Archaea oxidizing alkanes through alkyl-coenzyme M reductases.

Current opinion in microbiology, 79:102486.

This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX-SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.

RevDate: 2024-07-14
CmpDate: 2024-06-18

Padalko A, Nair G, FL Sousa (2024)

Fusion/fission protein family identification in Archaea.

mSystems, 9(6):e0094823.

The majority of newly discovered archaeal lineages remain without a cultivated representative, but scarce experimental data from the cultivated organisms show that they harbor distinct functional repertoires. To unveil the ecological as well as evolutionary impact of Archaea from metagenomics, new computational methods need to be developed, followed by in-depth analysis. Among them is the genome-wide protein fusion screening performed here. Natural fusions and fissions of genes not only contribute to microbial evolution but also complicate the correct identification and functional annotation of sequences. The products of these processes can be defined as fusion (or composite) proteins, the ones consisting of two or more domains originally encoded by different genes and split proteins, and the ones originating from the separation of a gene in two (fission). Fusion identifications are required for proper phylogenetic reconstructions and metabolic pathway completeness assessments, while mappings between fused and unfused proteins can fill some of the existing gaps in metabolic models. In the archaeal genome-wide screening, more than 1,900 fusion/fission protein clusters were identified, belonging to both newly sequenced and well-studied lineages. These protein families are mainly associated with different types of metabolism, genetic, and cellular processes. Moreover, 162 of the identified fusion/fission protein families are archaeal specific, having no identified fused homolog within the bacterial domain. Our approach was validated by the identification of experimentally characterized fusion/fission cases. However, around 25% of the identified fusion/fission families lack functional annotations for both composite and split states, showing the need for experimental characterization in Archaea.IMPORTANCEGenome-wide fusion screening has never been performed in Archaea on a broad taxonomic scale. The overlay of multiple computational techniques allows the detection of a fine-grained set of predicted fusion/fission families, instead of rough estimations based on conserved domain annotations only. The exhaustive mapping of fused proteins to bacterial organisms allows us to capture fusion/fission families that are specific to archaeal biology, as well as to identify links between bacterial and archaeal lineages based on cooccurrence of taxonomically restricted proteins and their sequence features. Furthermore, the identification of poorly characterized lineage-specific fusion proteins opens up possibilities for future experimental and computational investigations. This approach enhances our understanding of Archaea in general and provides potential candidates for in-depth studies in the future.

RevDate: 2024-05-20
CmpDate: 2024-04-27

Dobryakova NV, Dumina MV, Zhgun AA, et al (2024)

L-Asparaginase Conjugates from the Hyperthermophilic Archaea Thermococcus sibiricus with Improved Biocatalytic Properties.

International journal of molecular sciences, 25(8):.

This study investigated the effect of polycationic and uncharged polymers (and oligomers) on the catalytic parameters and thermostability of L-asparaginase from Thermococcus sibiricus (TsA). This enzyme has potential applications in the food industry to decrease the formation of carcinogenic acrylamide during the processing of carbohydrate-containing products. Conjugation with the polyamines polyethylenimine and spermine (PEI and Spm) or polyethylene glycol (PEG) did not significantly affect the secondary structure of the enzyme. PEG contributes to the stabilization of the dimeric form of TsA, as shown by HPLC. Furthermore, neither polyamines nor PEG significantly affected the binding of the L-Asn substrate to TsA. The conjugates showed greater maximum activity at pH 7.5 and 85 °C, 10-50% more than for native TsA. The pH optima for both TsA-PEI and TsA-Spm conjugates were shifted to lower pH ranges from pH 10 (for the native enzyme) to pH 8.0. Additionally, the TsA-Spm conjugate exhibited the highest activity at pH 6.5-9.0 among all the samples. Furthermore, the temperature optimum for activity at pH 7.5 shifted from 90-95 °C to 80-85 °C for the conjugates. The thermal inactivation mechanism of TsA-PEG appeared to change, and no aggregation was observed in contrast to that of the native enzyme. This was visually confirmed and supported by the analysis of the CD spectra, which remained almost unchanged after heating the conjugate solution. These results suggest that TsA-PEG may be a more stable form of TsA, making it a potentially more suitable option for industrial use.

RevDate: 2024-06-14
CmpDate: 2024-04-25

Mukherjee D, Selvi VA, Ganguly J, et al (2024)

New insights into the coal-associated methane architect: the ancient archaebacteria.

Archives of microbiology, 206(5):234.

Exploration and marketable exploitation of coalbed methane (CBM) as cleaner fuel has been started globally. In addition, incidence of methane in coal basins is an imperative fraction of global carbon cycle. Significantly, subsurface coal ecosystem contains methane forming archaea. There is a rising attention in optimizing microbial coal gasification to exploit the abundant or inexpensive coal reserves worldwide. Therefore, it is essential to understand the coalbeds in geo-microbial perspective. Current review provides an in-depth analysis of recent advances in our understanding of how methanoarchaea are distributed in coal deposits globally. Specially, we highlight the findings on coal-associated methanoarchaeal existence, abundance, diversity, metabolic activity, and biogeography in diverse coal basins worldwide. Growing evidences indicates that we have arrived an exciting era of archaeal research. Moreover, gasification of coal into methane by utilizing microbial methanogenesis is a considerable way to mitigate the energy crisis for the rising world population.

RevDate: 2024-04-26

Li Q, Cheng X, Liu X, et al (2024)

Ammonia-oxidizing archaea adapted better to the dark, alkaline oligotrophic karst cave than their bacterial counterparts.

Frontiers in microbiology, 15:1377721.

Subsurface karst caves provide unique opportunities to study the deep biosphere, shedding light on microbial contribution to elemental cycling. Although ammonia oxidation driven by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) is well explored in soil and marine environments, our understanding in the subsurface biosphere still remained limited to date. To address this gap, weathered rock and sediment samples were collected from the Xincuntun Cave in Guilin City, an alkaline karst cave, and subjected to high-throughput sequencing and quantification of bacterial and archaeal amoA, along with determination of the potential nitrification rates (PNR). Results revealed that AOA dominated in ammonia oxidation, contributing 48-100% to the PNR, and AOA amoA gene copies outnumbered AOB by 2 to 6 orders. Nitrososphaera dominated in AOA communities, while Nitrosopira dominated AOB communities. AOA demonstrated significantly larger niche breadth than AOB. The development of AOA communities was influenced by deterministic processes (50.71%), while AOB communities were predominantly influenced by stochastic processes. TOC, NH4[+], and Cl[-] played crucial roles in shaping the compositions of ammonia oxidizers at the OTU level. Cross-domain co-occurrence networks highlighted the dominance of AOA nodes in the networks and positive associations between AOA and AOB, especially in the inner zone, suggesting collaborative effort to thrive in extreme environments. Their high gene copies, dominance in the interaction with ammonia oxidizing bacteria, expansive niche breadth and substantial contribution to PNR collectively confirmed that AOA better adapted to alkaline, oligotrophic karst caves environments, and thus play a fundamental role in nitrogen cycling in subsurface biosphere.

RevDate: 2024-04-25

van Wolferen M, Ithurbide S, Santiago-Martínez MG, et al (2024)

Editorial: Molecular Biology of Archaea - 2022.

Frontiers in microbiology, 15:1393932.

RevDate: 2024-04-26

Gulati P, Singh A, Patra S, et al (2024)

Restriction modification systems in archaea: A panoramic outlook.

Heliyon, 10(8):e27382.

Restriction modification (RM) systems are one of the ubiquitous yet primitive defense responses employed by bacteria and archaea with the primary role of safeguarding themselves against invading bacteriophages. Protection of the host occurs by the cleavage of the invading foreign DNA via restriction endonucleases with concomitant methylation of host DNA with the aid of a methyltransferase counterpart. RM systems have been extensively studied in bacteria, however, in the case of archaea there are limited reports of RM enzymes that are investigated to date owing to their inhospitable growth demands. This review aims to broaden the knowledge about what is known about the diversity of RM systems in archaea and encapsulate the current knowledge on restriction and modification enzymes characterized in archaea so far and the role of RM systems in the milieu of archaeal biology.

RevDate: 2024-05-11
CmpDate: 2024-05-11

Wang Q, Zheng G, Ni L, et al (2024)

Colonization characteristics and dynamic transition of archaea communities on polyethylene and polypropylene microplastics in the sediments of mangrove ecosystems.

Journal of hazardous materials, 471:134343.

Microplastics are a growing concern in mangrove ecosystems; however, their effects on archaeal communities and related ecological processes remain unclear. We conducted in situ biofilm-enrichment experiments to investigate the ecological influence of polyethylene (PE) and polypropylene microplastics on archaeal communities in the sediments of mangrove ecosystems. The archaeal community present on microplastics was distinct from that of the surrounding sediments at an early stage but became increasingly similar over time. Bathyarchaeota, Thaumarchaeota, Euryarchaeota, and Asgardaeota were the most abundant phyla. Methanolobus, an archaeal biomarker, was enriched in PE biofilms, and significantly controlled by homogeneous selection in the plastisphere, indicating an increased potential risk of methane emission. The dominant archaeal assembly process in the sediments was deterministic (58.85%-70.47%), while that of the PE biofilm changed from stochastic to deterministic during the experiment. The network of PE plastispheres showed less complexity and competitive links, and higher modularity and stability than that of sediments. Functional prediction showed an increase in aerobic ammonia oxidation during the experiment, whereas methanogenesis and chemoheterotrophy were significantly higher in the plastisphere. This study provides novel insights into the impact of microplastic pollution on archaeal communities and their mediating ecological functions in mangrove ecosystems.

RevDate: 2024-04-11
CmpDate: 2024-04-11

Price MN, AP Arkin (2024)

A fast comparative genome browser for diverse bacteria and archaea.

PloS one, 19(4):e0301871.

Genome sequencing has revealed an incredible diversity of bacteria and archaea, but there are no fast and convenient tools for browsing across these genomes. It is cumbersome to view the prevalence of homologs for a protein of interest, or the gene neighborhoods of those homologs, across the diversity of the prokaryotes. We developed a web-based tool, fast.genomics, that uses two strategies to support fast browsing across the diversity of prokaryotes. First, the database of genomes is split up. The main database contains one representative from each of the 6,377 genera that have a high-quality genome, and additional databases for each taxonomic order contain up to 10 representatives of each species. Second, homologs of proteins of interest are identified quickly by using accelerated searches, usually in a few seconds. Once homologs are identified, fast.genomics can quickly show their prevalence across taxa, view their neighboring genes, or compare the prevalence of two different proteins. Fast.genomics is available at https://fast.genomics.lbl.gov.

RevDate: 2024-10-10
CmpDate: 2024-04-11

Michimori Y, Izaki R, Su Y, et al (2024)

Removal of phosphoglycolate in hyperthermophilic archaea.

Proceedings of the National Academy of Sciences of the United States of America, 121(16):e2311390121.

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.

RevDate: 2024-05-13
CmpDate: 2024-04-10

Gao X, Wang S, Kong W, et al (2024)

Floristic changes and environmental drivers of soil fungi and archaea in different salt-tolerant plant communities in the intertidal habitat of coastal wetlands.

Environmental geochemistry and health, 46(5):167.

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.

RevDate: 2024-04-06
CmpDate: 2024-04-05

Yin X, Zhou G, Cai M, et al (2024)

Physiological versatility of ANME-1 and Bathyarchaeotoa-8 archaea evidenced by inverse stable isotope labeling.

Microbiome, 12(1):68.

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8).

RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and [13]C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated [13]C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated [13]C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility.

CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.

RevDate: 2024-06-28
CmpDate: 2024-03-28

Fry M (2024)

The discovery of archaea: from observed anomaly to consequential restructuring of the phylogenetic tree.

History and philosophy of the life sciences, 46(2):16.

Observational and experimental discoveries of new factual entities such as objects, systems, or processes, are major contributors to some advances in the life sciences. Yet, whereas discovery of theories was extensively deliberated by philosophers of science, very little philosophical attention was paid to the discovery of factual entities. This paper examines historical and philosophical aspects of the experimental discovery by Carl Woese of archaea, prokaryotes that comprise one of the three principal domains of the phylogenetic tree. Borrowing Kuhn's terminology, this discovery of a major biological entity was made during a 'normal science' project of building molecular taxonomy for prokaryotes. Unexpectedly, however, an observed anomaly instigated the discovery of archaea. Substantiation of the existence of the new archaeal entity and consequent reconstruction of the phylogenetic tree prompted replacement of a long-held model of a prokarya and eukarya bipartite tree of life by a new model of a tripartite tree comprising of bacteria, archaea, and eukarya. This paper explores the history and philosophical implications of the progression of Woese's project from normal science to anomaly-instigated model-changing discovery. It is also shown that the consequential discoveries of RNA splicing and of ribozymes were similarly prompted by unexpected irregularities during normal science activities. It is thus submitted that some discoveries of factual biological entities are triggered by unforeseen observational or experimental anomalies.

RevDate: 2024-04-25
CmpDate: 2024-04-08

Baker BA, Gutiérrez-Preciado A, Rodríguez Del Río Á, et al (2024)

Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments.

Nature microbiology, 9(4):964-975.

Extremely halophilic archaea (Haloarchaea, Nanohaloarchaeota, Methanonatronarchaeia and Halarchaeoplasmatales) thrive in saturating salt concentrations where they must maintain osmotic equilibrium with their environment. The evolutionary history of adaptations enabling salt tolerance remains poorly understood, in particular because the phylogeny of several lineages is conflicting. Here we present a resolved phylogeny of extremely halophilic archaea obtained using improved taxon sampling and state-of-the-art phylogenetic approaches designed to cope with the strong compositional biases of their proteomes. We describe two uncultured lineages, Afararchaeaceae and Asbonarchaeaceae, which break the long branches at the base of Haloarchaea and Nanohaloarchaeota, respectively. We obtained 13 metagenome-assembled genomes (MAGs) of these archaea from metagenomes of hypersaline aquatic systems of the Danakil Depression (Ethiopia). Our phylogenomic analyses including these taxa show that at least four independent adaptations to extreme halophily occurred during archaeal evolution. Gene-tree/species-tree reconciliation suggests that gene duplication and horizontal gene transfer played an important role in this process, for example, by spreading key genes (such as those encoding potassium transporters) across extremely halophilic lineages.

RevDate: 2024-03-30

Batista M, Langendijk-Genevaux P, Kwapisz M, et al (2024)

Evolutionary and functional insights into the Ski2-like helicase family in Archaea: a comparison of Thermococcales ASH-Ski2 and Hel308 activities.

NAR genomics and bioinformatics, 6(1):lqae026.

RNA helicases perform essential housekeeping and regulatory functions in all domains of life by binding and unwinding RNA molecules. The Ski2-like proteins are primordial helicases that play an active role in eukaryotic RNA homeostasis pathways, with multiple homologs having specialized functions. The significance of the expansion and diversity of Ski2-like proteins in Archaea, the third domain of life, has not yet been established. Here, by studying the phylogenetic diversity of Ski2-like helicases among archaeal genomes and the enzymatic activities of those in Thermococcales, we provide further evidence of the function of this protein family in archaeal metabolism of nucleic acids. We show that, in the course of evolution, ASH-Ski2 and Hel308-Ski2, the two main groups of Ski2-like proteins, have diverged in their biological functions. Whereas Hel308 has been shown to mainly act on DNA, we show that ASH-Ski2, previously described to be associated with the 5'-3' aRNase J exonuclease, acts on RNA by supporting an efficient annealing activity, but also an RNA unwinding with a 3'-5' polarity. To gain insights into the function of Ski2, we also analyse the transcriptome of Thermococcus barophilus ΔASH-Ski2 mutant strain and provide evidence of the importance of ASH-Ski2 in cellular metabolism pathways related to translation.

RevDate: 2024-04-12
CmpDate: 2024-04-12

Guo K, Li D, Hao T, et al (2024)

Potential directions for future development of mainstream partial nitrification-anammox processes: Ammonia-oxidizing archaea as novel functional microorganisms providing nitrite.

Bioresource technology, 399:130605.

The application of ammonia-oxidizing archaea (AOA)-based partial nitrification-anammox (PN-A) for mainstream wastewater treatment has attracted research interest because AOA can maintain higher activity in low-temperature environments and they have higher affinity for oxygen and ammonia-nitrogen compared with ammonia-oxidizing bacteria (AOB), thus facilitating stabilized nitrite production, deep removal of low-ammonia, and nitrite-oxidizing bacteria suppression. Moreover, the low affinity of AOA for ammonia makes them more tolerant to N-shock loading and more efficiently integrated with anaerobic ammonium oxidation (anammox). Based on the limitations of the AOB-based PN-A process, this review comprehensively summarizes the potential and significance of AOA for nitrite supply, then gives strategies and influencing factors for replacing AOB with AOA. Additionally, the methods and key influences on the coupling of AOA and anammox are explored. Finally, this review proposes four AOA-based oxygen- or ammonia-limited autotrophic nitritation/denitrification processes to address the low effluent quality and instability of mainstream PN-A processes.

RevDate: 2024-03-18
CmpDate: 2024-03-18

Alghamrawy BT, Hegazy GE, Sabry SA, et al (2024)

Production, characterization and biomedical potential of biosurfactants produced by haloalkaliphilic archaea from Wadi El-Natrun, Egypt.

Microbial cell factories, 23(1):84.

Extreme halophilic archaea that can live in high saline environments can offer potential applications in different biotechnological fields. This study delves into the fascinating field of halophilic archaea and their ability to produce biosurfactants. Some strains of haloarchaea were isolated from Wadi El-Natrun and were screened for biosurfactants production in a standard basal medium using emulsification index assay. Two strains were chosen as the potential strains for surface tension reduction. They were identified as Natrialba sp. BG1 and N3. The biosurfactants production was optimized and the produced emulsifiers were partially purified and identified using FTIR and NMR. Sequential statistical optimization, Plackett-Burman (PB) and Box-Behnken Designs (BBD) were carried out using 5 factors: oil, NaCl, casamino acids, pH, and inoculum size. The most significant factors were used for the next Response Surface Methodology experiment. The final optimal conditions for biosurfactants production were the inoculum size 2% pH 11 and NaCl 250 g/L, for Natrialba sp. BG1 and inoculum size 2.2%, pH 10 and NaCl 100 g/L for Natrialba sp. N3. The produced biosurfactants were tested for wound healing and the results indicated that Natrialba sp. BG1 biosurfactants is more efficient than Natrialba sp. N3 biosurfactants. Biosurfactants extracts were tested for their cytotoxic effects on normal cell line as well as on different cancer cells using MTT assay. The findings demonstrated that varying concentrations of the biosurfactants (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) exhibited cytotoxic effects on the cell lines being tested. Additionally, the outcomes unveiled the presence of anti-inflammatory and antioxidant properties for both biosurfactants. Consequently, they could potentially serve as natural, safe, and efficient novel agents for combating cancer, promoting wound healing, and providing anti-inflammatory and antioxidant benefits.

RevDate: 2024-05-14
CmpDate: 2024-04-24

Liu X, Sun D, Huang H, et al (2024)

Rice-fish coculture without phosphorus addition improves paddy soil nitrogen availability by shaping ammonia-oxidizing archaea and bacteria in subtropical regions of South China.

The Science of the total environment, 927:171642.

Rice-fish coculture (RFC), as a traditional agricultural strategy in China, can optimally utilize the scarce resource, especially in subtropical regions where phosphorus (P) deficiency limits agricultural production. However, ammonia-oxidizing archaea (AOA) and bacteria (AOB) are involved in the ammonia oxidation, but it remains uncertain whether their community compositions are related to the RFC combined with and without P addition that improves soil nitrogen (N) use efficiency. Here, a microcosm experiment was conducted to assess the impacts of RFC combined with and without inorganic P (0 and 50 mg P kg[-1] as KH2PO4) addition on AOA and AOB community diversities, enzyme activities and N availability. The results showed that RFC significantly increased available N content without P addition compared with P addition. Moreover, RFC significantly increased urease activity and AOA shannon diversity, and reduced NAG activity and AOB shannon diversity without P addition, respectively. Higher diversity of AOA compared with that of AOB causes greater competition for resources and energy within their habitats, thereby resulting in lower network complexity. Our findings indicated that the abundances of AOA and AOB are influenced through the introduction of fish and/or P availability, of which AOB is linked to N availability. Overall, RFC could improve paddy soil N availability without P addition in subtropical region, which provides a scientific reference for promoting the practices that reduce N fertilizer application in RFC.

RevDate: 2024-03-14

von Hoyningen-Huene AJE, Bang C, Rausch P, et al (2024)

The archaeome in metaorganism research, with a focus on marine models and their bacteria-archaea interactions.

Frontiers in microbiology, 15:1347422.

Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.

RevDate: 2024-06-17
CmpDate: 2024-03-14

Hu Y, Ma X, Tan S, et al (2024)

Genome-based classification of genera Halosegnis and Salella, and description of four novel halophilic archaea isolated from a tidal flat.

Antonie van Leeuwenhoek, 117(1):51.

The current species of Halosegnis and Salella within the class Halobacteria are closely related based on phylogenetic, phylogenomic, and comparative genomic analyses. The Halosegnis species showed 99.8-100.0% 16S rRNA and 96.6-99.6% rpoB' gene similarities to the Salella species, respectively. Phylogenetic and phylogenomic analyses showed that Salella cibi CBA1133[T], the sole species of Salella, formed a single tight cluster with Halosegnis longus F12-1[T], then with Halosegnis rubeus F17-44[T]. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) values between Salella cibi CBA1133[T] and Halosegnis longus F12-1[T] were 99.2, 94.2, and 98.6%, respectively, much higher than the thresholds for species demarcation. This genome-based classification revealed that the genus Salella should be merged with Halosegnis, and Salella cibi should be a later heterotypic synonym of Halosegnis longus. Halophilic archaeal strains DT72[T], DT80[T], DT85[T], and DT116[T], isolated from the saline soil of a tidal flat in China, were subjected to polyphasic taxonomic characterization. The phenotypic, chemotaxonomic, phylogenetic, and phylogenomic features indicated that strains DT72[T] (= CGMCC 1.18925[T] = JCM 35418[T]), DT80[T] (= CGMCC 1.18926[T] = JCM 35419[T]), DT85[T] (= CGMCC 1.19049[T] = JCM 35605[T]), and DT116[T] (= CGMCC 1.19045[T] = JCM 35606[T]) represent four novel species of the genera Halorussus, Halosegnis and Haloglomus, respectively, for which the names, Halorussus caseinilyticus sp. nov., Halorussus lipolyticus sp. nov., Halosegnis marinus sp. nov., and Haloglomus litoreum sp. nov., are proposed.

RevDate: 2024-03-15
CmpDate: 2024-03-14

Tran LT, Akıl C, Senju Y, et al (2024)

The eukaryotic-like characteristics of small GTPase, roadblock and TRAPPC3 proteins from Asgard archaea.

Communications biology, 7(1):273.

Membrane-enclosed organelles are defining features of eukaryotes in distinguishing these organisms from prokaryotes. Specification of distinct membranes is critical to assemble and maintain discrete compartments. Small GTPases and their regulators are the signaling molecules that drive membrane-modifying machineries to the desired location. These signaling molecules include Rab and Rag GTPases, roadblock and longin domain proteins, and TRAPPC3-like proteins. Here, we take a structural approach to assess the relatedness of these eukaryotic-like proteins in Asgard archaea, the closest known prokaryotic relatives to eukaryotes. We find that the Asgard archaea GTPase core domains closely resemble eukaryotic Rabs and Rags. Asgard archaea roadblock, longin and TRAPPC3 domain-containing proteins form dimers similar to those found in the eukaryotic TRAPP and Ragulator complexes. We conclude that the emergence of these protein architectures predated eukaryogenesis, however further adaptations occurred in proto-eukaryotes to allow these proteins to regulate distinct internal membranes.

RevDate: 2024-04-03
CmpDate: 2024-04-03

Chisholm C, Di H, Cameron K, et al (2024)

Contrasting response of comammox Nitrospira, ammonia oxidising bacteria, and archaea to soil pH and nitrogen inputs.

The Science of the total environment, 924:171627.

This study aimed to investigate the effect of soil pH change, and nitrogen amendment on ammonia oxidiser abundance and comammox Nitrospira community composition. The experimental design used soil mesocosms placed in a temperature-controlled incubator for 90 days. A Templeton silt loam was used as its physiochemical properties are typical of the region's dairy farms. The results showed that comammox Nitrospira clade B preferred the natural (pH 6.1-6.2) soil pH with no applied nitrogen. Furthermore, synthetic urine (N700) decreased the abundance of comammox Nitrospira clade B. This may have been because the large amounts of available ammonia in the N700 treatments inhibited the growth of comammox Nitrospira. These results suggest that while comammox Nitrospira clade B are present in New Zealand dairy farm soils, but their role in nitrification in the very high nitrogen environment under a urine patch in grazed pastures may be limited. Further research is needed to confirm this. In contrast to comammox, the AOB community (dominated by Nitrosospira) responded positively to the application of synthetic urine. The response was greatest in the high pH soil (7.1), followed by the natural and then the low pH (4.9) soils. This may be due to the difference in ammonia availability. At high pH, the ammonia/ammonium equilibrium favours ammonia production. Calculated ammonia availability in the N700 treatments accurately predicted the AOB amoA gene abundance. Interestingly, the AOA community abundance (which was predominantly made up of Thaumarchaeota group I.1b clade E) seemed to prefer the natural and high pH soils over the low pH. This may be due to the specific lineage of AOA present. AOA did not respond to the application of nitrogen.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

cover-pic

SUPPORT ESP: Order from Amazon
The ESP project will earn a commission.

If you thought that the history of life could be organized into a simple tree and that genes only moved from parents to progeny, think again. Recent science has shown that sometimes genes move sideways, skipping the reproductive process, and the tree of life looks more like a tangled bush. David Quammen, a masterful science writer, explains these new findings and more. Read this book and you'll learn about the discovery of the archaea — an entirely different form of life, living right here on this planet, and not noticed until Carl Woese found them, by being among the first to use molecular tools to look at organismal relationships. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 28 JUL 2024 )