@article {pmid37768069, year = {2023}, author = {Dittmer, J and Corretto, E and Štarhová Serbina, L and Michalik, A and Nováková, E and Schuler, H}, title = {Division of labor within psyllids: metagenomics reveals an ancient dual endosymbiosis with metabolic complementarity in the genus Cacopsylla.}, journal = {mSystems}, volume = {}, number = {}, pages = {e0057823}, doi = {10.1128/msystems.00578-23}, pmid = {37768069}, issn = {2379-5077}, abstract = {Hemipteran insects are well-known for their ancient associations with beneficial bacterial endosymbionts, particularly nutritional symbionts that provide the host with essential nutrients such as amino acids or vitamins lacking in the host's diet. Therefore, these primary endosymbionts enable the exploitation of nutrient-poor food sources such as plant sap or vertebrate blood. In turn, the strictly host-associated lifestyle strongly impacts the genome evolution of the endosymbionts, resulting in small and degraded genomes. Over time, even the essential nutritional functions can be compromised, leading to the complementation or replacement of an ancient endosymbiont by another, more functionally versatile bacterium. Herein, we provide evidence for a dual primary endosymbiosis in several psyllid species. Using metagenome sequencing, we produced the complete genome sequences of both the primary endosymbiont "Candidatus Carsonella ruddii" and an as yet uncharacterized Enterobacteriaceae bacterium from four species of the genus Cacopsylla. The latter represents a new psyllid-associated endosymbiont clade for which we propose the name "Candidatus Psyllophila symbiotica." Fluorescent in situ hybridization confirmed the co-localization of both endosymbionts in the bacteriome. The metabolic repertoire of Psyllophila is highly conserved across host species and complements the tryptophan biosynthesis pathway that is incomplete in the co-occurring Carsonella. Unlike co-primary endosymbionts in other insects, the genome of Psyllophila is almost as small as the one of Carsonella, indicating an ancient co-obligate endosymbiosis rather than a recent association to rescue a degrading primary endosymbiont. IMPORTANCE Heritable beneficial bacterial endosymbionts have been crucial for the evolutionary success of numerous insects by enabling the exploitation of nutritionally limited food sources. Herein, we describe a previously unknown dual endosymbiosis in the psyllid genus Cacopsylla, consisting of the primary endosymbiont "Candidatus Carsonella ruddii" and a co-occurring Enterobacteriaceae bacterium for which we propose the name "Candidatus Psyllophila symbiotica." Its localization within the bacteriome and its small genome size confirm that Psyllophila is a co-primary endosymbiont widespread within the genus Cacopsylla. Despite its highly eroded genome, Psyllophila perfectly complements the tryptophan biosynthesis pathway that is incomplete in the co-occurring Carsonella. Moreover, the genome of Psyllophila is almost as small as Carsonella's, suggesting an ancient dual endosymbiosis that has now reached a precarious stage where any additional gene loss would make the system collapse. Hence, our results shed light on the dynamic interactions of psyllids and their endosymbionts over evolutionary time.}, } @article {pmid37764903, year = {2023}, author = {Yüksel, E and Yıldırım, A and İmren, M and Canhilal, R and Dababat, AA}, title = {Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis.}, journal = {Pathogens (Basel, Switzerland)}, volume = {12}, number = {9}, pages = {}, doi = {10.3390/pathogens12091095}, pmid = {37764903}, issn = {2076-0817}, abstract = {Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 10[7] cells mL[-1]) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.}, } @article {pmid37764891, year = {2023}, author = {Margarita, V and Congiargiu, A and Diaz, N and Fiori, PL and Rappelli, P}, title = {Mycoplasma hominis and Candidatus Mycoplasma girerdii in Trichomonas vaginalis: Peaceful Cohabitants or Contentious Roommates?.}, journal = {Pathogens (Basel, Switzerland)}, volume = {12}, number = {9}, pages = {}, doi = {10.3390/pathogens12091083}, pmid = {37764891}, issn = {2076-0817}, support = {2017SFBFER_004//Ministero dell'Istruzione, dell' Università e della Ricerca/ ; }, abstract = {Trichomonas vaginalis is a pathogenic protozoan diffused worldwide capable of infecting the urogenital tract in humans, causing trichomoniasis. One of its most intriguing aspects is the ability to establish a close relationship with endosymbiotic microorganisms: the unique association of T. vaginalis with the bacterium Mycoplasma hominis represents, to date, the only example of an endosymbiosis involving two true human pathogens. Since its discovery, several aspects of the symbiosis between T. vaginalis and M. hominis have been characterized, demonstrating that the presence of the intracellular guest strongly influences the pathogenic characteristics of the protozoon, making it more aggressive towards host cells and capable of stimulating a stronger proinflammatory response. The recent description of a further symbiont of the protozoon, the newly discovered non-cultivable mycoplasma Candidatus Mycoplasma girerdii, makes the picture even more complex. This review provides an overview of the main aspects of this complex microbial consortium, with particular emphasis on its effect on protozoan pathobiology and on the interplays among the symbionts.}, } @article {pmid37764139, year = {2023}, author = {Santana, MCO and Chourabi, K and Cantanhêde, LM and Cupolillo, E}, title = {Exploring Host-Specificity: Untangling the Relationship between Leishmania (Viannia) Species and Its Endosymbiont Leishmania RNA Virus 1.}, journal = {Microorganisms}, volume = {11}, number = {9}, pages = {}, doi = {10.3390/microorganisms11092295}, pmid = {37764139}, issn = {2076-2607}, support = {001//National Council for Scientific and Technological Development/ ; 302622/2017-9//Coordenação de Aperfeicoamento de Pessoal de Nível Superior/ ; (E26-202.569/2019), (E26-210.038/2020), (E-26/205.730/2022 and 205.731/2022)//Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro/ ; Edital 16/2014//Fundação de Amparo ao Desenvolvimento das Ações Científicas e Tecnológicas e à Pesquisa-FAPERO/ ; }, abstract = {A relevant aspect in the epidemiology of Tegumentary Leishmaniasis (TL) are the Leishmania parasites carrying a viral endosymbiont, Leishmania RNA Virus 1 (LRV1), a dsRNA virus. Leishmania parasites carrying LRV1 are prone to causing more severe TL symptoms, increasing the likelihood of unfavorable clinical outcomes. LRV1 has been observed in the cultured strains of five L. (Viannia) species, and host specificity was suggested when studying the LRV1 from L. braziliensis and L. guyanensis strains. The coevolution hypothesis of LRV1 and Leishmania was based on phylogenetic analyses, implying an association between LRV1 genotypes, Leishmania species, and their geographic origins. This study aimed to investigate LRV1 specificity relative to Leishmania (Viannia) species hosts by analyzing LRV1 from L. (Viannia) species. To this end, LRV1 was screened in L. (Viannia) species other than L. braziliensis or L. guyanensis, and it was detected in 11 out of 15 L. naiffi and two out of four L. shawi. Phylogenetic analyses based on partial LRV1 genomic sequencing supported the hypothesis of host specificity, as LRV1 clustered according to their respective Leishmania species' hosts. These findings underscore the importance of investigating Leishmania and LRV1 coevolution and its impact on Leishmania (Viannia) species dispersion and pathogenesis in the American Continent.}, } @article {pmid37758795, year = {2023}, author = {Garcia Guizzo, M and Meneses, C and Amado Cecilio, P and Hessab Alvarenga, P and Sonenshine, D and Ribeiro, JM}, title = {Optimizing tick artificial membrane feeding for Ixodes scapularis.}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {16170}, pmid = {37758795}, issn = {2045-2322}, support = {Award number: Z01 AI000810-18//Intramural Research Program of the National Institute of Allergy and Infectious Diseases/ ; Award number: AI00115203//Intramural Research Program of the National Institute of Allergy and Infectious Diseases/ ; }, abstract = {Artificial membrane feeding (AMF) is a powerful and versatile technique with a wide range of applications in the study of disease vectors species. Since its first description, AMF has been under constant optimization and standardization for different tick species and life stages. In the USA, Ixodes scapularis is the main vector of tick-borne zoonoses including the pathogens causing Lyme disease in humans and animals. Seeking to improve the overall fitness of I. scapularis adult females fed artificially, here, we have optimized the AMF technique, considerably enhancing attachment rate, engorgement success, egg laying, and egg hatching compared to those described in previous studies. Parameters such as the membrane thickness and the light/dark cycle to which the ticks were exposed were refined to more closely reflect the tick's natural behavior and life cycle. Additionally, ticks were fed on blood only, blood + ATP or blood + ATP + gentamicin. The artificial feeding of ticks on blood only was successful and generated a progeny capable of feeding naturally on a host, i.e., mice. Adding ATP as a feeding stimulant did not improve tick attachment or engorgement. Notably, the administration of gentamicin, an antibiotic commonly used in tick AMF to prevent microbial contamination, negatively impacted Rickettsia buchneri endosymbiont levels in the progeny of artificially fed ticks. In addition, gentamicin-fed ticks showed a reduction in oviposition success compared to ticks artificially fed on blood only, discouraging the use of antibiotics in AMF. Overall, our data suggest that the AMF of adult females on blood only, in association with the natural feeding of their progeny on mice, might be used as an integrated approach in tick rearing, eliminating the use of protected species under the Animal Welfare Act (AWA). Of note, although optimized for I. scapularis adult ticks, I. scapularis nymphs, other tick species, and sand flies could also be fed using the membrane described in this study, indicating that it might be a suitable alternative for the artificial feeding of a variety of hematophagous species.}, } @article {pmid37754731, year = {2023}, author = {Heidari Latibari, M and Moravvej, G and Rakhshani, E and Karimi, J and Arias-Penna, DC and Butcher, BA}, title = {Arsenophonus: A Double-Edged Sword of Aphid Defense against Parasitoids.}, journal = {Insects}, volume = {14}, number = {9}, pages = {}, doi = {10.3390/insects14090763}, pmid = {37754731}, issn = {2075-4450}, support = {No. 3/48846//Ph.D. project, the Ferdowsi University of Mashhad, Iran/ ; IR-UOZ-GR-3949//University of Zabol/ ; N42A650262//National Research Council of Thailand (NRCT) and Chulalongkorn University/ ; }, abstract = {It is widely accepted that endosymbiont interactions with their hosts have significant effects on the fitness of both pests and beneficial species. A particular type of endosymbiosis is that of beneficial associations. Facultative endosymbiotic bacteria are associated with elements that provide aphids with protection from parasitoids. Arsenophonus (Enterobacterales: Morganellaceae) is one such endosymbiont bacterium, with infections being most commonly found among the Hemiptera species. Here, black cowpea aphids (BCAs), Aphis craccivora Koch (Hemiptera: Aphididae), naturally infected with Arsenophonus, were evaluated to determine the defensive role of this bacterium in BCAs against two parasitoid wasp species, Binodoxys angelicae and Lysiphlebus fabarum (both in Braconidae: Aphidiinae). Individuals of the black cowpea aphids infected with Arsenophonus were treated with a blend of ampicillin, cefotaxime, and gentamicin (Arsenophonus-reduced infection, AR) and subsequently subjected to parasitism assays. The results showed that the presence of Arsenophonus does not prevent BCAs from being parasitized by either B. angelicae or L. fabarum. Nonetheless, in BCA colonies parasitized by B. angelicae, the endosymbiont delayed both the larval maturation period and the emergence of the adult parasitoid wasps. In brief, Arsenophonus indirectly limits the effectiveness of B. angelicae parasitism by decreasing the number of emerged adult wasps. Therefore, other members of the BCA colony can survive. Arsenophonus acts as a double-edged sword, capturing the complex dynamic between A. craccivora and its parasitoids.}, } @article {pmid37752965, year = {2023}, author = {Scharfenstein, HJ and Alvarez-Roa, C and Peplow, LM and Buerger, P and Chan, WY and van Oppen, MJH}, title = {Chemical mutagenesis and thermal selection of coral photosymbionts induce adaptation to heat stress with trait trade-offs.}, journal = {Evolutionary applications}, volume = {16}, number = {9}, pages = {1549-1567}, pmid = {37752965}, issn = {1752-4571}, abstract = {Despite the relevance of heat-evolved microalgal endosymbionts to coral reef restoration, to date, few Symbiodiniaceae strains have been thermally enhanced via experimental evolution. Here, we investigated whether the thermal tolerance of Symbiodiniaceae can be increased through chemical mutagenesis followed by thermal selection. Strains of Durusdinium trenchii, Fugacium kawagutii and Symbiodinium pilosum were exposed to ethyl methanesulfonate to induce random mutagenesis, and then underwent thermal selection at high temperature (31/33°C). After 4.6-5 years of experimental evolution, the in vitro thermal tolerance of these strains was assessed via reciprocal transplant experiments to ambient (27°C) and elevated (31/35°C) temperatures. Growth, photosynthetic efficiency, oxidative stress and nutrient use were measured to compare thermal tolerance between strains. Heat-evolved D. trenchii, F. kawagutii and S. pilosum strains all exhibited increased photosynthetic efficiency under thermal stress. However, trade-offs in growth rates were observed for the heat-evolved D. trenchii lineage at both ambient and elevated temperatures. Reduced phosphate and nitrate uptake rates in F. kawagutii and S. pilosum heat-evolved lineages, respectively, suggest alterations in nutrition resource usage and allocation processes may have occurred. Increased phosphate uptake rates of the heat-evolved D. trenchii strain indicate that experimental evolution resulted in further trade-offs in this species. These findings deepen our understanding of the physiological responses of Symbiodiniaceae cultures to thermal selection and their capacity to adapt to elevated temperatures. The new heat-evolved Symbiodiniaceae developed here may be beneficial for coral reef restoration efforts if their enhanced thermal tolerance can be conferred in hospite.}, } @article {pmid37752841, year = {2023}, author = {Lyndby, NH and Murthy, S and Bessette, S and Jakobsen, SL and Meibom, A and Kühl, M}, title = {Non-invasive investigation of the morphology and optical properties of the upside-down jellyfish Cassiopea with optical coherence tomography.}, journal = {Proceedings. Biological sciences}, volume = {290}, number = {2007}, pages = {20230127}, doi = {10.1098/rspb.2023.0127}, pmid = {37752841}, issn = {1471-2954}, abstract = {The jellyfish Cassiopea largely cover their carbon demand via photosynthates produced by microalgal endosymbionts, but how holobiont morphology and tissue optical properties affect the light microclimate and symbiont photosynthesis in Cassiopea remain unexplored. Here, we use optical coherence tomography (OCT) to study the morphology of Cassiopea medusae at high spatial resolution. We include detailed 3D reconstructions of external micromorphology, and show the spatial distribution of endosymbionts and white granules in the bell tissue. Furthermore, we use OCT data to extract inherent optical properties from light-scattering white granules in Cassiopea, and show that granules enhance local light-availability for symbionts in close proximity. Individual granules had a scattering coefficient of µs = 200-300 cm[-1], and scattering anisotropy factor of g = 0.7, while large tissue-regions filled with white granules had a lower µs = 40-100 cm[-1], and g = 0.8-0.9. We combined OCT information with isotopic labelling experiments to investigate the effect of enhanced light-availability in whitish tissue regions. Endosymbionts located in whitish tissue exhibited significantly higher carbon fixation compared to symbionts in anastomosing tissue (i.e. tissue without light-scattering white granules). Our findings support previous suggestions that white granules in Cassiopea play an important role in the host modulation of the light-microenvironment.}, } @article {pmid37751380, year = {2023}, author = {Ward, PS and Cash, EI and Ferger, K and Escalona, M and Sahasrabudhe, R and Miller, C and Toffelmier, E and Fairbairn, C and Seligmann, W and Shaffer, HB and Tsutsui, ND}, title = {Reference genome of the bicolored carpenter ant, Camponotus vicinus.}, journal = {The Journal of heredity}, volume = {}, number = {}, pages = {}, doi = {10.1093/jhered/esad055}, pmid = {37751380}, issn = {1465-7333}, abstract = {Carpenter ants in the genus Camponotus are large, conspicuous ants that are abundant and ecologically influential in many terrestrial ecosystems. The bicolored carpenter ant, C. vicinus Mayr, is distributed across a wide range of elevations and latitudes in western North America, where it is a prominent scavenger and predator. Here, we present a high-quality genome assembly of C. vicinus from a sample collected in Sonoma County, California, near the type locality of the species. This genome assembly consists of 38 scaffolds spanning 302.74 Mb, with contig N50 of 15.9Mb, scaffold N50 of 19.9 Mb, and BUSCO completeness of 99.2%. This genome sequence will be a valuable resource for exploring the evolutionary ecology of C. vicinus and carpenter ants generally. It also provides an important tool for clarifying cryptic diversity within the C. vicinus species complex, a genetically diverse set of populations, some of which are quite localized and of conservation interest.}, } @article {pmid37749181, year = {2023}, author = {Štarhová Serbina, L and Corretto, E and Enciso Garcia, JS and Berta, M and Giovanelli, T and Dittmer, J and Schuler, H}, title = {Seasonal wild dance of dual endosymbionts in the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea).}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {16038}, pmid = {37749181}, issn = {2045-2322}, abstract = {Most sap-feeding insects maintain obligate relationships with endosymbiotic bacteria that provide their hosts with essential nutrients. However, knowledge about the dynamics of endosymbiont titers across seasons in natural host populations is scarce. Here, we used quantitative PCR to investigate the seasonal dynamics of the dual endosymbionts "Candidatus Carsonella ruddii" and "Ca. Psyllophila symbiotica" in a natural population of the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea: Psyllidae). Psyllid individuals were collected across an entire year, covering both summer and overwintering generations. Immatures harboured the highest titers of both endosymbionts, while the lowest endosymbiont density was observed in males. The density of Carsonella remained high and relatively stable across the vegetative period of the pear trees, but significantly dropped during the non-vegetative period, overlapping with C. pyricola's reproductive diapause. In contrast, the titer of Psyllophila was consistently higher than Carsonella's and exhibited fluctuations throughout the sampling year, which might be related to host age. Despite a tightly integrated metabolic complementarity between Carsonella and Psyllophila, our findings highlight differences in their density dynamics throughout the year, that might be linked to their metabolic roles at different life stages of the host.}, } @article {pmid37748072, year = {2023}, author = {Maegele, I and Rupp, S and Özbek, S and Guse, A and Hambleton, EA and Holstein, TW}, title = {A predatory gastrula leads to symbiosis-independent settlement in Aiptasia.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {120}, number = {40}, pages = {e2311872120}, doi = {10.1073/pnas.2311872120}, pmid = {37748072}, issn = {1091-6490}, support = {SFB1324-A5//Deutsche Forschungsgemeinschaft (DFG)/ ; D.A.C.H.//Deutsche Forschungsgemeinschaft (DFG)/ ; SFB1324-B7//Deutsche Forschungsgemeinschaft (DFG)/ ; Oe416/8-1//Deutsche Forschungsgemeinschaft (DFG)/ ; 724715//European Resuscitation Council (ERC)/ ; }, abstract = {The planula larvae of the sea anemone Aiptasia have so far not been reported to complete their life cycle by undergoing metamorphosis into adult forms. This has been a major obstacle in their use as a model for coral-dinoflagellate endosymbiosis. Here, we show that Aiptasia larvae actively feed on crustacean nauplii, displaying a preference for live prey. This feeding behavior relies on functional stinging cells, indicative of complex neuronal control. Regular feeding leads to significant size increase, morphological changes, and efficient settlement around 14 d postfertilization. Surprisingly, the presence of dinoflagellate endosymbionts does not affect larval growth or settlement dynamics but is crucial for sexual reproduction. Our findings finally close Aiptasia's life cycle and highlight the functional nature of its larvae, as in Haeckel's Gastrea postulate, yet reveal its active carnivory, thus contributing to our understanding of early metazoan evolution.}, } @article {pmid37744901, year = {2023}, author = {Zhao, C and Wang, L and Zhang, K and Zhu, X and Li, D and Ji, J and Luo, J and Cui, J}, title = {Variation of Helicoverpa armigera symbionts across developmental stages and geographic locations.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1251627}, pmid = {37744901}, issn = {1664-302X}, abstract = {Cotton bollworm (Helicoverpa armigera) poses a global problem, causing substantial economic and ecological losses. Endosymbionts in insects play crucial roles in multiple insect biological processes. However, the interactions between H. armigera and its symbionts have not been well characterized to date. We investigated the symbionts of H. armigera in the whole life cycle from different geographical locations. In the whole life cycle of H. armigera, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacteria at the phylum level, while Enterococcus, Enterobacter, Glutamicibacter, and Bacillus were the four dominant bacteria at the genus level. Furthermore, high similarity in symbiotic bacterial community was observed in different stages of H. armigera, which were dominated by Enterococcus and Enterobacter. In fields, the dominant bacteria were Proteobacteria and Bacteroidetes, whereas, in the laboratory, the dominant bacteria were Proteobacteria. At the genus level, the dominant bacteria in cotton bollworm eggs of wild populations were Enterobacter, Morganella, Lactococcus, Asaia, Apibacter, and Enterococcus, and the subdominant bacteria were Bartonella, Pseudomonas, and Orbus. Moreover, the symbionts varied with geographical locations, and the closer the geographical distance, the more similar the microbial composition. Taken together, our study identifies and compares the symbiont variation along with geographical gradients and host development dynamic and reveals the high flexibility of microbiome communities in H. armigera, which probably benefits for the successful survival in a complicated changing environment.}, } @article {pmid37740026, year = {2023}, author = {Kumar, V and Nautiyal, CS}, title = {Endophytes Modulate Plant Genes: Present Status and Future Perspectives.}, journal = {Current microbiology}, volume = {80}, number = {11}, pages = {353}, pmid = {37740026}, issn = {1432-0991}, mesh = {*Genes, Plant ; Endophytes/genetics ; Genomics ; *Microbiota ; Plant Development ; }, abstract = {Interactions among endophytes and plants are widespread and can vary from neutral or positive or negative. Plants are continually in a functionally dynamic state due to interactions with diverse endophytic microorganisms, which produce various metabolic substances. Through quorum sensing, these substances not only help endophytes to outcompete other host-associated pathogens or microbes but also allow them to overcome the plant immune system. Manifold interactions between endophytic microbiota cause a reflective impact on the host plant functioning and the development of 'endobiomes,' by synthesizing chemicals that fill the gap between host and endophytes. Despite the advances in the field, specific mechanisms for the endophytes' precise methods to modulate plant genome and their effects on host plants remain poorly understood. Deeper genomic exploration can provide a locked away understanding of the competencies of endophytes and their conceivable function in host growth and health. Endophytes also can modify host metabolites, which could manipulate plants' growth, adaptation, and proliferation, and can be a more exciting and puzzling topic that must be properly investigated. The consequence of the interaction of endophytes on the host genome was analyzed as it can help unravel the gray areas of endophytes about which very little or no knowledge exists. This review discusses the recent advances in understanding the future challenges in the emerging research investigating how endosymbionts affect the host's metabolism and gene expression as an effective strategy for imparting resistance to biotic and abiotic challenges.}, } @article {pmid37725257, year = {2023}, author = {Wagner, T and Bangoura, B and Wiedmer, S and Daugschies, A and Dunay, IR}, title = {Phytohormones regulate asexual Toxoplasma gondii replication.}, journal = {Parasitology research}, volume = {}, number = {}, pages = {}, pmid = {37725257}, issn = {1432-1955}, abstract = {The protozoan Toxoplasma gondii (T. gondii) is a zoonotic disease agent causing systemic infection in warm-blooded intermediate hosts including humans. During the acute infection, the parasite infects host cells and multiplies intracellularly in the asexual tachyzoite stage. In this stage of the life cycle, invasion, multiplication, and egress are the most critical events in parasite replication. T. gondii features diverse cell organelles to support these processes, including the apicoplast, an endosymbiont-derived vestigial plastid originating from an alga ancestor. Previous studies have highlighted that phytohormones can modify the calcium-mediated secretion, e.g., of adhesins involved in parasite movement and cell invasion processes. The present study aimed to elucidate the influence of different plant hormones on the replication of asexual tachyzoites in a human foreskin fibroblast (HFF) host cell culture. T. gondii replication was measured by the determination of T. gondii DNA copies via qPCR. Three selected phytohormones, namely abscisic acid (ABA), gibberellic acid (GIBB), and kinetin (KIN) as representatives of different plant hormone groups were tested. Moreover, the influence of typical cell culture media components on the phytohormone effects was assessed. Our results indicate that ABA is able to induce a significant increase of T. gondii DNA copies in a typical supplemented cell culture medium when applied in concentrations of 20 ng/μl or 2 ng/μl, respectively. In contrast, depending on the culture medium composition, GIBB may potentially serve as T. gondii growth inhibitor and may be further investigated as a potential treatment for toxoplasmosis.}, } @article {pmid37723238, year = {2023}, author = {Longley, R and Robinson, A and Liber, JA and Bryson, AE and Morales, DP and LaButti, K and Riley, R and Mondo, SJ and Kuo, A and Yoshinaga, Y and Daum, C and Barry, K and Grigoriev, IV and Desirò, A and Chain, PSG and Bonito, G}, title = {Comparative genomics of Mollicutes-related endobacteria supports a late invasion into Mucoromycota fungi.}, journal = {Communications biology}, volume = {6}, number = {1}, pages = {948}, pmid = {37723238}, issn = {2399-3642}, support = {DE-AC02-05CH11231//U.S. Department of Energy (DOE)/ ; LANLF59T//U.S. Department of Energy (DOE)/ ; DEB 1737898//National Science Foundation (NSF)/ ; MICL02416//United States Department of Agriculture | National Institute of Food and Agriculture (NIFA)/ ; }, abstract = {Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera: Linnemannia (MRE-L) and Benniella (MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicate Linnemannia and Benniella MRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts.}, } @article {pmid37722758, year = {2023}, author = {Kolo, AO and Raghavan, R}, title = {Impact of endosymbionts on tick physiology and fitness.}, journal = {Parasitology}, volume = {}, number = {}, pages = {1-7}, doi = {10.1017/S0031182023000793}, pmid = {37722758}, issn = {1469-8161}, abstract = {Ticks transmit pathogens and harbour non-pathogenic, vertically transmitted intracellular bacteria termed endosymbionts. Almost all ticks studied to date contain 1 or more of Coxiella, Francisella, Rickettsia or Candidatus Midichloria mitochondrii endosymbionts, indicative of their importance to tick physiology. Genomic and experimental data suggest that endosymbionts promote tick development and reproductive success. Here, we review the limited information currently available on the potential roles endosymbionts play in enhancing tick metabolism and fitness. Future studies that expand on these findings are needed to better understand endosymbionts’ contributions to tick biology. This knowledge could potentially be applied to design novel strategies that target endosymbiont function to control the spread of ticks and pathogens they vector.}, } @article {pmid37719127, year = {2023}, author = {Castañeda-Molina, Y and Marulanda-Moreno, SM and Saldamando-Benjumea, C and Junca, H and Moreno-Herrera, CX and Cadavid-Restrepo, G}, title = {Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins.}, journal = {PeerJ}, volume = {11}, number = {}, pages = {e15916}, pmid = {37719127}, issn = {2167-8359}, abstract = {BACKGROUND: Spodoptera frugiperda (or fall armyworm, FAW) is a polyphagous pest native to Western Hemisphere and recently discovered in the Eastern Hemisphere. In Colombia, S. frugiperda is recognized as a pest of economic importance in corn. The species has genetically differentiated into two host populations named "corn" and "rice" strains. In 2012, a study made in central Colombia demonstrated that the corn strain is less susceptible to Bacillus thuringiensis (Bt) endotoxins (Cry1Ac and Cry 1Ab) than the rice strain. In this country, Bt transgenic corn has been extensively produced over the last 15 years. Since gut microbiota plays a role in the physiology and immunity of insects, and has been implicated in promoting the insecticidal activity of Bt, in this study an analysis of the interaction between Bt endotoxins and FAW gut microbiota was made. Also, the detection of endosymbionts was performed here, as they might have important implications in the biological control of a pest.

METHODS: The composition and diversity of microbiomes associated with larval specimens of S. frugiperda(corn strain) was investigated in a bioassay based on six treatments in the presence/absence of Bt toxins and antibiotics (Ab) through bacterial isolate analyses and by high throughput sequencing of the bacterial 16S rRNA gene. Additionally, species specific primers were used, to detect endosymbionts from gonads in S. frugiperda corn strain.

RESULTS: Firmicutes, Proteobacteria and Bacteroidota were the most dominant bacterial phyla found in S. frugiperda corn strain. No significant differences in bacteria species diversity and richness among the six treatments were found. Two species of Enterococcus spp., E. mundtii and E. casseliflavus were detected in treatments with Bt and antibiotics, suggesting that they are less susceptible to both of them. Additionally, the endosymbiont Arsenophonus was also identified on treatments in presence of Bt and antibiotics. The results obtained here are important since little knowledge exists about the gut microbiota on this pest and its interaction with Bt endotoxins. Previous studies made in Lepidoptera suggest that alteration of gut microbiota can be used to improve the management of pest populations, demonstrating the relevance of the results obtained in this work.}, } @article {pmid37716961, year = {2023}, author = {Mfopit, YM and Engel, JS and Chechet, GD and Ibrahim, MAM and Signaboubo, D and Achukwi, DM and Mamman, M and Balogun, EO and Shuaibu, MN and Kabir, J and Kelm, S}, title = {Molecular detection of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts in wild population of tsetse flies collected in Cameroon, Chad and Nigeria.}, journal = {BMC microbiology}, volume = {23}, number = {1}, pages = {260}, pmid = {37716961}, issn = {1471-2180}, mesh = {Animals ; *Tsetse Flies ; *Wolbachia/genetics ; Cameroon ; Chad ; Nigeria ; *Glossinidae ; *Trypanosomiasis, African ; *Spiroplasma/genetics ; }, abstract = {BACKGROUND: Tsetse flies are cyclical vectors of African trypanosomiasis (AT). The flies have established symbiotic associations with different bacteria that influence certain aspects of their physiology. Vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by bacterial endosymbionts amongst other factors. Symbiotic interactions may provide an avenue for AT control. The current study provided prevalence of three tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria.

RESULTS: Tsetse flies were collected and dissected from five different locations. DNA was extracted and polymerase chain reaction used to detect presence of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts, using species specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the three symbionts. Among infected flies, six (6.31%) had Wolbachia and Spiroplasma mixed infection. The overall symbiont prevalence was 0.88, 3.66 and 11.00% respectively, for Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts. Prevalence varied between countries and tsetse fly species. Neither Spiroplasma species nor S. glossinidius were detected in samples from Cameroon and Nigeria respectively.

CONCLUSION: The present study revealed, for the first time, presence of Spiroplasma species infections in tsetse fly populations in Chad and Nigeria. These findings provide useful information on repertoire of bacterial flora of tsetse flies and incite more investigations to understand their implication in the vector competence of tsetse flies.}, } @article {pmid37716699, year = {2023}, author = {Amses, K and Desiró, A and Bryson, A and Grigoriev, I and Mondo, S and Lipzen, A and LaButti, K and Riley, R and Singan, V and Salazar-Hamm, P and King, J and Ballou, E and Pawlowska, T and Adeleke, R and Bonito, G and Uehling, J}, title = {Convergent reductive evolution and host adaptation in Mycoavidus bacterial endosymbionts of Mortierellaceae fungi.}, journal = {Fungal genetics and biology : FG & B}, volume = {}, number = {}, pages = {103838}, doi = {10.1016/j.fgb.2023.103838}, pmid = {37716699}, issn = {1096-0937}, abstract = {Intimate associations between fungi and intracellular bacterial endosymbionts are becoming increasingly well understood. Phylogenetic analyses demonstrate that bacterial endosymbionts of Mucoromycota fungi are related either to free-living Burkholderia or Mollicutes species. The so-called Burkholderia-related endosymbionts or BRE comprise Mycoavidus, Mycetohabitans and Candidatus Glomeribacter gigasporarum. These endosymbionts are marked by genome contraction thought to be associated with intracellular selection. However, the conclusions drawn thus far are based on a very small subset of endosymbiont genomes, and the mechanisms leading to genome streamlining are not well understood. The purpose of this study was to better understand how intracellular existence shapes Mycoavidus and BRE functionally at the genome level. To this end we generated and analyzed 14 novel draft genomes for Mycoavidus living within the hyphae of Mortierellomycotina fungi. We found that our novel Mycoavidus genomes were significantly reduced compared to free-living Burkholderiales relatives. Using a genome-scale phylogenetic approach including the novel and available existing genomes of Mycoavidus, we show that the genus is an assemblage composed of two independently derived lineages including three well supported clades of Mycoavidus. Using a comparative genomic approach, we shed light on the functional implications of genome reduction, documenting shared and unique gene loss patterns between the three Mycoavidus clades. We found that many endosymbiont isolates demonstrate patterns of vertical transmission and host-specificity, but some are present in phylogenetically disparate hosts. We discuss how reductive evolution and host specificity reflect convergent adaptation to the intrahyphal selective landscape and commonalities of eukaryotic endosymbiont genome evolution.}, } @article {pmid37716131, year = {2023}, author = {Bharathi, MD and Muthukumar, C and Sathishkumar, RS and Ramu, K and Murthy, MVR}, title = {First report on the occurrence of Gonyaulax polygramma bloom during the onset of Noctiluca scintillans bloom along the Tuticorin coast, southeast coast of India.}, journal = {Marine pollution bulletin}, volume = {195}, number = {}, pages = {115523}, doi = {10.1016/j.marpolbul.2023.115523}, pmid = {37716131}, issn = {1879-3363}, abstract = {Dense and green-coloured patches were encountered on the sea surface waters of the Tuticorin coast on 22[nd] October 2022. Microscopic investigation revealed that the discoloration is caused by plankton, green Noctiluca scintillans. In order to find out the causes that trigger the bloom of N. scintillans, plankton samples were collected for 5 days in fourteen days duration from 22[nd] October to 4[th] November. During the peak bloom period, the abundance and biovolume of N. scintillans reached 1.56 × 10[4] cells/L and 21.8 × 10[10]μm[3]/L, respectively. The highest concentration (73.65 mg/m[3]) of chlorophyll-a was recorded during blooming period that was caused by Gonyaulax polygramma and endosymbiont, Pedinomonas noctilucae in N. scintillans. Formation of G. polygramma bloom is being reported for the first time in Tuticorin, southeast coast of India, with a species abundance of 36.9 × 10[4] cells/L. Present study concluded that besides the optimum hydrological conditions and eutrophic nature of the system, abundant prey (G. polygramma) facilitated the N. scintillans bloom.}, } @article {pmid37715236, year = {2023}, author = {ElKraly, OA and Awad, M and El-Saadany, HM and Hassanein, SE and Elrahman, TA and Elnagdy, SM}, title = {Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation.}, journal = {Animal microbiome}, volume = {5}, number = {1}, pages = {44}, pmid = {37715236}, issn = {2524-4671}, abstract = {Endosymbionts are known to have significant effects on their insect hosts, including nutrition, reproduction, and immunity. Insects gut microbiota is a critical component that affects their physiological and behavioral characteristics. The black cutworm (BCW), Agrotis ipsilon, is an economically important lepidopteran pest that has a diverse gut microbiome composed of nine species belonging to three phyla: Proteobacteria, Actinobacteria, and Firmicutes. This study was conducted to investigate the diversity of gut bacteria isolated from BCW larvae and moths and their effects on metabolism and pesticide degradation. The bacterial isolates were identified using the 16 S rRNA gene. The study showed that the gut microbiome composition significantly affected the metabolism of BCW larvae. Based on the screening results of synthesis of digestive enzymes and pesticide degradation, Brachybacterium conglomeratum and Glutamicibacter sp were selected to perform the remaining experiments as single isolates and consortium. The consortium-fed larvae showed high metabolic indices compared to antibiotic-fed larvae and the control. The gut bacteria were also shown to degrade three pesticide groups. Concerns regarding the health risk of chlorpyrifos have been raised due to its extensive use in agriculture. The isolated B. conglomeratum was more effective in chlorpyrifos degradation than the consortium. Furthermore, the study also examined the presence of sex related endosymbionts (Wolbachia, Spiroplasma, and Rickettsia) in the reproductive tissues of adults. The outcomes demonstrated that none of the examined endosymbionts existed. In conclusion, the study highlights the importance of the gut microbiome in insect physiology and behavior and its potential applications in biotechnology. It provides insights into developing eco-friendly pest control and bioremediation strategies using gut bacteria.}, } @article {pmid37715090, year = {2023}, author = {Nuschke, A and Sobey-Skelton, C and Dawod, B and Kelly, B and Tremblay, ML and Davis, C and Rioux, JA and Brewer, K}, title = {Use of Magnetotactic Bacteria as an MRI Contrast Agent for In Vivo Tracking of Adoptively Transferred Immune Cells.}, journal = {Molecular imaging and biology}, volume = {}, number = {}, pages = {}, pmid = {37715090}, issn = {1860-2002}, support = {Discovery Grant//Natural Science and Engineering Council (NSERC)/ ; Project Grant//IWK Health Centre/ ; }, abstract = {PURPOSE: In vivo immune cell tracking using MRI can be a valuable tool for studying the mechanisms underlying successful cancer therapies. Current cell labeling methods using superparamagnetic iron oxide (SPIO) lack the persistence to track the fate and location of transplanted cells long-term. Magnetospirillum magneticum is a commercially available, iron-producing bacterium that can be taken up by and live harmoniously within mammalian cells as magneto-endosymbionts (MEs). MEs have shown promise as labeling agents for in vivo stem and cancer cell tracking but have yet to be evaluated in immune cells. This pilot study examined ME labeling in myeloid-derived suppressor cells (MDSCs), cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs) and its effects on cell purity, function, and MRI contrast.

PROCEDURES: MDSCs, CTLs, and DCs were incubated with MEs at various ME labeling ratios (MLR), and various biological metrics and iron uptake were assessed. For in vivo imaging, MDSCs were labeled overnight with either MEs or SPIO (Molday ION Rhodamine B) and injected into C3 tumor-bearing mice via tail vein injection 24 days post-implant and scanned daily with MRI for 1 week to assess cellular quantification.

RESULTS: Following incubations, MDSCs contained > 0.6 pg Fe/cell. CTLs achieved Fe loading of < 0.5 pg/cell, and DCs achieved Fe loading of ~ 1.4 pg/cell. The suppressive functionality of MDSCs at 1000 MLR was not affected by ME labeling but was affected at 2000 MLR. Markers of CTL dysfunction were not markedly affected by ME labeling nor were DC markers. In vivo data demonstrated that the MDSCs labeled with MEs generated sufficient contrast to be detectable using TurboSPI, similar to SPIO-labeled cells.

CONCLUSIONS: Cells can be labeled with sufficient numbers of MEs to be detectable with MRI without compromising cell viability. Care must be taken at higher concentrations of MEs, which may affect some cell types' functional activity and/or morphology. Immune cells with minimal phagocytic behavior have much lower iron content per cell after incubation with MEs vs SPIO; however, MEs can successfully be used as a contrast agent for phagocytic immune cells.}, } @article {pmid37702423, year = {2023}, author = {Sakamoto, W and Takami, T}, title = {Plastid inheritance revisited: emerging role of organelle DNA degradation in angiosperms.}, journal = {Plant & cell physiology}, volume = {}, number = {}, pages = {}, doi = {10.1093/pcp/pcad104}, pmid = {37702423}, issn = {1471-9053}, support = {21H02508 21K06230 23H04959//Japan Society for the Promotion of Science/ ; }, abstract = {Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (~10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance and focuses on the mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DPD1 influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.}, } @article {pmid37695720, year = {2023}, author = {Kryukova, NA and Kryukov, VY and Polenogova, OV and Chertkova, ЕА and Tyurin, MV and Rotskaya, UN and Alikina, T and Kabilov, МR and Glupov, VV}, title = {The endosymbiotic bacterium Wolbachia (Rickettsiales) alters larval metabolism of the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae).}, journal = {Archives of insect biochemistry and physiology}, volume = {}, number = {}, pages = {e22053}, doi = {10.1002/arch.22053}, pmid = {37695720}, issn = {1520-6327}, support = {//Federal Fundamental Scientific Research Program/ ; //Russian Science Foundation/ ; 23-24-00259//The Russian Science Foundation/ ; 1021051703454-5-1.6.12//The Federal Fundamental Scientific Research Program/ ; }, abstract = {Infection of intestinal tissues with Wolbachia has been found in Habrobracon hebetor. There are not many studies on the relationship between Habrobracon and Wolbachia, and they focus predominantly on the sex index of an infected parasitoid, its fertility, and behavior. The actual role of Wolbachia in the biology of Habrobracon is not yet clear. The method of complete eradication of Wolbachia in the parasitoid was developed here, and effects of the endosymbiont on the host's digestive metabolism were compared between two lines of the parasitoid (Wolbachia-positive and Wolbachia-negative). In the gut of Wolbachia[+] larvae, lipases' activity was higher almost twofold, and activities of acid proteases, esterases, and trehalase were 1.5-fold greater than those in the Wolbachia[-] line. Analyses of larval homogenates revealed that Wolbachia[+] larvae accumulate significantly more lipids and have a lower amount of pyruvate as compared to Wolbachia[-] larvae. The presented results indicate significant effects of the intracellular symbiotic bacterium Wolbachia on the metabolism of H. hebetor larvae and on the activity of its digestive enzymes.}, } @article {pmid37690114, year = {2023}, author = {Manzano-Marn, A and Kvist, S and Oceguera-Figueroa, A}, title = {Evolution of an alternative genetic code in the Providencia symbiont of the haematophagous leech Haementeria acuecueyetzin.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evad164}, pmid = {37690114}, issn = {1759-6653}, abstract = {Strict blood-feeding animals are confronted with a strong B vitamin de_ciency. Blood-feeding leeches from the Glossiphoniidae family, similarly to haematophagous insects, have evolved specialised organs called bacteriomes to harbour symbiotic bacteria. Leeches of the Haementeria genus have two pairs of globular bacteriomes attached to the oesophagus which house intracellular 'Candidatus Providencia siddallii' bacteria. Previous work analysing a draft genome of the Providencia symbiont of the Mexican leech Haementeria officinalis showed that, in this species, the bacteria hold a reduced genome capable of synthesising B vitamins. In this work, we aimed to expand our knowledge on the diversity and evolution of Providencia symbionts of Haementeria. For this purpose, we sequenced the symbiont genomes of three selected leech species. We found that all genomes are highly syntenic and have kept a stable genetic repertoire, mirroring ancient insect endosymbionts. Additionally, we found B vitamin pathways to be conserved among these symbionts, pointing to a conserved symbiotic role. Lastly and most notably, we found that the symbiont of Haementeria acuecueyetzin has evolved an alternative genetic code, affecting a portion of its proteome and showing evidence of a lineage-specific and likely intermediate stage of genetic code reassignment.}, } @article {pmid37686049, year = {2023}, author = {Zhang, Z and Zhang, J and Chen, Q and He, J and Li, X and Wang, Y and Lu, Y}, title = {Complete De Novo Assembly of Wolbachia Endosymbiont of Frankliniella intonsa.}, journal = {International journal of molecular sciences}, volume = {24}, number = {17}, pages = {}, doi = {10.3390/ijms241713245}, pmid = {37686049}, issn = {1422-0067}, support = {31672031, 32272537//National Natural Science Foundation of China/ ; 2021C02003//Key Research and Development Program of Zhejiang Province, China/ ; 2022YFD1401204, 2022YFC2601405//Key R&D Program of China/ ; }, abstract = {As an endosymbiont, Wolbachia exerts significant effects on the host, including on reproduction, immunity, and metabolism. However, the study of Wolbachia in Thysanopteran insects, such as flower thrips Frankliniella intonsa, remains limited. Here, we assembled a gap-free looped genome assembly of Wolbachia strain wFI in a length of 1,463,884 bp (GC content 33.80%), using Nanopore long reads and Illumina short reads. The annotation of wFI identified a total of 1838 protein-coding genes (including 85 pseudogenes), 3 ribosomal RNAs (rRNAs), 35 transfer RNAs (tRNAs), and 1 transfer-messenger RNA (tmRNA). Beyond this basic description, we identified mobile genetic elements, such as prophage and insertion sequences (ISs), which make up 17% of the entire wFI genome, as well as genes involved in riboflavin and biotin synthesis and metabolism. This research lays the foundation for understanding the nutritional mutualism between Wolbachia and flower thrips. It also serves as a valuable resource for future studies delving into the intricate interactions between Wolbachia and its host.}, } @article {pmid37673069, year = {2023}, author = {Harumoto, T}, title = {Self-stabilization mechanism encoded by a bacterial toxin facilitates reproductive parasitism.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2023.08.032}, pmid = {37673069}, issn = {1879-0445}, abstract = {A wide variety of maternally transmitted endosymbionts in insects are associated with reproductive parasitism, whereby they interfere with host reproduction to increase the ratio of infected females and spread within populations.[1][,][2] Recent successes in identifying bacterial factors responsible for reproductive parasitism[3][,][4][,][5][,][6][,][7] as well as further omics approaches[8][,][9][,][10][,][11][,][12] have highlighted the common appearance of deubiquitinase domains, although their biological roles-in particular, how they link to distinct manipulative phenotypes-remain poorly defined. Spiroplasma poulsonii is a helical and motile bacterial endosymbiont of Drosophila,[13][,][14] which selectively kills male progeny with a male-killing toxin Spaid (S. poulsonii androcidin), which encodes an ovarian tumor (OTU) deubiquitinase domain.[6] Artificial expression of Spaid in flies reproduces male-killing-associated pathologies that include abnormal apoptosis and neural defects during embryogenesis[6][,][15][,][16][,][17][,][18][,][19]; moreover, it highly accumulates on the dosage-compensated male X chromosome,[20] congruent with cellular defects such as the DNA damage/chromatin bridge breakage specifically induced upon that chromosome.[6][,][21][,][22][,][23] Here, I show that without the function of OTU, Spaid is polyubiquitinated and degraded through the host ubiquitin-proteasome pathway, leading to the attenuation of male-killing activity as shown previously.[6] Furthermore, I find that Spaid utilizes its OTU domain to deubiquitinate itself in an intermolecular manner. Collectively, the deubiquitinase domain of Spaid serves as a self-stabilization mechanism to facilitate male killing in flies, optimizing a molecular strategy of endosymbionts that enables the efficient manipulation of the host at a low energetic cost.}, } @article {pmid37669272, year = {2023}, author = {Lau, MJ and Dutra, HLC and Jones, MJ and McNulty, BP and Diaz, AM and Ware-Gilmore, F and McGraw, EA}, title = {Jamestown Canyon virus is transmissible by Aedes aegypti and is only moderately blocked by Wolbachia co-infection.}, journal = {PLoS neglected tropical diseases}, volume = {17}, number = {9}, pages = {e0011616}, doi = {10.1371/journal.pntd.0011616}, pmid = {37669272}, issn = {1935-2735}, abstract = {Jamestown Canyon virus (JCV), a negative-sense arbovirus, is increasingly common in the upper Midwest of the USA. Transmitted by a range of mosquito genera, JCV's primary amplifying host is white-tailed deer. Aedes aegypti is responsible for transmitting various positive-sense viruses globally including dengue (DENV), Zika, chikungunya, and Yellow Fever. Ae. aegypti's distribution, once confined to the tropics, is expanding, in part due to climate change. Wolbachia, an insect endosymbiont, limits the replication of co-infecting viruses inside insects. The release and spread of the symbiont into Ae. aegypti populations have been effective in reducing transmission of DENV to humans, although the mechanism of Wolbachia-mediated viral blocking is still poorly understood. Here we explored JCV infection potential in Ae. aegypti, the nature of the vector's immune response, and interactions with Wolbachia infection. We show that Ae. aegypti is highly competent for JCV, which grows to high loads and rapidly reaches the saliva after an infectious blood meal. The mosquito immune system responds with strong induction of RNAi and JAK/STAT. Neither the direct effect of viral infection nor the energetic investment in immunity appears to affect mosquito longevity. Wolbachia infection blocked JCV only in the early stages of infection. Wolbachia-induced immunity was small compared to that of JCV, suggesting innate immune priming does not likely explain blocking. We propose two models to explain why Wolbachia's blocking of negative-sense viruses like JCV may be less than that of positive-sense viruses, relating to the slowdown of host protein synthesis and the triggering of interferon-like factors like Vago. In conclusion, we highlight the risk for increased human disease with the predicted future overlap of Ae. aegypti and JCV ranges. We suggest that with moderate Wolbachia-mediated blocking and distinct biology, negative-sense viruses represent a fruitful comparator model to other viruses for understanding blocking mechanisms in mosquitoes.}, } @article {pmid37660098, year = {2023}, author = {Lin, C and Li, LJ and Ren, K and Zhou, SY and Isabwe, A and Yang, LY and Neilson, R and Yang, XR and Cytryn, E and Zhu, YG}, title = {Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere.}, journal = {ISME communications}, volume = {3}, number = {1}, pages = {94}, pmid = {37660098}, issn = {2730-6151}, support = {42090063//National Natural Science Foundation of China (National Science Foundation of China)/ ; 32061143015//National Natural Science Foundation of China (National Science Foundation of China)/ ; 32100331//National Natural Science Foundation of China (National Science Foundation of China)/ ; }, abstract = {Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.}, } @article {pmid37658881, year = {2023}, author = {Owashi, Y and Minami, T and Kikuchi, T and Yoshida, A and Nakano, R and Kageyama, D and Adachi-Hagimori, T}, title = {Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis.}, journal = {Microbial ecology}, volume = {}, number = {}, pages = {}, pmid = {37658881}, issn = {1432-184X}, abstract = {Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia, two strains of Wolbachia, Spiroplasma, Providencia, Serratia, Pseudochrobactrum, Lactococcus, and Stenotrophomonas. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia, Wolbachia, and Spiroplasma, was performed on a larger sample size (n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of Rickettsia was significantly correlated with latitude and temperature, while that of Wolbachia and Spiroplasma was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the N. tenuis microbiome is typical for predatory arthropods rather than sap-feeding insects. Rickettsia and Wolbachia were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop N. tenuis as a biological control agent.}, } @article {pmid37653429, year = {2023}, author = {Duong Thi Hue, K and da Silva Goncalves, D and Tran Thuy, V and Thi Vo, L and Le Thi, D and Vu Tuyet, N and Nguyen Thi, G and Huynh Thi Xuan, T and Nguyen Minh, N and Nguyen Thanh, P and Yacoub, S and Simmons, CP}, title = {Wolbachia wMel strain-mediated effects on dengue virus vertical transmission from Aedes aegypti to their offspring.}, journal = {Parasites & vectors}, volume = {16}, number = {1}, pages = {308}, pmid = {37653429}, issn = {1756-3305}, abstract = {BACKGROUND: Dengue virus serotypes (DENV-1 to -4) can be transmitted vertically in Aedes aegpti mosquitoes. Whether infection with the wMel strain of the endosymbiont Wolbachia can reduce the incidence of vertical transmission of DENV from infected females to their offspring is not well understood.

METHODS: A laboratory colony of Vietnamese Ae. aegypti, both with and without wMel infection, were infected with DENV-1 by intrathoracic injection (IT) to estimate the rate of vertical transmission (VT) of the virus. VT in the DENV-infected mosquitoes was calculated via the infection rate estimation from mosquito pool data using maximum likelihood estimation (MLE).

RESULTS: In 6047 F1 Vietnamese wild-type Ae. aegypti, the MLE of DENV-1 infection was 1.49 per 1000 mosquitoes (95% confidence interval [CI] 0.73-2.74). In 5500 wMel-infected Ae. aegypti, the MLE infection rate was 0 (95% CI 0-0.69). The VT rates between mosquito lines showed a statistically significant difference.

CONCLUSIONS: The results reinforce the view that VT is a rare event in wild-type mosquitoes and that infection with wMel is effective in reducing VT.}, } @article {pmid37653056, year = {2023}, author = {Takahashi, K and Kuwahara, H and Horikawa, Y and Izawa, K and Kato, D and Inagaki, T and Yuki, M and Ohkuma, M and Hongoh, Y}, title = {Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, pmid = {37653056}, issn = {1751-7370}, support = {17H01447//MEXT | Japan Society for the Promotion of Science (JSPS)/ ; 19H05689//MEXT | Japan Society for the Promotion of Science (JSPS)/ ; GS009//MEXT | Japan Society for the Promotion of Science (JSPS)/ ; 22241046//MEXT | Japan Society for the Promotion of Science (JSPS)/ ; 16H04840//MEXT | Japan Society for the Promotion of Science (JSPS)/ ; 20H02897//MEXT | Japan Society for the Promotion of Science (JSPS)/ ; 20H05584//MEXT | Japan Society for the Promotion of Science (JSPS)/ ; 22K19342//MEXT | Japan Society for the Promotion of Science (JSPS)/ ; 14532219//MEXT | JST | Core Research for Evolutional Science and Technology (CREST)/ ; }, abstract = {The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.}, } @article {pmid37650927, year = {2023}, author = {Ho, HVN and Dunigan, DD and Salsbery, ME and Agarkova, IV and Al Ameeli, Z and Van Etten, JL and DeLong, JP}, title = {Viral Chemotaxis of Paramecium Bursaria Altered by Algal Endosymbionts.}, journal = {Microbial ecology}, volume = {}, number = {}, pages = {}, pmid = {37650927}, issn = {1432-184X}, support = {1736030//Directorate for Biological Sciences/ ; 1736030//Directorate for Biological Sciences/ ; 1736030//Directorate for Biological Sciences/ ; }, abstract = {Chemotaxis is widespread across many taxa and often aids resource acquisition or predator avoidance. Species interactions can modify the degree of movement facilitated by chemotaxis. In this study, we investigated the influence of symbionts on Paramecium bursaria's chemotactic behavior toward chloroviruses. To achieve this, we performed choice experiments using chlorovirus and control candidate attractors (virus stabilization buffer and pond water). We quantified the movement of Paramecia grown with or without algal and viral symbionts toward each attractor. All Paramecia showed some chemotaxis toward viruses, but cells without algae and viruses showed the most movement toward viruses. Thus, the endosymbiotic algae (zoochlorellae) appeared to alter the movement of Paramecia toward chloroviruses, but it was not clear that ectosymbiotic viruses (chlorovirus) also had this effect. The change in behavior was consistent with a change in swimming speed, but a change in attraction remains possible. The potential costs and benefits of chemotactic movement toward chloroviruses for either the Paramecia hosts or its symbionts remain unclear.}, } @article {pmid37650335, year = {2023}, author = {Ehinger, F and Niehs, S and Dose, B and Dell, M and Krabe, J and Pidot, SJ and Stinear, TP and Scherlach, K and Ross, C and Lackner, G and Hertweck, C}, title = {Analysis of Rhizonin Biosynthesis Reveals Origin of Pharmacophoric Furylalanine Moieties in Diverse Cyclopeptides.}, journal = {Angewandte Chemie (International ed. in English)}, volume = {}, number = {}, pages = {e202308540}, doi = {10.1002/anie.202308540}, pmid = {37650335}, issn = {1521-3773}, abstract = {Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insights. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.}, } @article {pmid37645949, year = {2023}, author = {Wenzel, M and Aquadro, CF}, title = {Wolbachia infection at least partially rescues the fertility and ovary defects of several new Drosophila melanogaster bag of marbles protein-coding mutants.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2023.03.20.532813}, pmid = {37645949}, abstract = {UNLABELLED: The D. melanogaster protein coding gene bag of marbles (bam) plays a key role in early male and female reproduction by forming complexes with partner proteins to promote differentiation in gametogenesis. Like another germline gene, Sex lethal , bam genetically interacts with the endosymbiont Wolbachia , as Wolbachia rescues the reduced fertility of a bam hypomorphic mutant. Here, we explored the specificity of the bam-Wolbachia interaction by generating 22 new bam mutants, with ten mutants displaying fertility defects. Nine of these mutants trend towards rescue by the w Mel Wolbachia variant, with eight statistically significant at the fertility and/or cytological level. In some cases, fertility was increased a striking 20-fold. There is no specificity between the rescue and the known binding regions of bam , suggesting w Mel does not interact with one singular bam partner to rescue the reproductive phenotype. We further tested if w Mel interacts with bam in a non-specific way, by increasing bam transcript levels or acting upstream in germline stem cells. A fertility assessment of a bam RNAi knockdown mutant reveals that w Mel rescue is specific to functionally mutant bam alleles and we find no obvious evidence of w Mel interaction with germline stem cells in bam mutants.

AUTHOR SUMMARY: Reproduction in the Drosophila melanogaster fruit fly is dependent on the bag of marbles (bam) gene, which acts early in the process of generating eggs and sperm. Mutations to this gene negatively impact the fertility of the fly, causing it to be sterile or have fewer progeny. Interestingly, we find that the bacteria Wolbachia , which resides within reproductive cells across a wide range of insects, partially restores the fertility and ovary phenotype of several bam mutants of which the resultant Bam protein is altered from wildtype. The protein function of Bam is further suggested to be important by the lack of rescue for a fly that has a fertility defect due to low expression of a non-mutated bam gene. Previous work makes similar conclusions about Wolbachia with another reproductive gene, Sex lethal (Sxl), highlighting the potential for rescue of fertility mutants to occur in a similar way across different genes. An understanding of the ways in which Wolbachia can affect host reproduction provides us with context with which to frame Wolbachia 's impact on host genes, such as bam and Sxl, and consider the evolutionary implications of Wolbachia 's infection in D. melanogaster fruit flies.}, } @article {pmid37638258, year = {2023}, author = {Sheibani, P and Jamshidi, M and Khakvar, R and Nematollahi, S}, title = {Genomic Characterization of Endosymbiotic Bacteria Associated With Helicoverpa armigera in Iran Using Next-Generation Sequencing.}, journal = {Bioinformatics and biology insights}, volume = {17}, number = {}, pages = {11779322231195457}, pmid = {37638258}, issn = {1177-9322}, abstract = {Several species of the Helicoverpa genus have been recognized as major agricultural pests from different regions of the world, among which Helicoverpa armigera species has been reported as the most destructive and cosmopolitan species in most regions of the world, including Iran. This pest is a polyphagous species and can cause damage to more than 120 plant species. Studying the internal microbiome of pests is very important in identifying species' weaknesses and natural enemies and potential biological control agents. For genomic characterization of the microbial community associated with H armigera, the whole genome of insect larvae collected from vegetable fields in the northwest of Iran was sequenced using next-generation sequencing Illumina platform. Finally, about 2 GB of raw data were obtained. Using the MetaPhlAn2 pipeline, it was predicted that 2 endosymbiont bacterial species including Buchnera aphidicola and Serratia symbiotica were associated with H armigera. Alignment of reference strains sequences related to both endosymbiotic bacteria with raw data and subsequently, assembly analyses resulted in 2 genomes with 657 623 bp length with GC content of 27.4% for B aphidicola and 1 595 135 bp length with GC content of 42.90% for S symbiotica. This research is the first report on the association of B aphidicola and S symbiotica as endosymbiotic bacteria with H armigera worldwide.}, } @article {pmid37634049, year = {2023}, author = {Treitli, SC and Hanousková, P and Beneš, V and Brune, A and Čepička, I and Hampl, V}, title = {Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic ameba Pelomyxa schiedti.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, pmid = {37634049}, issn = {1751-7370}, abstract = {Pelomyxa is a genus of anaerobic amoebae that live in consortia with multiple prokaryotic endosymbionts. Although the symbionts represent a large fraction of the cellular biomass, their metabolic roles have not been investigated. Using single-cell genomics and transcriptomics, we have characterized the prokaryotic community associated with P. schiedti, which is composed of two bacteria, Candidatus Syntrophus pelomyxae (class Deltaproteobacteria) and Candidatus Vesiculincola pelomyxae (class Clostridia), and a methanogen, Candidatus Methanoregula pelomyxae. Fluorescence in situ hybridization and electron microscopy showed that Ca. Vesiculincola pelomyxae is localized inside vesicles, whereas the other endosymbionts occur freely in the cytosol, with Ca. Methanoregula pelomyxae enriched around the nucleus. Genome and transcriptome-based reconstructions of the metabolism suggests that the cellulolytic activity of P. schiedti produces simple sugars that fuel its own metabolism and the metabolism of a Ca. Vesiculincola pelomyxae, while Ca. Syntrophus pelomyxae energy metabolism relies on degradation of butyrate and isovalerate from the environment. Both species of bacteria and the ameba use hydrogenases to transfer the electrons from reduced equivalents to hydrogen, a process that requires a low hydrogen partial pressure. This is achieved by the third endosymbiont, Ca. Methanoregula pelomyxae, which consumes H2 and formate for methanogenesis. While the bacterial symbionts can be successfully eliminated by vancomycin treatment without affecting the viability of the amoebae, treatment with 2-bromoethanesulfonate, a specific inhibitor of methanogenesis, killed the amoebae, indicating the essentiality of the methanogenesis for this consortium.}, } @article {pmid37630596, year = {2023}, author = {Mancuso, E and Di Domenico, M and Di Gialleonardo, L and Menegon, M and Toma, L and Di Luca, M and Casale, F and Di Donato, G and D'Onofrio, L and De Rosa, A and Riello, S and Ferri, A and Serra, L and Monaco, F}, title = {Tick Species Diversity and Molecular Identification of Spotted Fever Group Rickettsiae Collected from Migratory Birds Arriving from Africa.}, journal = {Microorganisms}, volume = {11}, number = {8}, pages = {}, pmid = {37630596}, issn = {2076-2607}, support = {IZS AM 04/19 RC//Italian Ministry of Health/ ; }, abstract = {The role of migratory birds in the spread of ticks and tick-borne pathogens along their routes from Africa to Europe is increasingly emerging. Wild birds can host several tick species, often infected by bacteria responsible for zoonoses. The aim of the study is to assess the possible introduction of exotic ticks carried by migratory birds into Italy from Africa and to detect the presence of Rickettsia species and Coxiella burnetii they may harbor. During a two-year survey, we collected ticks from migratory birds captured during their short stop-over on Ventotene Island. Specimens were first identified by morphology or sequencing molecular targets when needed, and then tested by real-time PCR for the presence of selected pathogens. A total of 91% of the collection consisted of sub-Saharan ticks, more than 50% of which were infected by Rickettsia species belonging to the spotted fever group, mainly represented by R. aeschlimannii. In contrast, the suspected C. burnetii detected in two soft ticks were confirmed as Coxiella-like endosymbionts and not the pathogen. Although there are still gaps in the knowledge of this dispersal process, our findings confirm the role of migratory birds in the spread of ticks and tick-borne pathogens, suggesting the need for a continuous surveillance to monitor the potential emergence of new diseases in Europe.}, } @article {pmid37630527, year = {2023}, author = {Namina, A and Kazarina, A and Lazovska, M and Akopjana, S and Ulanova, V and Kivrane, A and Freimane, L and Sadovska, D and Kimsis, J and Bormane, A and Capligina, V and Ranka, R}, title = {Comparative Microbiome Analysis of Three Epidemiologically Important Tick Species in Latvia.}, journal = {Microorganisms}, volume = {11}, number = {8}, pages = {}, doi = {10.3390/microorganisms11081970}, pmid = {37630527}, issn = {2076-2607}, support = {No. 1.1.1.1/16/A/044//European Research and Development Fund/ ; }, abstract = {(1) Background: Amplicon-based 16S rRNA profiling is widely used to study whole communities of prokaryotes in many niches. Here, we comparatively examined the microbial composition of three tick species, Ixodes ricinus, Ixodes persulcatus and Dermacentor reticulatus, which were field-collected in Latvia. (2) Methods: Tick DNA samples were used for microbiome analysis targeting bacterial 16S rDNA using next-generation sequencing (NGS). (3) Results: The results showed significant differences in microbial species diversity and composition by tick species and life stage. A close similarity between microbiomes of I. ricinus and I. persulcatus ticks was observed, while the D. reticulatus microbiome composition appeared to be more distinct. Significant differences in alpha and beta microbial diversity were observed between Ixodes tick life stages and sexes, with lower taxa richness indexes obtained for female ticks. The Francisella genus was closely associated with D. reticulatus ticks, while endosymbionts Candidatus Midichlorii and Candidatus Lariskella were associated with I. ricinus and I. persulcatus females, respectively. In I. ricinus females, the endosymbiont load negatively correlated with the presence of the Rickettsia genus. (4) Conclusions: The results of this study revealed important associations between ticks and their microbial community and highlighted the microbiome features of three tick species in Latvia.}, } @article {pmid37630471, year = {2023}, author = {Chao, LL and Shih, CM}, title = {First Detection and Genetic Identification of Wolbachia Endosymbiont in Field-Caught Aedes aegypti (Diptera: Culicidae) Mosquitoes Collected from Southern Taiwan.}, journal = {Microorganisms}, volume = {11}, number = {8}, pages = {}, doi = {10.3390/microorganisms11081911}, pmid = {37630471}, issn = {2076-2607}, support = {MOST 111-2314-B-037-031//Ministry of Science and Technology, Taiwan/ ; }, abstract = {The prevalence and genetic character of Wolbachia endosymbionts in field-collected Aedes aegypti mosquitoes were examined for the first time in Taiwan. A total of 665 Ae. aegypti were screened for Wolbachia infection using a PCR assay targeting the Wolbachia surface protein (wsp) gene. In general, the prevalence of Wolbachia infection was detected in 3.3% Ae. aegypti specimens (2.0% female and 5.2% male). Group-specific Wolbachia infection was detected with an infection rate of 1.8%, 0.8% and 0.8% in groups A, B and A&B, respectively. Genetic analysis demonstrated that all Wolbachia strains from Taiwan were phylogenetically affiliated with Wolbachia belonging to the supergroups A and B, with high sequence similarities of 99.4-100% and 99.2-100%, respectively. Phylogenetic relationships can be easily distinguished by maximum likelihood (ML) analysis and were congruent with the unweighted pair group with the arithmetic mean (UPGMA) method. The intra- and inter-group analysis of genetic distance (GD) values revealed a lower level within the Taiwan strains (GD < 0.006 for group A and GD < 0.008 for group B) and a higher level (GD > 0.498 for group A and GD > 0.286 for group B) as compared with other Wolbachia strains. Our results describe the first detection and molecular identification of Wolbachia endosymbiont in field-caught Ae. aegypti mosquitoes collected from Taiwan, and showed a low Wolbachia infection rate belonging to supergroups A and B in Ae. aegypti mosquitoes.}, } @article {pmid37628597, year = {2023}, author = {Corpuz, RL and Bellinger, MR and Veillet, A and Magnacca, KN and Price, DK}, title = {The Transmission Patterns of the Endosymbiont Wolbachia within the Hawaiian Drosophilidae Adaptive Radiation.}, journal = {Genes}, volume = {14}, number = {8}, pages = {}, doi = {10.3390/genes14081545}, pmid = {37628597}, issn = {2073-4425}, support = {1345247//National Science Foundation/ ; }, abstract = {The evolution of endosymbionts and their hosts can lead to highly dynamic interactions with varying fitness effects for both the endosymbiont and host species. Wolbachia, a ubiquitous endosymbiont of arthropods and nematodes, can have both beneficial and detrimental effects on host fitness. We documented the occurrence and patterns of transmission of Wolbachia within the Hawaiian Drosophilidae and examined the potential contributions of Wolbachia to the rapid diversification of their hosts. Screens for Wolbachia infections across a minimum of 140 species of Hawaiian Drosophila and Scaptomyza revealed species-level infections of 20.0%, and across all 399 samples, a general infection rate of 10.3%. Among the 44 Wolbachia strains we identified using a modified Wolbachia multi-locus strain typing scheme, 30 (68.18%) belonged to supergroup B, five (11.36%) belonged to supergroup A, and nine (20.45%) had alleles with conflicting supergroup assignments. Co-phylogenetic reconciliation analysis indicated that Wolbachia strain diversity within their endemic Hawaiian Drosophilidae hosts can be explained by vertical (e.g., co-speciation) and horizontal (e.g., host switch) modes of transmission. Results from stochastic character trait mapping suggest that horizontal transmission is associated with the preferred oviposition substrate of the host, but not the host's plant family or island of occurrence. For Hawaiian Drosophilid species of conservation concern, with 13 species listed as endangered and 1 listed as threatened, knowledge of Wolbachia strain types, infection status, and potential for superinfection could assist with conservation breeding programs designed to bolster population sizes, especially when wild populations are supplemented with laboratory-reared, translocated individuals. Future research aimed at improving the understanding of the mechanisms of Wolbachia transmission in nature, their impact on the host, and their role in host species formation may shed light on the influence of Wolbachia as an evolutionary driver, especially in Hawaiian ecosystems.}, } @article {pmid37623315, year = {2023}, author = {Moriyama, M and Nishide, Y and Toyoda, A and Itoh, T and Fukatsu, T}, title = {Complete genomes of mutualistic bacterial co-symbionts "Candidatus Sulcia muelleri" and "Candidatus Nasuia deltocephalinicola" of the rice green leafhopper Nephotettix cincticeps.}, journal = {Microbiology resource announcements}, volume = {}, number = {}, pages = {e0035323}, doi = {10.1128/MRA.00353-23}, pmid = {37623315}, issn = {2576-098X}, abstract = {The genomes of obligate bacterial co-symbionts of the green rice leafhopper Nephotettix cincticeps, which is notorious as an agricultural pest, were determined. The streamlined genomes of "Candidatus Sulcia muelleri" and "Candidatus Nasuia deltocephalinicola" exhibited complementary metabolic pathways for synthesizing essential nutrients that contribute to host adaptation.}, } @article {pmid37622600, year = {2023}, author = {Ciocchetta, S and Frentiu, FD and Montarsi, F and Capelli, G and Devine, GJ}, title = {Investigation on key aspects of mating biology in the mosquito Aedes koreicus.}, journal = {Medical and veterinary entomology}, volume = {}, number = {}, pages = {}, doi = {10.1111/mve.12687}, pmid = {37622600}, issn = {1365-2915}, abstract = {Aedes koreicus Edwards, 1917 (Hulecoetomyia koreica) is a mosquito (Diptera: Culicidae) from Northeast Asia with a rapidly expanding presence outside its original native range. Over the years, the species has been discovered in several new countries, either spreading after first introduction or remaining localised to limited areas. Notably, recent studies have demonstrated the ability of the species to transmit zoonotic parasites and viruses both in the field and in laboratory settings. Combined with its invasive potential, the possible role of Ae. koreicus in pathogen transmission highlights the public health risks resulting from its invasion. In this study, we used a recently established population from Italy to investigate aspects of biology that influence reproductive success in Ae. koreicus: autogeny, mating behaviour, mating disruption by the sympatric invasive species Aedes albopictus Skuse, 1894, and the presence of the endosymbiont Wolbachia pipientis Hertig, 1936. Our laboratory population did not exhibit autogenic behaviour and required a bloodmeal to complete its ovarian cycle. When we exposed Ae. koreicus females to males of Ae. albopictus, we observed repeated attempts at insemination and an aggressive, disruptive mating behaviour initiated by male Ae. albopictus. Despite this, no sperm was identified in Ae. koreicus spermathecae. Wolbachia, an endosymbiotic bacterium capable of influencing mosquito reproductive behaviour, was not detected in this Ae. koreicus population and, therefore, had no effect on Ae. koreicus reproduction.}, } @article {pmid37615902, year = {2023}, author = {Lanzoni, O and Szokoli, F and Schrallhammer, M and Sabaneyeva, E and Krenek, S and Doak, TG and Verni, F and Berendonk, TU and Castelli, M and Petroni, G}, title = {"Candidatus Intestinibacterium parameciiphilum"-member of the "Candidatus Paracaedibacteraceae" family (Alphaproteobacteria, Holosporales) inhabiting the ciliated protist Paramecium.}, journal = {International microbiology : the official journal of the Spanish Society for Microbiology}, volume = {}, number = {}, pages = {}, pmid = {37615902}, issn = {1618-1905}, abstract = {Protists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family "Candidatus Paracaedibacteraceae" (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of "Candidatus Intestinibacterium parameciiphilum" within the family "Candidatus Paracaedibacteraceae", inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative "Candidatus Intestinibacterium nucleariae" from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of "Candidatus Intestinibacterium" species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the "Candidatus Intestinibacterium" genus.}, } @article {pmid37601442, year = {2023}, author = {Archer, J and Hurst, GDD and Hornett, EA}, title = {Male-killer symbiont screening reveals novel associations in Adalia ladybirds.}, journal = {Access microbiology}, volume = {5}, number = {7}, pages = {}, pmid = {37601442}, issn = {2516-8290}, abstract = {While male-killing bacteria are known to infect across arthropods, ladybird beetles represent a hotspot for these symbioses. In some host species, there are multiple different symbionts that vary in presence and frequency between populations. To further our understanding of spatial and frequency variation, we tested for the presence of three male-killing bacteria: Wolbachia , Rickettsia and Spiroplasma , in two Adalia ladybird species from a previously unexplored UK population. The two-spot ladybird, A. bipunctata, is known to harbour all three male-killers, and we identified Spiroplasma infection in the Merseyside population for the first time. However, in contrast to previous studies on two-spot ladybirds from continental Europe, evidence from egg-hatch rates indicates the Spiroplasma strain present in the Merseyside population does not cause embryonic male-killing. In the related ten-spot ladybird, A. decempunctata, there is only one previous record of a male-killing symbiont, a Rickettsia , which we did not detect in the Merseyside sample. However, PCR assays indicated the presence of a Spiroplasma in a single A. decempunctata specimen. Marker sequence indicated that this Spiroplasma was divergent from that found in sympatric A. bipunctata. Genome sequencing of the Spiroplasma -infected A. decempunctata additionally revealed the presence of cobionts in the form of a Centistes parasitoid wasp and the parasitic fungi Beauveria. Further study of A. decempunctata from this population is needed to resolve whether it is the ladybird or wasp cobiont that harbours Spiroplasma , and to establish the phenotype of this strain. These data indicate first that microbial symbiont phenotype should not be assumed from past studies conducted in different locations, and second that cobiont presence may confound screening studies aimed to detect the frequency of a symbiont in field collected material from a focal host species.}, } @article {pmid37593719, year = {2023}, author = {Scott, TJ and Larsen, TJ and Brock, DA and Uhm, SYS and Queller, DC and Strassmann, JE}, title = {Symbiotic bacteria, immune-like sentinel cells, and the response to pathogens in a social amoeba.}, journal = {Royal Society open science}, volume = {10}, number = {8}, pages = {230727}, pmid = {37593719}, issn = {2054-5703}, abstract = {Some endosymbionts living within a host must modulate their hosts' immune systems in order to infect and persist. We studied the effect of a bacterial endosymbiont on a facultatively multicellular social amoeba host. Aggregates of the amoeba Dictyostelium discoideum contain a subpopulation of sentinel cells that function akin to the immune systems of more conventional multicellular organisms. Sentinel cells sequester and discard toxins from D. discoideum aggregates and may play a central role in defence against pathogens. We measured the number and functionality of sentinel cells in aggregates of D. discoideum infected by bacterial endosymbionts in the genus Paraburkholderia. Infected D. discoideum produced fewer and less functional sentinel cells, suggesting that Paraburkholderia may interfere with its host's immune system. Despite impaired sentinel cells, however, infected D. discoideum were less sensitive to ethidium bromide toxicity, suggesting that Paraburkholderia may also have a protective effect on its host. By contrast, D. discoideum infected by Paraburkholderia did not show differences in their sensitivity to two non-symbiotic pathogens. Our results expand previous work on yet another aspect of the complicated relationship between D. discoideum and Paraburkholderia, which has considerable potential as a model for the study of symbiosis.}, } @article {pmid37399133, year = {2023}, author = {Beliavskaia, A and Tan, KK and Sinha, A and Husin, NA and Lim, FS and Loong, SK and Bell-Sakyi, L and Carlow, CKS and AbuBakar, S and Darby, AC and Makepeace, BL and Khoo, JJ}, title = {Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas.}, journal = {Microbial genomics}, volume = {9}, number = {7}, pages = {}, pmid = {37399133}, issn = {2057-5858}, support = {BB/P024378/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; BB/P024270/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; 223743/Z/21/Z/WT_/Wellcome Trust/United Kingdom ; }, mesh = {Animals ; *Rickettsia/genetics ; *Bartonella/genetics ; *Siphonaptera/microbiology ; *Ctenocephalides/microbiology ; *Wolbachia/genetics ; Metagenomics ; Insecta ; }, abstract = {While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat (Ctenocephalides felis) and dog (Ctenocephalides canis) fleas, as well as Ctenocephalides orientis (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by Bartonella spp.) and Rickettsia spp., including Rickettsia felis (agent of flea-borne spotted fever) and Rickettsia asembonensis , a suspected pathogen. These Rickettsia spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of Wolbachia strains. Here, we present circularized genome assemblies for two C. orientis-derived pathogens (Bartonella clarridgeiae and R. asembonensis) from Malaysia, a novel Wolbachia strain (wCori), and the C. orientis mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two Wolbachia strains from Malaysian C. felis into tick cell culture and recovered circularized genome assemblies for both, one of which (wCfeF) is newly sequenced. We demonstrate that the three Wolbachia strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These Wolbachia genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for R. asembonensis includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first B. clarridgeiae genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of Ctenocephalides-associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.}, } @article {pmid37585608, year = {2023}, author = {Shao, Y and Mason, CJ and Felton, GW}, title = {Toward an Integrated Understanding of the Lepidoptera Microbiome.}, journal = {Annual review of entomology}, volume = {}, number = {}, pages = {}, doi = {10.1146/annurev-ento-020723-102548}, pmid = {37585608}, issn = {1545-4487}, abstract = {Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis. Expected final online publication date for the Annual Review of Entomology, Volume 69 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.}, } @article {pmid37584011, year = {2023}, author = {Perles, L and Otranto, D and Barreto, WTG and de Macedo, GC and Lia, RP and Mendoza-Roldan, JA and Herrera, HM and de Oliveira, CE and Machado, RZ and André, MR}, title = {Mansonella sp. and associated Wolbachia endosymbionts in ring-tailed coatis (Nasua nasua) in periurban areas from Midwestern Brazil.}, journal = {International journal for parasitology. Parasites and wildlife}, volume = {22}, number = {}, pages = {14-19}, pmid = {37584011}, issn = {2213-2244}, abstract = {Coatis (Nasua nasua) are wild carnivorous well adapted to anthropized environments especially important because they act as reservoirs hosts for many arthropod-borne zoonotic pathogens. Information about filarioids from coatis and associated Wolbachia spp. in Brazil is scant. To investigate the diversity of filarial nematodes, blood samples (n = 100 animals) were obtained from two urban areas in midwestern Brazil and analyzed using blood smears and buffy coats and cPCR assays based on the cox1, 12S rRNA, 18S rRNA, hsp70 and myoHC genes for nematodes and 16S rRNA for Wolbachia. When analyzing coati blood smears and buffy coats, 30% and 80% of the samples presented at least one microfilaria, respectively. Twenty-five cox1 sequences were obtained showing 89% nucleotide identity with Mansonella ozzardi. Phylogenetic analyses clustered cox1 sequences herein obtained within the Mansonella spp. clade. Sequences of both myoHC and two hsp70 genes showed 99.8% nucleotide identity with Mansonella sp. and clustered into a clade within Mansonella sp., previously detected in coatis from Brazil. Two blood samples were positive for Wolbachia, with a 99% nucleotide identity with Wolbachia previously found in Mansonella perstans, Mansonella ozzardi and Mansonella atelensis and in ectoparasites of the genus Pseudolynchia, Melophagus and Cimex. The study showed a high prevalence of Mansonella sp. in the coati population examined, suggesting that this animal species play a role as reservoirs of a novel, yet to be described, species within the Onchocercidae family.}, } @article {pmid37583325, year = {2023}, author = {Travers-Cook, TJ and Jokela, J and Buser, CC}, title = {The evolutionary ecology of fungal killer phenotypes.}, journal = {Proceedings. Biological sciences}, volume = {290}, number = {2005}, pages = {20231108}, doi = {10.1098/rspb.2023.1108}, pmid = {37583325}, issn = {1471-2954}, abstract = {Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.}, } @article {pmid37577638, year = {2023}, author = {He, LS and Qi, Y and Allard, CA and Valencia-Montoya, WA and Krueger, SP and Weir, K and Seminara, A and Bellono, NW}, title = {Molecular tuning of sea anemone stinging.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2023.06.15.545144}, pmid = {37577638}, abstract = {Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (Ca V) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong Ca V inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a Ca V splice variant that confers weak inactivation. Chimeric analyses reveal that Ca V β subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.}, } @article {pmid37577446, year = {2023}, author = {Ali, A and Obaid, MK and Almutairi, MM and Alouffi, A and Numan, M and Ullah, S and Rehman, G and Islam, ZU and Khan, SB and Tanaka, T}, title = {Molecular detection of Coxiella spp. in ticks (Ixodidae and Argasidae) infesting domestic and wild animals: with notes on the epidemiology of tick-borne Coxiella burnetii in Asia.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1229950}, pmid = {37577446}, issn = {1664-302X}, abstract = {Tick-borne Coxiella spp. are emerging in novel regions infecting different hosts, but information regarding their occurrence is limited. The purpose of this study was the molecular screening of Coxiella spp. in various ticks infesting goats, sheep, camels, cattle, wild mice, and domestic fowls (Gallus gallus domesticus) in various districts of Khyber Pakhtunkhwa, Pakistan. Morphologically identified tick species were confirmed by obtaining their cox1 sequences and were molecularly screened for Coxiella spp. by sequencing GroEL fragments. Almost 345 out of 678 (50.9%) hosts were infested by nine tick species. Regarding the age groups, the hosts having an age >3 years were highly infested (192/345, 55.6%), while gender-wise infestation was higher in female hosts (237/345, 68.7%). In collected ticks, the nymphs were outnumbered (613/1,119, 54.8%), followed by adult females (293/1,119, 26.2%) and males (213/1,119, 19.7%). A total of 227 ticks were processed for molecular identification and detection of Coxiella spp. The obtained cox1 sequences of nine tick species such as Hyalomma dromedarii, Hyalomma anatolicum, Haemaphysalis cornupunctata, Haemaphysalis bispinosa, Haemaphysalis danieli, Haemaphysalis montgomeryi, Rhipicephalus haemaphysaloides, Rhipicephalus microplus, and Argas persicus showed maximum identities between 99.6% and 100% with the same species and in the phylogenetic tree, clustered to the corresponding species. All the tick species except Ha. danieli and R. microplus were found positive for Coxiella spp. (40/227, 17.6%), including Coxiella burnetii (15/40, 6.7%), Coxiella endosymbionts (14/40, 6.3%), and different Coxiella spp. (11/40, 4.9%). By the BLAST results, the GroEL fragments of Coxiella spp. showed maximum identity to C. burnetii, Coxiella endosymbionts, and Coxiella sp., and phylogenetically clustered to the corresponding species. This is the first comprehensive report regarding the genetic characterization of Coxiella spp. in Pakistan's ticks infesting domestic and wild hosts. Proper surveillance and management measures should be undertaken to avoid health risks.}, } @article {pmid37577425, year = {2023}, author = {Garrido, M and Veiga, J and Garrigós, M and Martínez-de la Puente, J}, title = {The interplay between vector microbial community and pathogen transmission on the invasive Asian tiger mosquito, Aedes albopictus: current knowledge and future directions.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1208633}, pmid = {37577425}, issn = {1664-302X}, abstract = {The invasive Asian tiger mosquito Aedes albopictus is nowadays broadly distributed with established populations in all continents except Antarctica. In the invaded areas, this species represents an important nuisance for humans and, more relevant, it is involved in the local transmission of pathogens relevant under a public health perspective. Aedes albopictus is a competent vector of parasites such as Dirofilaria and viruses including dengue virus, Zika virus, and chikungunya virus, among others. The mosquito microbiota has been identified as one of the major drivers of vector competence, acting upon relevant vector functions as development or immunity. Here, we review the available literature on the interaction between Ae. albopictus microbiota and pathogen transmission and identify the knowledge gaps on the topic. Most studies are strictly focused on the interplay between pathogens and Wolbachia endosymbiont while studies screening whole microbiota are still scarce but increasing in recent years, supported on Next-generation sequencing tools. Most experimental trials use lab-reared mosquitoes or cell lines, exploring the molecular mechanisms of the microbiota-pathogen interaction. Yet, correlational studies on wild populations are underrepresented. Consequently, we still lack sufficient evidence to reveal whether the microbiota of introduced populations of Ae. albopictus differ from those of native populations, or how microbiota is shaped by different environmental and anthropic factors, but especially, how these changes affect the ability of Ae. albopictus to transmit pathogens and favor the occurrence of outbreaks in the colonized areas. Finally, we propose future research directions on this research topic.}, } @article {pmid37573143, year = {2023}, author = {Pacheco, PJ and Cabrera, JJ and Jiménez-Leiva, A and Torres, MJ and Gates, AJ and Bedmar, EJ and Richardson, DJ and Mesa, S and Tortosa, G and Delgado, MJ}, title = {The copper-responsive regulator CsoR is indirectly involved in Bradyrhizobium diazoefficiens denitrification.}, journal = {FEMS microbiology letters}, volume = {}, number = {}, pages = {}, doi = {10.1093/femsle/fnad084}, pmid = {37573143}, issn = {1574-6968}, abstract = {The soybean endosymbiont Bradyrhizobium diazoefficiens harbours the complete denitrification pathway that is catalysed by a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a nitrous oxide reductase (Nos), encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. Induction of denitrification genes requires low oxygen and nitric oxide, both signals integrated into a complex regulatory network comprised by two interconnected cascades, FixLJ-FixK2-NnrR and RegSR-NifA. Copper is a cofactor of NirK and Nos, but it has also a role in denitrification gene expression and protein synthesis. In fact, Cu limitation triggers a substantial down-regulation of nirK, norCBQD, and nosRZDFYLX gene expression under denitrifying conditions. B. diazoefficiens genome possesses a gene predicted to encode a Cu-responsive repressor of the CsoR family, which is located adjacent to copA, a gene encoding a putative Cu+-ATPase transporter. To investigate the role of CsoR in the control of denitrification gene expression in response to Cu, a csoR deletion mutant was constructed in this work. Mutation of csoR did not affect the capacity of B. diazoefficiens to grow under denitrifying conditions. However, by using qRT-PCR analyses, we showed that nirK and norCBQD expression was much lower in the csoR mutant compared to wild-type levels under Cu-limiting denitrifying conditions. On the contrary, copA expression was significantly increased in the csoR mutant. The results obtained suggest that CsoR acts as a repressor of copA. Under Cu limitation, CsoR has also an indirect role in the expression of nirK and norCBQD genes.}, } @article {pmid37567493, year = {2023}, author = {Kamkong, P and Jitsamai, W and Thongmeesee, K and Ratthawongjirakul, P and Taweethavonsawat, P}, title = {Genetic diversity and characterization of Wolbachia endosymbiont in canine filariasis.}, journal = {Acta tropica}, volume = {246}, number = {}, pages = {107000}, doi = {10.1016/j.actatropica.2023.107000}, pmid = {37567493}, issn = {1873-6254}, abstract = {Canine filariasis is caused by nematodes from the family Onchocercidae, which is transmitted by arthropod vectors. The disease is commonly found in Southeast Asia and exists worldwide. Some filarial nematodes are associated with intracellular bacteria of the genus Wolbachia, which plays an important role in embryogenesis, molting, and the long-term survival of adult worms. This study aims to characterize Wolbachia sp. and determine the association between Wolbachia and canine filarial nematode species in Thailand. A total of 46 dog blood samples that were naturally infected with filarial nematodes were obtained to identify filarial nematode species by Giemsa stained under a light microscope and confirmed using the molecular technique. In order to characterize Wolbachia sp., the nested PCR assay targeting the 16S rRNA gene showed that all samples of Dirofilaria immitis and fifteen samples of Candidatus Dirofilaria hongkongensis were grouped into Wolbachia supergroup C. In addition, all samples of Brugia spp. and five samples of Candidatus Dirofilaria hongkongensis were classified into Wolbachia supergroup D. The genetic diversity analysis conducted using the 16S rRNA gene revealed a similar result when analyzed through phylogenetic tree analysis. This is the first genetic diversity study of Wolbachia of Candidatus Dirofilaria hongkongensis in infected dogs in Thailand.}, } @article {pmid37564291, year = {2023}, author = {Salem, H and Biedermann, PHW and Fukatsu, T}, title = {Editorial: Diversity of beetles and associated microorganisms.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1252736}, pmid = {37564291}, issn = {1664-302X}, } @article {pmid37555448, year = {2023}, author = {Zhang, R and Shen, Y and He, J and Zhang, C and Ma, Y and Sun, C and Son, X and Li, L and Zhang, S and Biró, JB and Saifi, F and Kalo, P and Chen, R}, title = {Nodule-Specific Cysteine-Rich Peptide 343 is required for symbiotic nitrogen fixation in Medicago truncatula.}, journal = {Plant physiology}, volume = {}, number = {}, pages = {}, doi = {10.1093/plphys/kiad454}, pmid = {37555448}, issn = {1532-2548}, abstract = {Symbiotic interactions between legumes and rhizobia lead to development of root nodules and nitrogen fixation by differentiated bacteroids within nodules. Differentiation of the endosymbionts is reversible or terminal, determined by plant effectors. In IRLC legumes, Nodule-Specific Cysteine-Rich Peptides (NCRs) control the terminal differentiation of bacteroids. Medicago truncatula contains ∼700 NCR-coding genes. However, the role of few NCRs has been demonstrated. Here, we report characterization of FN2106 (Fast Neutron 2106), a symbiotic nitrogen fixation defective (fix-) mutant of M. truncatula. Using a transcript-based approach, together with linkage and complementation tests, we showed that loss-of-function of NCR343 results in impaired bacteroid differentiation and/or maintenance and premature nodule senescence of the FN2106 mutant. NCR343 was specifically expressed in nodules. Subcellular localization studies showed that the functional NCR343-YFP fusion protein colocalizes with bacteroids in symbiosomes in infected nodule cells. Transcriptomic analyses identified senescence-, but not defense-related genes, as being significantly upregulated in ncr343 (FN2106) nodules. Taken together, results from our phenotypic and transcriptomic analyses of a loss-of-function ncr343 mutant demonstrate an essential role of NCR343 in bacteroid differentiation and/or maintenance required for symbiotic nitrogen fixation.}, } @article {pmid37555448, year = {2023}, author = {Zhang, R and Shen, Y and He, J and Zhang, C and Ma, Y and Sun, C and Son, X and Li, L and Zhang, S and Biró, JB and Saifi, F and Kalo, P and Chen, R}, title = {Nodule-Specific Cysteine-Rich Peptide 343 is required for symbiotic nitrogen fixation in Medicago truncatula.}, journal = {Plant physiology}, volume = {}, number = {}, pages = {}, doi = {10.1093/plphys/kiad454}, pmid = {37555448}, issn = {1532-2548}, abstract = {Symbiotic interactions between legumes and rhizobia lead to development of root nodules and nitrogen fixation by differentiated bacteroids within nodules. Differentiation of the endosymbionts is reversible or terminal, determined by plant effectors. In IRLC legumes, Nodule-Specific Cysteine-Rich Peptides (NCRs) control the terminal differentiation of bacteroids. Medicago truncatula contains ∼700 NCR-coding genes. However, the role of few NCRs has been demonstrated. Here, we report characterization of FN2106 (Fast Neutron 2106), a symbiotic nitrogen fixation defective (fix-) mutant of M. truncatula. Using a transcript-based approach, together with linkage and complementation tests, we showed that loss-of-function of NCR343 results in impaired bacteroid differentiation and/or maintenance and premature nodule senescence of the FN2106 mutant. NCR343 was specifically expressed in nodules. Subcellular localization studies showed that the functional NCR343-YFP fusion protein colocalizes with bacteroids in symbiosomes in infected nodule cells. Transcriptomic analyses identified senescence-, but not defense-related genes, as being significantly upregulated in ncr343 (FN2106) nodules. Taken together, results from our phenotypic and transcriptomic analyses of a loss-of-function ncr343 mutant demonstrate an essential role of NCR343 in bacteroid differentiation and/or maintenance required for symbiotic nitrogen fixation.}, } @article {pmid37545710, year = {2023}, author = {Dzul-Rosado, KR and Arroyo-Solís, KA and Torres-Monroy, AJ and Arias-León, JJ and Peniche-Lara, GF and Puerto-Manzano, FI and Landa-Flores, MG and Del Mazo-López, JC and Salceda-Sánchez, B}, title = {Tick-associated diseases identified from hunting dogs during the COVID-19 pandemic in a Mayan community in Yucatan, Mexico.}, journal = {Open veterinary journal}, volume = {13}, number = {6}, pages = {794-800}, pmid = {37545710}, issn = {2218-6050}, abstract = {BACKGROUND: Hunting activity in the Mayan communities has increased due to COVID-19 and domestic dogs have gained more importance. Due to their proximity to humans, domestic dogs are a bridge between tick-borne diseases (TBDs) and humans and their peri-domestic environment. In Mexico, and especially in rural regions, there were not adequate records of TBDs during the SARS-CoV-2 pandemic.

AIM: Identify TBD of ticks collected during the COVID-19 pandemic in a rural community.

METHODS: Tick capture was carried out in March 2021, in Teabo, Yucatan. Ticks were removed using from domestic dogs and placed in ethanol. Collected ticks were morphologically identified and underwent DNA extraction and a partial segment of the mitochondrial 16S-rDNA gene was amplified to corroborate the tick species. The DNA was screened for the presence of Anaplasma spp., Borrelia spp., Ehrlichia spp., and Rickettsia spp. Purified amplification products were submitted for sequencing and the results were compared to those deposited in GenBank using BLAST.

RESULTS: We collected 33 ectoparasites, Ixodes affinis, Rhipicephalus sanguineus, Rhipicephalus microplus, and Amblyomma mixtum on 11 hunting dogs. The most frequent ectoparasite was R. sanguineus (66%). We detected the presence of DNA of Rickettsia endosymbiont in I. affinis and Anaplasma platys in R. sanguineus. Rickettsia endosymbiont presented a similarity of 100% with the partial sequence of R. endosymbiont of I. affinis isolate IACACTM001 16S ribosomal RNA gene and the sequence of A. platys had a similarity of 100% with the partial sequence of the isolate 23-33TX 16S ribosomal RNA gene of A. platys from dogs from Texas, USA and with the partial sequence of the isolate L134 16S ribosomal RNA gene of Ehrlichia canis from dogs from Piura, Peru.

CONCLUSION: We confirmed for the first time the presence of A. platys in R. sanguineus and R. endosymbiont in I. affinis ticks from dogs in the state of Yucatan.}, } @article {pmid37543226, year = {2023}, author = {Li, Q and Fu, D and Zhou, Y and Li, Y and Chen, L and Wang, Z and Wan, Y and Huang, Z and Zhao, H}, title = {Individual and combined effects of herbicide prometryn and nitrate enrichment at environmentally relevant concentrations on photosynthesis, oxidative stress, and endosymbiont community diversity of coral Acropora hyacinthus.}, journal = {Chemosphere}, volume = {}, number = {}, pages = {139729}, doi = {10.1016/j.chemosphere.2023.139729}, pmid = {37543226}, issn = {1879-1298}, abstract = {Nitrogen pollution and pesticides such as photosystem II (PSII) inhibitor herbicides have several detrimental impacts on coral reefs, including breakdown of the symbiosis between host corals and photosynthetic symbionts. Although nitrogen and PSII herbicide pollution separately cause coral bleaching, the combined effects of these stressors at environmentally relevant concentrations on corals have not been assessed. Here, we report the combined effects of nitrate enrichment and PSII herbicide (prometryn) exposure on photosynthesis, oxidative status and endosymbiont community diversity of the reef-building coral Acropora hyacinthus. Coral fragments were exposed in a mesocosm system to nitrate enrichment (9 μmol/L) and two prometryn concentrations (1 and 5 μg/L). The results showed that sustained prometryn exposure in combination with nitrate enrichment stress had significant detrimental impacts on photosynthetic apparatus [the maximum quantum efficiency of photosystem II (Fv/Fm), nonphotochemical quenching (NPQ)] and oxidative status in the short term. Nevertheless, the adaptive mechanism of corals allowed the normal physiological state to be recovered following 1 μg/L prometryn and 9 μmol/L nitrate enrichment individual exposure. Moreover, exposure for 9 days was insufficient to trigger a shift in Symbiodiniaceae community. Most importantly, the negative impact of exposure to the combined environmental concentrations of 1 μg/L prometryn and 9 μmol/L nitrate enrichment was found to be significantly greater on the Fv/Fm, quantum yield of non-regulated energy dissipation [Y(NO)], NPQ, and oxidative status of corals compared to the impact of individual stressors. Our results show that interactions between prometryn stress and nitrate enrichment have a synergistic impact on the photosynthetic and oxidative stress responses of corals. This study provides valuable insights into combined effects of nitrate enrichment and PSII herbicides pollution for coral's physiology. Environmental concentrations of PSII herbicides may be more harmful to photosystems and antioxidant systems of corals under nitrate enrichment stress. Thus, future research and management of seawater quality stressors should consider combined impacts rather than just the impacts of individual stressors alone.}, } @article {pmid37525959, year = {2023}, author = {Kolasa, M and Kajtoch, Ł and Michalik, A and Maryańska-Nadachowska, A and Łukasik, P}, title = {Till evolution do us part: The diversity of symbiotic associations across populations of Philaenus spittlebugs.}, journal = {Environmental microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1111/1462-2920.16473}, pmid = {37525959}, issn = {1462-2920}, support = {PPN/PPO/2018/1/00015//Narodowa Agencja Wymiany Akademickiej/ ; 2018/30/E/NZ8/00880//Narodowe Centrum Nauki/ ; 2018/31/B/NZ8/01158//Narodowe Centrum Nauki/ ; }, abstract = {Symbiotic bacteria have played crucial roles in the evolution of sap-feeding insects and can strongly affect host function. However, their diversity and distribution within species are not well understood; we do not know to what extent environmental factors or associations with other species may affect microbial community profiles. We addressed this question in Philaenus spittlebugs by surveying both insect and bacterial marker gene amplicons across multiple host populations. Host mitochondrial sequence data confirmed morphology-based identification of six species and revealed two divergent clades of Philaenus spumarius. All of them hosted the primary symbiont Sulcia that was almost always accompanied by Sodalis. Interestingly, populations and individuals often differed in the presence of Sodalis sequence variants, suggestive of intra-genome 16S rRNA variant polymorphism combined with rapid genome evolution and/or recent additional infections or replacements of the co-primary symbiont. The prevalence of facultative endosymbionts, including Wolbachia, Rickettsia, and Spiroplasma, varied among populations. Notably, cytochrome I oxidase (COI) amplicon data also showed that nearly a quarter of P. spumarius were infected by parasitoid flies (Verralia aucta). One of the Wolbachia operational taxonomic units (OTUs) was exclusively present in Verralia-parasitized specimens, suggestive of parasitoids as their source and highlighting the utility of host gene amplicon sequencing in microbiome studies.}, } @article {pmid37520253, year = {2023}, author = {Dong, AZ and Cokcetin, N and Carter, DA and Fernandes, KE}, title = {Unique antimicrobial activity in honey from the Australian honeypot ant (Camponotus inflatus).}, journal = {PeerJ}, volume = {11}, number = {}, pages = {e15645}, pmid = {37520253}, issn = {2167-8359}, abstract = {Honey produced by the Australian honeypot ant (Camponotus inflatus) is valued nutritionally and medicinally by Indigenous peoples, but its antimicrobial activity has never been formally studied. Here, we determine the activity of honeypot ant honey (HPAH) against a panel of bacterial and fungal pathogens, investigate its chemical properties, and profile the bacterial and fungal microbiome of the honeypot ant for the first time. We found HPAH to have strong total activity against Staphylococcus aureus but not against other bacteria, and strong non-peroxide activity against Cryptococcus and Aspergillus sp. When compared with therapeutic-grade jarrah and manuka honey produced by honey bees, we found HPAH to have a markedly different antimicrobial activity and chemical properties, suggesting HPAH has a unique mode of antimicrobial action. We found the bacterial microbiome of honeypot ants to be dominated by the known endosymbiont genus Candidatus Blochmannia (99.75%), and the fungal microbiome to be dominated by the plant-associated genus Neocelosporium (92.77%). This study demonstrates that HPAH has unique antimicrobial characteristics that validate its therapeutic use by Indigenous peoples and may provide a lead for the discovery of novel antimicrobial compounds.}, } @article {pmid37513789, year = {2023}, author = {Holguin-Rocha, AF and Calle-Tobon, A and Vásquez, GM and Astete, H and Fisher, ML and Tobon-Castano, A and Velez-Tobon, G and Maldonado-Ruiz, LP and Silver, K and Park, Y and Londono-Renteria, B}, title = {Diversity of the Bacterial and Viral Communities in the Tropical Horse Tick, Dermacentor nitens, in Colombia.}, journal = {Pathogens (Basel, Switzerland)}, volume = {12}, number = {7}, pages = {}, doi = {10.3390/pathogens12070942}, pmid = {37513789}, issn = {2076-0817}, support = {AI163423/NH/NIH HHS/United States ; }, abstract = {Ticks are obligatory hematophagous ectoparasites that transmit pathogens among various vertebrates, including humans. The microbial and viral communities of ticks, including pathogenic microorganisms, are known to be highly diverse. However, the factors driving this diversity are not well understood. The tropical horse tick, Dermacentor nitens, is distributed throughout the Americas and it is recognized as a natural vector of Babesia caballi and Theileria equi, the causal agents of equine piroplasmosis. In this study, we characterized the bacterial and viral communities associated with partially fed Dermacentor nitens females collected using a passive survey on horses from field sites representing three distinct geographical areas in the country of Colombia (Bolivar, Antioquia, and Cordoba). RNA-seq and sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene were performed using the Illumina-Miseq platform (Illumina, San Diego, CA, USA). A total of 356 operational taxonomic units (OTUs) were identified, in which the presumed endosymbiont, Francisellaceae/Francisella spp., was predominantly found. Nine contigs corresponding to six different viruses were identified in three viral families: Chuviridae, Rhabdoviridae, and Flaviviridae. Differences in the relative abundance of the microbial composition among the geographical regions were found to be independent of the presence of Francisella-like endosymbiont (FLE). The most prevalent bacteria found in each region were Corynebacterium in Bolivar, Staphylococcus in Antioquia, and Pseudomonas in Cordoba. Rickettsia-like endosymbionts, mainly recognized as the etiological agent of rickettsioses in Colombia, were detected in the Cordoba samples. Metatranscriptomics revealed 13 contigs containing FLE genes, suggesting a trend of regional differences. These findings suggest regional distinctions among the ticks and their bacterial compositions.}, } @article {pmid37508385, year = {2023}, author = {Cazzaniga, M and Domínguez-Santos, R and Marín-Miret, J and Gil, R and Latorre, A and García-Ferris, C}, title = {Exploring Gut Microbial Dynamics and Symbiotic Interaction in Blattella germanica Using Rifampicin.}, journal = {Biology}, volume = {12}, number = {7}, pages = {}, doi = {10.3390/biology12070955}, pmid = {37508385}, issn = {2079-7737}, support = {PGC2018-099344-B-I00//MCIN/AEI/10.13039/501100011033 (Spain) and "ERDF A way of making Europe"/ ; PID2021-128201NB-I00//MCIN/AEI/10.13039/501100011033 (Spain) and "ERDF A way of making Europe"/ ; Prometeo/2018/A/133//Conselleria d'Educació, Generalitat Valenciana/ ; CIPROM/2021/042//Conselleria d'Educació, Generalitat Valenciana/ ; }, abstract = {Blattella germanica harbours two cohabiting symbiotic systems: an obligate endosymbiont, Blattabacterium, located inside bacteriocytes and vertically transmitted, which is key in nitrogen metabolism, and abundant and complex gut microbiota acquired horizontally (mainly by coprophagy) that must play an important role in host physiology. In this work, we use rifampicin treatment to deepen the knowledge on the relationship between the host and the two systems. First, we analysed changes in microbiota composition in response to the presence and removal of the antibiotic with and without faeces in one generation. We found that, independently of faeces supply, rifampicin-sensitive bacteria are strongly affected at four days of treatment, and most taxa recover after treatment, although some did not reach control levels. Second, we tried to generate an aposymbiotic population, but individuals that reached the second generation were severely affected and no third generation was possible. Finally, we established a mixed population with quasi-aposymbiotic and control nymphs sharing an environment in a blind experiment. The analysis of the two symbiotic systems in each individual after reaching the adult stage revealed that endosymbiont's load does not affect the composition of the hindgut microbiota, suggesting that there is no interaction between the two symbiotic systems in Blattella germanica.}, } @article {pmid37497544, year = {2023}, author = {Kanyile, SN and Engl, T and Heddi, A and Kaltenpoth, M}, title = {Endosymbiosis allows Sitophilus oryzae to persist in dry conditions.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1199370}, pmid = {37497544}, issn = {1664-302X}, abstract = {Insects frequently associate with intracellular microbial symbionts (endosymbionts) that enhance their ability to cope with challenging environmental conditions. Endosymbioses with cuticle-enhancing microbes have been reported in several beetle families. However, the ecological relevance of these associations has seldom been demonstrated, particularly in the context of dry environments where high cuticle quality can reduce water loss. Thus, we investigated how cuticle-enhancing symbionts of the rice-weevil, Sitophilus oryzae contribute to desiccation resistance. We exposed symbiotic and symbiont-free (aposymbiotic) beetles to long-term stressful (47% RH) or relaxed (60% RH) humidity conditions and measured population growth. We found that symbiont presence benefits host fitness especially under dry conditions, enabling symbiotic beetles to increase their population size by over 33-fold within 3 months, while aposymbiotic beetles fail to increase in numbers beyond the starting population in the same conditions. To understand the mechanisms underlying this drastic effect, we compared beetle size and body water content and found that endosymbionts confer bigger body size and higher body water content. While chemical analyses revealed no significant differences in composition and quantity of cuticular hydrocarbons after long-term exposure to desiccation stress, symbiotic beetles lost water at a proportionally slower rate than did their aposymbiotic counterparts. We posit that the desiccation resistance and higher fitness observed in symbiotic beetles under dry conditions is due to their symbiont-enhanced thicker cuticle, which provides protection against cuticular transpiration. Thus, we demonstrate that the cuticle enhancing symbiosis of Sitophilus oryzae confers a fitness benefit under drought stress, an ecologically relevant condition for grain pest beetles. This benefit likely extends to many other systems where symbiont-mediated cuticle synthesis has been identified, including taxa spanning beetles and ants that occupy different ecological niches.}, } @article {pmid37490862, year = {2023}, author = {Dijksterhuis, J}, title = {Endosymbionts: Bacterial hijacking of fungi?.}, journal = {Current biology : CB}, volume = {33}, number = {14}, pages = {R765-R767}, doi = {10.1016/j.cub.2023.06.028}, pmid = {37490862}, issn = {1879-0445}, abstract = {Bacteria inside fungal hyphae allow the fungus Rhizopus microsporus to form spores and operate via effectors in 'stealth' mode. When the functionality of one effector is taken away, bacteria are captured in septated cells and die.}, } @article {pmid37488011, year = {2023}, author = {Seo Jeon, M and Han, SI and Ahn, JW and Jung, JH and Choi, JS and Choi, YE}, title = {Endophyte Bacillus tequilensis improves the growth of microalgae Haematococcus lacustris by regulating host cell metabolism.}, journal = {Bioresource technology}, volume = {}, number = {}, pages = {129546}, doi = {10.1016/j.biortech.2023.129546}, pmid = {37488011}, issn = {1873-2976}, abstract = {This study identified an endosymbiotic bacterium, Bacillus tequilensis, residing within the cells of the microalga Haematococcus lacustris through 16S rRNA analysis. To confirm the optimal interactive conditions between H. lacustris and B. tequilensis, the effects of different ratios of cells using H. lacustris of different growth stages were examined. Under optimized conditions, the cell density, dry weight, chlorophyll content, and astaxanthin content of H. lacustris increased significantly, and the fatty acid content improved 1.99-fold. Microscopy demonstrated the presence of bacteria within the H. lacustris cells. The interaction upregulated amino acid and nucleotide metabolism in H. lacustris. Interestingly, muramic and phenylacetic acids were found exclusively in H. lacustris cells in the presence of B. tequilensis. Furthermore, B. tequilensis delayed pigment degradation in H. lacustris. This study reveals the impact of the endosymbiont B. tequilensis on the metabolism of H. lacustris and offers new perspectives on the symbiotic relationship between them.}, } @article {pmid37484687, year = {2023}, author = {Adams, GJ and O'Brien, PA}, title = {The unified theory of sleep: Eukaryotes endosymbiotic relationship with mitochondria and REM the push-back response for awakening.}, journal = {Neurobiology of sleep and circadian rhythms}, volume = {15}, number = {}, pages = {100100}, pmid = {37484687}, issn = {2451-9944}, abstract = {The Unified Theory suggests that sleep is a process that developed in eukaryotic animals from a relationship with an endosymbiotic bacterium. Over evolutionary time the bacterium evolved into the modern mitochondrion that continues to exert an effect on sleep patterns, e.g. the bacterium Wolbachia establishes an endosymbiotic relationship with Drosophila and many other species of insects and is able to change the host's behaviour by making it sleep. The hypothesis is supported by other host-parasite relationships, e.g., Trypanosoma brucei which causes day-time sleepiness and night-time insomnia in humans and cattle. For eukaryotes such as Monocercomonoids that don't contain mitochondria we find no evidence of them sleeping. Mitochondria produce the neurotransmitter gamma aminobutyric acid (GABA), and ornithine a precursor of the neurotransmitter GABA, together with substances such as 3,4dihydroxy phenylalanine (DOPA) a precursor for the neurotransmitter dopamine: These substances have been shown to affect the sleep/wake cycles in animals such as Drosophilia and Hydra. Eukaryote animals have traded the very positive side of having mitochondria providing aerobic respiration for them with the negative side of having to sleep. NREM (Quiet sleep) is the process endosymbionts have imposed upon their host eukaryotes and REM (Active sleep) is the push-back adaptation of eukaryotes with brains, returning to wakefulness.}, } @article {pmid37479750, year = {2023}, author = {Pan, Q and Yu, SJ and Lei, S and Li, SC and Ding, LL and Liu, L and Cheng, LY and Luo, R and Lei, CY and Lou, BH and Cong, L and Liu, HQ and Wang, XF and Ran, C}, title = {Effects of Candidatus Liberibacter asiaticus infection on metagenome of Diaphorina citri gut endosymbiont.}, journal = {Scientific data}, volume = {10}, number = {1}, pages = {478}, pmid = {37479750}, issn = {2052-4463}, abstract = {Asian citrus psyllid (Diaphorina citri, D. citri) is the important vector of "Candidatus Liberibacter asiaticus" (CLas), associated with Huanglongbing, the most devastating citrus disease worldwide. CLas can affect endosymbiont abundance of D. citri. Here, we generated the high-quality gut endosymbiont metagenomes of Diaphorina citri on the condition of CLas infected and uninfected. The dataset comprised 6616.74 M and 6586.04 M raw reads, on overage, from CLas uninfected and infected psyllid strains, respectively. Taxonomic analysis revealed that a total of 1046 species were annotated with 10 Archaea, 733 Bacteria, 234 Eukaryota, and 69 Viruses. 80 unique genera in CLas infected D. citri were identified. DIAMOND software was used for complement function research against various functional databases, including Nr, KEGG, eggNOG, and CAZy, which annotated 84543 protein-coding genes. These datasets provided an avenue for further study of the interaction mechanism between CLas and D. citri.}, } @article {pmid37477269, year = {2023}, author = {Ferreira, MU and Crainey, JL and Gobbi, FG}, title = {The search for better treatment strategies for mansonellosis: An expert perspective.}, journal = {Expert opinion on pharmacotherapy}, volume = {}, number = {}, pages = {}, doi = {10.1080/14656566.2023.2240235}, pmid = {37477269}, issn = {1744-7666}, abstract = {INTRODUCTION: Four species of the Mansonella genus infect millions of people across sub-Saharan Africa and Central and South America. Most infections are asymptomatic, but mansonellosis can be associated with unspecific clinical manifestations such as fever, headache, arthralgia, and ocular lesions (M. ozzardi); pruritus, arthralgia, abdominal pain, angioedema, skin rash, and fatigue (M. perstans and perhaps Mansonella sp 'DEUX'); and pruritic dermatitis and chronic lymphadenitis (M. perstans).

AREAS COVERED: We searched the PubMed and SciELO databases for publications on mansonelliasis in English, Spanish, Portuguese, or French that appeared until 1 May 2023. Literature data show that anthelmintics - single-dose ivermectin for M. ozzardi, repeated doses of mebendazole alone or in combination with diethylcarbamazine (DEC) for M. perstans, and DEC alone for M. streptocerca - are effective against microfilariae. Antibiotics that target Wolbachia endosymbionts, such as doxycycline, are likely to kill adult worms of most, if not all, Mansonella species, but the currently recommended 6-week regimen is relatively unpractical. New anthelminthics and shorter antibiotic regimens (e.g. with rifampin) have showed promise in experimental filarial infections and may proceed to clinical trials.

EXPERT OPINION: We recommend that human infections with Mansonella species be treated, regardless of any apparent clinical manifestations. We argue that mansonellosis, despite being widely considered a benign infection, may represent a direct or indirect cause of significant morbidity that remains poorly characterized at present.}, } @article {pmid37468834, year = {2023}, author = {Campbell, LI and Nwezeobi, J and van Brunschot, SL and Kaweesi, T and Seal, SE and Swamy, RAR and Namuddu, A and Maslen, GL and Mugerwa, H and Armean, IM and Haggerty, L and Martin, FJ and Malka, O and Santos-Garcia, D and Juravel, K and Morin, S and Stephens, ME and Muhindira, PV and Kersey, PJ and Maruthi, MN and Omongo, CA and Navas-Castillo, J and Fiallo-Olivé, E and Mohammed, IU and Wang, HL and Onyeka, J and Alicai, T and Colvin, J}, title = {Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors.}, journal = {BMC genomics}, volume = {24}, number = {1}, pages = {408}, pmid = {37468834}, issn = {1471-2164}, support = {WT108749/Z/15/Z/WT_/Wellcome Trust/United Kingdom ; WT108749/Z/15/Z/WT_/Wellcome Trust/United Kingdom ; WT108749/Z/15/Z/WT_/Wellcome Trust/United Kingdom ; }, abstract = {BACKGROUND: The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification.

RESULTS: We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 10[3] PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species.

CONCLUSIONS: These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.}, } @article {pmid37468804, year = {2023}, author = {Muñoz-García, CI and Rendón-Franco, E and Grostieta, E and Navarrete-Sotelo, M and Sánchez-Montes, S}, title = {Novel Francisella-like endosymbiont and Anaplasma species from Amblyomma nodosum hosted by the anteater Tamandua Mexicana in Mexico.}, journal = {Experimental & applied acarology}, volume = {}, number = {}, pages = {}, pmid = {37468804}, issn = {1572-9702}, abstract = {The microbiome represents a complex network among the various members of the community of microorganisms that are associated with a host. The composition of the bacterial community is essential to supplement multiple metabolic pathways that the host lacks, particularly in organisms with blood-sucking habits such as ticks. On the other hand, some endosymbionts showed some competence with potentially pathogenic microorganisms. Francisella-like endosymbionts (FLEs) encompass a group of gamma-proteobacterias that are closely related to Francisella tularensis, but are usually apathogenic, which brings nutrients like vitamin B and other cofactors to the tick. It has been postulated that the main route of transmission of FLE is vertical; however, evidence has accumulated regarding the possible mechanism of horizontal transmission. Despite growing interest in knowledge of endosymbionts in the Neotropical region, the efforts related to the establishment of their inventory for tick communities are concentrated in South and Central America, with an important gap in knowledge in Mesoamerican countries such as Mexico. For this reason, the aim of this work was to evaluate the presence and diversity of endosymbionts in the highly host-specialized tick Amblyomma nodosum collected from the anteater Tamandua mexicana in Mexico. We analysed 36 A. nodosum for the presence of DNA of endosymbiont (Coxiella and Francisella) and pathogenic (Anaplasma, Borrelia, Ehrlichia and Rickettsia) bacteria. The presence of a member of the genus Francisella and Candidatus Anaplasma brasiliensis was demonstrated. Our findings provide information on the composition of A. nodosum's microbiome, increasing the inventory of bacterial species associated with this hard tick on the American continent.}, } @article {pmid37464760, year = {2023}, author = {Mather, RV and Larsen, TJ and Brock, DA and Queller, DC and Strassmann, JE}, title = {Paraburkholderia symbionts isolated from Dictyostelium discoideum induce bacterial carriage in other Dictyostelium species.}, journal = {Proceedings. Biological sciences}, volume = {290}, number = {2003}, pages = {20230977}, doi = {10.1098/rspb.2023.0977}, pmid = {37464760}, issn = {1471-2954}, abstract = {The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia's potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia's symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes.}, } @article {pmid37452489, year = {2023}, author = {Qiao, SA and Gao, Z and Roth, R}, title = {A perspective on cross-kingdom RNA interference in mutualistic symbioses.}, journal = {The New phytologist}, volume = {}, number = {}, pages = {}, doi = {10.1111/nph.19122}, pmid = {37452489}, issn = {1469-8137}, support = {BB/T008784/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; }, abstract = {RNA interference (RNAi) is arguably one of the more versatile mechanisms in cell biology, facilitating the fine regulation of gene expression and protection against mobile genomic elements, whilst also constituting a key aspect of induced plant immunity. More recently, the use of this mechanism to regulate gene expression in heterospecific partners - cross-kingdom RNAi (ckRNAi) - has been shown to form a critical part of bidirectional interactions between hosts and endosymbionts, regulating the interplay between microbial infection mechanisms and host immunity. Here, we review the current understanding of ckRNAi as it relates to interactions between plants and their pathogenic and mutualistic endosymbionts, with particular emphasis on evidence in support of ckRNAi in the arbuscular mycorrhizal symbiosis.}, } @article {pmid37438329, year = {2023}, author = {Uzum, Z and Ershov, D and Pavia, MJ and Mallet, A and Gorgette, O and Plantard, O and Sassera, D and Stavru, F}, title = {Three-dimensional images reveal the impact of the endosymbiont Midichloria mitochondrii on the host mitochondria.}, journal = {Nature communications}, volume = {14}, number = {1}, pages = {4133}, pmid = {37438329}, issn = {2041-1723}, support = {RGY-0075//Human Frontier Science Program (HFSP)/ ; RGY-0075//Human Frontier Science Program (HFSP)/ ; RGY-0075//Human Frontier Science Program (HFSP)/ ; RGY-0075//Human Frontier Science Program (HFSP)/ ; }, abstract = {The hard tick, Ixodes ricinus, a main Lyme disease vector, harbors an intracellular bacterial endosymbiont. Midichloria mitochondrii is maternally inherited and resides in the mitochondria of I. ricinus oocytes, but the consequences of this endosymbiosis are not well understood. Here, we provide 3D images of wild-type and aposymbiotic I. ricinus oocytes generated with focused ion beam-scanning electron microscopy. Quantitative image analyses of endosymbionts and oocyte mitochondria at different maturation stages show that the populations of both mitochondrion-associated bacteria and bacterium-hosting mitochondria increase upon vitellogenisation, and that mitochondria can host multiple bacteria in later stages. Three-dimensional reconstructions show symbiosis-dependent morphologies of mitochondria and demonstrate complete M. mitochondrii inclusion inside a mitochondrion. Cytoplasmic endosymbiont located close to mitochondria are not oriented towards the mitochondria, suggesting that bacterial recolonization is unlikely. We further demonstrate individual globular-shaped mitochondria in the wild type oocytes, while aposymbiotic oocytes only contain a mitochondrial network. In summary, our study suggests that M. mitochondrii modulates mitochondrial fragmentation in oogenesis possibly affecting organelle function and ensuring its presence over generations.}, } @article {pmid37433980, year = {2023}, author = {Candelori, A and Di Giuseppe, G and Villalobo, E and Sjödin, A and Vallesi, A}, title = {Bipolar Biogeographical Distribution of Parafrancisella Bacteria Carried by the Ciliate Euplotes.}, journal = {Microbial ecology}, volume = {}, number = {}, pages = {}, pmid = {37433980}, issn = {1432-184X}, support = {PNRA18_00152//PNRA (Programma Nazionale di Ricerca in Antartide)/ ; PNRA18_00152//PNRA (Programma Nazionale di Ricerca in Antartide)/ ; }, abstract = {Parafrancisella adeliensis, a Francisella-like endosymbiont, was found to reside in the cytoplasm of an Antarctic strain of the bipolar ciliate species, Euplotes petzi. To inquire whether Euplotes cells collected from distant Arctic and peri-Antarctic sites host Parafrancisella bacteria, wild-type strains of the congeneric bipolar species, E. nobilii, were screened for Parafrancisella by in situ hybridization and 16S gene amplification and sequencing. Results indicate that all Euplotes strains analyzed contained endosymbiotic bacteria with 16S nucleotide sequences closely similar to the P. adeliensis 16S gene sequence. This finding suggests that Parafrancisella/Euplotes associations are not endemic to Antarctica, but are common in both the Antarctic and Arctic regions.}, } @article {pmid37430172, year = {2023}, author = {Porter, J and Sullivan, W}, title = {The cellular lives of Wolbachia.}, journal = {Nature reviews. Microbiology}, volume = {}, number = {}, pages = {}, pmid = {37430172}, issn = {1740-1534}, abstract = {Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.}, } @article {pmid37424778, year = {2023}, author = {Zhou, JC and Dong, QJ and Shang, D and Ning, SF and Zhang, HH and Wang, Y and Che, WN and Dong, H and Zhang, LS}, title = {Posterior concentration of Wolbachia during the early embryogenesis of the host dynamically shapes the tissue tropism of Wolbachia in host Trichogramma wasps.}, journal = {Frontiers in cellular and infection microbiology}, volume = {13}, number = {}, pages = {1198428}, pmid = {37424778}, issn = {2235-2988}, abstract = {INTRODUCTION: The bacterial endosymbiont, Wolbachia spp. induce thelytokous parthenogenesis in certain parasitoid wasps, such as the egg parasitoid wasps Trichogramma spp. To complete the cycle of vertical transmission, Wolbachia displays efficient transovarial transmission by targeting the reproductive tissues and often exhibits strong tissue-specific tropism in their host.

METHOD: The present study aimed to describe the basic Wolbachia distribution patterns that occur during the development of Wolbachia-infected, thelytokous Trichogramma dendrolimi, and T. pretiosum. We used fluorescence in situ hybridization (FISH) to investigate Wolbachia signal dynamics during early embryogenesis (from 30 to 120 min). Wolbachia titers and distributions from the embryo to adult stages of Trichogramma after early embryogenesis were detected by absolute quantitative polymerase chain reaction (AQ-PCR) and FISH. The symmetry ratios (SR) of the Wolbachia signals were calculated using the SR odds ratios in the anterior and posterior parts of the host. The SR was determined to describe Wolbachia tropism during early embryogenesis and various developmental stages of Trichogramma.

RESULTS: Wolbachia was concentrated in the posterior part of the embryo during early embryogenesis and the various developmental stages of both T. dendrolimi and T. pretiosum. Wolbachia density increased with the number of nuclei and the initial mitotic division frequency during early embryogenesis. The total Wolbachia titer increased with postembryogenesis development in both T. dendrolimi and T. pretiosum. However, the Wolbachia densities relative to body size were significantly lower at the adult and pupal stages than they were at the embryonic stage.

DISCUSSION: The present work revealed that posterior Wolbachia concentration during early host embryogenesis determined Wolbachia localization in adult wasps. By this mechanism, Wolbachia exhibits efficient vertical transmission across generations by depositing only female Wolbachia-infected offspring. The results of this study describe the dynamics of Wolbachia during the development of their Trichogramma host. The findings of this investigation helped clarify Wolbachia tropism in Trichogramma wasps.}, } @article {pmid37417166, year = {2023}, author = {Tharsan, A and Sivabalakrishnan, K and Arthiyan, S and Eswaramohan, T and Raveendran, S and Ramasamy, R and Surendran, SN}, title = {Wolbachia infection is widespread in brackish and fresh water Aedes albopictus (Diptera: Culicidae) in the coastal Jaffna peninsula of northern Sri Lanka.}, journal = {Journal of vector borne diseases}, volume = {60}, number = {2}, pages = {172-178}, doi = {10.4103/0972-9062.361165}, pmid = {37417166}, issn = {0972-9062}, abstract = {BACKGROUND & OBJECTIVES: Aedes albopictus and Aedes aegypti are important vectors of dengue and many other arboviral diseases in tropical and sub-tropical locations. Both vectors are tolerant of salinity in the dengue-endemic coastal Jaffna peninsula of northern Sri Lanka. Aedes albopictus pre-imaginal stages are found in field brackish water habitats of up to 14 parts per thousand (ppt, gL[-1]) salt in the Jaffna peninsula. Salinity-tolerance in Aedes is characterized by significant genetic and physiological changes. Infection with the wMel strain of the endosymbiont bacterium Wolbachia pipientis reduces dengue transmission in the field by Ae. aegypti, and the same approach is also being considered for Ae. albopictus. In this context, we investigated natural Wolbachia infections in brackish and fresh water field isolates of Ae. albopictus in the Jaffna district.

METHODS: Aedes albopictus collected as pre-imaginal stages using conventional ovitraps in the Jaffna peninsula and adjacent islands of the Jaffna district were screened by PCR utilizing strain-transcending primers for the presence of Wolbachia. Wolbachia strains were then further identified by PCR using strain-specific primers for the Wolbachia surface protein gene wsp. The Jaffna wsp sequences were compared by phylogenetic analysis with other wsp sequences available in Genbank.

RESULTS: Aedes albopictus were found to be widely infected with the wAlbA and wAlbB strains of Wolbachia in Jaffna. The partial wAlbB wsp surface protein gene sequence in Jaffna Ae. albopictus was identical to a corresponding sequence from South India but different from that in mainland Sri Lanka.

Widespread infection of salinity-tolerant Ae. albopictus with Wolbachia is a factor to be considered when developing Wolbachia-based dengue control in coastal areas like the Jaffna peninsula.}, } @article {pmid37416893, year = {2023}, author = {Wenzel, M and Aquadro, CF}, title = {Wolbachia genetically interacts with the bag of marbles germline stem cell gene in male D. melanogaster.}, journal = {microPublication biology}, volume = {2023}, number = {}, pages = {}, pmid = {37416893}, issn = {2578-9430}, abstract = {The bacterial endosymbiont Wolbachia manipulates reproduction of its arthropod hosts to promote its own maternal vertical transmission. In female D. melanogaster , Wolbachia has been shown to genetically interact with three key reproductive genes (bag of marbles (bam) , Sex-lethal, and mei-P26) , as it rescues the reduced female fertility or fecundity phenotype seen in partial loss-of-function mutants of these genes . Here, we show that Wolbachia also partially rescues male fertility in D. melanogaster carrying a new, largely sterile bam allele when in a bam null genetic background. This finding shows that the molecular mechanism of Wolbachia 's influence on its hosts' reproduction involves interaction with genes in males as well as females, at least in D. melanogaster .}, } @article {pmid37410021, year = {2023}, author = {Herrera, G and Vieira Lista, MC and Páez-Triana, L and Muro, A and López-Abán, J and Muñoz, M and Ramírez, JD}, title = {Examining the gut microbiota from several human-biting tick species in Northwestern Spain.}, journal = {Journal of medical entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jme/tjad084}, pmid = {37410021}, issn = {1938-2928}, support = {PI22/01721//ISC-III/ ; PI22/01721//ISC-III/ ; }, abstract = {Tick-borne diseases have increased significantly in Europe and Spain in recent years. One strategy explored for tick surveillance and control is the study of the microbiota. The focus is on understanding the relationships between pathogens and endosymbionts within the microbiota and how these relationships can alter these arthropods' vectorial capacity. Thus, it is pivotal to depict the bacterial communities composing the microbiota of ticks present in specific territories. This work aimed to describe the microbiota present in 29 adult individuals of 5 tick species collected from 4 provinces of Castilla y Leon in northwestern Spain from 2015 to 2022. DNA extraction and sequencing of the V4 hypervariable region of 16S-rRNA was performed on the tick samples, with subsequent analysis of diversity, taxonomic composition, and correlations between genera of microorganisms. There were no differences in the alpha diversity of microbiota by tick species, nor were compositional changes evident at the phylum level for microorganisms. However, interindividual differences at the microbial genus level allowed spatial differentiation of the 5 tick species included in the study. Correlation analyses showed complex interactions between different genera of microbiota members. These findings provide an initial insight into the composition of the gut microbiota of various tick species in northwestern Spain, which can contribute to establishing surveillance and control measures to reduce diseases such as rickettsiosis, Lyme disease, and Crimean-Congo hemorrhagic fever.}, } @article {pmid37407813, year = {2023}, author = {Moger-Reischer, RZ and Glass, JI and Wise, KS and Sun, L and Bittencourt, DMC and Lehmkuhl, BK and Schoolmaster, DR and Lynch, M and Lennon, JT}, title = {Evolution of a minimal cell.}, journal = {Nature}, volume = {}, number = {}, pages = {}, pmid = {37407813}, issn = {1476-4687}, abstract = {Possessing only essential genes, a minimal cell can reveal mechanisms and processes that are critical for the persistence and stability of life[1,2]. Here we report on how an engineered minimal cell[3,4] contends with the forces of evolution compared with the Mycoplasma mycoides non-minimal cell from which it was synthetically derived. Mutation rates were the highest among all reported bacteria, but were not affected by genome minimization. Genome streamlining was costly, leading to a decrease in fitness of greater than 50%, but this deficit was regained during 2,000 generations of evolution. Despite selection acting on distinct genetic targets, increases in the maximum growth rate of the synthetic cells were comparable. Moreover, when performance was assessed by relative fitness, the minimal cell evolved 39% faster than the non-minimal cell. The only apparent constraint involved the evolution of cell size. The size of the non-minimal cell increased by 80%, whereas the minimal cell remained the same. This pattern reflected epistatic effects of mutations in ftsZ, which encodes a tubulin-homologue protein that regulates cell division and morphology[5,6]. Our findings demonstrate that natural selection can rapidly increase the fitness of one of the simplest autonomously growing organisms. Understanding how species with small genomes overcome evolutionary challenges provides critical insights into the persistence of host-associated endosymbionts, the stability of streamlined chassis for biotechnology and the targeted refinement of synthetically engineered cells[2,7-9].}, } @article {pmid37392458, year = {2023}, author = {Deng, J and Bennett, GM and Franco, DC and Prus-Frankowska, M and Stroiński, A and Michalik, A and Łukasik, P}, title = {Genome comparison reveals inversions and alternative evolutionary history of nutritional endosymbionts in planthoppers (Hemiptera: Fulgoromorpha).}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evad120}, pmid = {37392458}, issn = {1759-6653}, abstract = {The evolutionary success of sap-feeding hemipteran insects in the suborder Auchenorrhyncha was enabled by nutritional contributions from their heritable endosymbiotic bacteria. However, the symbiont diversity, functions, and evolutionary origins in this large insect group have not been broadly characterized using genomic tools. In particular, the origins and relationships among ancient betaproteobacterial symbionts Vidania (in Fulgoromorpha) and Nasuia/Zinderia (in Cicadomorpha) are uncertain. Here, we characterized the genomes of Vidania and Sulcia from three Pyrops planthoppers (family Fulgoridae) to understand their metabolic functions and evolutionary histories. We find that, like in previously characterized planthoppers, these symbionts share nutritional responsibilities, with Vidania providing seven out of ten essential amino acids. Sulcia lineages across the Auchenorrhyncha have a highly conserved genome but with multiple independent rearrangements occurring in an early ancestor of Cicadomorpha or Fulgoromorpha and in a few succeeding lineages. Genomic synteny was also observed within each of the betaproteobacterial symbiont genera Nasuia, Zinderia, and Vidania, but not across them, which challenges the expectation of a shared ancestry for these symbionts. The further comparison of other biological traits strongly suggests an independent origin of Vidania early in the planthopper evolution and possibly of Nasuia and Zinderia in their respective host lineages. This hypothesis further links the potential acquisition of novel nutritional endosymbiont lineages with the emergence of auchenorrhynchan superfamilies.}, } @article {pmid37391621, year = {2023}, author = {Yamada, N and Lepetit, B and Mann, DG and Sprecher, BN and Buck, JM and Bergmann, P and Kroth, PG and Bolton, JJ and Dąbek, P and Witkowski, A and Kim, SY and Trobajo, R}, title = {Prey preference in a kleptoplastic dinoflagellate is linked to photosynthetic performance.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, pmid = {37391621}, issn = {1751-7370}, support = {YA577/2-1//Deutsche Forschungsgemeinschaft (German Research Foundation)/ ; GBMF9360//Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)/ ; }, abstract = {Dinoflagellates of the family Kryptoperidiniaceae, known as "dinotoms", possess diatom-derived endosymbionts and contain individuals at three successive evolutionary stages: a transiently maintained kleptoplastic stage; a stage containing multiple permanently maintained diatom endosymbionts; and a further permanent stage containing a single diatom endosymbiont. Kleptoplastic dinotoms were discovered only recently, in Durinskia capensis; until now it has not been investigated kleptoplastic behavior and the metabolic and genetic integration of host and prey. Here, we show D. capensis is able to use various diatom species as kleptoplastids and exhibits different photosynthetic capacities depending on the diatom species. This is in contrast with the prey diatoms in their free-living stage, as there are no differences in their photosynthetic capacities. Complete photosynthesis including both the light reactions and the Calvin cycle remain active only when D. capensis feeds on its habitual associate, the "essential" diatom Nitzschia captiva. The organelles of another edible diatom, N. inconspicua, are preserved intact after ingestion by D. capensis and expresses the psbC gene of the photosynthetic light reaction, while RuBisCO gene expression is lost. Our results indicate that edible but non-essential, "supplemental" diatoms are used by D. capensis for producing ATP and NADPH, but not for carbon fixation. D. capensis has established a species-specifically designed metabolic system allowing carbon fixation to be performed only by its essential diatoms. The ability of D. capensis to ingest supplemental diatoms as kleptoplastids may be a flexible ecological strategy, to use these diatoms as "emergency supplies" while no essential diatoms are available.}, } @article {pmid37391552, year = {2023}, author = {Zając, Z and Obregon, D and Foucault-Simonin, A and Wu-Chuang, A and Moutailler, S and Galon, C and Kulisz, J and Woźniak, A and Bartosik, K and Cabezas-Cruz, A}, title = {Disparate dynamics of pathogen prevalence in Ixodes ricinus and Dermacentor reticulatus ticks occurring sympatrically in diverse habitats.}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {10645}, pmid = {37391552}, issn = {2045-2322}, support = {205/2018//Programa Nacional de Becas de Postgrado en el Exterior "Don Carlos Antonio López"/ ; ANR-10-LABX-62-IBEID//Agence Nationale de la Recherche/ ; }, abstract = {Ixodes ricinus and Dermacentor reticulatus ticks are important reservoirs and vectors of pathogens. The aim of the present study was to investigate the dynamic of the prevalence and genetic diversity of microorganisms detected in these tick species collected from two ecologically diverse biotopes undergoing disparate long-term climate condition. High-throughput real time PCR confirmed high prevalence of microorganisms detected in sympatrically occurring ticks species. D. reticulatus specimens were the most often infected with Francisella-like endosymbiont (FLE) (up to 100.0%) and Rickettsia spp. (up to 91.7%), while in case of I. ricinus the prevalence of Borreliaceae spirochetes reached up to 25.0%. Moreover, pathogens belonging to genera of Bartonella, Anaplasma, Ehrlichia and Babesia were detected in both tick species regardless the biotope. On the other hand, Neoehrlichia mikurensis was conformed only in I. ricinus in the forest biotope, while genetic material of Theileria spp. was found only in D. reticulatus collected from the meadow. Our study confirmed significant impact of biotope type on prevalence of representatives of Borreliaceae and Rickettsiaceae families. The most common co-infection detected in D. reticulatus was Rickettsia spp. + FLE, while Borreliaceae + R. helvetica was the most common in I. ricinus. Additionally, we found significant genetic diversity of R. raoultii gltA gene across studied years, however such relationship was not observed in ticks from studied biotopes. Our results suggest that ecological type of biotope undergoing disparate long-term climate conditions have an impact on prevalence of tick-borne pathogens in adult D. reticulatus and I. ricinus.}, } @article {pmid37389180, year = {2023}, author = {Gao, ZM and Xu, T and Chen, HG and Lu, R and Tao, J and Wang, HB and Qiu, JW and Wang, Y}, title = {Early genome erosion and internal phage-symbiont-host interaction in the endosymbionts of a cold-seep tubeworm.}, journal = {iScience}, volume = {26}, number = {7}, pages = {107033}, doi = {10.1016/j.isci.2023.107033}, pmid = {37389180}, issn = {2589-0042}, abstract = {Endosymbiosis with chemosynthetic Gammaproteobacteria is widely recognized as an adaptive mechanism of siboglinid tubeworms, yet evolution of these endosymbionts and their driving forces remain elusive. Here, we report a finished endosymbiont genome (HMS1) of the cold-seep tubeworm Sclerolinum annulatum. The HMS1 genome is small in size, with abundant prophages and transposable elements but lacking gene sets coding for denitrification, hydrogen oxidization, oxidative phosphorylation, vitamin biosynthesis, cell pH and/or sodium homeostasis, environmental sensing, and motility, indicative of early genome erosion and adaptive evolution toward obligate endosymbiosis. Unexpectedly, a prophage embedded in the HMS1 genome undergoes lytic cycle. Highly expressed ROS scavenger and LexA repressor genes indicate that the tubeworm host likely activates the lysogenic phage into lytic cycle through the SOS response to regulate endosymbiont population and harvest nutrients. Our findings indicate progressive evolution of Sclerolinum endosymbionts toward obligate endosymbiosis and expand the knowledge about phage-symbiont-host interaction in deep-sea tubeworms.}, } @article {pmid37383020, year = {2023}, author = {Nieves-Morión, M and Camargo, S and Bardi, S and Ruiz, MT and Flores, E and Foster, RA}, title = {Heterologous expression of genes from a cyanobacterial endosymbiont highlights substrate exchanges with its diatom host.}, journal = {PNAS nexus}, volume = {2}, number = {6}, pages = {pgad194}, pmid = {37383020}, issn = {2752-6542}, abstract = {A few genera of diatoms are widespread and thrive in low-nutrient waters of the open ocean due to their close association with N2-fixing, filamentous heterocyst-forming cyanobacteria. In one of these symbioses, the symbiont, Richelia euintracellularis, has penetrated the cell envelope of the host, Hemiaulus hauckii, and lives inside the host cytoplasm. How the partners interact, including how the symbiont sustains high rates of N2 fixation, is unstudied. Since R. euintracellularis has evaded isolation, heterologous expression of genes in model laboratory organisms was performed to identify the function of proteins from the endosymbiont. Gene complementation of a cyanobacterial invertase mutant and expression of the protein in Escherichia coli showed that R. euintracellularis HH01 possesses a neutral invertase that splits sucrose producing glucose and fructose. Several solute-binding proteins (SBPs) of ABC transporters encoded in the genome of R. euintracellularis HH01 were expressed in E. coli, and their substrates were characterized. The selected SBPs directly linked the host as the source of several substrates, e.g. sugars (sucrose and galactose), amino acids (glutamate and phenylalanine), and a polyamine (spermidine), to support the cyanobacterial symbiont. Finally, transcripts of genes encoding the invertase and SBPs were consistently detected in wild populations of H. hauckii collected from multiple stations and depths in the western tropical North Atlantic. Our results support the idea that the diatom host provides the endosymbiotic cyanobacterium with organic carbon to fuel N2 fixation. This knowledge is key to understanding the physiology of the globally significant H. hauckii-R. euintracellularis symbiosis.}, } @article {pmid37382438, year = {2023}, author = {Goffredi, SK and Panossian, B and Brzechffa, C and Field, N and King, C and Moggioli, G and Rouse, GW and Martín-Durán, JM and Henry, LM}, title = {A dynamic epibiont community associated with the bone-eating polychaete genus Osedax.}, journal = {mBio}, volume = {}, number = {}, pages = {e0314022}, doi = {10.1128/mbio.03140-22}, pmid = {37382438}, issn = {2150-7511}, abstract = {Osedax, the deep-sea annelid found at sunken whalefalls, is known to host Oceanospirillales bacterial endosymbionts intracellularly in specialized roots, which help it feed exclusively on vertebrate bones. Past studies, however, have also made mention of external bacteria on their trunks. During a 14-yr study, we reveal a dynamic, yet persistent, shift of Campylobacterales integrated into the epidermis of Osedax, which change over time as the whale carcass degrades on the sea floor. The Campylobacterales associated with seven species of Osedax, which comprise 67% of the bacterial community on the trunk, appear initially dominated by the genus Arcobacter (at early time points <24 mo), the Sulfurospirillum at intermediate stages (~50 mo), and the Sulfurimonas at later stages (>140 mo) of whale carcass decomposition. Metagenome analysis of the epibiont metabolic capabilities suggests potential for a transition from heterotrophy to autotrophy and differences in their capacity to metabolize oxygen, carbon, nitrogen, and sulfur. Compared to free-living relatives, the Osedax epibiont genomes were enriched in transposable elements, implicating genetic exchange on the host surface, and contained numerous secretions systems with eukaryotic-like protein (ELP) domains, suggesting a long evolutionary history with these enigmatic, yet widely distributed deep-sea worms. IMPORTANCE Symbiotic associations are widespread in nature and we can expect to find them in every type of ecological niche. In the last twenty years, the myriad of functions, interactions and species comprising microbe-host associations has fueled a surge of interest and appreciation for symbiosis. During this 14-year study, we reveal a dynamic population of bacterial epibionts, integrated into the epidermis of 7 species of a deep-sea worm group that feeds exclusively on the remains of marine mammals. The bacterial genomes provide clues of a long evolutionary history with these enigmatic worms. On the host surface, they exchange genes and appear to undergo ecological succession, as the whale carcass habitat degrades over time, similar to what is observed for some free-living communities. These, and other annelid worms are important keystone species for diverse deep-sea environments, yet the role of attached external bacteria in supporting host health has received relatively little attention.}, } @article {pmid37376640, year = {2023}, author = {Esmael, A and Agarkova, IV and Dunigan, DD and Zhou, Y and Van Etten, JL}, title = {Viral DNA Accumulation Regulates Replication Efficiency of Chlorovirus OSy-NE5 in Two Closely Related Chlorella variabilis Strains.}, journal = {Viruses}, volume = {15}, number = {6}, pages = {}, doi = {10.3390/v15061341}, pmid = {37376640}, issn = {1999-4915}, support = {1736030//NSF-EPSCoR grant/ ; }, abstract = {Many chloroviruses replicate in Chlorella variabilis algal strains that are ex-endosymbionts isolated from the protozoan Paramecium bursaria, including the NC64A and Syngen 2-3 strains. We noticed that indigenous water samples produced a higher number of plaque-forming viruses on C. variabilis Syngen 2-3 lawns than on C. variabilis NC64A lawns. These observed differences led to the discovery of viruses that replicate exclusively in Syngen 2-3 cells, named Only Syngen (OSy) viruses. Here, we demonstrate that OSy viruses initiate infection in the restricted host NC64A by synthesizing some early virus gene products and that approximately 20% of the cells produce a small number of empty virus capsids. However, the infected cells did not produce infectious viruses because the cells were unable to replicate the viral genome. This is interesting because all previous attempts to isolate host cells resistant to chlorovirus infection were due to changes in the host receptor for the virus.}, } @article {pmid37372055, year = {2023}, author = {Gheibzadeh, MS and Manyumwa, CV and Tastan Bishop, Ö and Shahbani Zahiri, H and Parkkila, S and Zolfaghari Emameh, R}, title = {Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems.}, journal = {Biology}, volume = {12}, number = {6}, pages = {}, doi = {10.3390/biology12060770}, pmid = {37372055}, issn = {2079-7737}, support = {737//National Institute of Genetic Engineering and Biotechnology/ ; M/75137//Ministry of Science, Research and Technology/ ; 111212//National Research Foundation/ ; }, abstract = {Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.}, } @article {pmid37367660, year = {2023}, author = {Sikorskaya, TV}, title = {Coral Lipidome: Molecular Species of Phospholipids, Glycolipids, Betaine Lipids, and Sphingophosphonolipids.}, journal = {Marine drugs}, volume = {21}, number = {6}, pages = {}, doi = {10.3390/md21060335}, pmid = {37367660}, issn = {1660-3397}, abstract = {Coral reefs are the most biodiversity-rich ecosystems in the world's oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral's taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals.}, } @article {pmid37367356, year = {2023}, author = {Bazukyan, I and Georgieva-Miteva, D and Velikova, T and Dimov, SG}, title = {In Silico Probiogenomic Characterization of Lactobacillus delbrueckii subsp. lactis A4 Strain Isolated from an Armenian Honeybee Gut.}, journal = {Insects}, volume = {14}, number = {6}, pages = {}, doi = {10.3390/insects14060540}, pmid = {37367356}, issn = {2075-4450}, support = {21T-2I019//Science Committee of the Republic of Armenia/ ; 2022//Yerevan State University in the frames of inner research projects/ ; BG-RRP-2.004-0008-C01//European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria/ ; }, abstract = {A Lactobacillus delbrueckii ssp. lactis strain named A4, isolated from the gut of an Armenian honeybee, was subjected to a probiogenomic characterization because of its unusual origin. A whole-genome sequencing was performed, and the bioinformatic analysis of its genome revealed a reduction in the genome size and the number of the genes-a process typical for the adaptation to endosymbiotic conditions. Further analysis of the genome revealed that Lactobacillus delbrueckii ssp. lactis strain named A4 could play the role of a probiotic endosymbiont because of the presence of intact genetic sequences determining antioxidant properties, exopolysaccharides synthesis, adhesion properties, and biofilm formation, as well as an antagonistic activity against some pathogens which is not due to pH or bacteriocins production. Additionally, the genomic analysis revealed significant potential for stress tolerance, such as extreme pH, osmotic stress, and high temperature. To our knowledge, this is the first report of a potentially endosymbiotic Lactobacillus delbrueckii ssp. lactis strain adapted to and playing beneficial roles for its host.}, } @article {pmid37364116, year = {2023}, author = {Macorano, L and Binny, TM and Spiegl, T and Klimenko, V and Singer, A and Oberleitner, L and Applegate, V and Seyffert, S and Stefanski, A and Gremer, L and Gertzen, CGW and Höppner, A and Smits, SHJ and Nowack, ECM}, title = {DNA-binding and protein structure of nuclear factors likely acting in genetic information processing in the Paulinella chromatophore.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {120}, number = {27}, pages = {e2221595120}, doi = {10.1073/pnas.2221595120}, pmid = {37364116}, issn = {1091-6490}, support = {CRC1208 project B09//Deutsche Forschungsgemeinschaft (DFG)/ ; NO 1090/1-1//Deutsche Forschungsgemeinschaft (DFG)/ ; 417919780//Deutsche Forschungsgemeinschaft (DFG)/ ; INST 208/740-1 FUGG//Deutsche Forschungsgemeinschaft (DFG)/ ; }, abstract = {The chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.}, } @article {pmid37363264, year = {2023}, author = {Gashururu, RS and Maingi, N and Githigia, SM and Getange, DO and Ntivuguruzwa, JB and Habimana, R and Cecchi, G and Gashumba, J and Bargul, JL and Masiga, DK}, title = {Trypanosomes infection, endosymbionts, and host preferences in tsetse flies (Glossina spp.) collected from Akagera park region, Rwanda: A correlational xenomonitoring study.}, journal = {One health (Amsterdam, Netherlands)}, volume = {16}, number = {}, pages = {100550}, doi = {10.1016/j.onehlt.2023.100550}, pmid = {37363264}, issn = {2352-7714}, abstract = {Akagera National Park and its surroundings are home to tsetse flies and a number of their mammalian hosts in Rwanda. A One-health approach is being used in the control and surveillance of both animal and human trypanosomosis in Rwanda. Determination of the infection level in tsetse flies, species of trypanosomes circulating in vectors, the source of tsetse blood meal and endosymbionts is crucial in understanding the epidemiology of the disease in animals and humans in the region. Tsetse flies (n = 1101), comprising Glossina pallidipes (n = 771) and Glossina morsitans centralis (n = 330) were collected from Akagera park and surrounding areas between May 2018 and June 2019. The flies were screened for trypanosomes, vertebrate host DNA to identify sources of blood meal, and endosymbionts by PCR - High Resolution Melting analysis and amplicon sequencing. The feeding frequency and the feeding indices (selection index - W) were calculated to identify the preferred hosts. An overall trypanosome infection rate of 13.9% in the fly's Head and Proboscis (HP) and 24.3% in the Thorax and Abdomen (TA) were found. Eight trypanosome species were identified in the tsetse fly HP and TA, namely: Trypanosoma (T.) brucei brucei, T. congolense Kilifi, T. congolense savannah, T. vivax, T. simiae, T. evansi, T. godfreyi, T. grayi and T. theileri. We found no evidence of human-infective T. brucei rhodesiense. We also identified eighteen species of vertebrate hosts that tsetse flies fed on, and the most frequent one was the buffalo (Syncerus caffer) (36.5%). The frequently detected host by selection index was the rhinoceros (Diceros bicornis) (W = 16.2). Most trypanosome infections in tsetse flies were associated with the buffalo blood meal. The prevalence of tsetse endosymbionts Sodalis and Wolbachia was 2.8% and 4.8%, respectively. No Spiroplasma and Salivary Gland Hypertrophy Virus were detected. These findings implicate the buffaloes as the important reservoirs of tsetse-transmitted trypanosomes in the area. This contributes to predicting the main cryptic reservoirs and therefore guiding the effective control of the disease. The study findings provide the key scientific information that supports the current One Health collaboration in the control and surveillance of tsetse-transmitted trypanosomosis in Rwanda.}, } @article {pmid37362913, year = {2023}, author = {Beckmann, J and Gillespie, J and Tauritz, D}, title = {Modeling emergence of Wolbachia toxin-antidote protein functions with an evolutionary algorithm.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1116766}, doi = {10.3389/fmicb.2023.1116766}, pmid = {37362913}, issn = {1664-302X}, abstract = {Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA applications in biology encode high levels of abstraction in top-down population ecology models. In contrast, our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of Wolbachia induced cytoplasmic incompatibility (CI). Wolbachia is a microbial endosymbiont that lives inside insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control CI, CI factors (cifs), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can stochastically vary, imparting effects that might impact CI induction mechanics. Our model highlights how preconditions and sequence length can bias evolution of cifs toward one mechanism or another.}, } @article {pmid37347285, year = {2023}, author = {Ehlers, LP and Slaviero, M and De Lorenzo, C and Fagundes-Moreira, R and de Souza, VK and Perles, L and Baggio-Souza, V and Bezerra-Santos, MA and Modrý, D and Benovics, M and Panziera, W and Driemeier, D and Pavarini, SP and Soares, JF and Otranto, D and Sonne, L}, title = {Pathological findings associated with Dipetalonema spp. (Spirurida, Onchocercidae) infection in two species of Neotropical monkeys from Brazil.}, journal = {Parasitology research}, volume = {}, number = {}, pages = {}, pmid = {37347285}, issn = {1432-1955}, abstract = {Among vector-borne helminths, filarioids of the genus Dipetalonema (Spirurida: Onchocercidae) localize in several tissues and body cavities of several animal species, causing mild to moderate lesions. The pathological findings associated with Dipetalonema spp. infection in Neotropical monkeys from southern Brazil are herein described, along with a fatal case due to filarial polyserositis and entrapment of an intestinal segment. At necropsy, nematodes were observed in abdominal and thoracic cavities, or in the pericardium of 37 (31.3%) out of the 118 individuals examined (i.e., 35 Alouatta guariba clamitans and two Sapajus nigritus). In addition, at histology, 27.0% of positive animals presented microfilarie (inside blood vessels of lung, spleen, liver, and brain) and 8.1% presented adult nematodes in the heart, lung, and liver. In two cases, cross-sections of filarioids were associated with areas of epicardial thickening with intense fibrosis and pyogranulomatous inflammation in the brain, heart, liver, lungs, or spleen. The DNA fragment was amplify using the cox1 gene, sequenced and analyzed to identify the nematode species collected; presence of Wolbachia was assessed in the filarioids using the 16S rRNA gene. At BLAST analysis of the cox1 gene, 10 sequences showed 91.7% nucleotide identity with Dipetalonema gracile, and two with D. gracile (98.5%) and Dipetalonema graciliformis (98.3%). Phylogenetic analyses clustered sequences of the cox1 obtained in this study in two clades corresponding with the host species. Wolbachia sp. endosymbiont was detected in four samples. Data herein reported provide a description of pathological lesions associated with the infection by Dipetalonema spp., suggesting that they may cause disease in Neotropical monkeys. In addition, a better understanding of diversity and biology of Dipetalonema spp. in South America is needed to assess the impact they may cause in native non-human primates from Brazil.}, } @article {pmid37345405, year = {2023}, author = {Gao, YF and Ren, YJ and Chen, JC and Cao, LJ and Qiao, GH and Zong, SX and Hoffmann, AA and Wei, SJ and Yang, Q}, title = {Effects of fungicides on fitness and Buchnera endosymbiont density in Aphis gossypii.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.7625}, pmid = {37345405}, issn = {1526-4998}, abstract = {BACKGROUND: Several agricultural fungicides are known to affect insect pests directly and these effects may be transgenerational and mediated through impacts on endosymbionts, providing opportunities for pest control. The cotton aphid Aphis gossypii is a polyphagous pest that can cause large crop yield losses. Here we tested the effects of three fungicides, pyraclostrobin, trifloxystrobin, and chlorothalonil, on the fitness and Buchnera endosymbiont of A. gossypii.

RESULTS: The formulations of trifloxystrobin and pyraclostrobin, and the active ingredient of pyraclostrobin, produced dose-dependent mortality to A. gossypii, while there was no dose-dependent mortality for chlorothalonil. The formulations of trifloxystrobin and pyraclostrobin significantly reduced the lifespan and fecundity of A. gossypii, and increased the density of Buchnera in the parental generation but not the (unexposed) F1 . When the active ingredient of pyraclostrobin was tested, the lifespan of the F0 generation was also reduced but not the density of Buchnera, indicating that non-insecticidal chemicals in the fungicide formulation may affect density of the endosymbiont of A. gossypii. There was no transgenerational effect of active ingredient of pyraclostrobin on the lifespan and Buchnera of (unexposed) F1 .

CONCLUSIONS: Our results suggest that formulations of two strobilurin fungicides have immediate impacts on the fitness of A. gossypii, and chemicals in the formulation impact the density of the primary Buchnera endosymbiont. Our study highlights the potential effects of non-insecticidal chemicals of fungicides on aphid pests and their primary endosymbionts but direct connections between fitness and Buchnera densities remain unclear. This article is protected by copyright. All rights reserved.}, } @article {pmid37339742, year = {2023}, author = {Arora, J and Buček, A and Hellemans, S and Beránková, T and Arias, JR and Fisher, BL and Clitheroe, C and Brune, A and Kinjo, Y and Šobotník, J and Bourguignon, T}, title = {Evidence of cospeciation between termites and their gut bacteria on a geological time scale.}, journal = {Proceedings. Biological sciences}, volume = {290}, number = {2001}, pages = {20230619}, doi = {10.1098/rspb.2023.0619}, pmid = {37339742}, issn = {1471-2954}, abstract = {Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.}, } @article {pmid37323942, year = {2023}, author = {Awori, RM and Waturu, CN and Pidot, SJ and Amugune, NO and Bode, HB}, title = {Draft genomes, phylogenomic reconstruction and comparative genome analysis of three Xenorhabdus strains isolated from soil-dwelling nematodes in Kenya.}, journal = {Access microbiology}, volume = {5}, number = {5}, pages = {}, pmid = {37323942}, issn = {2516-8290}, abstract = {As a proven source of potent and selective antimicrobials, Xenorhabdus bacteria are important to an age plagued with difficult-to-treat microbial infections. Yet, only 27 species have been described to date. In this study, a novel Xenorhabdus species was discovered through genomic studies on three isolates from Kenyan soils. Soils in Western Kenya were surveyed for steinernematids and Steinernema isolates VH1 and BG5 were recovered from red volcanic loam soils from cultivated land in Vihiga and clay soils from riverine land in Bungoma respectively. From the two nematode isolates, Xenorhabdus sp. BG5 and Xenorhabdus sp. VH1 were isolated. The genomes of these two, plus that of X. griffiniae XN45 - this was previously isolated from Steinernema sp. scarpo that also originated from Kenyan soils - were sequenced and assembled. Nascent genome assemblies of the three isolates were of good quality with over 70 % of their proteome having known functions. These three isolates formed the X. griffiniae clade in a phylogenomic reconstruction of the genus. Their species were delineated using three overall genome relatedness indices: an unnamed species of the genus, Xenorhabdus sp. BG5, X. griffiniae VH1 and X. griffiniae XN45. A pangenome analysis of this clade revealed that over 70 % of species-specific genes encoded unknown functions. Transposases were linked to genomic islands in Xenorhabdus sp. BG5. Thus, overall genome-related indices sufficiently delineated species of two new Xenorhabdus isolates from Kenya, both of which were closely related to X. griffiniae . The functions encoded by most species-specific genes in the X. griffiniae clade remain unknown.}, } @article {pmid37323901, year = {2023}, author = {Hyams, Y and Rubin-Blum, M and Rosner, A and Brodsky, L and Rinkevich, Y and Rinkevich, B}, title = {Physiological changes during torpor favor association with Endozoicomonas endosymbionts in the urochordate Botrylloides leachii.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1072053}, pmid = {37323901}, issn = {1664-302X}, abstract = {Environmental perturbations evoke down-regulation of metabolism in some multicellular organisms, leading to dormancy, or torpor. Colonies of the urochordate Botrylloides leachii enter torpor in response to changes in seawater temperature and may survive for months as small vasculature remnants that lack feeding and reproductive organs but possess torpor-specific microbiota. Upon returning to milder conditions, the colonies rapidly restore their original morphology, cytology and functionality while harboring re-occurring microbiota, a phenomenon that has not been described in detail to date. Here we investigated the stability of B. leachii microbiome and its functionality in active and dormant colonies, using microscopy, qPCR, in situ hybridization, genomics and transcriptomics. A novel lineage of Endozoicomonas, proposed here as Candidatus Endozoicomonas endoleachii, was dominant in torpor animals (53-79% read abundance), and potentially occupied specific hemocytes found only in torpid animals. Functional analysis of the metagenome-assembled genome and genome-targeted transcriptomics revealed that Endozoicomonas can use various cellular substrates, like amino acids and sugars, potentially producing biotin and thiamine, but also expressing various features involved in autocatalytic symbiosis. Our study suggests that the microbiome can be linked to the metabolic and physiological states of the host, B. leachii, introducing a model organism for the study of symbioses during drastic physiological changes, such as torpor.}, } @article {pmid37317290, year = {2023}, author = {Massé, A and Detang, J and Duval, C and Duperron, S and Woo, AC and Domart-Coulon, I}, title = {Bacterial Microbiota of Ostreobium, the Coral-Isolated Chlorophyte Ectosymbiont, at Contrasted Salinities.}, journal = {Microorganisms}, volume = {11}, number = {5}, pages = {}, doi = {10.3390/microorganisms11051318}, pmid = {37317290}, issn = {2076-2607}, abstract = {Microscopic filaments of the siphonous green algae Ostreobium (Ulvophyceae, Bryopsidales) colonize and dissolve the calcium carbonate skeletons of coral colonies in reefs of contrasted salinities. Here, we analyzed their bacterial community's composition and plasticity in response to salinity. Multiple cultures of Pocillopora coral-isolated Ostreobium strains from two distinct rbcL lineages representative of IndoPacific environmental phylotypes were pre-acclimatized (>9 months) to three ecologically relevant reef salinities: 32.9, 35.1, and 40.2 psu. Bacterial phylotypes were visualized for the first time at filament scale by CARD-FISH in algal tissue sections, within siphons, at their surface or in their mucilage. Ostreobium-associated microbiota, characterized by bacterial 16S rDNA metabarcoding of cultured thalli and their corresponding supernatants, were structured by host genotype (Ostreobium strain lineage), with dominant Kiloniellaceae or Rhodospirillaceae (Alphaproteobacteria, Rhodospirillales) depending on Ostreobium lineage, and shifted Rhizobiales' abundances in response to the salinity increase. A small core microbiota composed of seven ASVs (~1.5% of thalli ASVs, 19-36% cumulated proportions) was persistent across three salinities in both genotypes, with putative intracellular Amoebophilaceae and Rickettsiales_AB1, as well as Hyphomonadaceae and Rhodospirillaceae also detected within environmental (Ostreobium-colonized) Pocillopora coral skeletons. This novel knowledge on the taxonomic diversity of Ostreobium bacteria paves the way to functional interaction studies within the coral holobiont.}, } @article {pmid37317070, year = {2023}, author = {Aspinwall, JA and Jarvis, SM and Noh, SM and Brayton, KA}, title = {The Effect of Rickettsia bellii on Anaplasma marginale Infection in Dermacentor andersoni Cell Culture.}, journal = {Microorganisms}, volume = {11}, number = {5}, pages = {}, doi = {10.3390/microorganisms11051096}, pmid = {37317070}, issn = {2076-2607}, abstract = {Anaplasma marginale is a tick-borne pathogen that causes bovine anaplasmosis, which affects cattle around the world. Despite its broad prevalence and severe economic impacts, limited treatments exist for this disease. Our lab previously reported that a high proportion of Rickettsia bellii, a tick endosymbiont, in the microbiome of a population of Dermacentor andersoni ticks negatively impacts the ticks' ability to acquire A. marginale. To better understand this correlation, we used mixed infection of A. marginale and R. bellii in D. andersoni cell culture. We assessed the impacts of different amounts of R. bellii in coinfections, as well as established R. bellii infection, on the ability of A. marginale to establish an infection and grow in D. andersoni cells. From these experiments, we conclude that A. marginale is less able to establish an infection in the presence of R. bellii and that an established R. bellii infection inhibits A. marginale replication. This interaction highlights the importance of the microbiome in preventing tick vector competence and may lead to the development of a biological or mechanistic control for A. marginale transmission by the tick.}, } @article {pmid37303533, year = {2023}, author = {Rodríguez, L and Peñalver, M and Casino, P and García-Del Portillo, F}, title = {Evolutionary analysis and structure modelling of the Rcs-repressor IgaA unveil a functional role of two cytoplasmic small β-barrel (SBB) domains.}, journal = {Heliyon}, volume = {9}, number = {6}, pages = {e16661}, pmid = {37303533}, issn = {2405-8440}, abstract = {The Rcs sensor system, comprising the RcsB/RcsC/RcsD and RcsF proteins, is used by bacteria of the order Enterobacterales to withstand envelope damage. In non-stress conditions, Rcs is repressed by IgaA, a membrane protein with three cytoplasmic regions (cyt-1, cyt-2 and cyt-3). How the Rcs-IgaA axis evolved within Enterobacterales has not been yet explored. Here, we report phylogenetic data supporting co-evolution of IgaA with RcsC/RcsD. Functional exchange assays showed that IgaA from Shigella and Dickeya, but not from Yersinia or the endosymbionts Photorhabdus and Sodalis, repress the Rcs system of Salmonella. IgaA from Dickeya, however, repress only partially the Rcs system despite being produced at high levels in the complementation assay. The modelled structures of these IgaA variants uncovered one periplasmic and two cytoplasmic conserved β-rich architectures forming partially closed small β-barrel (SBB) domains. Conserved residues map in a connector linking cytoplasmic SSB-1 and SBB-2 domains (E180-R265); a region of cyt-1 facing cyt-2 (R188-E194-D309 and T191-H326); and between cyt-2 and cyt-3 (H293-E328-R686). These structures validated early in vivo studies in Salmonella that assigned a role in function to R188, T191 and G262, and in addition revealed a previously unnoticed "hybrid" SBB-2 domain to which cyt-1 and cyt-2 contribute. IgaA variants not functional or partially functional in Salmonella lack H192-P249 and R255-D313 interactions. Among these variants, only IgaA from Dickeya conserves the helix α6 in SSB-1 that is present in IgaA from Salmonella and Shigella. RcsF and RcsD, which interact directly with IgaA, failed to show structural features linked to specific IgaA variants. Altogether, our data provide new insights into IgaA by mapping residues selected differently during evolution and involved in function. Our data also infer contrasting lifestyles of Enterobacterales bacteria as source of variability in the IgaA-RcsD/IgaA-RcsF interactions.}, } @article {pmid37301202, year = {2023}, author = {Richter, I and Wein, P and Uzum, Z and Stanley, CE and Krabbe, J and Molloy, EM and Moebius, N and Ferling, I and Hillmann, F and Hertweck, C}, title = {Transcription activator-like effector protects bacterial endosymbionts from entrapment within fungal hyphae.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2023.05.028}, pmid = {37301202}, issn = {1879-0445}, abstract = {As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown. Here, we show that a transcription activator-like (TAL) effector released by endobacteria is an essential symbiosis factor. By combining microfluidics with fluorescence microscopy, we observed enrichment of TAL-deficient M. rhizoxinica in side hyphae. High-resolution live imaging showed the formation of septa at the base of infected hyphae, leading to the entrapment of endobacteria. Using a LIVE/DEAD stain, we demonstrate that the intracellular survival of trapped TAL-deficient bacteria is significantly reduced compared with wild-type M. rhizoxinica, indicative of a protective host response in the absence of TAL proteins. Subversion of host defense in TAL-competent endobacteria represents an unprecedented function of TAL effectors. Our data illustrate an unusual survival strategy of endosymbionts in the host and provide deeper insights into the dynamic interactions between bacteria and eukaryotes.}, } @article {pmid37298563, year = {2023}, author = {Fiutek, N and Couger, MB and Pirro, S and Roy, SW and de la Torre, JR and Connor, EF}, title = {Genomic Assessment of the Contribution of the Wolbachia Endosymbiont of Eurosta solidaginis to Gall Induction.}, journal = {International journal of molecular sciences}, volume = {24}, number = {11}, pages = {}, doi = {10.3390/ijms24119613}, pmid = {37298563}, issn = {1422-0067}, support = {IRGEN_RG_2021-1345/IRGEN/IRGEN/United States ; }, abstract = {We explored the genome of the Wolbachia strain, wEsol, symbiotic with the plant-gall-inducing fly Eurosta solidaginis with the goal of determining if wEsol contributes to gall induction by its insect host. Gall induction by insects has been hypothesized to involve the secretion of the phytohormones cytokinin and auxin and/or proteinaceous effectors to stimulate cell division and growth in the host plant. We sequenced the metagenome of E. solidaginis and wEsol and assembled and annotated the genome of wEsol. The wEsol genome has an assembled length of 1.66 Mbp and contains 1878 protein-coding genes. The wEsol genome is replete with proteins encoded by mobile genetic elements and shows evidence of seven different prophages. We also detected evidence of multiple small insertions of wEsol genes into the genome of the host insect. Our characterization of the genome of wEsol indicates that it is compromised in the synthesis of dimethylallyl pyrophosphate (DMAPP) and S-adenosyl L-methionine (SAM), which are precursors required for the synthesis of cytokinins and methylthiolated cytokinins. wEsol is also incapable of synthesizing tryptophan, and its genome contains no enzymes in any of the known pathways for the synthesis of indole-3-acetic acid (IAA) from tryptophan. wEsol must steal DMAPP and L-methionine from its host and therefore is unlikely to provide cytokinin and auxin to its insect host for use in gall induction. Furthermore, in spite of its large repertoire of predicted Type IV secreted effector proteins, these effectors are more likely to contribute to the acquisition of nutrients and the manipulation of the host's cellular environment to contribute to growth and reproduction of wEsol than to aid E. solidaginis in manipulating its host plant. Combined with earlier work that shows that wEsol is absent from the salivary glands of E. solidaginis, our results suggest that wEsol does not contribute to gall induction by its host.}, } @article {pmid37298356, year = {2023}, author = {Mioduchowska, M and Konecka, E and Gołdyn, B and Pinceel, T and Brendonck, L and Lukić, D and Kaczmarek, Ł and Namiotko, T and Zając, K and Zając, T and Jastrzębski, JP and Bartoszek, K}, title = {Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates.}, journal = {International journal of molecular sciences}, volume = {24}, number = {11}, pages = {}, doi = {10.3390/ijms24119400}, pmid = {37298356}, issn = {1422-0067}, abstract = {The infamous "master manipulators"-intracellular bacteria of the genus Wolbachia-infect a broad range of phylogenetically diverse invertebrate hosts in terrestrial ecosystems. Wolbachia has an important impact on the ecology and evolution of their host with documented effects including induced parthenogenesis, male killing, feminization, and cytoplasmic incompatibility. Nonetheless, data on Wolbachia infections in non-terrestrial invertebrates are scarce. Sampling bias and methodological limitations are some of the reasons limiting the detection of these bacteria in aquatic organisms. In this study, we present a new metagenetic method for detecting the co-occurrence of different Wolbachia strains in freshwater invertebrates host species, i.e., freshwater Arthropoda (Crustacea), Mollusca (Bivalvia), and water bears (Tardigrada) by applying NGS primers designed by us and a Python script that allows the identification of Wolbachia target sequences from the microbiome communities. We also compare the results obtained using the commonly applied NGS primers and the Sanger sequencing approach. Finally, we describe three supergroups of Wolbachia: (i) a new supergroup V identified in Crustacea and Bivalvia hosts; (ii) supergroup A identified in Crustacea, Bivalvia, and Eutardigrada hosts, and (iii) supergroup E infection in the Crustacea host microbiome community.}, } @article {pmid37296325, year = {2023}, author = {Chaúque, BJM and Corção, G and Benetti, AD and Rott, MB}, title = {A challenge in washing water with the sun: 24h of SODIS fails to inactivate Acanthamoeba castellanii cysts and internalized Pseudomonas aeruginosa under strong real sun conditions.}, journal = {Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology}, volume = {}, number = {}, pages = {}, pmid = {37296325}, issn = {1474-9092}, abstract = {Despite access to drinking water being a basic human right, the availability of safe drinking water remains a privilege that many do not have and as a result, many lives are lost each year due to waterborne diseases associated with the consumption of biologically unsafe water. To face this situation, different low-cost household drinking water treatment technologies (HDWT) have been developed, and among them is solar disinfection (SODIS). Despite the effectiveness of SODIS and the epidemiological gains being consistently documented in the literature, there is a lack of evidence of the effectiveness of the batch-SODIS process against protozoan cysts as well as their internalized bacteria under real sun conditions. This work evaluated the effectiveness of the batch-SODIS process on the viability of Acanthamoeba castellanii cysts, and internalized Pseudomonas aeruginosa. Dechlorinated tap water contaminated with 5.6 × 10[3] cysts/L, contained in PET (polyethylene terephthalate) bottles, was exposed for 8 h a day to strong sunlight (531-1083 W/m[2] of maximum insolation) for 3 consecutive days. The maximum water temperature inside the reactors ranged from 37 to 50 °C. Cyst viability was assessed by inducing excystment on non-nutrient agar, or in water with heat-inactivated Escherichia coli. After sun exposure for 0, 8, 16 and 24 h, the cysts remained viable and without any perceptible impairment in their ability to excyst. 3 and 5.5 log CFU/mL of P. aeruginosa were detected in water containing untreated and treated cysts, respectively, after 3 days of incubation at 30 °C. The batch-SODIS process is unable to inactivate A. castellanii cysts as well as its internalized bacteria. Although the use of batch SODIS by communities should continue to be encouraged, SODIS-disinfected water should be consumed within 3 days.}, } @article {pmid37292783, year = {2023}, author = {Samaddar, S and O'Neal, AJ and Marnin, L and Rolandelli, A and Singh, N and Wang, X and Butler, LR and Rangghran, P and Laukaitis, HJ and Cabrera Paz, FE and Fiskum, GM and Polster, BM and Pedra, JHF}, title = {Metabolic disruption impacts tick fitness and microbial relationships.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2023.05.26.542501}, pmid = {37292783}, abstract = {Arthropod-borne microbes rely on the metabolic state of a host to cycle between evolutionarily distant species. For instance, arthropod tolerance to infection may be due to redistribution of metabolic resources, often leading to microbial transmission to mammals. Conversely, metabolic alterations aids in pathogen elimination in humans, who do not ordinarily harbor arthropod-borne microbes. To ascertain the effect of metabolism on interspecies relationships, we engineered a system to evaluate glycolysis and oxidative phosphorylation in the tick Ixodes scapularis . Using a metabolic flux assay, we determined that the rickettsial bacterium Anaplasma phagocytophilum and the Lyme disease spirochete Borrelia burgdorferi , which are transstadially transmitted in nature, induced glycolysis in ticks. On the other hand, the endosymbiont Rickettsia buchneri, which is transovarially maintained, had a minimal effect on I. scapularis bioenergetics. Importantly, the metabolite β-aminoisobutyric acid (BAIBA) was elevated during A. phagocytophilum infection of tick cells following an unbiased metabolomics approach. Thus, we manipulated the expression of genes associated with the catabolism and anabolism of BAIBA in I. scapularis and detected impaired feeding on mammals, reduced bacterial acquisition, and decreased tick survival. Collectively, we reveal the importance of metabolism for tick-microbe relationships and unveil a valuable metabolite for I. scapularis fitness.}, } @article {pmid37290396, year = {2023}, author = {Matulis, GA and Sakolvaree, J and Boldbaatar, B and Cleary, N and Takhampunya, R and Poole-Smith, BK and Lilak, AA and Altantogtokh, D and Tsogbadrakh, N and Chanarat, N and Youngdech, N and Lindroth, EJ and Fiorenzano, JM and Letizia, AG and von Fricken, ME}, title = {Applying next generation sequencing to detect tick-pathogens in Dermacentor nuttalli, Ixodes persulcatus, and Hyalomma asiaticum collected from Mongolia.}, journal = {Ticks and tick-borne diseases}, volume = {14}, number = {5}, pages = {102203}, doi = {10.1016/j.ttbdis.2023.102203}, pmid = {37290396}, issn = {1877-9603}, abstract = {Ticks and tick-borne diseases represent major threats to the public health of the Mongolian population, of which an estimated 26% live a traditional nomadic pastoralist lifestyle that puts them at increased risk for exposure. Ticks were collected by dragging and removal from livestock in Khentii, Selenge, Tuv, and Umnugovi aimags (provinces) during March-May 2020. Using next-generation sequencing (NGS) with confirmatory PCR and DNA sequencing, we sought to characterize the microbial species present in Dermacentor nuttalli (n = 98), Hyalomma asiaticum (n = 38), and Ixodes persulcatus (n = 72) tick pools. Rickettsia spp. were detected in 90.4% of tick pools, with Khentii, Selenge, and Tuv tick pools all having 100% pool positivity. Coxiella spp. were detected at an overall pool positivity rate of 60%, while Francisella spp. were detected in 20% of pools and Borrelia spp. detected in 13% of pools. Additional confirmatory testing for Rickettsia-positive pools demonstrated Rickettsia raoultii (n = 105), Candidatus Rickettsia tarasevichiae (n = 65) and R. slovaca/R. sibirica (n = 2), as well as the first report of Candidatus Rickettsia jingxinensis (n = 1) in Mongolia. For Coxiella spp. reads, most samples were identified as a Coxiella endosymbiont (n = 117), although Coxiella burnetii was detected in eight pools collected in Umnugovi. Borrelia species that were identified include Borrelia burgdorferi sensu lato (n = 3), B. garinii (n = 2), B. miyamotoi (n = 16), and B. afzelii (n = 3). All Francisella spp. reads were identified as Francisella endosymbiont species. Our findings emphasize the utility of NGS to provide baseline data across multiple tick-borne pathogen groups, which in turn can be used to inform health policy, determine regions for expanded surveillance, and guide risk mitigation strategies.}, } @article {pmid37286189, year = {2023}, author = {Yang, Q and Gill, A and Robinson, KL and Umina, PA and Ross, PA and Zhan, D and Brown, C and Bell, N and MacMahon, A and Hoffmann, AA}, title = {A diversity of endosymbionts across Australian aphids and their persistence in aphid cultures.}, journal = {Environmental microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1111/1462-2920.16432}, pmid = {37286189}, issn = {1462-2920}, abstract = {There is increasing interest in the use of endosymbionts in pest control, which will benefit from the identification of endosymbionts from potential donor species for transfer to pest species. Here, we screened for endosymbionts in 123 Australian aphid samples across 32 species using 16S DNA metabarcoding. We then developed a qPCR method to validate the metabarcoding data set and to monitor endosymbiont persistence in aphid cultures. Pea aphids (Acyrthosiphon pisum) were frequently coinfected with Rickettsiella and Serratia, and glasshouse potato aphids (Aulacorthum solani) were coinfected with Regiella and Spiroplasma; other secondary endosymbionts detected in samples occurred by themselves. Hamiltonella, Rickettsia and Wolbachia were restricted to a single aphid species, whereas Regiella was found in multiple species. Rickettsiella, Hamiltonella and Serratia were stably maintained in laboratory cultures, although others were lost rapidly. The overall incidence of secondary endosymbionts in Australian samples tended to be lower than recorded from aphids overseas. These results indicate that aphid endosymbionts probably exhibit different levels of infectivity and vertical transmission efficiency across hosts, which may contribute to natural infection patterns. The rapid loss of some endosymbionts in cultures raises questions about factors that maintain them under field conditions, while endosymbionts that persisted in laboratory culture provide candidates for interspecific transfers.}, } @article {pmid37285901, year = {2023}, author = {Nadal-Jimenez, P and Frost, CL and Cláudia Norte, A and Garrido-Bautista, J and Wilkes, TE and Connell, R and Rice, A and Krams, I and Eeva, T and Christe, P and Moreno-Rueda, G and Hurst, GDD}, title = {The son-killer microbe Arsenophonus nasoniae is a widespread associate of the parasitic wasp Nasonia vitripennis in Europe.}, journal = {Journal of invertebrate pathology}, volume = {}, number = {}, pages = {107947}, doi = {10.1016/j.jip.2023.107947}, pmid = {37285901}, issn = {1096-0805}, abstract = {Heritable microbes that exhibit reproductive parasitism are common in insects. One class of these are the male-killing bacteria, which are found in a broad range of insect hosts. Commonly, our knowledge of the incidence of these microbes is based on one or a few sampling sites, and the degree and causes of spatial variation are unclear. In this paper, we examine the incidence of the son-killer microbe Arsenophonus nasoniae across European populations of its wasp host, Nasonia vitripennis. In preliminary work, we noticed two female N. vitripennis producing highly female biased sex ratios in a field study from the Netherlands and Germany. When tested, the brood from Germany was revealed to be infected with A. nasoniae. We then completed a broad survey in 2012, in which fly pupal hosts of N. vitripennis were collected from vacated birds' nests from four European populations, N. vitripennis wasps allowed to emerge and then tested for A. nasoniae presence through PCR assay. We then developed a new screening methodology based on direct PCR assays of fly pupae and applied this to ethanol-preserved material collected from great tit (Parus major) nests in Portugal. These data show A. nasoniae is found widely in European N. vitripennis, being present in Germany, the UK, Finland, Switzerland and Portugal. Samples varied in the frequency with which they carry A. nasoniae, from being rare to being present in 50% of the pupae parasitised by N. vitripennis. Direct screening of ethanol-preserved fly pupae was an effective method for revealing both wasp and A. nasoniae infection, and will facilitate sample transport across national boundaries. Future research should examine the causes of variation in frequency, in particular testing the hypothesis that N. vitripennis superparasitism rates drive the variation in A. nasoniae frequency through providing opportunities for infectious transmission.}, } @article {pmid37285552, year = {2023}, author = {Hochstrasser, M}, title = {Molecular Biology of Cytoplasmic Incompatibility Caused by Wolbachia Endosymbionts.}, journal = {Annual review of microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1146/annurev-micro-041020-024616}, pmid = {37285552}, issn = {1545-3251}, abstract = {Among endosymbiotic bacteria living within eukaryotic cells, Wolbachia is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, Wolbachia infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related Wolbachia bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either Spiroplasma or Wolbachia endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations. Expected final online publication date for the Annual Review of Microbiology, Volume 77 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.}, } @article {pmid37278210, year = {2023}, author = {Xu, X and Hoffmann, AA and Umina, PA and Ward, SE and Coquilleau, MP and Malipatil, MB and Ridland, PM}, title = {Molecular identification of hymenopteran parasitoids and their endosymbionts from agromyzids.}, journal = {Bulletin of entomological research}, volume = {}, number = {}, pages = {1-16}, doi = {10.1017/S0007485323000160}, pmid = {37278210}, issn = {1475-2670}, abstract = {Three polyphagous pest Liriomyza spp. (Diptera: Agromyzidae) have recently invaded Australia and are damaging horticultural crops. Parasitic wasps are recognized as effective natural enemies of leafmining species globally and are expected to become important biocontrol agents in Australia. However, the hymenopteran parasitoid complex of agromyzids in Australia is poorly known and its use hindered due to taxonomic challenges when based on morphological characters. Here, we identified 14 parasitoid species of leafminers based on molecular and morphological data. We linked DNA barcodes (5' end cytochrome c oxidase subunit I (COI) sequences) to five adventive eulophid wasp species (Chrysocharis pubicornis (Zetterstedt), Diglyphus isaea (Walker), Hemiptarsenus varicornis (Girault), Neochrysocharis formosa (Westwood), and Neochrysocharis okazakii Kamijo) and two braconid species (Dacnusa areolaris (Nees) and Opius cinerariae Fischer). We also provide the first DNA barcodes (5' end COI sequences) with linked morphological characters for seven wasp species, with three identified to species level (Closterocerus mirabilis Edwards & La Salle, Trigonogastrella parasitica (Girault), and Zagrammosoma latilineatum Ubaidillah) and four identified to genus (Aprostocetus sp., Asecodes sp., Opius sp. 1, and Opius sp. 2). Phylogenetic analyses suggest C. pubicornis, D. isaea, H. varicornis, and O. cinerariae are likely cryptic species complexes. Neochrysocharis formosa and Aprostocetus sp. specimens were infected with Rickettsia. Five other species (Cl. mirabilis, D. isaea, H. varicornis, Opius sp. 1, and Opius sp. 2) were infected with Wolbachia, while two endosymbionts (Rickettsia and Wolbachia) co-infected N. okazakii. These findings provide background information about the parasitoid fauna expected to help control the leafminers.}, } @article {pmid37267326, year = {2023}, author = {Spencer, N and Łukasik, P and Meyer, M and Veloso, C and McCutcheon, JP}, title = {No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evad100}, pmid = {37267326}, issn = {1759-6653}, abstract = {Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the same evolutionary processes that drive genome reduction and simplification may sometimes cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting - along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri - we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.}, } @article {pmid37264036, year = {2023}, author = {Armstrong, EJ and Lê-Hoang, J and Carradec, Q and Aury, JM and Noel, B and Hume, BCC and Voolstra, CR and Poulain, J and Belser, C and Paz-García, DA and Cruaud, C and Labadie, K and Da Silva, C and Moulin, C and Boissin, E and Bourdin, G and Iwankow, G and Romac, S and Agostini, S and Banaigs, B and Boss, E and Bowler, C and de Vargas, C and Douville, E and Flores, M and Forcioli, D and Furla, P and Galand, PE and Gilson, E and Lombard, F and Pesant, S and Reynaud, S and Sullivan, MB and Sunagawa, S and Thomas, OP and Troublé, R and Thurber, RV and Zoccola, D and Planes, S and Allemand, D and Wincker, P}, title = {Host transcriptomic plasticity and photosymbiotic fidelity underpin Pocillopora acclimatization across thermal regimes in the Pacific Ocean.}, journal = {Nature communications}, volume = {14}, number = {1}, pages = {3056}, pmid = {37264036}, issn = {2041-1723}, abstract = {Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.}, } @article {pmid37261959, year = {2023}, author = {Kim, SJ and Jo, J and Ko, KS}, title = {Lipid A modification-induced colistin-resistant Klebsiella variicola from healthy adults.}, journal = {Journal of medical microbiology}, volume = {72}, number = {6}, pages = {}, doi = {10.1099/jmm.0.001680}, pmid = {37261959}, issn = {1473-5644}, abstract = {Background. Klebsiella variicola was once recognised as a benign plant-endosymbiont but recent case reports suggest that it is a newly emerging Gram-negative pathogen related to opportunistic infection of multiple sites in humans.Methods. Antimicrobial susceptibility testing was performed using broth microdilution method. To identify colistin resistance mechanisms, phoPQ, pmrAB, and mgrB were sequenced and their mRNA expression was analysed using quantitative real-time PCR. In addition, we tried to detect crrAB and mcr. The lipid A moieties of colistin-susceptible and -resistant isolates were analysed using MALDI-TOF.Results. Among the two K. variicola isolates, one is colistin-resistant, and another is colistin-susceptible. The colistin-resistant K. variicola isolate showed no mutations in phoPQ, pmrAB, and mgrB, and crrAB and mcr were not identified. However, its phoQ and pbgP expression was significantly higher and amino-arabinosylated lipid A with hexa-acylated species in lipopolysaccharide was identified.Conclusions. We found that colistin resistance in K. variicola was mediated by the modification of lipid A. Although the isolate was obtained from faecal samples of healthy adults, colistin-resistant K. variicola challenges public health as an opportunistic pathogen.}, } @article {pmid37256931, year = {2023}, author = {Liu, M and Hong, G and Li, H and Bing, X and Chen, Y and Jing, X and Gershenzon, J and Lou, Y and Baldwin, IT and Li, R}, title = {Sakuranetin protects rice from brown planthopper attack by depleting its beneficial endosymbionts.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {120}, number = {23}, pages = {e2305007120}, doi = {10.1073/pnas.2305007120}, pmid = {37256931}, issn = {1091-6490}, abstract = {Plants produce chemical defenses that poison insect herbivores or deter their feeding, but herbivores are also accompanied by microbial endosymbionts crucial for their nutrition, reproduction, and fitness. Hence, plant defenses could target a herbivore's beneficial endosymbionts, but this has not yet been demonstrated. Here, we studied flavonoids that are induced when rice is attacked by a phloem-feeding pest, the brown planthopper (BPH), which harbors beneficial yeast-like symbionts (YLS) essential for insect nutrition, such as by remedying deficiencies in sterols. BPH attack dramatically increased sakuranetin accumulations in leaf sheaths and phloem exudates. Sakuranetin is an antifungal phytoalexin derived from the antibacterial precursor, naringenin, via catalysis of naringenin-O-methyltransferase (NOMT). When added to artificial diets, sakuranetin decreased BPH survivorship, suggesting that it functions as an induced defense. Mutation of NOMT abolished sakuranetin accumulation and increased BPH oviposition and hatching rates. High-throughput amplicon sequencing revealed that BPH fed on sakuranetin-deficient nomt lines were enriched in YLS with only minor changes in the bacterial endosymbionts, compared to those feeding on sakuranetin-rich wild-type (WT) plants. In-vitro feeding of sakuranetin suggested that this flavonoid directly inhibited the growth of YLS. BPH feeding on nomt lines accumulated higher cholesterol levels, which might be attributed to increases in the supply of sterol precursors from the YLS, while nomt lines suffered more damage than WT plants did from BPH herbivory. BPH-elicited accumulation of sakuranetin requires intact jasmonate (JA) signaling. This study reveals that rice uses a JA-induced antifungal flavonoid phytoalexin in defense against BPH by inhibiting its beneficial endosymbionts.}, } @article {pmid37250803, year = {2023}, author = {Arai, H and Anbutsu, H and Nishikawa, Y and Kogawa, M and Ishii, K and Hosokawa, M and Lin, SR and Ueda, M and Nakai, M and Kunimi, Y and Harumoto, T and Kageyama, D and Takeyama, H and Inoue, MN}, title = {Combined actions of bacteriophage-encoded genes in Wolbachia-induced male lethality.}, journal = {iScience}, volume = {26}, number = {6}, pages = {106842}, pmid = {37250803}, issn = {2589-0042}, abstract = {Some Wolbachia endosymbionts induce male killing, whereby male offspring of infected females are killed during development; however, the origin and diversity of the underlying mechanisms remain unclear. In this study, we identified a 76 kbp prophage region specific to male-killing Wolbachia hosted by the moth Homona magnanima. The prophage encoded a homolog of the male-killing gene oscar in Ostrinia moths and the wmk gene that induces various toxicities in Drosophila melanogaster. Upon overexpressing these genes in D. melanogaster, wmk-1 and wmk-3 killed all males and most females, whereas Hm-oscar, wmk-2, and wmk-4 had no impact on insect survival. Strikingly, co-expression of tandemly arrayed wmk-3 and wmk-4 killed 90% of males and restored 70% of females, suggesting their conjugated functions for male-specific lethality. While the male-killing gene in the native host remains unknown, our findings highlight the role of bacteriophages in male-killing evolution and differences in male-killing mechanisms among insects.}, } @article {pmid37247378, year = {2023}, author = {Oladipupo, SO and Laidoudi, Y and Beckmann, JF and Hu, XP and Appel, AG}, title = {The prevalence of Wolbachia in multiple cockroach species and its implication for urban insect management.}, journal = {Journal of economic entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jee/toad098}, pmid = {37247378}, issn = {1938-291X}, abstract = {Cockroach management relies heavily on the use of conventional insecticides in urban settings, which no longer provide the anticipated level of control. Knowledge of cockroach endosymbionts, like Wolbachia, might provide novel avenues for control. Therefore, we screened 16 cockroach species belonging to 3 families (Ectobiidae, Blattidae, and Blaberidae) for the presence of Wolbachia. We mapped the evolution of Wolbachia-cockroach relationships based on maximum likelihood phylogeny and phylogenetic species clustering on a multi-loci sequence dataset (i.e., coxA, virD4, hcpA, and gatB) of Wolbachia genes. We confirmed the previous report of Wolbachia in 1 Ectobiid species; Supella longipalpa (Fab.), and detected the presence of Wolbachia in 2 Ectobiid species; Balta notulata (Stål) and Pseudomops septentrionalis Hebard, and 1 Blaberid species; Gromphadorhina portentosa (Schaum). All cockroach-associated Wolbachia herein detected were clustered with the ancestor of F clade Wolbachia of Cimex lectularius L. (bed bugs). Since Wolbachia provision C. lectularius with biotin vitamins that confer reproductive fitness, we screened the cockroach-associated Wolbachia for the presence of biotin genes. In toto, our results reveal 2 important findings: (i) Wolbachia is relatively uncommon among cockroach species infecting about 25% of species investigated, and (ii) cockroach-associated Wolbachia have biotin genes that likely provide nutritional benefits to their hosts. Thus, we discuss the potential of exploring Wolbachia as a tool for urban insect management.}, } @article {pmid37240058, year = {2023}, author = {Mohammad Aslam, S and Vass, I and Szabó, M}, title = {Characterization of the Flash-Induced Fluorescence Wave Phenomenon in the Coral Endosymbiont Algae, Symbiodiniaceae.}, journal = {International journal of molecular sciences}, volume = {24}, number = {10}, pages = {}, doi = {10.3390/ijms24108712}, pmid = {37240058}, issn = {1422-0067}, abstract = {The dinoflagellate algae, Symbiodiniaceae, are significant symbiotic partners of corals due to their photosynthetic capacity. The photosynthetic processes of the microalgae consist of linear electron transport, which provides the energetic balance of ATP and NADPH production for CO2 fixation, and alternative electron transport pathways, including cyclic electron flow, which ensures the elevated ATP requirements under stress conditions. Flash-induced chlorophyll fluorescence relaxation is a non-invasive tool to assess the various electron transport pathways. A special case of fluorescence relaxation, the so-called wave phenomenon, was found to be associated with the activity of NAD(P)H dehydrogenase (NDH) in microalgae. We showed previously that the wave phenomenon existed in Symbiodiniaceae under acute heat stress and microaerobic conditions, however, the electron transport processes related to the wave phenomenon remained unknown. In this work, using various inhibitors, we show that (i) the linear electron transport has a crucial role in the formation of the wave, (ii) the inhibition of the donor side of Photosystem II did not induce the wave, whereas inhibition of the Calvin-Benson cycle accelerated it, (iii) the wave phenomenon was related to the operation of type II NDH (NDH-2). We therefore propose that the wave phenomenon is an important marker of the regulation of electron transport in Symbiodiniaceae.}, } @article {pmid37237521, year = {2023}, author = {Pomahač, O and Méndez-Sánchez, D and Poláková, K and Müller, M and Solito, MM and Bourland, WA and Čepička, I}, title = {Rediscovery of Remarkably Rare Anaerobic Tentaculiferous Ciliate Genera Legendrea and Dactylochlamys (Ciliophora: Litostomatea).}, journal = {Biology}, volume = {12}, number = {5}, pages = {}, doi = {10.3390/biology12050707}, pmid = {37237521}, issn = {2079-7737}, abstract = {Free-living anaerobic ciliates are of considerable interest from an ecological and an evolutionary standpoint. Extraordinary tentacle-bearing predatory lineages have evolved independently several times within the phylum Ciliophora, including two rarely encountered anaerobic litostomatean genera, Legendrea and Dactylochlamys. In this study, we significantly extend the morphological and phylogenetic characterization of these two poorly known groups of predatory ciliates. We provide the first phylogenetic analysis of the monotypic genus Dactylochlamys and the three valid species of Legendrea based on the 18S rRNA gene and ITS-28S rRNA gene sequences. Prior to this study, neither group had been studied using silver impregnation methods. We provide the first protargol-stained material and also a unique video material including documentation, for the first time, of the hunting and feeding behavior of a Legendrea species. We briefly discuss the identity of methanogenic archaeal and bacterial endosymbionts of both genera based on 16S rRNA gene sequences, and the importance of citizen science for ciliatology from a historical and contemporary perspective.}, } @article {pmid37237053, year = {2023}, author = {Tillmann, U and Wietkamp, S and Kretschmann, J and Chacón, J and Gottschling, M}, title = {Spatial fragmentation in the distribution of diatom endosymbionts from the taxonomically clarified dinophyte Kryptoperidinium triquetrum (= Kryptoperidinium foliaceum, Peridiniales).}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {8593}, pmid = {37237053}, issn = {2045-2322}, abstract = {Among the photosynthetically active dinophytes, the Kryptoperidiniaceae are unique in having a diatom as endosymbiont instead of the widely present peridinin chloroplast. Phylogenetically, it is unresolved at present how the endosymbionts are inherited, and the taxonomic identities of two iconic dinophyte names, Kryptoperidinium foliaceum and Kryptoperidinium triquetrum, are also unclear. Multiple strains were newly established from the type locality in the German Baltic Sea off Wismar and inspected using microscopy as well as molecular sequence diagnostics of both host and endosymbiont. All strains were bi-nucleate, shared the same plate formula (i.e., po, X, 4', 2a, 7'', 5c, 7s, 5''', 2'''') and exhibited a narrow and characteristically L-shaped precingular plate 7''. Within the molecular phylogeny of Bacillariaceae, endosymbionts were scattered over the tree in a highly polyphyletic pattern, even if they were gained from different strains of a single species, namely K. triquetrum. Notably, endosymbionts from the Baltic Sea show molecular sequences distinct from the Atlantic and the Mediterranean Sea, which is the first report of such a spatial fragmentation in a planktonic species of dinophytes. The two names K. foliaceum and K. triquetrum are taxonomically clarified by epitypification, with K. triquetrum having priority over its synonym K. foliaceum. Our study underlines the need of stable taxonomy for central questions in evolutionary biology.}, } @article {pmid37231093, year = {2023}, author = {Bruner-Montero, G and Jiggins, FM}, title = {Wolbachia protects Drosophila melanogaster against two naturally occurring and virulent viral pathogens.}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {8518}, pmid = {37231093}, issn = {2045-2322}, abstract = {Wolbachia is a common endosymbiont that can protect insects against viral pathogens. However, whether the antiviral effects of Wolbachia have a significant effect on fitness remains unclear. We have investigated the interaction between Drosophila melanogaster, Wolbachia and two viruses that we recently isolated from wild flies, La Jolla virus (LJV; Iflaviridae) and Newfield virus (NFV; Permutotetraviridae). Flies infected with these viruses have increased mortality rates, and NFV partially sterilizes females. These effects on fitness were reduced in Wolbachia-infected flies, and this was associated with reduced viral titres. However, Wolbachia alone also reduces survival, and under our experimental conditions these costs of the symbiont can outweigh the benefits of antiviral protection. In contrast, protection against the sterilizing effect of NFV leads to a net benefit of Wolbachia infection after exposure to the virus. These results support the hypothesis that Wolbachia is an important defense against the natural pathogens of D. melanogaster. Furthermore, by reducing the cost of Wolbachia infection, the antiviral effects of Wolbachia may aid its invasion into populations and help explain why it is so common in nature.}, } @article {pmid37226596, year = {2023}, author = {Medina, JM and Queller, DC and Strassmann, JE and Garcia, JR}, title = {The social amoeba dictyostelium discoideum rescues paraburkholderia hayleyella, but not P. agricolaris, from interspecific competition.}, journal = {FEMS microbiology ecology}, volume = {}, number = {}, pages = {}, doi = {10.1093/femsec/fiad055}, pmid = {37226596}, issn = {1574-6941}, abstract = {Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host.}, } @article {pmid37223258, year = {2021}, author = {Marra, A and Masson, F and Lemaitre, B}, title = {The iron transporter Transferrin 1 mediates homeostasis of the endosymbiotic relationship between Drosophila melanogaster and Spiroplasma poulsonii.}, journal = {microLife}, volume = {2}, number = {}, pages = {uqab008}, pmid = {37223258}, issn = {2633-6693}, abstract = {Iron is involved in numerous biological processes in both prokaryotes and eukaryotes and is therefore subject to a tug-of-war between host and microbes upon pathogenic infections. In the fruit fly Drosophila melanogaster, the iron transporter Transferrin 1 (Tsf1) mediates iron relocation from the hemolymph to the fat body upon infection as part of the nutritional immune response. The sequestration of iron in the fat body renders it less available for pathogens, hence limiting their proliferation and enhancing the host ability to fight the infection. Here we investigate the interaction between host iron homeostasis and Spiroplasma poulsonii, a facultative, vertically transmitted, endosymbiont of Drosophila. This low-pathogenicity bacterium is devoid of cell wall and is able to thrive in the host hemolymph without triggering pathogen-responsive canonical immune pathways. However, hemolymph proteomics revealed an enrichment of Tsf1 in infected flies. We find that S. poulsonii induces tsf1 expression and triggers an iron sequestration response similarly to pathogenic bacteria. We next demonstrate that free iron cannot be used by Spiroplasma while Tsf1-bound iron promotes bacterial growth, underlining the adaptation of Spiroplasma to the intra-host lifestyle where iron is mostly protein-bound. Our results show that Tsf1 is used both by the fly to sequester iron and by Spiroplasma to forage host iron, making it a central protein in endosymbiotic homeostasis.}, } @article {pmid37214831, year = {2023}, author = {Mfopit, YM and Weber, JS and Chechet, GD and Ibrahim, MAM and Signaboubo, D and Achukwi, DM and Mamman, M and Balogun, EO and Shuaibu, MN and Kabir, J and Kelm, S}, title = {Molecular detection of Sodalis glossinidius, Spiroplasma and Wolbachia endosymbionts in wild population of tsetse flies collected in Cameroon, Chad and Nigeria.}, journal = {Research square}, volume = {}, number = {}, pages = {}, doi = {10.21203/rs.3.rs-2902767/v1}, pmid = {37214831}, abstract = {Background Tsetse flies are cyclical vectors of African trypanosomiasis. They have established symbiotic associations with different bacteria, which influence certain aspects of their physiology. The vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by various factors, amongst which are bacterial endosymbionts. Symbiotic interactions may provide an avenue for the disease control. The current study provided the prevalence of 3 tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. Results Tsetse flies were collected from five different locations and dissected. DNA was extracted and polymerase chain reaction PCR was used to detect the presence of Sodalis glossinidius , Spiroplasma sp and Wolbachia using specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the 3 symbionts. Among the infected, 6 (6.31%) were carrying mixed infection (Wolbachia and Spiroplasma). The overall symbiont prevalence was 0.88%, 3.66% and 11.00% respectively, for Sodalis , Spiroplasma and Wolbachia . Prevalence varied between countries and tsetse species. No Spiroplasma was detected in samples from Cameroon and no Sodalis was found in samples from Nigeria. Conclusion The present study revealed for the first time, the presence of infection by Spiroplasma in tsetse in Chad and Nigeria. These findings provide useful information to the repertoire of bacterial flora of tsetse flies and incite to more investigations to understand their implication in the vector competence of tsetse flies.}, } @article {pmid37213490, year = {2023}, author = {Jackson, R and Patapiou, PA and Golding, G and Helanterä, H and Economou, CK and Chapuisat, M and Henry, LM}, title = {Evidence of phylosymbiosis in Formica ants.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1044286}, pmid = {37213490}, issn = {1664-302X}, abstract = {INTRODUCTION: Insects share intimate relationships with microbes that play important roles in their biology. Yet our understanding of how host-bound microbial communities assemble and perpetuate over evolutionary time is limited. Ants host a wide range of microbes with diverse functions and are an emerging model for studying the evolution of insect microbiomes. Here, we ask whether phylogenetically related ant species have formed distinct and stable microbiomes.

METHODS: To answer this question, we investigated the microbial communities associated with queens of 14 Formica species from five clades, using deep coverage 16S rRNA amplicon sequencing.

RESULTS: We reveal that Formica species and clades harbor highly defined microbial communities that are dominated by four bacteria genera: Wolbachia, Lactobacillus, Liliensternia, and Spiroplasma. Our analysis reveals that the composition of Formica microbiomes mirrors the phylogeny of the host, i.e., phylosymbiosis, in that related hosts harbor more similar microbial communities. In addition, we find there are significant correlations between microbe co-occurrences.

DISCUSSION: Our results demonstrate Formica ants carry microbial communities that recapitulate the phylogeny of their hosts. Our data suggests that the co-occurrence of different bacteria genera may at least in part be due to synergistic and antagonistic interactions between microbes. Additional factors potentially contributing to the phylosymbiotic signal are discussed, including host phylogenetic relatedness, host-microbe genetic compatibility, modes of transmission, and similarities in host ecologies (e.g., diets). Overall, our results support the growing body of evidence that microbial community composition closely depends on the phylogeny of their hosts, despite bacteria having diverse modes of transmission and localization within the host.}, } @article {pmid37206333, year = {2023}, author = {Russo, N and Floridia, V and D'Alessandro, E and Lopreiato, V and Pino, A and Chiofalo, V and Caggia, C and Liotta, L and Randazzo, CL}, title = {Influence of olive cake dietary supplementation on fecal microbiota of dairy cows.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1137452}, doi = {10.3389/fmicb.2023.1137452}, pmid = {37206333}, issn = {1664-302X}, abstract = {Olive by-products represent a valuable low-price feed supplement for animal nutrition. In the present study, the effect of the dietary destoned olive cake supplementation, on both composition and dynamics of the fecal bacterial biota of cow, was assessed by Illumina MiSeq analysis of the 16S rRNA gene. In addition, metabolic pathways were predicted by using the PICRUSt2 bioinformatic tool. Eighteen lactating cows, according to the body condition score, the days from calving, and the daily milk production were homogeneously allocated into two groups, control or experimental, and subjected to different dietary treatments. In detail, the experimental diet contained, along with the components of the control one, 8% of destoned olive cake. Metagenomics data revealed significant differences in abundance rather than in richness between the two groups. Results showed that Bacteroidota and Firmicutes were identified as the dominant phyla, accounting for over 90% of the total bacterial population. The Desulfobacterota phylum, able to reduce sulfur compounds, was detected only in fecal samples of cows allocated to the experimental diet whereas the Elusimicrobia phylum, a common endosymbiont or ectosymbiont of various flagellated protists, was detected only in cows subjected to the control diet. In addition, both Oscillospiraceae and Ruminococcaceae families were mainly found in the experimental group whereas fecal samples of control cows showed the presence of Rikenellaceae and Bacteroidaceae families, usually associated with the high roughage or low concentrate diet. Based on the PICRUSt2 bioinformatic tool, pathways related to carbohydrate, fatty acid, lipid, and amino acids biosynthesis were mainly up regulated in the experimental group. On the contrary, in the control group, the metabolic pathways detected with the highest occurrence were associated with amino acids biosynthesis and degradation, aromatic compounds degradation, nucleosides and nucleotides biosynthesis. Hence, the present study confirms that the destoned olive cake is a valuable feed supplement able to modulate the fecal microbiota of cows. Further studies will be conducted in order to deepen the inter-relationships between the GIT microbiota and the host.}, } @article {pmid37205465, year = {2023}, author = {Holguin-Rocha, AF and Calle-Tobon, A and Vásquez, GM and Astete, H and Fisher, ML and Tobon-Castano, A and Velez-Tobon, G and Maldonado-Ruiz, LP and Silver, K and Park, Y and Londono-Renteria, B}, title = {Diversity of the bacterial and viral communities in the tropical horse tick, Dermacentor nitens in Colombia.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2023.05.04.539352}, pmid = {37205465}, abstract = {Ticks are obligatory hematophagous ectoparasites that transmit pathogens among various vertebrates, including humans. The composition of the microbial and viral communities in addition to the pathogenic microorganisms is highly diverse in ticks, but the factors driving the diversity are not well understood. The tropical horse tick, Dermacentor nitens , is distributed throughout the Americas and it is recognized as a natural vector of Babesia caballi and Theileria equi , the causal agents of equine piroplasmosis. We characterized the bacterial and viral communities associated with partially-fed D. nitens females collected by a passive survey on horses from field sites representing three distinct geographical areas in Colombia (Bolivar, Antioquia, and Cordoba). RNA-seq and sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene were performed using the Illumina-Miseq platform. A total of 356 operational taxonomic units (OTUs) were identified, in which the presumed endosymbiotic Francisellaceae/ Francisella spp. was predominantly found. Nine contigs corresponding to six different viruses were identified in three viral families: Chuviridae, Rhabdoviridae, and Flaviviridae. Differences in the relative abundance of the microbial composition among the geographical regions were found to be independent of the presence of Francisella -Like Endosymbiont (FLE). The most prevalent bacteria found on each region were Corynebacterium in Bolivar, Staphylococcus in Antioquia, and Pseudomonas in Cordoba. Rickettsia -like endosymbionts, mainly recognized as the etiological agent of rickettsioses in Colombia were detected in the Cordoba samples. Metatranscriptomics revealed 13 contigs containing FLE genes, suggesting a trend of regional differences. These findings suggest regional distinctions among the ticks and their bacterial compositions.}, } @article {pmid37201521, year = {2023}, author = {Zakharova, A and Tashyreva, D and Butenko, A and Morales, J and Saura, A and Svobodová, M and Poschmann, G and Nandipati, S and Zakharova, A and Noyvert, D and Gahura, O and Týč, J and Stühler, K and Kostygov, AY and Nowack, ECM and Lukeš, J and Yurchenko, V}, title = {A neo-functionalized homolog of host transmembrane protein controls localization of bacterial endosymbionts in the trypanosomatid Novymonas esmeraldas.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2023.04.060}, pmid = {37201521}, issn = {1879-0445}, abstract = {The stability of endosymbiotic associations between eukaryotes and bacteria depends on a reliable mechanism ensuring vertical inheritance of the latter. Here, we demonstrate that a host-encoded protein, located at the interface between the endoplasmic reticulum of the trypanosomatid Novymonas esmeraldas and its endosymbiotic bacterium Ca. Pandoraea novymonadis, regulates such a process. This protein, named TMP18e, is a product of duplication and neo-functionalization of the ubiquitous transmembrane protein 18 (TMEM18). Its expression level is increased at the proliferative stage of the host life cycle correlating with the confinement of bacteria to the nuclear vicinity. This is important for the proper segregation of bacteria into the daughter host cells as evidenced from the TMP18e ablation, which disrupts the nucleus-endosymbiont association and leads to greater variability of bacterial cell numbers, including an elevated proportion of aposymbiotic cells. Thus, we conclude that TMP18e is necessary for the reliable vertical inheritance of endosymbionts.}, } @article {pmid37196858, year = {2023}, author = {Ward, MCE and Barrios, MC and Fallon, AM}, title = {Paraquat is toxic to the soil-dwelling arthropod, Folsomia candida (Collembola: Isotomidae), and has potential effects on its Wolbachia endosymbiont.}, journal = {Journal of invertebrate pathology}, volume = {}, number = {}, pages = {107936}, doi = {10.1016/j.jip.2023.107936}, pmid = {37196858}, issn = {1096-0805}, abstract = {The springtail, Folsomia candida, is a soil arthropod commonly used to evaluate environmental toxins. Conflicting data on the toxicity of the herbicide paraquat prompted re-evaluation of its effects on F. candida survival and reproduction. Paraquat has an LC50 of about 80 μM when tested in the absence of charcoal; charcoal, often used in test arenas to facilitate visualization of the white Collembola, has a protective effect. Survivors of paraquat treatment fail to resume molting and oviposition, suggesting an irreversible effect on the Wolbachia symbiont that restores diploidy during parthenogenetic reproduction of this species.}, } @article {pmid37198188, year = {2023}, author = {Moggioli, G and Panossian, B and Sun, Y and Thiel, D and Martín-Zamora, FM and Tran, M and Clifford, AM and Goffredi, SK and Rimskaya-Korsakova, N and Jékely, G and Tresguerres, M and Qian, PY and Qiu, JW and Rouse, GW and Henry, LM and Martín-Durán, JM}, title = {Distinct genomic routes underlie transitions to specialised symbiotic lifestyles in deep-sea annelid worms.}, journal = {Nature communications}, volume = {14}, number = {1}, pages = {2814}, pmid = {37198188}, issn = {2041-1723}, abstract = {Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.}, } @article {pmid37196086, year = {2023}, author = {Maire, J and Tandon, K and Collingro, A and van de Meene, A and Damjanovic, K and Gotze, CR and Stephenson, S and Philip, GK and Horn, M and Cantin, NE and Blackall, LL and van Oppen, MJH}, title = {Colocalization and potential interactions of Endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta.}, journal = {Science advances}, volume = {9}, number = {20}, pages = {eadg0773}, doi = {10.1126/sciadv.adg0773}, pmid = {37196086}, issn = {2375-2548}, abstract = {Corals are associated with a variety of bacteria, which occur in the surface mucus layer, gastrovascular cavity, skeleton, and tissues. Some tissue-associated bacteria form clusters, termed cell-associated microbial aggregates (CAMAs), which are poorly studied. Here, we provide a comprehensive characterization of CAMAs in the coral Pocillopora acuta. Combining imaging techniques, laser capture microdissection, and amplicon and metagenome sequencing, we show that (i) CAMAs are located in the tentacle tips and may be intracellular; (ii) CAMAs contain Endozoicomonas (Gammaproteobacteria) and Simkania (Chlamydiota) bacteria; (iii) Endozoicomonas may provide vitamins to its host and use secretion systems and/or pili for colonization and aggregation; (iv) Endozoicomonas and Simkania occur in distinct, but adjacent, CAMAs; and (v) Simkania may receive acetate and heme from neighboring Endozoicomonas. Our study provides detailed insight into coral endosymbionts, thereby improving our understanding of coral physiology and health and providing important knowledge for coral reef conservation in the climate change era.}, } @article {pmid37192168, year = {2023}, author = {Kulkarni, A and Ewen-Campen, B and Terao, K and Matsumoto, Y and Li, Y and Watanabe, T and Kao, JA and Parhad, SS and Ylla, G and Mizunami, M and Extavour, CG}, title = {oskar acts with the transcription factor Creb to regulate long-term memory in crickets.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {120}, number = {21}, pages = {e2218506120}, doi = {10.1073/pnas.2218506120}, pmid = {37192168}, issn = {1091-6490}, abstract = {Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar, was first identified based on its role in establishing the Drosophila melanogaster germ line. We previously showed that this gene likely arose through an unusual domain transfer event involving bacterial endosymbionts and played a somatic role before evolving its well-known germ line function. Here, we provide empirical support for this hypothesis in the form of evidence for a neural role for oskar. We show that oskar is expressed in the adult neural stem cells of a hemimetabolous insect, the cricket Gryllus bimaculatus. In these stem cells, called neuroblasts, oskar is required together with the ancient animal transcription factor Creb to regulate long-term (but not short-term) olfactory memory. We provide evidence that oskar positively regulates Creb, which plays a conserved role in long-term memory across animals, and that oskar in turn may be a direct target of Creb. Together with previous reports of a role for oskar in nervous system development and function in crickets and flies, our results are consistent with the hypothesis that oskar's original somatic role may have been in the insect nervous system. Moreover, its colocalization and functional cooperation with the conserved pluripotency gene piwi in the nervous system may have facilitated oskar's later co-option to the germ line in holometabolous insects.}, } @article {pmid37186593, year = {2023}, author = {Martoni, F and Bulman, SR and Piper, AM and Pitman, A and Taylor, GS and Armstrong, KF}, title = {Insect phylogeny structures the bacterial communities in the microbiome of psyllids (Hemiptera: Psylloidea) in Aotearoa New Zealand.}, journal = {PloS one}, volume = {18}, number = {5}, pages = {e0285587}, doi = {10.1371/journal.pone.0285587}, pmid = {37186593}, issn = {1932-6203}, abstract = {The bacterial microbiome of psyllids has been studied for decades, with a strong focus on the primary and secondary endosymbionts capable of providing essential amino acids for the insects' diet and therefore playing a key role in the insects' ability to radiate on novel plant hosts. Here, we combine metabarcoding analysis of the bacterial communities hosted by psyllids with a multi-gene phylogenetic analysis of the insect hosts to determine what factors influence the bacterial diversity of the psyllids' microbiomes, especially in the context of the dispersal and evolutionary radiation of these insects in Aotearoa New Zealand. Using multi-gene phylogenetics with COI, 18S and EF-1α sequences from 102 psyllid species, we confirmed for the first time monophyly for all the six genera of native/endemic Aotearoa New Zealand psyllids, with indications that they derive from at least six dispersal events to the country. This also revealed that, after its ancestral arrival, the genus Powellia has radiated onto a larger and more diverse range of plants than either Psylla or Ctenarytaina, which is uncommon amongst monophyletic psyllids globally. DNA metabarcoding of the bacterial 16S gene here represents the largest dataset analysed to date from psyllids, including 246 individuals from 73 species. This provides novel evidence that bacterial diversity across psyllid species is strongly associated with psyllid phylogenetic structure, and to a lesser degree to their host plant association and geographic distribution. Furthermore, while the strongest co-phylogenetic signals were derived from the primary and secondary symbionts, a signal of phylosymbiosis was still retained among the remaining taxa of the bacterial microbiome, suggesting potential vertical transmission of bacterial lineages previously unknown to have symbiotic roles.}, } @article {pmid37184407, year = {2023}, author = {Paulson, AR and Lougheed, SC and Huang, D and Colautti, RI}, title = {Multiomics Reveals Symbionts, Pathogens, and Tissue-Specific Microbiome of Blacklegged Ticks (Ixodes scapularis) from a Lyme Disease Hot Spot in Southeastern Ontario, Canada.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0140423}, doi = {10.1128/spectrum.01404-23}, pmid = {37184407}, issn = {2165-0497}, abstract = {Ticks in the family Ixodidae are important vectors of zoonoses, including Lyme disease (LD), which is caused by spirochete bacteria from the Borreliella (Borrelia) burgdorferi sensu lato complex. The blacklegged tick (Ixodes scapularis) continues to expand across Canada, creating hot spots of elevated LD risk at the leading edge of its expanding range. Current efforts to understand the risk of pathogen transmission associated with I. scapularis in Canada focus primarily on targeted screens, while natural variation in the tick microbiome remains poorly understood. Using multiomics consisting of 16S metabarcoding and ribosome-depleted, whole-shotgun RNA transcriptome sequencing, we examined the microbial communities associated with adult I. scapularis (n = 32), sampled from four tissue types (whole tick, salivary glands, midgut, and viscera) and three geographical locations within a LD hot spot near Kingston, Ontario, Canada. The communities consisted of both endosymbiotic and known or potentially pathogenic microbes, including RNA viruses, bacteria, and a Babesia sp. intracellular parasite. We show that β-diversity is significantly higher between the bacterial communities of individual tick salivary glands and midguts than that of whole ticks. Linear discriminant analysis effect size (LEfSe) determined that the three potentially pathogenic bacteria detected by V4 16S rRNA sequencing also differed among dissected tissues only, including a Borrelia strain from the B. burgdorferi sensu lato complex, Borrelia miyamotoi, and Anaplasma phagocytophilum. Importantly, we find coinfection of I. scapularis by multiple microbes, in contrast to diagnostic protocols for LD, which typically focus on infection from a single pathogen of interest (B. burgdorferi sensu stricto). IMPORTANCE As a vector of human health concern, blacklegged ticks (Ixodes scapularis) transmit pathogens that cause tick-borne diseases (TBDs), including Lyme disease (LD). Several hot spots of elevated LD risk have emerged across Canada as I. scapularis expands its range. Focusing on a hot spot in southeastern Ontario, we used high-throughput sequencing to characterize the microbiome of whole ticks and dissected salivary glands and midguts. Compared with whole ticks, salivary glands and midguts were more diverse and associated with distinct bacterial communities that are less dominated by Rickettsia endosymbiont bacteria and are enriched for pathogenic bacteria, including a B. burgdorferi sensu lato-associated Borrelia sp., Borrelia miyamotoi, and Anaplasma phagocytophilum. We also found evidence of coinfection of I. scapularis by multiple pathogens. Overall, our study highlights the challenges and opportunities associated with the surveillance of the microbiome of I. scapularis for pathogen detection using metabarcoding and metatranscriptome approaches.}, } @article {pmid37178742, year = {2023}, author = {Yuan, F and Su, M and Li, T and Zhang, Y and Dietrich, CH and Webb, MD and Wei, C}, title = {Functional and evolutionary implications of protein and metal content of leafhopper brochosomes.}, journal = {Insect biochemistry and molecular biology}, volume = {}, number = {}, pages = {103962}, doi = {10.1016/j.ibmb.2023.103962}, pmid = {37178742}, issn = {1879-0240}, abstract = {Brochosomes derived from the specialized glandular segments of the Malpighian tubules (MTs) form superhydrophobic coatings for insects of Membracoidea, and have multiple hypothetical functions. However, the constituents, biosynthesis and evolutionary origin of brochosomes remain poorly understood. We investigated general chemical and physical characteristics of the integumental brochosomes (IBs) of the leafhopper Psammotettix striatus, determined the constituents of IBs, identified the unigenes involved in brochosomal protein synthesis, and investigated the potential associations among brochosomal protein synthesis, amino acid composition of food source, and the possible roles of endosymbionts in brochosome production. The results show that IBs are mainly composed of glycine- and tyrosine-rich proteins and some metal elements, which contain both essential and non-essential amino acids (EAAs and NEAAs) for insects, including EAAs deficient in the sole food source. All 12 unigenes involved in synthesizing the 12 brochosomal proteins (BPs) with high confidence are exclusively highly expressed in the glandular segment of MTs, confirming that brochosomes are synthesized by this segment. The synthesis of BPs is one of the key synapomorphies of Membracoidea but may be lost secondarily in a few lineages. The synthesis of BPs might be related to the symbiosis of leafhoppers/treehoppers with endosymbionts that provide these insects with EAAs, including those are deficient in the sole diet (i.e., plant sap) and could only be made available by the symbionts. We hypothesize that the functional modification of MTs have combined with the application of BPs enabling Membracoidea to colonize and adapt to novel ecological niches, and evolve to the dramatic diversification of this hemipteran group (in particular the family Cicadellidae). This study highlights the importance of evolutionary plasticity and multiple functions of MTs in driving the adaptations and evolution of sap-sucking insects of Hemiptera.}, } @article {pmid37172511, year = {2023}, author = {Becker, NS and Rollins, RE and Stephens, R and Sato, K and Brachmann, A and Nakao, M and Kawabata, H}, title = {Candidatus Lariskella arthopodarum endosymbiont is the main factor differentiating the microbiome communities of female and male Borrelia-positive Ixodes persulcatus ticks.}, journal = {Ticks and tick-borne diseases}, volume = {14}, number = {4}, pages = {102183}, doi = {10.1016/j.ttbdis.2023.102183}, pmid = {37172511}, issn = {1877-9603}, abstract = {Ixodes persulcatus, a hard-bodied tick species primarily found in Asia and Eastern Europe, is a vector of pathogens to human and livestock hosts. Little research has been done on the microbiome of this species, especially using individual non-pooled samples and comparing different geographical locations. Here, we use 16S rRNA amplicon sequencing to determine the individual microbial composition of 85 Borrelia-positive I. persulcatus from the Japanese islands of Hokkaido and Honshu. The resulting data (164 unique OTUs) were further analyzed to compare the makeup and diversity of the microbiome by sex and location, as well as to determine the presence of human pathogens. We found that, while location had little influence, the diversity of I. persulcatus microbiome was predominantly dependent on sex. Males were seen to have higher microbiome diversity than females, likely due to the high presence of endosymbiotic Candidatus Lariskella arthropodarum within the female microbial communities. Furthermore, high read counts for five genera containing potentially human pathogenic species were detected among both male and female microbiomes: Ehrlichia, Borrelia, Rickettsia, Candidatus Neoehrlichia and Burkholderia and co-infections between different pathogens were frequent. We conclude that the microbiome of I. persulcatus depends mainly on sex and not geographical location and that the major difference between sexes is due to the high abundance of Ca. L. arthropodarum in females. We also stress the importance of this tick species as a vector of potential human pathogens frequently found in co-infections.}, } @article {pmid37170316, year = {2021}, author = {Serra, V and D'Alessandro, A and Nitla, V and Gammuto, L and Modeo, L and Petroni, G and Fokin, SI}, title = {The neotypification of Frontonia vernalis (Ehrenberg, 1833) Ehrenberg, 1838 and the description of Frontonia paravernalis sp. nov. trigger a critical revision of frontoniid systematics.}, journal = {BMC zoology}, volume = {6}, number = {1}, pages = {4}, pmid = {37170316}, issn = {2056-3132}, abstract = {BACKGROUND: Among Oligohymenophorea (Ciliophora, Alveolata) the subclass Peniculia stands as one of the most well-known groups. Frontonia is the largest genus of Peniculia, and its representatives are spread in any type of water bodies as well as in soil. At a first glance, Frontonia species exhibit an overall similar morphology, and form a well-recognizable taxon of ciliates. Despite the general morphological homogeneity, the phylogenetic analysis based on the 18S rDNA sequencing showed that Frontonia is a non-monophyletic group. The systematics of this genus should be deeply reviewed, although additional issues complicate the task solving. First, type species of the genus is not yet clearly established, and no type material is available. In this context, the situation of F. vernalis, one of the first Frontonia ever described, is somehow puzzled: the description of this ciliate made by Ehrenberg (in 1833 and 1838) contains several inaccuracies and subsequent misidentifications by other authors occurred. Moreover, the 18S rDNA sequence of a putative F. vernalis is available on GenBank, but no morphological description of the correspondent specimens is provided; thus, in our opinion, it should be only prudently associated with F. vernalis or at least indicated as "F. vernalis".

RESULTS: In the present work, we provide the neotypification of F. vernalis newly found in Italy, presenting its multidisciplinary description and its neotype material. Similarly, we describe a novel species bearing Chlorella-like endosymbionts, Frontonia paravernalis sp. nov., retrieved in two far distant locations (Italy, Russia). A critical discussion on the status of Frontonia taxonomy and phylogeny is also presented, based on the 18S rDNA sequencing of both these two newly collected species and other 14 frontoniids isolated in different parts of the world. Finally, in the present study F. leucas was neotypified and proposed as the type species of the genus.

CONCLUSIONS: Green frontoniids form a monophyletic clade of freshwater organisms characterized by having a single contractile vacuole and bearing intracytoplasmatic Chlorella-like symbionts. With the neotypification of F. vernalis and F. leucas a fundamental step in Frontonia systematics was taken, and the bases for further taxonomic studies were laid.}, } @article {pmid37160773, year = {2023}, author = {Yang, B and Xu, C and Cheng, Y and Jia, T and Hu, X}, title = {Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid.}, journal = {Plant cell reports}, volume = {}, number = {}, pages = {}, pmid = {37160773}, issn = {1432-203X}, abstract = {Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.}, } @article {pmid37160764, year = {2023}, author = {Gimmi, E and Wallisch, J and Vorburger, C}, title = {Defensive symbiosis in the wild: Seasonal dynamics of parasitism risk and symbiont-conferred resistance.}, journal = {Molecular ecology}, volume = {}, number = {}, pages = {}, doi = {10.1111/mec.16976}, pmid = {37160764}, issn = {1365-294X}, abstract = {Parasite-mediated selection can rapidly drive up resistance levels in host populations, but fixation of resistance traits may be prevented by costs of resistance. Black bean aphids (Aphis fabae) benefit from increased resistance to parasitoids when carrying the defensive bacterial endosymbiont Hamiltonella defensa. However, due to fitness costs that come with symbiont infection, symbiont-conferred resistance may result in either a net benefit or a net cost to the aphid host, depending on parasitoid presence as well as on the general ecological context. Balancing selection may therefore explain why in natural aphid populations, H. defensa is often found at intermediate frequencies. Here we present a 2-year field study where we set out to look for signatures of balancing selection in natural aphid populations. We collected temporally well-resolved data on the prevalence of H. defensa in A. f. fabae and estimated the risk imposed by parasitoids using sentinel hosts. Despite a marked and consistent early-summer peak in parasitism risk, and significant changes in symbiont prevalence over time, we found just a weak correlation between parasitism risk and H. defensa frequency dynamics. H. defensa prevalence in the populations under study was, in fact, better explained by the number of heat days that previous aphid generations were exposed to. Our study grants an unprecedentedly well-resolved insight into the dynamics of endosymbiont and parasitoid communities of A. f. fabae populations, and it adds to a growing body of empirical evidence suggesting that not only parasitism risk, but rather multifarious selection is shaping H. defensa prevalence in the wild.}, } @article {pmid37147800, year = {2023}, author = {Zhang, Y and Tian, L and Lu, C}, title = {Chloroplast Gene Expression: Recent Advances and Perspectives.}, journal = {Plant communications}, volume = {}, number = {}, pages = {100611}, doi = {10.1016/j.xplc.2023.100611}, pmid = {37147800}, issn = {2590-3462}, abstract = {Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations to gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved the stage of describing phases of chloroplast gene expression to explore the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss the PPR protein engineering and its biotechnological impacts on chloroplast RNA research, new techniques for elucidating the molecular mechanisms of chloroplast gene expression, and some important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss the remaining biological and mechanistic questions to be answered in the future.}, } @article {pmid37138629, year = {2023}, author = {Tan, Y and Gong, B and Zhang, Q and Li, C and Weng, J and Zhou, X and Jin, L}, title = {Diversity of endosymbionts in camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), estimated by 16S rRNA analysis and their biological implications.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1124386}, pmid = {37138629}, issn = {1664-302X}, abstract = {Camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), is a major pest in tea, which poses a serious threat to tea production. Similar to many insects, various bacterial symbioses inside A. camelliae may participate in the reproduction, metabolism, and detoxification of the host. However, few reports included research on the microbial composition and influence on A. camelliae growth. We first applied high-throughput sequencing of the V4 region in the 16S rRNA of symbiotic bacteria to study its component and effect on the biological trait of A. camelliae by comparing it with the antibiotic treatment group. The population parameters, survival rate, and fecundity rate of A. camelliae were also analyzed using the age-stage two-sex life table. Our results demonstrated that phylum Proteobacteria (higher than 96.15%) dominated the whole life cycle of A. camelliae. It unveiled the presence of Candidatus Portiera (primary endosymbiont) (67.15-73.33%), Arsenophonus (5.58-22.89%), Wolbachia (4.53-11.58%), Rickettsia (0.75-2.59%), and Pseudomonas (0.99-1.88%) genus. Antibiotic treatment caused a significant decrease in the endosymbiont, which negatively affected the host's biological properties and life process. For example, 1.5% rifampicin treatment caused a longer preadult stage in the offspring generation (55.92 d) compared to the control (49.75d) and a lower survival rate (0.36) than the control (0.60). The decreased intrinsic rate of increase (r), net reproductive rate (R 0), and prolonged mean generation time (T) were signs of all disadvantageous effects associated with symbiotic reduction. Our findings confirmed the composition and richness of symbiotic bacteria in larva and adult of A. camelliae by an Illumina NovaSeq 6000 analysis and their influence on the development of the host by demographic research. Together, the results suggested that symbiotic bacteria play an important role in manipulating the biological development of their hosts, which might help us for developing new pest control agents and technologies for better management of A. camelliae.}, } @article {pmid37133447, year = {2023}, author = {DeLong, JP and Van Etten, JL and Dunigan, DD}, title = {Lessons from Chloroviruses: the Complex and Diverse Roles of Viruses in Food Webs.}, journal = {Journal of virology}, volume = {}, number = {}, pages = {e0027523}, doi = {10.1128/jvi.00275-23}, pmid = {37133447}, issn = {1098-5514}, abstract = {Viruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests. In particular, chloroviruses, which infect chlorella-like green algae that typically occur as endosymbionts, participate in three types of interactions with other species. Chlororviruses (i) can lure ciliates from a distance, using them as a vector; (ii) depend on predators for access to their hosts; and (iii) get consumed as a food source by, at least, a variety of protists. Therefore, chloroviruses both depend on and influence the spatial structures of communities as well as the flows of energy through those communities, driven by predator-prey interactions. The emergence of these interactions are an eco-evolutionary puzzle, given the interdependence of these species and the many costs and benefits that these interactions generate.}, } @article {pmid37121168, year = {2023}, author = {Biney, C and Graham, GE and Asiedu, E and Sakyi, SA and Kwarteng, A}, title = {Wolbachia Ferrochelatase as a potential drug target against filarial infections.}, journal = {Journal of molecular graphics & modelling}, volume = {122}, number = {}, pages = {108490}, doi = {10.1016/j.jmgm.2023.108490}, pmid = {37121168}, issn = {1873-4243}, abstract = {Filarial infections are among the world's most disturbing diseases caused by 3 major parasitic worms; Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi, affecting more than 500 million people worldwide. Currently used drugs for mass drug administration (MDA) have been met with several challenges including the development of complications in individuals with filaria co-infections and parasitic drug resistance. The filarial endosymbiont, Wolbachia, has emerged as an attractive therapeutic target for filariasis elimination, due to the dependence of the filaria on this endosymbiont for survival. Here, we target an important enzyme in the Wolbachia heme biosynthetic pathway (ferrochelatase), using high-throughput virtual screening and molecular dynamics with MM-PBSA calculations. We identified four drug candidates; Nilotinib, Ledipasvir, 3-benzhydryloxy-8-methyl-8-azabicyclo[3.2.1]octane, and 2-(4-Amino-piperidin-1-yl)-ethanol as potential small molecules inhibitors as they could compete with the enzyme's natural substrate (Protoporphyrin IX) for active pocket binding. This prevents the worm from receiving the heme molecule from Wolbachia for their growth and survival, resulting in their death. This study which involved targeting enzymes in biosynthetic pathways of the parasitic worms' endosymbiont (Wolbachia), has proven to be an alternative therapeutic option leading to the discovery of new drugs, which will help facilitate the elimination of parasitic infections.}, } @article {pmid37117399, year = {2023}, author = {Ghousein, A and Tutagata, J and Schrieke, H and Etienne, M and Chaumeau, V and Boyer, S and Pages, N and Roiz, D and Eren, AM and Cambray, G and Reveillaud, J}, title = {pWCP is a widely distributed and highly conserved Wolbachia plasmid in Culex pipiens and Culex quinquefasciatus mosquitoes worldwide.}, journal = {ISME communications}, volume = {3}, number = {1}, pages = {40}, pmid = {37117399}, issn = {2730-6151}, abstract = {Mosquitoes represent the most important pathogen vectors and are responsible for the spread of a wide variety of poorly treatable diseases. Wolbachia are obligate intracellular bacteria that are widely distributed among arthropods and collectively represents one of the most promising solutions for vector control. In particular, Wolbachia has been shown to limit the transmission of pathogens, and to dramatically affect the reproductive behavior of their host through its phage WO. While much research has focused on deciphering and exploring the biocontrol applications of these WO-related phenotypes, the extent and potential impact of the Wolbachia mobilome remain poorly appreciated. Notably, several Wolbachia plasmids, carrying WO-like genes and Insertion Sequences (IS), thus possibly interrelated to other genetic units of the endosymbiont, have been recently discovered. Here we investigated the diversity and biogeography of the first described plasmid of Wolbachia in Culex pipiens (pWCP) in several islands and continental countries around the world-including Cambodia, Guadeloupe, Martinique, Thailand, and Mexico-together with mosquito strains from colonies that evolved for 2 to 30 years in the laboratory. We used PCR and qPCR to determine the presence and copy number of pWCP in individual mosquitoes, and highly accurate Sanger sequencing to evaluate potential variations. Together with earlier observation, our results show that pWCP is omnipresent and strikingly conserved among Wolbachia populations within mosquitoes from distant geographies and environmental conditions. These data suggest a critical role for the plasmid in Wolbachia ecology and evolution, and the potential of a great tool for further genetic dissection and possible manipulation of this endosymbiont.}, } @article {pmid37117271, year = {2023}, author = {Řezáč, M and Řezáčová, V and Gloríková, N and Némethová, E and Heneberg, P}, title = {Food provisioning to Pardosa spiders decreases the levels of tissue-resident endosymbiotic bacteria.}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {6943}, pmid = {37117271}, issn = {2045-2322}, abstract = {The diversity, host specificity, and physiological effects of endosymbiotic bacteria in spiders (Araneae) are poorly characterized. We used 16S rDNA sequencing to evaluate endosymbionts in the cephalothorax and legs of a wolf spider Pardosa agrestis. We tested the effects of feeding once or twice daily with fruit flies, aphids, or starved and compared them to those of syntopically occurring Pardosa palustris. The feeding increased traveled distance up to five times in some of the groups provisioned with food relative to the starved control. The Shannon diversity t-test revealed significant differences between these component communities of the two spider species. The increased frequency of feeding with fruit flies, but not aphids, increased the dominance and decreased the alpha diversity of OTUs. The obligate or facultative endosymbionts were present in all analyzed spider individuals and were represented mostly by Rickettsiella, Rhabdochlamydia, Spiroplasma, and the facultative intracellular parasite Legionella. Vertically transmitted endosymbionts were less common, represented by Wolbachia pipientis and Rickettsia sp. H820. The relative abundance of Mycoplasma spp. was negatively correlated with provisioned or killed aphids. In conclusion, the tissues of Pardosa spiders host tremendously diverse assemblages of bacteria, including obligate or facultative endosymbionts, with yet unknown phenotypic effects.}, } @article {pmid37116483, year = {2023}, author = {George, EE and Barcytė, D and Lax, G and Livingston, S and Tashyreva, D and Husnik, F and Lukeš, J and Eliáš, M and Keeling, PJ}, title = {A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2023.04.010}, pmid = {37116483}, issn = {1879-0445}, abstract = {Symbiosis between prokaryotes and microbial eukaryotes (protists) has broadly impacted both evolution and ecology. Endosymbiosis led to mitochondria and plastids, the latter spreading across the tree of eukaryotes by subsequent rounds of endosymbiosis. Present-day endosymbionts in protists remain both common and diverse, although what function they serve is often unknown. Here, we describe a highly complex community of endosymbionts and a bacteriophage (phage) within a single cryptomonad cell. Cryptomonads are a model for organelle evolution because their secondary plastid retains a relict endosymbiont nucleus, but only one previously unidentified Cryptomonas strain (SAG 25.80) is known to harbor bacterial endosymbionts. We carried out electron microscopy and FISH imaging as well as genomic sequencing on Cryptomonas SAG 25.80, which revealed a stable, complex community even after over 50 years in continuous cultivation. We identified the host strain as Cryptomonas gyropyrenoidosa, and sequenced genomes from its mitochondria, plastid, and nucleomorph (and partially its nucleus), as well as two symbionts, Megaira polyxenophila and Grellia numerosa, and one phage (MAnkyphage) infecting M. polyxenophila. Comparing closely related endosymbionts from other hosts revealed similar metabolic and genomic features, with the exception of abundant transposons and genome plasticity in M. polyxenophila from Cryptomonas. We found an abundance of eukaryote-interacting genes as well as many toxin-antitoxin systems, including in the MAnkyphage genome that also encodes several eukaryotic-like proteins. Overall, the Cryptomonas cell is an endosymbiotic conglomeration with seven distinct evolving genomes that all show evidence of inter-lineage conflict but nevertheless remain stable, even after more than 4,000 generations in culture.}, } @article {pmid37110360, year = {2023}, author = {Van Houten, J}, title = {A Review for the Special Issue on Paramecium as a Modern Model Organism.}, journal = {Microorganisms}, volume = {11}, number = {4}, pages = {}, doi = {10.3390/microorganisms11040937}, pmid = {37110360}, issn = {2076-2607}, abstract = {This review provides background and perspective for the articles contributing to the Special Issue of MDPI Micro-organisms on Paramecium as a Modern Model Organism. The six articles cover a variety of topics, each taking advantage of an important aspect of Paramecium biology: peripheral surface proteins that are developmentally regulated, endosymbiont algae and bacteria, ion channel regulation by calmodulin, regulation of cell mating reactivity and senescence, and the introns that dwell in the large genome. Each article highlights a significant aspect of Paramecium and its versatility.}, } @article {pmid37103216, year = {2023}, author = {Lv, N and Peng, J and He, ZQ and Wen, Q and Su, ZQ and Ali, S and Liu, CZ and Qiu, BL}, title = {The Dynamic Distribution of Wolbachia and Rickettsia in AsiaII1 Bemisia tabaci.}, journal = {Insects}, volume = {14}, number = {4}, pages = {}, doi = {10.3390/insects14040401}, pmid = {37103216}, issn = {2075-4450}, abstract = {Wolbachia and Rickettsia are bacterial endosymbionts that can induce a number of reproductive abnormalities in their arthropod hosts. We screened and established the co-infection of Wolbachia and Rickettsia in Bemisia tabaci and compared the spatial and temporal distribution of Wolbachia and Rickettsia in eggs (3-120 h after spawning), nymphs, and adults of B. tabaci by qPCR quantification and fluorescent in situ hybridization (FISH). The results show that the titer of Wolbachia and Rickettsia in the 3-120 h old eggs showed a "w" patterned fluctuation, while the titers of Wolbachia and Rickettsia had a "descending-ascending descending-ascending" change process. The titers of Rickettsia and Wolbachia nymphal and the adult life stages of Asia II1 B. tabaci generally increased with the development of whiteflies. However, the location of Wolbachia and Rickettsia in the egg changed from egg stalk to egg base, and then from egg base to egg posterior, and finally back to the middle of the egg. These results will provide basic information on the quantity and localization of Wolbachia and Rickettsia within different life stages of B. tabaci. These findings help to understand the dynamics of the vertical transmission of symbiotic bacteria.}, } @article {pmid37103129, year = {2023}, author = {Li, J and An, Z and Luo, J and Zhu, X and Wang, L and Zhang, K and Li, D and Ji, J and Niu, L and Gao, X and Cui, J}, title = {Parasitization of Aphis gossypii Glover by Binodoxys communis Gahan Causes Shifts in the Ovarian Bacterial Microbiota.}, journal = {Insects}, volume = {14}, number = {4}, pages = {}, doi = {10.3390/insects14040314}, pmid = {37103129}, issn = {2075-4450}, abstract = {BACKGROUND: Aphis gossypii Glover is an important agricultural pest distributed worldwide. Binodoxys communis Gahan is the main parasitoid wasp of A. gossypii. Previous studies have shown that parasitization causes reduced egg production in A. gossypii, but the effects of parasitism on the symbiotic bacteria in the host ovaries are unknown.

RESULTS: In this study, we analyzed the microbial communities in the ovaries of A. gossypii without and after parasitization. Whether parasitized or not, Buchnera was the dominant genus of symbiotic bacteria in the ovaries, followed by facultative symbionts including Arsenophonus, Pseudomonas, and Acinetobacter. The relative abundance of Buchnera in the aphid ovary increased after parasitization for 1 d in both third-instar nymph and adult stages, but decreased after parasitization for 3 d. The shifts in the relative abundance of Arsenophonus in both stages were the same as those observed for Buchnera. In addition, the relative abundance of Serratia remarkably decreased after parasitization for 1 d and increased after parasitization for 3 d. A functional predictive analysis of the control and parasitized ovary microbiomes revealed that pathways primarily enriched in parasitization were "amino acid transport and metabolism" and "energy production and conversion." Finally, RT-qPCR analysis was performed on Buchnera, Arsenophonus, and Serratia. The results of RT-qPCR were the same as the results of 16S rDNA sequencing.

CONCLUSIONS: These results provide a framework for investigating shifts in the microbial communities in host ovaries, which may be responsible for reduced egg production in aphids. These findings also broaden our understanding of the interactions among aphids, parasitoid wasps, and endosymbionts.}, } @article {pmid37100405, year = {2023}, author = {Jaffe, AL and Castelle, CJ and Banfield, JF}, title = {Habitat Transition in the Evolution of Bacteria and Archaea.}, journal = {Annual review of microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1146/annurev-micro-041320-032304}, pmid = {37100405}, issn = {1545-3251}, abstract = {Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study. Expected final online publication date for the Annual Review of Microbiology, Volume 77 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.}, } @article {pmid37101136, year = {2023}, author = {Mosquera, KD and Martínez Villegas, LE and Rocha Fernandes, G and Rocha David, M and Maciel-de-Freitas, R and A Moreira, L and Lorenzo, MG}, title = {Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites.}, journal = {BMC biology}, volume = {21}, number = {1}, pages = {97}, pmid = {37101136}, issn = {1741-7007}, abstract = {BACKGROUND: Aedes aegypti, the main arboviral mosquito vector, is attracted to human dwellings and makes use of human-generated breeding sites. Past research has shown that bacterial communities associated with such sites undergo compositional shifts as larvae develop and that exposure to different bacteria during larval stages can have an impact on mosquito development and life-history traits. Based on these facts, we hypothesized that female Ae. aegypti shape the bacteria communities of breeding sites during oviposition as a form of niche construction to favor offspring fitness.

RESULTS: To test this hypothesis, we first verified that gravid females can act as mechanical vectors of bacteria. We then elaborated an experimental scheme to test the impact of oviposition on breeding site microbiota. Five different groups of experimental breeding sites were set up with a sterile aqueous solution of larval food, and subsequently exposed to (1) the environment alone, (2) surface-sterilized eggs, (3) unsterilized eggs, (4) a non-egg laying female, or (5) oviposition by a gravid female. The microbiota of these differently treated sites was assessed by amplicon-oriented DNA sequencing once the larvae from the sites with eggs had completed development and formed pupae. Microbial ecology analyses revealed significant differences between the five treatments in terms of diversity. In particular, between-treatment shifts in abundance profiles were detected, showing that females induce a significant decrease in microbial alpha diversity through oviposition. In addition, indicator species analysis pinpointed bacterial taxa with significant predicting values and fidelity coefficients for the samples in which single females laid eggs. Furthermore, we provide evidence regarding how one of these indicator taxa, Elizabethkingia, exerts a positive effect on the development and fitness of mosquito larvae.

CONCLUSIONS: Ovipositing females impact the composition of the microbial community associated with a breeding site, promoting certain bacterial taxa over those prevailing in the environment. Among these bacteria, we found known mosquito symbionts and showed that they can improve offspring fitness if present in the water where eggs are laid. We deem this oviposition-mediated bacterial community shaping as a form of niche construction initiated by the gravid female.}, } @article {pmid37098937, year = {2023}, author = {Arai, H and Takamatsu, T and Lin, SR and Mizutani, T and Omatsu, T and Katayama, Y and Nakai, M and Kunimi, Y and Inoue, MN}, title = {Diverse Molecular Mechanisms Underlying Microbe-Inducing Male Killing in the Moth Homona magnanima.}, journal = {Applied and environmental microbiology}, volume = {}, number = {}, pages = {e0209522}, doi = {10.1128/aem.02095-22}, pmid = {37098937}, issn = {1098-5336}, abstract = {Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia, Spiroplasma, and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.}, } @article {pmid37098535, year = {2023}, author = {da Moura, AJF and Valadas, V and Da Veiga Leal, S and Montalvo Sabino, E and Sousa, CA and Pinto, J}, title = {Screening of natural Wolbachia infection in mosquitoes (Diptera: Culicidae) from the Cape Verde islands.}, journal = {Parasites & vectors}, volume = {16}, number = {1}, pages = {142}, pmid = {37098535}, issn = {1756-3305}, abstract = {BACKGROUND: Wolbachia pipientis is an endosymbiont bacterium that induces cytoplasmic incompatibility and inhibits arboviral replication in mosquitoes. This study aimed to assess Wolbachia prevalence and genetic diversity in different mosquito species from Cape Verde.

METHODS: Mosquitoes were collected on six islands of Cape Verde and identified to species using morphological keys and PCR-based assays. Wolbachia was detected by amplifying a fragment of the surface protein gene (wsp). Multilocus sequence typing (MLST) was performed with five housekeeping genes (coxA, gatB, ftsZ, hcpA, and fbpA) and the wsp hypervariable region (HVR) for strain identification. Identification of wPip groups (wPip-I to wPip-V) was performed using PCR-restriction fragment length polymorphism (RFLP) assay on the ankyrin domain gene pk1.

RESULTS: Nine mosquito species were collected, including the major vectors Aedes aegypti, Anopheles arabiensis, Culex pipiens sensu stricto, and Culex quinquefasciatus. Wolbachia was only detected in Cx. pipiens s.s. (100% prevalence), Cx. quinquefasciatus (98.3%), Cx. pipiens/quinquefasciatus hybrids (100%), and Culex tigripes (100%). Based on the results of MLST and wsp hypervariable region typing, Wolbachia from the Cx. pipiens complex was assigned to sequence type 9, wPip clade, and supergroup B. PCR/RFLP analysis revealed three wPip groups in Cape Verde, namely wPip-II, wPip-III, and wPip-IV. wPip-IV was the most prevalent, while wPip-II and wPip-III were found only on Maio and Fogo islands. Wolbachia detected in Cx. tigripes belongs to supergroup B, with no attributed MLST profile, indicating a new strain of Wolbachia in this mosquito species.

CONCLUSIONS: A high prevalence and diversity of Wolbachia was found in species from the Cx. pipiens complex. This diversity may be related to the mosquito's colonization history on the Cape Verde islands. To the best of our knowledge, this is the first study to detect Wolbachia in Cx. tigripes, which may provide an additional opportunity for biocontrol initiatives.}, } @article {pmid37094805, year = {2023}, author = {Goldstein, EB and de Anda Acosta, Y and Henry, LM and Parker, BJ}, title = {Variation in density, immune gene suppression, and co-infection outcomes among strains of the aphid endosymbiont Regiella insecticola.}, journal = {Evolution; international journal of organic evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/evolut/qpad071}, pmid = {37094805}, issn = {1558-5646}, abstract = {Many insects harbor heritable microbes that influence host phenotypes. Symbiont strains establish at different densities within hosts. This variation is important evolutionarily because within-host density has been linked to the costs and benefits of the symbiosis for both partners. Studying the factors shaping within-host density is important to our broader understanding of host-microbe coevolution. Here we focused on different strains of Regiella insecticola, a facultative symbiont of aphids. We first showed that strains of Regiella establish in pea aphids at drastically different densities. We then found that variation in density is correlated with the expression levels of two key insect immune system genes (phenoloxidase and hemocytin), with the suppression of immune gene expression correlating with higher Regiella density. We then performed an experiment where we established co-infections of a higher- and a lower-density Regiella strain, and we showed that the higher-density strain is better able to persist in co-infections than the lower-density strain. Together, our results point to a potential mechanism that contributes to strain-level variation in symbiont density in this system, and our data suggest that symbiont fitness may be increased by establishing at higher density within hosts. Our work highlights the importance of within-host dynamics shaping symbiont evolution.}, } @article {pmid37094148, year = {2023}, author = {Gu, X and Ross, PA and Gill, A and Yang, Q and Ansermin, E and Sharma, S and Soleimannejad, S and Sharma, K and Callahan, A and Brown, C and Umina, PA and Kristensen, TN and Hoffmann, AA}, title = {A rapidly spreading deleterious aphid endosymbiont that uses horizontal as well as vertical transmission.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {120}, number = {18}, pages = {e2217278120}, doi = {10.1073/pnas.2217278120}, pmid = {37094148}, issn = {1091-6490}, abstract = {Endosymbiotic bacteria that live inside the cells of insects are typically only transmitted maternally and can spread by increasing host fitness and/or modifying reproduction in sexual hosts. Transinfections of Wolbachia endosymbionts are now being used to introduce useful phenotypes into sexual host populations, but there has been limited progress on applications using other endosymbionts and in asexual populations. Here, we develop a unique pathway to application in aphids by transferring the endosymbiont Rickettsiella viridis to the major crop pest Myzus persicae. Rickettsiella infection greatly reduced aphid fecundity, decreased heat tolerance, and modified aphid body color, from light to dark green. Despite inducing host fitness costs, Rickettsiella spread rapidly through caged aphid populations via plant-mediated horizontal transmission. The phenotypic effects of Rickettsiella were sensitive to temperature, with spread only occurring at 19 °C and not 25 °C. Body color modification was also lost at high temperatures despite Rickettsiella maintaining a high density. Rickettsiella shows the potential to spread through natural M. persicae populations by horizontal transmission and subsequent vertical transmission. Establishment of Rickettsiella in natural populations could reduce crop damage by modifying population age structure, reducing population growth and providing context-dependent effects on host fitness. Our results highlight the importance of plant-mediated horizontal transmission and interactions with temperature as drivers of endosymbiont spread in asexual insect populations.}, } @article {pmid37085551, year = {2023}, author = {Kiefer, JST and Bauer, E and Okude, G and Fukatsu, T and Kaltenpoth, M and Engl, T}, title = {Cuticle supplementation and nitrogen recycling by a dual bacterial symbiosis in a family of xylophagous beetles.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, pmid = {37085551}, issn = {1751-7370}, abstract = {Many insects engage in stable nutritional symbioses with bacteria that supplement limiting essential nutrients to their host. While several plant sap-feeding Hemipteran lineages are known to be simultaneously associated with two or more endosymbionts with complementary biosynthetic pathways to synthesize amino acids or vitamins, such co-obligate symbioses have not been functionally characterized in other insect orders. Here, we report on the characterization of a dual co-obligate, bacteriome-localized symbiosis in a family of xylophagous beetles using comparative genomics, fluorescence microscopy, and phylogenetic analyses. Across the beetle family Bostrichidae, most investigated species harbored the Bacteroidota symbiont Shikimatogenerans bostrichidophilus that encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles' cuticle biosynthesis, sclerotisation, and melanisation. One clade of Bostrichid beetles additionally housed the co-obligate symbiont Bostrichicola ureolyticus that is inferred to complement the function of Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, thereby providing additional benefits on nitrogen-poor diets. Both symbionts represent ancient associations within the Bostrichidae that have subsequently experienced genome erosion and co-speciation with their hosts. While Bostrichicola was repeatedly lost, Shikimatogenerans has been retained throughout the family and exhibits a perfect pattern of co-speciation. Our results reveal that co-obligate symbioses with complementary metabolic capabilities occur beyond the well-known sap-feeding Hemiptera and highlight the importance of symbiont-mediated cuticle supplementation and nitrogen recycling for herbivorous beetles.}, } @article {pmid37079598, year = {2023}, author = {Choubdar, N and Karimian, F and Koosha, M and Nejati, J and Shabani Kordshouli, R and Azarm, A and Oshaghi, MA}, title = {Wolbachia infection in native populations of Blattella germanica and Periplaneta americana.}, journal = {PloS one}, volume = {18}, number = {4}, pages = {e0284704}, doi = {10.1371/journal.pone.0284704}, pmid = {37079598}, issn = {1932-6203}, abstract = {Cockroaches are significant pests worldwide, being important in medical, veterinary, and public health fields. Control of cockroaches is difficult because they have robust reproductive ability and high adaptability and are resistant to many insecticides. Wolbachia is an endosymbiont bacterium that infects the reproductive organs of approximately 70% of insect species and has become a promising biological agent for controlling insect pests. However, limited data on the presence or strain typing of Wolbachia in cockroaches are available. PCR amplification and sequencing of the wsp and gltA genes were used to study the presence, prevalence and molecular typing of Wolbachia in two main cockroach species, Blattella germanica (German cockroach) and Periplaneta americana (American cockroach), from different geographical locations of Iran. The Wolbachia endosymbiont was found only in 20.6% of German cockroaches while it was absent in American cockroach samples. Blast search and phylogenetic analysis revealed that the Wolbachia strain found in the German cockroach belongs to Wolbachia supergroup F. Further studies should investigate the symbiotic role of Wolbachia in cockroaches and determine whether lack of Wolbachia infection may increase this insect's ability to tolerate or acquire various pathogens. Results of our study provide a foundation for continued work on interactions between cockroaches, bacterial endosymbionts, and pathogens.}, } @article {pmid37075471, year = {2023}, author = {Che Lah, EF and Ahamad, M and Dmitry, A and Md Zain, BM and Yaakop, S}, title = {Metagenomic profile of the bacterial communities associated with Ixodes granulatus (Acari: Ixodidae): a potential vector of tick-borne diseases.}, journal = {Journal of medical entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jme/tjad044}, pmid = {37075471}, issn = {1938-2928}, abstract = {Ixodes granulatus Supino, 1897 (Acari: Ixodida) is one of Malaysia's most common hard ticks and is a potential vector for tick-borne diseases (TBDs). Despite its great public health importance, research on I. granulatus microbial communities remains largely unexplored. Therefore, this study aimed to investigate the bacterial communities of on-host I. granulatus collected from three different recreational areas on the East Coast of Peninsular Malaysia using high throughput Next Generation Sequencing (NGS). A total of 9 females on-host I. granulatus were subjected to metabarcoding analysis targeting V3-V4 regions of 16S ribosomal RNA (rRNA) using the Illumina MiSeq platform. This study identified 15 bacterial phyla corresponding to 19 classes, 54 orders, and 90 families from 435 amplicon sequence variants (ASVs), revealing a diverse bacterial community profile. Together with 130 genera assigned, local I. granulatus harbored 4 genera of pathogens, i.e., Rickettsia da Rocha Lima, 1916 (Rickettsiales: Rickettsiaceae) (58.6%), Borrelia Swellengrebel 1907 (Spirochaetales: Borreliaceae) (31.6%), Borreliella Adeolu and Gupta 2015 (Spirochaetales: Borreliaceae) (0.6%), and Ehrlichia Cowdria Moshkovski 1947 (Rickettsiales: Ehrlichiaceae) (39.9%). Some endosymbiont bacteria, such as Coxiella (Philip, 1943) (Legionellales: Coxiellaceae), Wolbachia Hertig 1936 (Rickettsiales: Ehrlichiaceae), and Rickettsiella Philip, 1956 (Legionellales: Coxiellaceae), were also detected at very low abundance. Interestingly, this study reported the co-infection of Borrelia and Ehrlichia for the first time, instilling potential health concerns in the context of co-transmission to humans, especially in areas with a high population of I. granulatus. This study successfully characterized the tick microbiome and provided the first baseline data of I. granulatus bacterial communities in Malaysia. These results support the need for way-forward research on tick-associated bacteria using NGS, focusing on medically important species toward TBD prevention.}, } @article {pmid37071674, year = {2023}, author = {Libby, E and Kempes, CP and Okie, JG}, title = {Metabolic compatibility and the rarity of prokaryote endosymbioses.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {120}, number = {17}, pages = {e2206527120}, doi = {10.1073/pnas.2206527120}, pmid = {37071674}, issn = {1091-6490}, abstract = {The evolution of the mitochondria was a significant event that gave rise to the eukaryotic lineage and most large complex life. Central to the origins of the mitochondria was an endosymbiosis between prokaryotes. Yet, despite the potential benefits that can stem from a prokaryotic endosymbiosis, their modern occurrence is exceptionally rare. While many factors may contribute to their rarity, we lack methods for estimating the extent to which they constrain the appearance of a prokaryotic endosymbiosis. Here, we address this knowledge gap by examining the role of metabolic compatibility between a prokaryotic host and endosymbiont. We use genome-scale metabolic flux models from three different collections (AGORA, KBase, and CarveMe) to assess the viability, fitness, and evolvability of potential prokaryotic endosymbioses. We find that while more than half of host-endosymbiont pairings are metabolically viable, the resulting endosymbioses have reduced growth rates compared to their ancestral metabolisms and are unlikely to gain mutations to overcome these fitness differences. In spite of these challenges, we do find that they may be more robust in the face of environmental perturbations at least in comparison with the ancestral host metabolism lineages. Our results provide a critical set of null models and expectations for understanding the forces that shape the structure of prokaryotic life.}, } @article {pmid37067424, year = {2023}, author = {Chakraborty, A and Šobotník, J and Votýpková, K and Hradecký, J and Stiblik, P and Synek, J and Bourguignon, T and Baldrian, P and Engel, MS and Novotný, V and Odriozola, I and Větrovský, T}, title = {Impact of Wood Age on Termite Microbial Assemblages.}, journal = {Applied and environmental microbiology}, volume = {}, number = {}, pages = {e0036123}, doi = {10.1128/aem.00361-23}, pmid = {37067424}, issn = {1098-5336}, abstract = {The decomposition of wood and detritus is challenging to most macroscopic organisms due to the recalcitrant nature of lignocellulose. Moreover, woody plants often protect themselves by synthesizing toxic or nocent compounds which infuse their tissues. Termites are essential wood decomposers in warmer terrestrial ecosystems and, as such, they have to cope with high concentrations of plant toxins in wood. In this paper, we evaluated the influence of wood age on the gut microbial (bacterial and fungal) communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) (Kollar, 1837) and Microcerotermes biroi (Termitidae) (Desneux, 1905). We confirmed that the secondary metabolite concentration decreased with wood age. We identified a core microbial consortium maintained in the gut of R. flavipes and M. biroi and found that its diversity and composition were not altered by the wood age. Therefore, the concentration of secondary metabolites had no effect on the termite gut microbiome. We also found that both termite feeding activities and wood age affect the wood microbiome. Whether the increasing relative abundance of microbes with termite activities is beneficial to the termites is unknown and remains to be investigated. IMPORTANCE Termites can feed on wood thanks to their association with their gut microbes. However, the current understanding of termites as holobiont is limited. To our knowledge, no studies comprehensively reveal the influence of wood age on the termite-associated microbial assemblage. The wood of many tree species contains high concentrations of plant toxins that can vary with their age and may influence microbes. Here, we studied the impact of Norway spruce wood of varying ages and terpene concentrations on the microbial communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) and Microcerotermes biroi (Termitidae). We performed a bacterial 16S rRNA and fungal ITS2 metabarcoding study to reveal the microbial communities associated with R. flavipes and M. biroi and their impact on shaping the wood microbiome. We noted that a stable core microbiome in the termites was unaltered by the feeding substrate, while termite activities influenced the wood microbiome, suggesting that plant secondary metabolites have negligible effects on the termite gut microbiome. Hence, our study shed new insights into the termite-associated microbial assemblage under the influence of varying amounts of terpene content in wood and provides a groundwork for future investigations for developing symbiont-mediated termite control measures.}, } @article {pmid37066385, year = {2023}, author = {Moulin, SLY and Frail, S and Doenier, J and Braukmann, T and Yeh, E}, title = {The endosymbiont of Epithemia clementina is specialized for nitrogen fixation within a photosynthetic eukaryote.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2023.03.08.531752}, pmid = {37066385}, abstract = {Epithemia spp. diatoms contain obligate, nitrogen-fixing endosymbionts, or "diazoplasts", derived from cyanobacteria. These algae are a rare example of photosynthetic eukaryotes that have successfully coupled oxygenic photosynthesis with oxygen-sensitive nitrogenase activity. Here, we report a newly-isolated species, E. clementina , as a model to investigate endosymbiotic acquisition of nitrogen fixation. To detect the metabolic changes associated with endosymbiotic specialization, we compared nitrogen fixation, associated carbon and nitrogen metabolism, and their regulatory pathways in the Epithemia diazoplast with its close, free-living cyanobacterial relative, Crocosphaera subtropica . Unlike C. subtropica , we show that nitrogenase activity in the diazoplast is concurrent with, and even dependent on, host photosynthesis and no longer associated with cyanobacterial glycogen storage suggesting carbohydrates are imported from the host diatom. Carbohydrate catabolism in the diazoplast indicates that the oxidative pentose pathway and oxidative phosphorylation, in concert, generates reducing equivalents and ATP and consumes oxygen to support nitrogenase activity. In contrast to expanded nitrogenase activity, the diazoplast has diminished ability to utilize alternative nitrogen sources. Upon ammonium repletion, negative feedback regulation of nitrogen fixation was conserved, however ammonia assimilation showed paradoxical responses in the diazoplast compared with C. subtropica . The altered nitrogen regulation likely favors nitrogen transfer to the host. Our results suggest that the diazoplast is specialized for endosymbiotic nitrogen fixation. Altogether, we establish a new model for studying endosymbiosis, perform the first functional characterization of this diazotroph endosymbiosis, and identify metabolic adaptations for endosymbiotic acquisition of a critical biological function.}, } @article {pmid37052365, year = {2023}, author = {Xu, J and Tan, JB and Li, YD and Xu, YH and Tang, A and Zhou, HK and Shi, PQ}, title = {Diversity and dynamics of endosymbionts in a single population of sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae): a preliminary study.}, journal = {Journal of insect science (Online)}, volume = {23}, number = {2}, pages = {}, doi = {10.1093/jisesa/iead021}, pmid = {37052365}, issn = {1536-2442}, abstract = {Endosymbionts live symbiotically with insect hosts and play important roles in the evolution, growth, development, reproduction, and environmental fitness of hosts. Weevils are one of the most abundant insect groups that can be infected by various endosymbionts, such as Sodalis, Nardonella, and Wolbachia. The sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae), is a notorious pest in sweet potato (Ipomoea batatas L.) cultivation. Currently, little is known about the presence of endosymbionts in C. formicarius. Herein, we assessed the endosymbiont load of a single geographic population of C. formicarius. The results showed that Nardonella and Rickettsia could infect C. formicarius at different rates, which also varied according to the developmental stages of C. formicarius. The relative titer of Nardonella was significantly related to C. formicarius developmental stages. The Nardonella-infecting sweet potato weevils were most closely related to the Nardonella in Sphenophorus levis (Coleoptera, Curculionidae). The Rickettsia be identified in bellii group. These results preliminarily revealed the endosymbionts in C. formicarius and helped to explore the diversity of endosymbionts in weevils and uncover the physiological roles of endosymbionts in weevils.}, } @article {pmid37042290, year = {2023}, author = {Lu, M and Chen, S and Meng, C and Wang, W and Li, H and Sun, Y and Li, M and Ma, X and Ma, Y and Duan, C and Li, K}, title = {A novel Rickettsia species closely related to Rickettsia felis in Anopheles mosquitoes from Yingkou City, Northeast China.}, journal = {Zoonoses and public health}, volume = {}, number = {}, pages = {}, doi = {10.1111/zph.13043}, pmid = {37042290}, issn = {1863-2378}, abstract = {Mosquitoes are generally recognized as the most important vector of many zoonotic pathogens. In this study, seven mosquitoes species were identified (Anopheles pullus, Anopheles sinensis, Anopheles lesteri, Anopheles kleini, Ochlerotatus dorsalis, Aedes koreicus and Culex inatomii) in samples collected from Yingkou City, Liaoning Province, Northeastern China. A novel Rickettsia species was detected in Anopheles sinensis (two of 71, 2.82%) and Anopheles pullus (one of 106, 0.94%) mosquitoes. Genetic analysis indicated that the rrs and ompB genes have highest 99.60% and 97.88%-98.14% identities to Rickettsia felis, an emerging human pathogen of global concern mainly harboured by fleas, mosquitoes and booklice. The gltA sequences of these strains have 99.72% of nucleotide similarity with Rickettsia endosymbiont of Medetera jacula. The groEL sequences have 98.37% similarity to both Rickettsia tillamookensis and Rickettsia australis. The htrA sequences have 98.77% similarity to Rickettsia lusitaniae. In the phylogenetic tree based on concatenated nucleotide sequences of rrs, gltA, groEL, ompB and htrA genes, these strains are closely related to R. felis. Herein, we name it 'Candidatus Rickettsia yingkouensis'. Its human pathogenicity to humans and animals is still to be determined.}, } @article {pmid37035680, year = {2023}, author = {Ferrarini, MG and Vallier, A and Dell'Aglio, E and Balmand, S and Vincent-Monégat, C and Debbache, M and Maire, J and Parisot, N and Zaidman-Rémy, A and Heddi, A and Rebollo, R}, title = {Endosymbiont-containing germarium transcriptional survey in a cereal weevil depicts downregulation of immune effectors at the onset of sexual maturity.}, journal = {Frontiers in physiology}, volume = {14}, number = {}, pages = {1142513}, pmid = {37035680}, issn = {1664-042X}, abstract = {Insects often establish long-term relationships with intracellular symbiotic bacteria, i.e., endosymbionts, that provide them with essential nutrients such as amino acids and vitamins. Endosymbionts are typically confined within specialized host cells called bacteriocytes that may form an organ, the bacteriome. Compartmentalization within host cells is paramount for protecting the endosymbionts and also avoiding chronic activation of the host immune system. In the cereal weevil Sitophilus oryzae, bacteriomes are present as a single organ at the larval foregut-midgut junction, and in adults, at the apex of midgut mesenteric caeca and at the apex of the four ovarioles. While the adult midgut endosymbionts experience a drastic proliferation during early adulthood followed by complete elimination through apoptosis and autophagy, ovarian endosymbionts are maintained throughout the weevil lifetime by unknown mechanisms. Bacteria present in ovarian bacteriomes are thought to be involved in the maternal transmission of endosymbionts through infection of the female germline, but the exact mode of transmission is not fully understood. Here, we show that endosymbionts are able to colonize the germarium in one-week-old females, pinpointing a potential infection route of oocytes. To identify potential immune regulators of ovarian endosymbionts, we have analyzed the transcriptomes of the ovarian bacteriomes through young adult development, from one-day-old adults to sexually mature ones. In contrast with midgut bacteriomes, immune effectors are downregulated in ovarian bacteriomes at the onset of sexual maturation. We hypothesize that relaxation of endosymbiont control by antimicrobial peptides might allow bacterial migration and potential oocyte infection, ensuring endosymbiont transmission.}, } @article {pmid37035661, year = {2023}, author = {Michalik, A and Franco, DC and Deng, J and Szklarzewicz, T and Stroiński, A and Kobiałka, M and Łukasik, P}, title = {Variable organization of symbiont-containing tissue across planthoppers hosting different heritable endosymbionts.}, journal = {Frontiers in physiology}, volume = {14}, number = {}, pages = {1135346}, pmid = {37035661}, issn = {1664-042X}, abstract = {Sap-feeding hemipteran insects live in associations with diverse heritable symbiotic microorganisms (bacteria and fungi) that provide essential nutrients deficient in their hosts' diets. These symbionts typically reside in highly specialized organs called bacteriomes (with bacterial symbionts) or mycetomes (with fungal symbionts). The organization of these organs varies between insect clades that are ancestrally associated with different microbes. As these symbioses evolve and additional microorganisms complement or replace the ancient associates, the organization of the symbiont-containing tissue becomes even more variable. Planthoppers (Hemiptera: Fulgoromorpha) are ancestrally associated with bacterial symbionts Sulcia and Vidania, but in many of the planthopper lineages, these symbionts are now accompanied or have been replaced by other heritable bacteria (e.g., Sodalis, Arsenophonus, Purcelliella) or fungi. We know the identity of many of these microbes, but the symbiont distribution within the host tissues and the bacteriome organization have not been systematically studied using modern microscopy techniques. Here, we combine light, fluorescence, and transmission electron microscopy with phylogenomic data to compare symbiont tissue distributions and the bacteriome organization across planthoppers representing 15 families. We identify and describe seven primary types of symbiont localization and seven types of the organization of the bacteriome. We show that Sulcia and Vidania, when present, usually occupy distinct bacteriomes distributed within the body cavity. The more recently acquired gammaproteobacterial and fungal symbionts generally occupy separate groups of cells organized into distinct bacteriomes or mycetomes, distinct from those with Sulcia and Vidania. They can also be localized in the cytoplasm of fat body cells. Alphaproteobacterial symbionts colonize a wider range of host body habitats: Asaia-like symbionts often colonize the host gut lumen, whereas Wolbachia and Rickettsia are usually scattered across insect tissues and cell types, including cells containing other symbionts, bacteriome sheath, fat body cells, gut epithelium, as well as hemolymph. However, there are exceptions, including Gammaproteobacteria that share bacteriome with Vidania, or Alphaproteobacteria that colonize Sulcia cells. We discuss how planthopper symbiont localization correlates with their acquisition and replacement patterns and the symbionts' likely functions. We also discuss the evolutionary consequences, constraints, and significance of these findings.}, } @article {pmid37035211, year = {2023}, author = {Gong, W and Zhang, S}, title = {YB1 participated in regulating mitochondrial activity through RNA replacement.}, journal = {Frontiers in oncology}, volume = {13}, number = {}, pages = {1145379}, pmid = {37035211}, issn = {2234-943X}, abstract = {As a relic of ancient bacterial endosymbionts, mitochondria play a central role in cell metabolism, apoptosis, autophagy, and other processes. However, the function of mitochondria-derived nucleic acids in cellular signal transduction has not been fully elucidated. Here, our work has found that Y-box binding protein 1 (YB1) maintained cellular autophagy at a moderate level to inhibit mitochondrial oxidative phosphorylation. In addition, mitochondrial RNA was leaked into cytosol under starvation, accompanied by YB1 mitochondrial relocation, resulting in YB1-bound RNA replacement. The mRNAs encoded by oxidative phosphorylation (OXPHOS)-associated genes and oncogene HMGA1 (high-mobility group AT-hook 1) were competitively replaced by mitochondria-derived tRNAs. The increase of free OXPHOS mRNAs released from the YB1 complex enhanced mitochondrial activity through facilitating translation, but the stability of HMGA1 mRNA was impaired without the protection of YB1, both contributing to breast cancer cell apoptosis and reactive oxygen species production. Our finding not only provided a new potential target for breast cancer therapy but also shed new light on understanding the global landscape of cellular interactions between RNA-binding proteins and different RNA species.}, } @article {pmid37022136, year = {2023}, author = {Arras, SD and Sibaeva, N and Catchpole, RJ and Horinouchi, N and Si, D and Rickerby, AM and Deguchi, K and Hibi, M and Tanaka, K and Takeuchi, M and Ogawa, J and Poole, AM}, title = {Characterisation of an Escherichia coli line that completely lacks ribonucleotide reduction yields insights into the evolution of parasitism and endosymbiosis.}, journal = {eLife}, volume = {12}, number = {}, pages = {}, doi = {10.7554/eLife.83845}, pmid = {37022136}, issn = {2050-084X}, abstract = {All life requires ribonucleotide reduction for de novo synthesis of deoxyribonucleotides. A handful of obligate intracellular species are known to lack ribonucleotide reduction and are instead dependent on their host for deoxyribonucleotide synthesis. As ribonucleotide reduction has on occasion been lost in obligate intracellular parasites and endosymbionts, we reasoned that it should in principle be possible to knock this process out entirely under conditions where deoxyribonucleosides are present in the growth media. We report here the creation of a strain of E. coli where all three ribonucleotide reductase operons have been fully deleted following introduction of a broad spectrum deoxyribonucleoside kinase from Mycoplasma mycoides. Our strain is able to grow in the presence of deoxyribonucleosides and shows slowed but substantial growth. Under limiting deoxyribonucleoside levels, we observe a distinctive filamentous cell morphology, where cells grow but do not appear to divide regularly. Finally, we examined whether our lines are able to adapt to limited supplies of deoxyribonucleosides, as might occur in the evolutionary switch from de novo synthesis to dependence on host production during the evolution of parasitism or endosymbiosis. Over the course of an evolution experiment, we observe a 25-fold reduction in the minimum concentration of exogenous deoxyribonucleosides necessary for growth. Genome analysis of replicate lines reveals that several lines carry mutations in deoB and cdd. deoB codes for phosphopentomutase, a key part of the deoxyriboaldolase pathway, which has been hypothesised as an alternative to ribonucleotide reduction for deoxyribonucleotide synthesis. Rather than synthesis via this pathway complementing the loss of ribonucleotide reduction, our experiments reveal that mutations appear that reduce or eliminate the capacity for this pathway to catabolise deoxyribonucleotides, thus preventing their loss via central metabolism. Mutational inactivation of both deoB and cdd is also observed in a number of obligate intracellular bacteria that have lost ribonucleotide reduction. We conclude that our experiments recapitulate key evolutionary steps in the adaptation to intracellular life without ribonucleotide reduction.}, } @article {pmid37021082, year = {2023}, author = {Rutagarama, VP and Ireri, PM and Sibomana, C and Omufwoko, KS and Martin, SH and Ffrench-Constant, RH and Eckardt, W and Kaplin, BK and Smith, DAS and Gordon, I}, title = {African Queens find mates when males are rare.}, journal = {Ecology and evolution}, volume = {13}, number = {4}, pages = {e9956}, pmid = {37021082}, issn = {2045-7758}, abstract = {In butterflies and moths, male-killing endosymbionts are transmitted from infected females via their eggs, and the male progeny then perish. This means that successful transmission of the parasite relies on the successful mating of the host. Paradoxically, at the population level, parasite transmission also reduces the number of adult males present in the final population for infected females to mate with. Here we investigate if successful female mating when males are rare is indeed a likely rate-limiting step in the transmission of male-killing Spiroplasma in the African Monarch, Danaus chrysippus. In Lepidoptera, successful pairings are hallmarked by the transfer of a sperm-containing spermatophore from the male to the female during copulation. Conveniently, this spermatophore remains detectable within the female upon dissection, and thus, spermatophore counts can be used to assess the frequency of successful mating in the field. We used such spermatophore counts to examine if altered sex ratios in the D. chrysippus do indeed affect female mating success. We examined two different field sites in East Africa where males were often rare. Surprisingly, mated females carried an average of 1.5 spermatophores each, regardless of male frequency, and importantly, only 10-20% remained unmated. This suggests that infected females will still be able to mate in the face of either Spiroplasma-mediated male killing and/or fluctuations in adult sex ratio over the wet-dry season cycle. These observations may begin to explain how the male-killing mollicute can still be successfully transmitted in a population where males are rare.}, } @article {pmid37016457, year = {2023}, author = {Junghare, M and Manavalan, T and Fredriksen, L and Leiros, I and Altermark, B and Eijsink, VGH and Vaaje-Kolstad, G}, title = {Biochemical and structural characterisation of a family GH5 cellulase from endosymbiont of shipworm P. megotara.}, journal = {Biotechnology for biofuels and bioproducts}, volume = {16}, number = {1}, pages = {61}, pmid = {37016457}, issn = {2731-3654}, abstract = {BACKGROUND: Cellulases play a key role in the enzymatic conversion of plant cell-wall polysaccharides into simple and economically relevant sugars. Thus, the discovery of novel cellulases from exotic biological niches is of great interest as they may present properties that are valuable in the biorefining of lignocellulosic biomass.

RESULTS: We have characterized a glycoside hydrolase 5 (GH5) domain of a bi-catalytic GH5-GH6 multi-domain enzyme from the unusual gill endosymbiont Teredinibacter waterburyi of the wood-digesting shipworm Psiloteredo megotara. The catalytic GH5 domain, was cloned and recombinantly produced with or without a C-terminal family 10 carbohydrate-binding module (CBM). Both variants showed hydrolytic endo-activity on soluble substrates such as β-glucan, carboxymethylcellulose and konjac glucomannan, respectively. However, low activity was observed towards the crystalline form of cellulose. Interestingly, when co-incubated with a cellulose-active LPMO, a clear synergy was observed that boosted the overall hydrolysis of crystalline cellulose. The crystal structure of the GH5 catalytic domain was solved to 1.0 Å resolution and revealed a substrate binding cleft extension containing a putative + 3 subsite, which is uncommon in this enzyme family. The enzyme was active in a wide range of pH, temperatures and showed high tolerance for NaCl.

CONCLUSIONS: This study provides significant knowledge in the discovery of new enzymes from shipworm gill endosymbionts and sheds new light on biochemical and structural characterization of cellulolytic cellulase. Study demonstrated a boost in the hydrolytic activity of cellulase on crystalline cellulose when co-incubated with cellulose-active LPMO. These findings will be relevant for the development of future enzyme cocktails that may be useful for the biotechnological conversion of lignocellulose.}, } @article {pmid37016078, year = {2023}, author = {Nielsen, DA and Petrou, K}, title = {Lipid stores reveal the state of the coral-algae symbiosis at the single-cell level.}, journal = {ISME communications}, volume = {3}, number = {1}, pages = {29}, pmid = {37016078}, issn = {2730-6151}, abstract = {Coral reefs worldwide are threatened by environmental stress. The observable decline in coral cover, is principally due to the intensifying breakdown of the coral symbiosis, a process known as 'bleaching'. Overproduction of reactive oxygen species (ROS) is considered a key driver of coral bleaching, where environmental stress leads to increased ROS expression. To explore the link between ROS damage and symbiont status, we measured lipid peroxidation (LPO), a ubiquitous form of ROS damage, in the lipid stores of individual endo- and ex-symbiotic algal cells of three coral species, using confocal microscopy and a lipid hydroperoxide sensitive fluorescent dye. We found LPO was higher in endosymbionts, while lipid volume was greater in ex-symbiotic cells. Cluster analysis revealed three metabolic profiles differentiating endosymbiotic (#1: high LPO, low lipid) and ex-symbiotic cells (#3: low LPO, high lipid), with the intermediate group (#2) containing both cell types. Heat stress caused endosymbionts of Pocillopora acuta to shift away from cluster #1, suggesting this cluster represents cells in healthy/stable symbiosis. Our study delivers a new means to assess the coral symbiosis, demonstrating that symbiont LPO ratio combined with lipid store volume is a robust metabolic marker for the state of the symbiosis at the cellular level.}, } @article {pmid37005434, year = {2023}, author = {Argandona, JA and Kim, D and Hansen, AK}, title = {Comparative transcriptomics of aphid species that diverged > 22 MYA reveals genes that are important for the maintenance of their symbiosis.}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {5341}, pmid = {37005434}, issn = {2045-2322}, abstract = {Most plant-sap feeding insects have obligate relationships with maternally transmitted bacteria. Aphids require their nutritional endosymbiont, Buchnera aphidicola, for the production of essential amino acids. Such endosymbionts are harbored inside of specialized insect cells called bacteriocytes. Here, we use comparative transcriptomics of bacteriocytes between two recently diverged aphid species, Myzus persicae and Acyrthosiphon pisum, to identify key genes that are important for the maintenance of their nutritional mutualism. The majority of genes with conserved expression profiles in M. persicae and A. pisum are for orthologs previously identified in A. pisum to be important for the symbiosis. However, asparaginase which produces aspartate from asparagine was significantly up-regulated only in A. pisum bacteriocytes, potentially because Buchnera of M. persicae encodes its own asparaginase enzyme unlike Buchnera of A. pisum resulting in Buchnera of A. pisum to be dependent on its aphid host for aspartate. One-to-one orthologs that explained the most amount of variation for bacteriocyte specific mRNA expression for both species includes a collaborative gene for methionine biosynthesis, multiple transporters, a horizontally transmitted gene, and secreted proteins. Finally, we highlight species-specific gene clusters which may contribute to host adaptations and/or accommodations in gene regulation to changes in the symbiont or the symbiosis.}, } @article {pmid37001324, year = {2023}, author = {Romano, DMM and Pereira, TN and Almeida, IB and Coelho, CSG and Duarte, FC and Harakava, R and Cassiano, LL and Mendes, MC}, title = {First molecular evidence of Wolbachia occurrence in Amblyomma sculptum (Acari: Ixodidae).}, journal = {Veterinary parasitology}, volume = {317}, number = {}, pages = {109907}, doi = {10.1016/j.vetpar.2023.109907}, pmid = {37001324}, issn = {1873-2550}, abstract = {As the main vector for the bacterium Rickettsia rickettsii in Brazil, the tick Amblyomma sculptum is a parasite of great public health importance in this country. Wolbachia is an endosymbiont bacterium highly widespread among invertebrates and because of its impact on its hosts' biology, form a powerful alternative for pests and disease control. The aim of this study was to investigate the occurrence of this bacterium in A. sculptum. For this, 187 adult ticks collected in two municipalities in the interior of the state of São Paulo, Brazil, were analyzed using molecular techniques and bioinformatics tools. A total of 15 ticks were positive for the presence of Wolbachia. Phylogenetic analysis on the 16S rRNA gene indicated that the Wolbachia DNA sequences obtained in this investigation belonged to different clades, probably in supergroups B and F. This was the first study to report the occurrence of Wolbachia in A. sculptum and it enriches knowledge about the susceptibility of ticks to this bacterium. Now that we know that Wolbachia can be found in A. sculptum, the objective for a next study must be to investigate Wolbachia's possible origin in this tick.}, } @article {pmid37001140, year = {2023}, author = {Newman, LE and Shadel, GS}, title = {Mitochondrial DNA Release in Innate Immune Signaling.}, journal = {Annual review of biochemistry}, volume = {}, number = {}, pages = {}, doi = {10.1146/annurev-biochem-032620-104401}, pmid = {37001140}, issn = {1545-4509}, abstract = {According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, and senescence and aging. Expected final online publication date for the Annual Review of Biochemistry, Volume 92 is June 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.}, } @article {pmid36993585, year = {2023}, author = {Beckmann, J and Gillespie, J and Tauritz, D}, title = {Modelling Emergence of Wolbachia Toxin-Antidote Protein Functions with an Evolutionary Algorithm.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2023.03.23.533954}, pmid = {36993585}, abstract = {Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA applications in biology encode high levels of abstraction in top-down ecological population models. In contrast, our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of Wolbachia induced cytoplasmic incompatibility (CI). Wolbachia is a microbial endosymbiont that lives inside insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control CI, CI factors (cifs), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can stochastically vary, imparting effects that might impact CI induction mechanics. Our model highlights how preconditions, genetic diversity, and sequence length can bias evolution of cifs towards one mechanism or another.}, } @article {pmid36989877, year = {2023}, author = {Weisse, T and Scheffel, U and Stadler, P}, title = {Temperature-dependent resistance to starvation of three contrasting freshwater ciliates.}, journal = {European journal of protistology}, volume = {88}, number = {}, pages = {125973}, doi = {10.1016/j.ejop.2023.125973}, pmid = {36989877}, issn = {1618-0429}, abstract = {We investigated the temperature-dependent response to starvation of three contrasting freshwater ciliates (Ciliophora). The cyst-forming algivorous species Meseres corlissi and the bactivorous species Glaucomides bromelicola, which cannot form cysts, co-occur in the reservoirs (tanks) of tree bromeliads. The mixotrophic species Coleps spetai is common in many lakes. We hypothesized that the ciliates' different traits and life strategies would affect their survival rates and temperature sensitivity under food depleted conditions. We measured the decline of the ciliate populations in microcosm experiments at different temperatures for several days. We used an imaging flow cytometer to size the ciliates and documented their morphological and physiological changes in response to starvation. We found that the cyst-forming species had the highest mortality rates but may endure long-term starvation by encystment. The sympatric, non-encysting species suffered the lowest mortality rates and could survive for more than three weeks without food. The mixotrophic species had intermediate mortality rates but showed the highest phenotypic plasticity in response to starvation. A significant fraction of the C. spetai population appeared unaffected by starvation, suggesting that the endosymbionts provided some resources to the host cells. The mean mortality rate per day of all three species increased with temperature by 0.09 °C[-1].}, } @article {pmid36986288, year = {2023}, author = {Moore, C and Lashnits, E and Neupane, P and Herrin, BH and Lappin, M and André, MR and Breitschwerdt, EB}, title = {Feeding on a Bartonella henselae Infected Host Triggers Temporary Changes in the Ctenocephalides felis Microbiome.}, journal = {Pathogens (Basel, Switzerland)}, volume = {12}, number = {3}, pages = {}, doi = {10.3390/pathogens12030366}, pmid = {36986288}, issn = {2076-0817}, abstract = {The effect of Bartonella henselae on the microbiome of its vector, Ctenocephalides felis (the cat flea) is largely unknown, as the majority of C. felis microbiome studies have utilized wild-caught pooled fleas. We surveyed the microbiome of laboratory-origin C. felis fed on B. henselae-infected cats for 24 h or 9 days to identify changes to microbiome diversity and microbe prevalence compared to unfed fleas, and fleas fed on uninfected cats. Utilizing Next Generation Sequencing (NGS) on the Illumina platform, we documented an increase in microbial diversity in C. felis fed on Bartonella-infected cats for 24 h. These changes returned to baseline (unfed fleas or fleas fed on uninfected cats) after 9 days on the host. Increased diversity in the C. felis microbiome when fed on B. henselae-infected cats may be related to the mammalian, flea, or endosymbiont response. Poor B. henselae acquisition was documented with only one of four infected flea pools having B. henselae detected by NGS. We hypothesize this is due to the use of adult fleas, flea genetic variation, or lack of co-feeding with B. henselae-infected fleas. Future studies are necessary to fully characterize the effect of endosymbionts and C. felis diversity on B. henselae acquisition.}, } @article {pmid36985289, year = {2023}, author = {Huynh, LN and Diarra, AZ and Pham, QL and Berenger, JM and Ho, VH and Nguyen, XQ and Parola, P}, title = {Identification of Vietnamese Flea Species and Their Associated Microorganisms Using Morphological, Molecular, and Protein Profiling.}, journal = {Microorganisms}, volume = {11}, number = {3}, pages = {}, doi = {10.3390/microorganisms11030716}, pmid = {36985289}, issn = {2076-2607}, abstract = {Fleas are obligatory blood-sucking ectoparasites of medical and veterinary importance. The identification of fleas and associated flea-borne microorganisms, therefore, plays an important role in controlling and managing these vectors. Recently, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been reported as an innovative and effective approach to the identification of arthropods, including fleas. This study aims to use this technology to identify ethanol-preserved fleas collected in Vietnam and to use molecular biology to search for microorganisms associated with these fleas. A total of 502 fleas were collected from wild and domestic animals in four provinces in Vietnam. Morphological identification led to the recognition of five flea species, namely Xenopsylla cheopis, Xenopsylla astia, Pulex irritans, Ctenocephalides canis, and Ctenocephalides felis. The cephalothoraxes of 300 individual, randomly selected fleas were tested using MALDI-TOF MS and molecular analysis for the identification and detection of microorganisms. A total of 257/300 (85.7%) of the obtained spectra from the cephalothoraxes of each species were of good enough quality to be used for our analyses. Our laboratory MALDI-TOF MS reference database was upgraded with spectra achieved from five randomly selected fleas for every species of Ctenocephalides canis and Ctenocephalides felis. The remaining spectra were then queried against the upgraded MALDI-TOF MS database, which showed 100% correspondence between morphology and MALDI-TOF MS identification for two flea species (Ctenocephalides canis and Ctenocephalides felis). The MS spectra of the remaining species (three P. irritans, five X. astia, and two X. cheopis) were visually generated low-intensity MS profiles with high background noise that could not be used to update our database. Bartonella and Wolbachia spp. were detected in 300 fleas from Vietnam using PCR and sequencing with primers derived from the gltA gene for Bartonella and the 16S rRNA gene for Wolbachia, including 3 Bartonella clarridgeiae (1%), 3 Bartonella rochalimae (1%), 1 Bartonella coopersplainsensis (0.3%), and 174 Wolbachia spp. endosymbionts (58%).}, } @article {pmid36985288, year = {2023}, author = {Cossu, CA and Collins, NE and Oosthuizen, MC and Menandro, ML and Bhoora, RV and Vorster, I and Cassini, R and Stoltsz, H and Quan, M and van Heerden, H}, title = {Distribution and Prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African Ticks: A Systematic Review and Meta-Analysis.}, journal = {Microorganisms}, volume = {11}, number = {3}, pages = {}, doi = {10.3390/microorganisms11030714}, pmid = {36985288}, issn = {2076-2607}, abstract = {In Africa, ticks continue to be a major hindrance to the improvement of the livestock industry due to tick-borne pathogens that include Anaplasma, Ehrlichia, Rickettsia and Coxiella species. A systemic review and meta-analysis were conducted here and highlighted the distribution and prevalence of these tick-borne pathogens in African ticks. Relevant publications were searched in five electronic databases and selected using inclusion/exclusion criteria, resulting in 138 and 78 papers included in the qualitative and quantitative analysis, respectively. Most of the studies focused on Rickettsia africae (38 studies), followed by Ehrlichia ruminantium (27 studies), Coxiella burnetii (20 studies) and Anaplasma marginale (17 studies). A meta-analysis of proportions was performed using the random-effects model. The highest prevalence was obtained for Rickettsia spp. (18.39%; 95% CI: 14.23-22.85%), R. africae (13.47%; 95% CI: 2.76-28.69%), R. conorii (11.28%; 95% CI: 1.77-25.89%), A. marginale (12.75%; 95% CI: 4.06-24.35%), E. ruminantium (6.37%; 95% CI: 3.97-9.16%) and E. canis (4.3%; 95% CI: 0.04-12.66%). The prevalence of C. burnetii was low (0%; 95% CI: 0-0.25%), with higher prevalence for Coxiella spp. (27.02%; 95% CI: 10.83-46.03%) and Coxiella-like endosymbionts (70.47%; 95% CI: 27-99.82%). The effect of the tick genera, tick species, country and other variables were identified and highlighted the epidemiology of Rhipicephalus ticks in the heartwater; affinity of each Rickettsia species for different tick genera; dominant distribution of A. marginale, R. africae and Coxiella-like endosymbionts in ticks and a low distribution of C. burnetii in African hard ticks.}, } @article {pmid36985217, year = {2023}, author = {Djondji Kamga, FM and Mugenzi, LMJ and Tchouakui, M and Sandeu, MM and Maffo, CGT and Nyegue, MA and Wondji, CS}, title = {Contrasting Patterns of Asaia Association with Pyrethroid Resistance Escalation between the Malaria Vectors Anopheles funestus and Anopheles gambiae.}, journal = {Microorganisms}, volume = {11}, number = {3}, pages = {}, doi = {10.3390/microorganisms11030644}, pmid = {36985217}, issn = {2076-2607}, abstract = {Microbiome composition has been associated with insecticide resistance in malaria vectors. However, the contribution of major symbionts to the increasingly reported resistance escalation remains unclear. This study explores the possible association of a specific endosymbiont, Asaia spp., with elevated levels of pyrethroid resistance driven by cytochrome P450s enzymes and voltage-gated sodium channel mutations in Anopheles funestus and Anopheles gambiae. Molecular assays were used to detect the symbiont and resistance markers (CYP6P9a/b, 6.5 kb, L1014F, and N1575Y). Overall, genotyping of key mutations revealed an association with the resistance phenotype. The prevalence of Asaia spp. in the FUMOZ_X_FANG strain was associated with the resistance phenotype at a 5X dose of deltamethrin (OR = 25.7; p = 0.002). Mosquitoes with the resistant allele for the markers tested were significantly more infected with Asaia compared to those possessing the susceptible allele. Furthermore, the abundance correlated with the resistance phenotype at 1X concentration of deltamethrin (p = 0.02, Mann-Whitney test). However, for the MANGOUM_X_KISUMU strain, findings rather revealed an association between Asaia load and the susceptible phenotype (p = 0.04, Mann-Whitney test), demonstrating a negative link between the symbiont and permethrin resistance. These bacteria should be further investigated to establish its interactions with other resistance mechanisms and cross-resistance with other insecticide classes.}, } @article {pmid36982826, year = {2023}, author = {Stączek, S and Cytryńska, M and Zdybicka-Barabas, A}, title = {Unraveling the Role of Antimicrobial Peptides in Insects.}, journal = {International journal of molecular sciences}, volume = {24}, number = {6}, pages = {}, doi = {10.3390/ijms24065753}, pmid = {36982826}, issn = {1422-0067}, abstract = {Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.}, } @article {pmid36975937, year = {2023}, author = {Li, H and Jiang, Z and Zhou, J and Liu, X and Zhang, Y and Chu, D}, title = {Ecological Factors Associated with the Distribution of Bemisia tabaci Cryptic Species and Their Facultative Endosymbionts.}, journal = {Insects}, volume = {14}, number = {3}, pages = {}, doi = {10.3390/insects14030252}, pmid = {36975937}, issn = {2075-4450}, abstract = {The sweetpotato whitefly, Bemisia tabaci species complex, comprises at least 44 morphologically indistinguishable cryptic species, whose endosymbiont infection patterns often varied at the spatial and temporal dimension. However, the effects of ecological factors (e.g., climatic or geographical factors) on the distribution of whitefly and the infection frequencies of their endosymbionts have not been fully elucidated. We, here, analyzed the associations between ecological factors and the distribution of whitefly and their three facultative endosymbionts (Candidatus Cardinium hertigii, Candidatus Hamiltonella defensa, and Rickettsia sp.) by screening 665 individuals collected from 29 geographical localities across China. The study identified eight B. tabaci species via mitochondrial cytochrome oxidase I (mtCOI) gene sequence alignment: two invasive species, MED (66.9%) and MEAM1 (12.2%), and six native cryptic species (20.9%), which differed in distribution patterns, ecological niches, and high suitability areas. The infection frequencies of the three endosymbionts in different cryptic species were distinct and multiple infections were relatively common in B. tabaci MED populations. Furthermore, the annual mean temperature positively affected Cardinium sp. and Rickettsia sp. infection frequencies in B. tabaci MED but negatively affected the quantitative distribution of B. tabaci MED, which indicates that Cardinium sp. and Rickettsia sp. maybe play a crucial role in the thermotolerance of B. tabaci MED, although the host whitefly per se exhibits no resistance to high temperature. Our findings revealed the complex effects of ecological factors on the expansion of the invasive whitefly.}, } @article {pmid36965057, year = {2023}, author = {Speijer, D}, title = {How mitochondria showcase evolutionary mechanisms and the importance of oxygen.}, journal = {BioEssays : news and reviews in molecular, cellular and developmental biology}, volume = {}, number = {}, pages = {e2300013}, doi = {10.1002/bies.202300013}, pmid = {36965057}, issn = {1521-1878}, abstract = {Darwinian evolution can be simply stated: natural selection of inherited variations increasing differential reproduction. However, formulated thus, links with biochemistry, cell biology, ecology, and population dynamics remain unclear. To understand interactive contributions of chance and selection, higher levels of biological organization (e.g., endosymbiosis), complexities of competing selection forces, and emerging biological novelties (such as eukaryotes or meiotic sex), we must analyze actual examples. Focusing on mitochondria, I will illuminate how biology makes sense of life's evolution, and the concepts involved. First, looking at the bacterium - mitochondrion transition: merging with an archaeon, it lost its independence, but played a decisive role in eukaryogenesis, as an extremely efficient aerobic ATP generator and internal ROS source. Second, surveying later mitochondrion adaptations and diversifications illustrates concepts such as constructive neutral evolution, dynamic interactions between endosymbionts and hosts, the contingency of life histories, and metabolic reprogramming. Without oxygen, mitochondria disappear; with (intermittent) oxygen diversification occurs in highly complex ways, especially upon (temporary) phototrophic substrate supply. These expositions show the Darwinian model to be a highly fruitful paradigm.}, } @article {pmid36958587, year = {2023}, author = {Verhulst, EC and Pannebakker, BA and Geuverink, E}, title = {Variation in sex determination mechanisms may constrain parthenogenesis-induction by endosymbionts in haplodiploid systems.}, journal = {Current opinion in insect science}, volume = {}, number = {}, pages = {101023}, doi = {10.1016/j.cois.2023.101023}, pmid = {36958587}, issn = {2214-5753}, abstract = {Endosymbionts are maternally transmitted, and therefore benefit from maximizing female offspring numbers. Parthenogenesis-induction (PI) is the most effective type of manipulation for transmission, but has solely been detected in haplodiploid species, whereas cytoplasmic incompatibility (CI) is detected frequently across the arthropod phylum, including haplodiploids. This puzzling observation led us to hypothesize that the molecular sex-determination mechanism of the haplodiploid host may be a constraining factor in the ability of endosymbionts to induce parthenogenesis. Recent insights indicate that PI-endosymbionts may be able to directly manipulate sex-determination genes to induce the necessary steps required for PI in haplodiploids. However, sex-determination cascades vary extensively, so PI-induction would require a specialized and host-dependent tool set. Contrastingly, CI-related genes target conserved cell-cycle mechanisms, are located on mobile elements, and spread easily. Finally, endosymbiont-manipulations may have a strong impact on the effectiveness of haplodiploid biocontrol agents, but can also be used to enhance their efficacy.}, } @article {pmid36950155, year = {2023}, author = {Moore, C and Breitschwerdt, EB and Kim, L and Li, Y and Ferris, K and Maggi, R and Lashnits, E}, title = {The association of host and vector characteristics with Ctenocephalides felis pathogen and endosymbiont infection.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1137059}, pmid = {36950155}, issn = {1664-302X}, abstract = {Surveillance of the fleas and flea-borne pathogens infecting cats is important for both human and animal health. Multiple zoonotic Bartonella and Rickettsia species are known to infect the most common flea infesting cats and dogs worldwide: Ctenocephalides felis, the cat flea. The ability of other flea species to transmit pathogens is relatively unexplored. We aimed to determine cat host and flea factors independently associated with flea Bartonella and Rickettsia infection. We also assessed flea and cat infection by flea-host pair and location. To accomplish these aims, we performed qPCR for the detection of Bartonella, hemotropic Mycoplasma, Rickettsia, and Wolbachia DNA using paired cat and flea samples obtained from free-roaming cats presenting for spay or neuter across four locations in the United States. A logistic regression model was employed to identify the effect of cat (sex, body weight, geographic location, and Bartonella, hemotropic Mycoplasma, and Rickettsia spp., infection) and flea (clade and Rickettsia and Wolbachia infection) factors on C. felis Bartonella clarridgeiae infection. From 189 free roaming cats, we collected 84 fleas: Ctenocephalides felis (78/84), Cediopsylla simplex (4/84), Orchopeas howardi (1/84), and Nosopsyllus fasciatus (1/84). Ctenocephalides felis were phylogenetically assigned to Clades 1, 4, and 6 by cox1 gene amplification. Rickettsia asembonensis (52/84) and B. clarridgeiae (16/84) were the most common pathogenic bacteria detected in fleas. Our model identified host cat sex and weight as independently associated with B. clarridgeiae infection in fleas. Rickettsia asembonensis (52/84), Rickettsia felis (7/84) and Bartonella henselae (7/84) were detected in specific clades: R. felis was detected only in Clades 1 and 6 while B. henselae and R. asembonensis were detected only in Clade 4. Wolbachia spp., also displayed clade specificity with strains other than Wolbachia wCfeT only infecting fleas from Clade 6. There was poor flea and host agreement for Bartonella spp., infection; however, there was agreement in the Bartonella species detected in cats and fleas by geographic location. These findings reinforce the importance of considering reservoir host attributes and vector phylogenetic diversity in epidemiological studies of flea-borne pathogens. Widespread sampling is necessary to identify the factors driving flea-borne pathogen presence and transmission.}, } @article {pmid36949814, year = {2023}, author = {Ou, D and Qiu, JH and Su, ZQ and Wang, L and Qiu, BL}, title = {The phylogeny and distribution of Wolbachia in two pathogen vector insects, Asian citrus psyllid and Longan psyllid.}, journal = {Frontiers in cellular and infection microbiology}, volume = {13}, number = {}, pages = {1121186}, pmid = {36949814}, issn = {2235-2988}, abstract = {BACKGROUND: Wolbachia is the most abundant bacterial endosymbiont among insects. It can play a prominent role in the development, reproduction and immunity of its given insect host. To date, Wolbachia presence is well studied within aphids, whiteflies and planthoppers, but relatively few studies have investigated its presence in psyllids.

METHODS: Here, the infection status of Wolbachia in five species of psyllid, including Asian citrus psyllid Diaphorina citri and longan psyllid Cornegenapsylla sinica was investigated. The phylogenetic relationships of different Wolbachia lines and their infection density and patterns in D. citri and C. sinica from different countries was also examined.

RESULTS: The infection rates of Wolbachia in D. citri and C. sinica were both 100%, and their sequencing types are ST173 and ST532 respectively. Phylogenetic analysis revealed that the Wolbachia lines in D. citri and C. sinica both belong to the Con subgroup of Wolbachia supergroup B. In addition, Wolbachia displayed a scattered localization pattern in the 5th instar nymphs and in the reproductive organs of both D. citri and C. sinica but differed in other tissues; it was highest in the midgut, lowest in the salivary glands and medium in both the testes and ovaries.

CONCLUSION: Our findings assist in further understanding the coevolution of Wolbachia and its psyllid hosts. Given that Wolbachia could play an important role in insect pest control and pathogen transmission inhibition, our findings may also provide new insights for development of control strategies for D. citri and C. sinica.}, } @article {pmid36947547, year = {2023}, author = {Richardson, KM and Ross, PA and Cooper, BS and Conner, WR and Schmidt, T and Hoffmann, AA}, title = {A male-killing Wolbachia endosymbiont is concealed by another endosymbiont and a nuclear suppressor.}, journal = {PLoS biology}, volume = {21}, number = {3}, pages = {e3001879}, doi = {10.1371/journal.pbio.3001879}, pmid = {36947547}, issn = {1545-7885}, abstract = {Bacteria that live inside the cells of insect hosts (endosymbionts) can alter the reproduction of their hosts, including the killing of male offspring (male killing, MK). MK has only been described in a few insects, but this may reflect challenges in detecting MK rather than its rarity. Here, we identify MK Wolbachia at a low frequency (around 4%) in natural populations of Drosophila pseudotakahashii. MK Wolbachia had a stable density and maternal transmission during laboratory culture, but the MK phenotype which manifested mainly at the larval stage was lost rapidly. MK Wolbachia occurred alongside a second Wolbachia strain expressing a different reproductive manipulation, cytoplasmic incompatibility (CI). A genomic analysis highlighted Wolbachia regions diverged between the 2 strains involving 17 genes, and homologs of the wmk and cif genes implicated in MK and CI were identified in the Wolbachia assembly. Doubly infected males induced CI with uninfected females but not females singly infected with CI-causing Wolbachia. A rapidly spreading dominant nuclear suppressor genetic element affecting MK was identified through backcrossing and subsequent analysis with ddRAD SNPs of the D. pseudotakahashii genome. These findings highlight the complexity of nuclear and microbial components affecting MK endosymbiont detection and dynamics in populations and the challenges of making connections between endosymbionts and the host phenotypes affected by them.}, } @article {pmid36939357, year = {2023}, author = {Macher, JN and Coots, NL and Poh, YP and Girard, EB and Langerak, A and Muñoz-Gómez, SA and Sinha, SD and Jirsová, D and Vos, R and Wissels, R and Gile, GH and Renema, W and Wideman, JG}, title = {Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria).}, journal = {mBio}, volume = {}, number = {}, pages = {e0030223}, doi = {10.1128/mbio.00302-23}, pmid = {36939357}, issn = {2150-7511}, abstract = {Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.}, } @article {pmid36939349, year = {2023}, author = {Xiong, Q and Fung, CS and Xiao, X and Wan, AT and Wang, M and Klimov, P and Ren, Y and Yang, KY and Hubert, J and Cui, Y and Liu, X and Tsui, SK}, title = {Endogenous Plasmids and Chromosomal Genome Reduction in the Cardinium Endosymbiont of Dermatophagoides farinae.}, journal = {mSphere}, volume = {}, number = {}, pages = {e0007423}, doi = {10.1128/msphere.00074-23}, pmid = {36939349}, issn = {2379-5042}, abstract = {Cardinium bacteria are well known as endosymbionts that infect a wide range of arthropods and can manipulate host reproduction to promote their vertical transmission. As intracellular bacteria, Cardinium species undergo dramatic genome evolution, especially their chromosomal genome reduction. Although Cardinium plasmids have been reported to harbor important genes, the role of these plasmids in the genome evolution is yet to be fully understood. In this study, 2 genomes of Cardinium endosymbiont bacteria in astigmatic mites were de novo assembled, including the complete circular chromosomal genome of Cardinium sp. DF that was constructed in high quality using high-coverage long-read sequencing data. Intriguingly, 2 circular plasmids were assembled in Cardinium sp. DF and were identified to be endogenous for over 10 homologous genes shared with the chromosomal genome. Comparative genomics analysis illustrated an outline of the genome evolution of Cardinium bacteria, and the in-depth analysis of Cardinium sp. DF shed light on the multiple roles of endogenous plasmids in the molecular process of the chromosomal genome reduction. The endogenous plasmids of Cardinium sp. DF not only harbor massive homologous sequences that enable homologous recombination with the chromosome, but also can provide necessary functional proteins when the coding genes decayed in the chromosomal genome. IMPORTANCE As bacterial endosymbionts, Cardinium typically undergoes genome reduction, but the molecular process is still unclear, such as how plasmids get involved in chromosome reduction. Here, we de novo assembled 2 genomes of Cardinium in astigmatic mites, especially the chromosome of Cardinium sp. DF was assembled in a complete circular DNA using high-coverage long-read sequencing data. In the genome assembly of Cardinium sp. DF, 2 circular endogenous plasmids were identified to share at least 10 homologous genes with the chromosomal genome. In the comparative analysis, we identified a range of genes decayed in the chromosomal genome of Cardinium sp. DF but preserved in the 2 plasmids. Taken together with in-depth analyses, our results unveil that the endogenous plasmids harbor homologous sequences of chromosomal genome and can provide a structural basis of homologous recombination. Overall, this study reveals that endogenous plasmids participate in the ongoing chromosomal genome reduction of Cardinium sp. DF.}, } @article {pmid36934294, year = {2023}, author = {Allman, MJ and Lin, YH and Joubert, DA and Addley-Cook, J and Mejía-Torres, MC and Simmons, CP and Flores, HA and Fraser, JE}, title = {Enhancing the scalability of Wolbachia-based vector-borne disease management: time and temperature limits for storage and transport of Wolbachia-infected Aedes aegypti eggs for field releases.}, journal = {Parasites & vectors}, volume = {16}, number = {1}, pages = {108}, pmid = {36934294}, issn = {1756-3305}, abstract = {BACKGROUND: Introgression of the bacterial endosymbiont Wolbachia into Aedes aegypti populations is a biocontrol approach being used to reduce arbovirus transmission. This requires mass release of Wolbachia-infected mosquitoes. While releases have been conducted using a variety of techniques, egg releases, using water-soluble capsules containing mosquito eggs and larval food, offer an attractive method due to its potential to reduce onsite resource requirements. However, optimisation of this approach is required to ensure there is no detrimental impact on mosquito fitness and to promote successful Wolbachia introgression.

METHODS: We determined the impact of storage time and temperature on wild-type (WT) and Wolbachia-infected (wMel or wAlbB strains) Ae. aegypti eggs. Eggs were stored inside capsules over 8 weeks at 18 °C or 22 °C and hatch rate, emergence rate and Wolbachia density were determined. We next examined egg quality and Wolbachia density after exposing eggs to 4-40 °C to determine how eggs may be impacted if exposed to extreme temperatures during shipment.

RESULTS: Encapsulating eggs for 8 weeks did not negatively impact egg viability or resulting adult emergence and Wolbachia density compared to controls. When eggs were exposed to temperatures within 4-36 °C for 48 h, their viability and resulting adult Wolbachia density were maintained; however, both were significantly reduced when exposed to 40 °C.

CONCLUSIONS: We describe the time and temperature limits for maintaining viability of Wolbachia-infected Ae. aegypti eggs when encapsulated or exposed to extreme temperatures. These findings could improve the efficiency of mass releases by providing transport and storage constraints to ensure only high-quality material is utilised during field releases.}, } @article {pmid36929176, year = {2023}, author = {Eugénio, AT and Marialva, MSP and Beldade, P}, title = {Effects of Wolbachia on transposable element expression vary between Drosophila melanogaster host genotypes.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evad036}, pmid = {36929176}, issn = {1759-6653}, abstract = {Transposable elements (TEs) are repetitive DNA sequences capable of changing position in host genomes, thereby causing mutations. TE insertions typically have deleterious effects but they can also be beneficial. Increasing evidence of the contribution of TEs to adaptive evolution further raises interest in understanding what factors impact TE activity. Based on previous studies associating the bacterial endosymbiont Wolbachia to changes in the abundance of piRNAs, a mechanism for TE repression, and to transposition of specific TEs, we hypothesized that Wolbachia infection would interfere with TE activity. We tested this hypothesis by studying expression of 14 TEs in a panel of 25 Drosophila melanogaster host genotypes, naturally infected with Wolbachia and annotated for TE insertions. The host genotypes differed significantly in Wolbachia titers inside individual flies, with broad-sense heritability around 20%, and in the number of TE insertions, which depended greatly on TE identity. By removing Wolbachia from the target host genotypes, we generated a panel of 25 pairs of Wolbachia-positive and Wolbachia-negative lines in which we quantified transcription levels our target TEs. We found variation in TE expression that was dependent on Wolbachia status, TE identity, and host genotype. Comparing between pairs of Wolbachia-positive and Wolbachia-negative flies, we found that Wolbachia removal affected TE expression in 21.1% of the TE-genotype combinations tested, with up to 2.3 times differences in median level of transcript. Our data shows that Wolbachia can impact TE activity in host genomes, underscoring the importance this endosymbiont can have in the generation of genetic novelty in hosts.}, } @article {pmid36928089, year = {2023}, author = {Terretaz, K and Horard, B and Weill, M and Loppin, B and Landmann, F}, title = {Functional analysis of Wolbachia Cid effectors unravels cooperative interactions to target host chromatin during replication.}, journal = {PLoS pathogens}, volume = {19}, number = {3}, pages = {e1011211}, doi = {10.1371/journal.ppat.1011211}, pmid = {36928089}, issn = {1553-7374}, abstract = {Wolbachia are common bacteria among terrestrial arthropods. These endosymbionts transmitted through the female germline manipulate their host reproduction through several mechanisms whose most prevalent form called Cytoplasmic Incompatibility -CI- is a conditional sterility syndrome eventually favoring the infected progeny. Upon fertilization, the sperm derived from an infected male is only compatible with an egg harboring a compatible Wolbachia strain, this sperm leading otherwise to embryonic death. The Wolbachia Cif factors CidA and CidB responsible for CI and its neutralization function as a Toxin-Antitoxin system in the mosquito host Culex pipiens. However, the mechanism of CidB toxicity and its neutralization by the CidA antitoxin remain unexplored. Using transfected insect cell lines to perform a structure-function analysis of these effectors, we show that both CidA and CidB are chromatin interactors and CidA anchors CidB to the chromatin in a cell-cycle dependent-manner. In absence of CidA, the CidB toxin localizes to its own chromatin microenvironment and acts by preventing S-phase completion, independently of its deubiquitylase -DUB- domain. Experiments with transgenic Drosophila show that CidB DUB domain is required together with CidA during spermatogenesis to stabilize the CidA-CidB complex. Our study defines CidB functional regions and paves the way to elucidate the mechanism of its toxicity.}, } @article {pmid36911919, year = {2023}, author = {Radousky, YA and Hague, MTJ and Fowler, S and Paneru, E and Codina, A and Rugamas, C and Hartzog, G and Cooper, BS and Sullivan, W}, title = {Distinct Wolbachia localization patterns in oocytes of diverse host species reveal multiple strategies of maternal transmission.}, journal = {Genetics}, volume = {}, number = {}, pages = {}, doi = {10.1093/genetics/iyad038}, pmid = {36911919}, issn = {1943-2631}, abstract = {A broad array of endosymbionts radiate through host populations via vertical transmission, yet much remains unknown concerning the cellular basis, diversity and routes underlying this transmission strategy. Here we address these issues, by examining the cellular distributions of Wolbachia strains that diverged up to 50 million years ago in the oocytes of 18 divergent Drosophila species. This analysis revealed three Wolbachia distribution patterns: 1) a tight clustering at the posterior pole plasm (the site of germline formation); 2) a concentration at the posterior pole plasm, but with a significant bacteria population distributed throughout the oocyte; 3) and a distribution throughout the oocyte, with none or very few located at the posterior pole plasm. Examination of this latter class indicates Wolbachia accesses the posterior pole plasm during the interval between late oogenesis and the blastoderm formation. We also find that one Wolbachia strain in this class concentrates in the posterior somatic follicle cells that encompass the pole plasm of the developing oocyte. In contrast, strains in which Wolbachia concentrate at the posterior pole plasm generally exhibit no or few Wolbachia in the follicle cells associated with the pole plasm. Taken together, these studies suggest that for some Drosophila species, Wolbachia invade the germline from neighboring somatic follicle cells. Phylogenomic analysis indicates that closely related Wolbachia strains tend to exhibit similar patterns of posterior localization, suggesting that specific localization strategies are a function of Wolbachia-associated factors. Previous studies revealed that endosymbionts rely on one of two distinct routes of vertical transmission: continuous maintenance in the germline (germline-to-germline) or a more circuitous route via the soma (germline-to-soma-to-germline). Here we provide compelling evidence that Wolbachia strains infecting Drosophila species maintain the diverse arrays of cellular mechanisms necessary for both of these distinct transmission routes. This characteristic may account for its ability to infect and spread globally through a vast range of host insect species.}, } @article {pmid36909700, year = {2022}, author = {Murugesan, RK and Balakrishnan, R and Natesan, S and Jayavel, S and Muthiah, RC}, title = {Identification of coral endosymbionts of Veedhalai and Mandapam coasts of Palk Bay, India using small subunit rDNA.}, journal = {Bioinformation}, volume = {18}, number = {4}, pages = {318-324}, pmid = {36909700}, issn = {0973-2063}, abstract = {Coral endosymbionts act as a bio-indicator of coral ecosystem under extreme environmental conditions. The health of the coral ecosystem depends on the endosymbiont cell density of the coral hosts. Therefore, it is of interest to analyze ten coral fragments found to be under the genera Acropora, Favites, Favia, and Porites collected at various locations from Veedhalai to Mandapam, southeast coast of India during January 2019 to March 2019. The zooxanthellae cell count ranged between 4.08 (Porites sp.9) and 13.75x105 cells cm2 -1 (Favites sp.3). This indicates the health of the corals in the region. The genus (clade) level identification of endosymbionts was detected using the host excluding primers of small subunit DNA (nssrDNA). Bidirectional sequencing of 18S nrDNA gene (SSU) of all ten coral fragments show that the Veedhalai corals is associated with the genus Durusdinium (Clade D) but the corals of Mandapam is associated with the genera, Cladocopium (Clade C) and Durusdinium (Clade D). It is known that the thermal stress has negative impact on coral reef ecosystem of the world. The dominance of the genus Durusdinium in the scleractinian corals of Palk Bay may be due to frequent exposure to thermal stress. This thermotolerant endosymbionts is opportunistic. Thus, the corals of Veedhalai and Mandapam coasts, Palk Bay, India are necessarily packed with thermotolerant endosymbionts enabling conservation.}, } @article {pmid36909625, year = {2023}, author = {Verhoeve, VI and Lehman, SS and Driscoll, TP and Beckmann, JF and Gillespie, JJ}, title = {Metagenome diversity illuminates origins of pathogen effectors.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2023.02.26.530123}, pmid = {36909625}, abstract = {Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.}, } @article {pmid36907292, year = {2023}, author = {Ruiz, A and Gutiérrez-Bugallo, G and Rodríguez-Roche, R and Pérez, L and González-Broche, R and Piedra, LA and Martínez, LC and Menéndez, Z and Vega-Rúa, A and Bisset, JA}, title = {First report of natural Wolbachia infections in mosquitoes from Cuba.}, journal = {Acta tropica}, volume = {}, number = {}, pages = {106891}, doi = {10.1016/j.actatropica.2023.106891}, pmid = {36907292}, issn = {1873-6254}, abstract = {Mosquitoes are extensively responsible for the transmission of pathogens. Novel strategies using Wolbachia could transform that scenario, since these bacteria manipulate mosquito reproduction, and can confer a pathogen transmission-blocking phenotype in culicids. Here, we screened the Wolbachia surface protein region by PCR in eight Cuban mosquito species. We confirmed the natural infections by sequencing and assessed the phylogenetic relationships among the Wolbachia strains detected. We identified four Wolbachia hosts: Aedes albopictus, Culex quinquefasciatus, Mansonia titillans, and Aedes mediovittatus (first report worldwide). Knowledge of Wolbachia strains and their natural hosts is essential for future operationalization of this vector control strategy in Cuba.}, } @article {pmid36897260, year = {2023}, author = {Reich, HG and Camp, EF and Roger, LM and Putnam, HM}, title = {The trace metal economy of the coral holobiont: supplies, demands and exchanges.}, journal = {Biological reviews of the Cambridge Philosophical Society}, volume = {98}, number = {2}, pages = {623-642}, doi = {10.1111/brv.12922}, pmid = {36897260}, issn = {1469-185X}, abstract = {The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.}, } @article {pmid36896707, year = {2023}, author = {McKnight, KS and Gissi, F and Adams, MS and Stone, S and Jolley, D and Stauber, J}, title = {The Effects of Nickel and Copper on Tropical Marine and Freshwater Microalgae Using Single and Multispecies Tests.}, journal = {Environmental toxicology and chemistry}, volume = {}, number = {}, pages = {}, doi = {10.1002/etc.5565}, pmid = {36896707}, issn = {1552-8618}, abstract = {Microalgae are key components of aquatic food chains and are known to be sensitive to a range of contaminants. Much of the available data on metal toxicity to microalgae have been derived from temperate single-species tests with temperate data used to supplement tropical toxicity data sets to derive guideline values. In the present study, we used single-species and multispecies tests to investigate the toxicity of nickel and copper to tropical freshwater and marine microalgae, including the free-swimming stage of Symbiodinium sp., a worldwide coral endosymbiont. Based on the 10% effect concentration (EC10) for growth rate, copper was two to four times more toxic than nickel to all species tested. The temperate strain of Ceratoneis closterium was eight to 10 times more sensitive to nickel than the two tropical strains. Freshwater Monoraphidium arcuatum was less sensitive to copper and nickel in the multispecies tests compared with the single-species tests (EC10 values increasing from 0.45 to 1.4 µg Cu/L and from 62 to 330 µg Ni/L). The Symbiodinium sp. was sensitive to copper (EC10 of 3.1 µg Cu/L) and less sensitive to nickel (EC50 >1600 µg Ni/L). This is an important contribution of data on the chronic toxicity of nickel to Symbiodinium sp. A key result from the present study was that three microalgal species had EC10 values below the current copper water quality guideline value for 95% species protection in slightly to moderately disturbed systems in Australia and New Zealand, indicating that they may not be adequately protected by the current copper guideline value. By contrast, toxicity of nickel to microalgae is unlikely to occur at exposure concentrations typically found in fresh and marine waters. Environ Toxicol Chem 2023;00:1-13. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.}, } @article {pmid36889655, year = {2023}, author = {Zhu, X and Liu, T and He, A and Zhang, L and Li, J and Li, T and Miao, X and You, M and You, S}, title = {Diversity of Wolbachia infection and its influence on mitochondrial DNA variation in the diamondback moth, Plutella xylostella.}, journal = {Molecular phylogenetics and evolution}, volume = {}, number = {}, pages = {107751}, doi = {10.1016/j.ympev.2023.107751}, pmid = {36889655}, issn = {1095-9513}, abstract = {Plutella xylostella is a pest that severely damages cruciferous vegetables worldwide and has been shown to be infected with the maternally inherited bacteria Wolbachia, with the main infected strain was plutWB1. In this study, we performed a large-scale global sampling of P. xylostella and amplified 3 mtDNA genes of P. xylostella and 6 Wolbachia genes to analyze the infection status, diversity of Wolbachia in P. xylostella, and its effect on mtDNA variation in P. xylostella. This study provides a conservative estimate of Wolbachia infection rates in P. xylostella, which was found to be 7% (104/1440). The ST 108 (plutWB1) was shared among butterfly species and the moth species P. xylostella, revealing that Wolbachia strain plutWB1 acquisition in P. xylostella may be through horizontal transmission. The Parafit analyses indicated a significant association between Wolbachia and Wolbachia-infected P. xylostella individuals, and individuals infected with plutWB1 tended to cluster in the basal positions of the phylogenetic tree based on the mtDNA data. Additionally, Wolbachia infections were associated with increased mtDNA polymorphism in the infected P. xylostella population. These data suggest that Wolbachia endosymbionts may have a potential effect on mtDNA variation of P. xylostella.}, } @article {pmid36880348, year = {2023}, author = {Tholl, D and Rebholz, Z and Morozov, AV and O'Maille, PE}, title = {Terpene synthases and pathways in animals: enzymology and structural evolution in the biosynthesis of volatile infochemicals.}, journal = {Natural product reports}, volume = {}, number = {}, pages = {}, doi = {10.1039/d2np00076h}, pmid = {36880348}, issn = {1460-4752}, abstract = {Covering: up to the beginning of 2023Many animals release volatile or semi-volatile terpenes as semiochemicals in intra- and inter-specific interactions. Terpenes are important constituents of pheromones and serve as chemical defenses to ward off predators. Despite the occurrence of terpene specialized metabolites from soft corals to mammals, the biosynthetic origin of these compounds has largely remained obscure. An increasing number of animal genome and transcriptome resources is facilitating the identification of enzymes and pathways that allow animals to produce terpenes independent of their food sources or microbial endosymbionts. Substantial evidence has emerged for the presence of terpene biosynthetic pathways such as in the formation of the iridoid sex pheromone nepetalactone in aphids. In addition, terpene synthase (TPS) enzymes have been discovered that are evolutionary unrelated to canonical plant and microbial TPSs and instead resemble precursor enzymes called isoprenyl diphosphate synthases (IDSs) in central terpene metabolism. Structural modifications of substrate binding motifs in canonical IDS proteins presumably facilitated the transition to TPS function at an early state in insect evolution. Other arthropods such as mites appear to have adopted their TPS genes from microbial sources via horizontal gene transfer. A similar scenario likely occurred in soft corals, where TPS families with closer resemblance to microbial TPSs have been discovered recently. Together, these findings will spur the identification of similar or still unknown enzymes in terpene biosynthesis in other lineages of animals. They will also help develop biotechnological applications for animal derived terpenes of pharmaceutical value or advance sustainable agricultural practices in pest management.}, } @article {pmid36869841, year = {2023}, author = {Cooper, WR and Walker, WB and Angelella, GM and Swisher Grimm, KD and Foutz, JJ and Harper, SJ and Nottingham, LB and Northfield, TD and Wohleb, CH and Strausbaugh, CA}, title = {Bacterial Endosymbionts Identified From Leafhopper (Hemiptera: Cicadellidae) Vectors of Phytoplasmas.}, journal = {Environmental entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/ee/nvad015}, pmid = {36869841}, issn = {1938-2936}, abstract = {Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.}, } @article {pmid36864565, year = {2023}, author = {Gossett, JM and Porter, ML and Vasquez, Y and Bennett, GM and Chong, RA}, title = {Genomic comparisons reveal selection pressure and functional variation between nutritional endosymbionts of cave-adapted and epigean Hawaiian planthoppers.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evad031}, pmid = {36864565}, issn = {1759-6653}, abstract = {Planthoppers in the family Cixiidae (Hempitera: Auchenorrhyncha: Fulgoromorpha) harbor a diverse set of obligate bacterial endosymbionts that provision essential amino acids and vitamins that are missing from their plant-sap diet. "Candidatus Sulcia muelleri", and "Ca. Vidania fulgoroidea" have been associated with cixiid planthoppers since their origin within the Auchenorrhyncha, while "Ca. Purcelliella pentastirinorum" is a more recent endosymbiotic acquisition. Hawaiian cixiid planthoppers occupy diverse habitats including lava tube caves and shrubby surface landscapes, which offer different nutritional resources and environmental constraints. Genomic studies have focused on understanding the nutritional provisioning roles of cixiid endosymbionts more broadly, yet it is still unclear how selection pressures on endosymbiont genes might differ between cixiid host species inhabiting such diverse landscapes, or how variation in selection might impact symbiont evolution. In this study, we sequenced the genomes of Sulcia, Vidania, and Purcelliella isolated from both surface and cave-adapted planthopper hosts from the genus Oliarus. We found that nutritional biosynthesis genes were conserved in Sulcia and Vidania genomes in inter- and intra-host species comparisons. In contrast, Purcelliella genomes retain different essential nutritional biosynthesis genes between surface- and cave-adapted planthopper species. Finally, we see variation in selection pressures on symbiont genes both within and between host species suggesting that strong coevolution between host and endosymbiont is associated with different patterns of molecular evolution on a fine scale that may be associated with host diet.}, } @article {pmid36850014, year = {2023}, author = {Latrofa, MS and Varotto-Boccazzi, I and Louzada-Flores, VN and Iatta, R and Mendoza-Roldan, JA and Roura, X and Zatelli, A and Epis, S and Bandi, C and Otranto, D}, title = {Interaction between Wolbachia pipientis and Leishmania infantum in heartworm infected dogs.}, journal = {Parasites & vectors}, volume = {16}, number = {1}, pages = {77}, pmid = {36850014}, issn = {1756-3305}, abstract = {BACKGROUND: Wolbachia is a Gram-negative endosymbiont associated with several species of arthropods and filarioid nematodes, including Dirofilaria immitis. This endosymbiont may elicit a Th1 response, which is a component of the immunity against Leishmania infantum.

METHODS: To investigate the interactions between Wolbachia of D. immitis and L. infantum in naturally infected dogs and cytokine circulation, dogs without clinical signs (n = 187) were selected. Dogs were tested for microfilariae (mfs) by Knott, for female antigens of D. immitis by SNAP, and for anti-L. infantum antibodies by IFAT and assigned to four groups. Dogs of group 1 (G1) and 2 (G2) were positive for D. immitis and positive or negative to L. infantum, respectively. Dogs of group 3 (G3) and 4 (G4) were negative to D. immitis and positive or negative to L. infantum, respectively. Wolbachia and L. infantum DNA was quantified by real-time PCR (qPCR) in dog blood samples. A subset of dogs (n = 65) was examined to assess pro- and anti-inflammatory cytokine production using an ELISA test.

RESULTS: Of 93 dogs positive to D. immitis with circulating mfs, 85% were positive to Wolbachia, with the highest amount of DNA detected in G1 and the lowest in dogs with low mfs load in G1 and G2. Among dogs positive to L. infantum, 66% from G1 showed low antibody titer, while 48.9% from G3 had the highest antibody titer. Of 37 dogs positive to Wolbachia from G1, 26 (70.3%) had low antibody titers to L. infantum (1:160). Among cytokines, TNFα showed the highest mean concentration in G1 (246.5 pg/ml), IFNγ being the one most represented (64.3%). IL-10 (1809.5 pg/ml) and IL-6 (123.5 pg/ml) showed the highest mean concentration in dogs from G1. A lower percentage of dogs producing IL-4 was observed in all groups examined, with the highest mean concentration (2794 pg/ml) recorded in G2.

CONCLUSION: Results show the association of D. immitis and Wolbachia with the lower antibody titers of L. infantum in co-infected dogs, suggesting the hypothesis that the endosymbiont may affect the development of the patent leishmaniosis. However, due to the limitations associated with the heterogeneity of naturally infected dogs in field conditions, results should be validated by investigation on experimental models.}, } @article {pmid36838431, year = {2023}, author = {Nencioni, A and Pastorelli, R and Bigiotti, G and Cucu, MA and Sacchetti, P}, title = {Diversity of the Bacterial Community Associated with Hindgut, Malpighian Tubules, and Foam of Nymphs of Two Spittlebug Species (Hemiptera: Aphrophoridae).}, journal = {Microorganisms}, volume = {11}, number = {2}, pages = {}, doi = {10.3390/microorganisms11020466}, pmid = {36838431}, issn = {2076-2607}, abstract = {Spittlebugs are xylem-sap feeding insects that can exploit a nutrient-poor diet, thanks to mutualistic endosymbionts residing in various organs of their body. Although obligate symbioses in some spittlebug species have been quite well studied, little is known about their facultative endosymbionts, especially those inhabiting the gut. Recently, the role played by spittlebugs as vectors of the phytopathogenetic bacterium Xylella fastidiosa aroused attention to this insect group, boosting investigations aimed at developing effective yet sustainable control strategies. Since spittlebug nymphs are currently the main target of applied control, the composition of gut bacterial community of the juveniles of Philaenus spumarius and Lepyronia coleoptrata was investigated using molecular techniques. Moreover, bacteria associated with their froth, sampled from different host plants, were studied. Results revealed that Sodalis and Rickettsia bacteria are the predominant taxa in the gut of P. spumarius and L. coleoptrata nymphs, respectively, while Rhodococcus was found in both species. Our investigations also highlighted the presence of recurring bacteria in the froth. Furthermore, the foam hosted several bacterial species depending on the host plant, the insect species, or on soil contaminant. Overall, first findings showed that nymphs harbor a large and diverse bacterial community in their gut and froth, providing new accounts to the knowledge on facultative symbionts of spittlebugs.}, } @article {pmid36838405, year = {2023}, author = {Picciotti, U and Araujo Dalbon, V and Ciancio, A and Colagiero, M and Cozzi, G and De Bellis, L and Finetti-Sialer, MM and Greco, D and Ippolito, A and Lahbib, N and Logrieco, AF and López-Llorca, LV and Lopez-Moya, F and Luvisi, A and Mincuzzi, A and Molina-Acevedo, JP and Pazzani, C and Scortichini, M and Scrascia, M and Valenzano, D and Garganese, F and Porcelli, F}, title = {"Ectomosphere": Insects and Microorganism Interactions.}, journal = {Microorganisms}, volume = {11}, number = {2}, pages = {}, doi = {10.3390/microorganisms11020440}, pmid = {36838405}, issn = {2076-2607}, abstract = {This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).}, } @article {pmid36838257, year = {2023}, author = {Mashini, AG and Oakley, CA and Beepat, SS and Peng, L and Grossman, AR and Weis, VM and Davy, SK}, title = {The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum.}, journal = {Microorganisms}, volume = {11}, number = {2}, pages = {}, doi = {10.3390/microorganisms11020292}, pmid = {36838257}, issn = {2076-2607}, abstract = {The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.}, } @article {pmid36836374, year = {2023}, author = {Solanki, S and Lakshmi, GBVS and Dhiman, T and Gupta, S and Solanki, PR and Kapoor, R and Varma, A}, title = {Co-Application of Silver Nanoparticles and Symbiotic Fungus Piriformospora indica Improves Secondary Metabolite Production in Black Rice.}, journal = {Journal of fungi (Basel, Switzerland)}, volume = {9}, number = {2}, pages = {}, doi = {10.3390/jof9020260}, pmid = {36836374}, issn = {2309-608X}, abstract = {In the current research, unique Nano-Embedded Fungus (NEF), made by the synergic association of silver nanoparticles (AgNPs) and endophytic fungus (Piriformospora indica), is studied, and the impact of NEF on black rice secondary metabolites is reported. AgNPs were synthesized by chemical reduction process using the temperature-dependent method and characterized for morphological and structural features through UV visible absorption spectroscopy, zeta potential, XRD, SEM-EDX, and FTIR spectroscopy. The NEF, prepared by optimizing the AgNPs concentration (300 ppm) in agar and broth media, showed better fungal biomass, colony diameter, spore count, and spore size than the control P. indica. Treatment with AgNPs, P. indica, and NEF resulted in growth enhancement in black rice. NEF and AgNPs stimulated the production of secondary metabolites in its leaves. The concentrations of chlorophyll, carotenoids, flavonoids, and terpenoids were increased in plants inoculated with P. indica and AgNPs. The findings of the study highlight the synergistic effect of AgNPs and the fungal symbionts in augmenting the secondary metabolites in leaves of black rice.}, } @article {pmid36828496, year = {2023}, author = {Kallu, SA and Ndebe, J and Qiu, Y and Nakao, R and Simuunza, MC}, title = {Prevalence and Association of Trypanosomes and Sodalis glossinidius in Tsetse Flies from the Kafue National Park in Zambia.}, journal = {Tropical medicine and infectious disease}, volume = {8}, number = {2}, pages = {}, doi = {10.3390/tropicalmed8020080}, pmid = {36828496}, issn = {2414-6366}, abstract = {Tsetse flies are obligate hematophagous vectors of animal and human African trypanosomosis. They cyclically transmit pathogenic Trypanosoma species. The endosymbiont Sodalis glossinidius is suggested to play a role in facilitating the susceptibility of tsetse flies to trypanosome infections. Therefore, this study was aimed at determining the prevalence of S. glossinidius and trypanosomes circulating in tsetse flies and checking whether an association exists between trypanosomes and Sodalis infections in tsetse flies from Kafue National Park in Zambia. A total of 326 tsetse flies were sampled from the Chunga and Ngoma areas of the national park. After DNA extraction was conducted, the presence of S. glossinidius and trypanosome DNA was checked using PCR. The Chi-square test was carried out to determine whether there was an association between the presence of S. glossinidius and trypanosome infections. Out of the total tsetse flies collected, the prevalence of S. glossinidius and trypanosomes was 21.8% and 19.3%, respectively. The prevalence of S. glossinidius was 22.2% in Glossina morsitans and 19.6% in Glossina pallidipes. In relation to sampling sites, the prevalence of S. glossinidius was 26.0% in Chunga and 21.0% in Ngoma. DNA of trypanosomes was detected in 18.9% of G. morsitans and 21.4% of G. pallidipes. The prevalence of trypanosomes was 21.7% and 6.0% for Ngoma and Chunga, respectively. The prevalences of trypanosome species detected in this study were 6.4%, 4.6%, 4.0%, 3.7%, 3.1%, and 2.5% for T. vivax, T. simiae, T. congolense, T. godfreyi, T. simiae Tsavo, and T. b. brucei, respectively. Out of 63 trypanosome infected tsetse flies, 47.6% of the flies also carried S. glossinidius, and the remaining flies were devoid of S. glossinidius. A statistically significant association was found between S. glossinidius and trypanosomes (p < 0.001) infections in tsetse flies. Our findings indicated that presence of S. glossinidius increases the susceptibility of tsetse flies to trypanosome infections and S. glossinidius could be a potential candidate for symbiont-mediated vector control in these tsetse species.}, } @article {pmid36827319, year = {2023}, author = {Teal, E and Herrera, C and Dumonteil, E}, title = {Metabolomics of developmental changes in Triatoma sanguisuga gut microbiota.}, journal = {PloS one}, volume = {18}, number = {2}, pages = {e0280868}, doi = {10.1371/journal.pone.0280868}, pmid = {36827319}, issn = {1932-6203}, abstract = {Triatoma sanguisuga is one of the major vectors of Trypanosoma cruzi in the southeastern US, where it sustains a robust zoonotic parasite transmission cycle and occasional human infections. A better understanding of triatomine development may allow for alternative approaches to insecticide-based vector control. Indeed, the role of the gut microbiota and bacterial endosymbionts in triatomine development and in their vectorial capacity is emerging. We investigated here the differences in microbiota among nymph and adult T. sanguisuga, to shed light on the metabolomic interactions occurring during development. Microbiota composition was assessed by 16s gene amplification and deep sequencing from field-caught adult bugs and their laboratory-raised progeny. Significant differences in microbiota bacterial diversity and composition were observed between nymphs and adults. Laboratory-raised nymphs showed a higher taxonomic diversity, and at least seven families predominated. On the other hand, field-caught adults had a lower bacterial diversity and four families comprised most of the microbiota. These differences in compositions were associated with differences in predicted metabolism, with laboratory-raised nymphs microbiota metabolizing a limited diversity of carbon sources, with potential for resource competition between bacterial families, and the production of lactic acid as a predominant fermentation product. On the other hand, field-caught adult microbiota was predicted to metabolize a broader diversity of carbon sources, with complementarity rather than competition among taxa, and produced a diverse range of products in a more balanced manner. The restricted functionality of laboratory-raised nymph microbiota may be associated with their poor development in captivity, and further understanding of the metabolic interactions at play may lead to alternative vector control strategies targeting triatomine microbiota.}, } @article {pmid36825089, year = {2023}, author = {Jiang, RX and Shang, F and Jiang, HB and Dou, W and Cernava, T and Wang, JJ}, title = {Candidatus Liberibacter asiaticus: An important factor affecting bacterial community composition and Wolbachia titers in Asian citrus psyllid.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1109803}, doi = {10.3389/fmicb.2023.1109803}, pmid = {36825089}, issn = {1664-302X}, abstract = {Endosymbionts play crucial roles in various physiological activities within insect hosts. The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an important vector for Candidatus Liberibacter asiaticus (CLas), a fatal pathogenic bacterial agent causing the disease Huanglongbing in the citrus industry. This study combines high-throughput sequencing of 16S ribosomal RNA amplicons to explore how CLas affects the bacterial community in different color morphs (blue, gray), genders, and tissues (cuticle, gut, mycetome, Malpighian tubule, ovary, and testis) of ACP. We found that there was no significant differences in the bacterial community diversity and CLas acquired ratio between the different color morphs and genders of ACP adults. However, acquiring CLas could promote the adult bacterial community's diversity and richness more than in the uninfected condition. The presence of CLas could increase the Wolbachia and unclassified_Enterobacteriaceae proportions more than in the uninfected condition. The bacterial community diversity in the CLas infected tissues of ovary and cuticle, was lower than the uninfected condition, but the richness of all tissues was not different between the infected and uninfected conditions. CLas could also change the bacterial structure in different tissues and make the bacterial relationship network simpler than it is in an uninfected condition. Furthermore, we used quantitative real-time PCR to assess the dynamic changes of Wolbachia in CLas uninfected and infected color morphs and tissues of ACP. The results showed that Wolbachia titers were significantly higher in CLas infected adults than in uninfected adults. In different tissues, the Wolbachia titers in the testis, ovary, and Malpighian tubule were higher than their uninfected counterparts. Our results provide essential knowledge for understanding the symbionts of the ACP and how CLas affects the bacterial community of the ACP.}, } @article {pmid36824530, year = {2022}, author = {Schultz, DL and Selberherr, E and Stouthamer, CM and Doremus, MR and Kelly, SE and Hunter, MS and Schmitz-Esser, S}, title = {Sex-based de novo transcriptome assemblies of the parasitoid wasp Encarsia suzannae, a host of the manipulative heritable symbiont Cardinium hertigii.}, journal = {GigaByte (Hong Kong, China)}, volume = {2022}, number = {}, pages = {gigabyte68}, doi = {10.46471/gigabyte.68}, pmid = {36824530}, issn = {2709-4715}, abstract = {Parasitoid wasps in the genus Encarsia are commonly used as biological pest control agents of whiteflies and armored scale insects in greenhouses or the field. They are also hosts of the bacterial endosymbiont Cardinium hertigii, which can cause reproductive manipulation phenotypes, including parthenogenesis, feminization, and cytoplasmic incompatibility (the last is mainly studied in Encarsia suzannae). Despite their biological and economic importance, there are no published Encarsia genomes and only one public transcriptome. Here, we applied a mapping-and-removal approach to eliminate known contaminants from previously-obtained Illumina sequencing data. We generated de novo transcriptome assemblies for both female and male E. suzannae which contain 45,986 and 54,762 final coding sequences, respectively. Benchmarking Single-Copy Orthologs results indicate both assemblies are highly complete. Preliminary analyses revealed the presence of homologs of sex-determination genes characterized in other insects and putative venom proteins. Our male and female transcriptomes will be valuable tools to better understand the biology of Encarsia and their evolutionary relatives, particularly in studies involving insects of only one sex.}, } @article {pmid36810669, year = {2023}, author = {Manoj, RRS and Latrofa, MS and Louni, M and Laidoudi, Y and Fenollar, F and Otranto, D and Mediannikov, O}, title = {In vitro maintenance of the endosymbiont Wolbachia of Dirofilaria immitis.}, journal = {Parasitology research}, volume = {}, number = {}, pages = {}, pmid = {36810669}, issn = {1432-1955}, abstract = {Wolbachia has an obligatory mutualistic relationship with many onchocercid nematodes of the subfamilies Dirofilariinae and Onchocercinae. Till date, no attempts have been made for the in vitro cultivation of this intracellular bacterium from the filarioid host. Hence, the current study attempted cell co-culture method using embryonic Drosophila S2 and the LD cell lines to cultivate Wolbachia from Dirofilaria immitis microfilariae (mfs) harvested from infected dogs. Microfilariae (mfs = 1500) were inoculated in shell vials supplemented with Schneider medium using both cell lines. The establishment and multiplication of the bacterium were observed during the initial inoculation, at day 0 and before every medium change (from days 14 to 115). An aliquot (50 µl) from each time point was tested by quantitative real-time PCR (qPCR). Comparing the average of Ct values, obtained by the tested parameters (i.e., LD/S2 cell lines and mfs with/without treatment), the S2 cell line without mechanical disruption of mfs provided the highest Wolbachia cell count by qPCR. Despite the maintenance of Wolbachia within both S2 and LD-based cell co-culture models for up to 115 days, a definitive conclusion is still far. Further trials using fluorescent microscopy and viable staining will help to demonstrate the cell line infection and viability of Wolbachia. Use of considerable amount of untreated mfs to inoculate the Drosophilia S2 cell lines, as well as the supplementation of the culture media with growth stimulants or pre-treated cells to increase their susceptibility for the infection and development of a filarioid-based cell line system are recommended for the future trials.}, } @article {pmid36810610, year = {2023}, author = {Muro, T and Hikida, H and Fujii, T and Kiuchi, T and Katsuma, S}, title = {Two Complete Genomes of Male-Killing Wolbachia Infecting Ostrinia Moth Species Illuminate Their Evolutionary Dynamics and Association with Hosts.}, journal = {Microbial ecology}, volume = {}, number = {}, pages = {}, pmid = {36810610}, issn = {1432-184X}, abstract = {Wolbachia is an extremely widespread intracellular symbiont which causes reproductive manipulation on various arthropod hosts. Male progenies are killed in Wolbachia-infected lineages of the Japanese Ostrinia moth population. While the mechanism of male killing and the evolutionary interaction between host and symbiont are significant concerns for this system, the absence of Wolbachia genomic information has limited approaches to these issues. We determined the complete genome sequences of wFur and wSca, the male-killing Wolbachia of Ostrinia furnacalis and Ostrinia scapulalis. The two genomes shared an extremely high degree of homology, with over 95% of the predicted protein sequences being identical. A comparison of these two genomes revealed nearly minimal genome evolution, with a strong emphasis on the frequent genome rearrangements and the rapid evolution of ankyrin repeat-containing proteins. Additionally, we determined the mitochondrial genomes of both species' infected lineages and performed phylogenetic analyses to deduce the evolutionary dynamics of Wolbachia infection in the Ostrinia clade. According to the inferred phylogenetic relationship, two possible scenarios were proposed: (1) Wolbachia infection was established in the Ostrinia clade prior to the speciation of related species such as O. furnacalis and O. scapulalis, or (2) Wolbachia infection in these species was introgressively transferred from a currently unidentified relative. Simultaneously, the relatively high homology of mitochondrial genomes suggested recent Wolbachia introgression between infected Ostrinia species. The findings of this study collectively shed light on the host-symbiont interaction from an evolutionary standpoint.}, } @article {pmid36809083, year = {2023}, author = {De la Vega, P and Shimpi, GG and Bentlage, B}, title = {Genome Sequence of the Endosymbiont Endozoicomonas sp. Strain GU-1 (Gammaproteobacteria), Isolated from the Staghorn Coral Acropora pulchra (Cnidaria: Scleractinia).}, journal = {Microbiology resource announcements}, volume = {}, number = {}, pages = {e0135522}, doi = {10.1128/mra.01355-22}, pmid = {36809083}, issn = {2576-098X}, abstract = {Endozoicomonas sp. strain GU-1 was isolated from two separate staghorn coral (Acropora pulchra) colonies collected in Guam, Micronesia. Both isolates were grown in marine broth prior to DNA extraction and Oxford Nanopore Technologies (ONT) sequencing. Genomes were approximately 6.1 Mbp in size, containing highly similar gene content and matching sets of rRNA sequences.}, } @article {pmid36801155, year = {2023}, author = {Ogier, JC and Akhurst, R and Boemare, N and Gaudriault, S}, title = {The endosymbiont and the second bacterial circle of entomopathogenic nematodes.}, journal = {Trends in microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.tim.2023.01.004}, pmid = {36801155}, issn = {1878-4380}, abstract = {Single host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts. We also consider EPN-like nematodes and their putative symbionts. Recent high-throughput sequencing studies have shown that EPNs and EPN-like nematodes are also associated with other bacterial communities, referred to here as the second bacterial circle of EPNs. Current findings suggest that some members of this second bacterial circle contribute to the pathogenic success of nematodes. We suggest that the endosymbiont and the second bacterial circle delimit an EPN pathobiome.}, } @article {pmid36800397, year = {2023}, author = {Mills, MK and McCabe, LG and Rodrigue, EM and Lechtreck, KF and Starai, VJ}, title = {Wbm0076, a candidate effector protein of the Wolbachia endosymbiont of Brugia malayi, disrupts eukaryotic actin dynamics.}, journal = {PLoS pathogens}, volume = {19}, number = {2}, pages = {e1010777}, doi = {10.1371/journal.ppat.1010777}, pmid = {36800397}, issn = {1553-7374}, abstract = {Brugia malayi, a parasitic roundworm of humans, is colonized by the obligate intracellular bacterium, Wolbachia pipientis. The symbiosis between this nematode and bacterium is essential for nematode reproduction and long-term survival in a human host. Therefore, identifying molecular mechanisms required by Wolbachia to persist in and colonize B. malayi tissues will provide new essential information regarding the basic biology of this endosymbiosis. Wolbachia utilize a Type IV secretion system to translocate so-called "effector" proteins into the cytosol of B. malayi cells to promote colonization of the eukaryotic host. However, the characterization of these Wolbachia secreted proteins has remained elusive due to the genetic intractability of both organisms. Strikingly, expression of the candidate Wolbachia Type IV-secreted effector protein, Wbm0076, in the surrogate eukaryotic cell model, Saccharomyces cerevisiae, resulted in the disruption of the yeast actin cytoskeleton and inhibition of endocytosis. Genetic analyses show that Wbm0076 is a member of the family of Wiskott-Aldrich syndrome proteins (WAS [p]), a well-conserved eukaryotic protein family required for the organization of actin skeletal structures. Thus, Wbm0076 likely plays a central role in the active cell-to-cell movement of Wolbachia throughout B. malayi tissues during nematode development. As most Wolbachia isolates sequenced to date encode at least partial orthologs of wBm0076, we find it likely that the ability of Wolbachia to directly manipulate host actin dynamics is an essential requirement of all Wolbachia endosymbioses, independent of host cell species.}, } @article {pmid36793689, year = {2023}, author = {Matias, AMA and Popovic, I and Thia, JA and Cooke, IR and Torda, G and Lukoschek, V and Bay, LK and Kim, SW and Riginos, C}, title = {Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef.}, journal = {Evolutionary applications}, volume = {16}, number = {2}, pages = {293-310}, pmid = {36793689}, issn = {1752-4571}, abstract = {Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.}, } @article {pmid36786616, year = {2023}, author = {Li, C and Liu, S and Zhou, H and Zhu, W and Cui, M and Li, J and Wang, J and Liu, J and Zhu, J and Li, W and Bi, Y and Carr, MJ and Holmes, EC and Shi, W}, title = {Metatranscriptomic Sequencing Reveals Host Species as an Important Factor Shaping the Mosquito Virome.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0465522}, doi = {10.1128/spectrum.04655-22}, pmid = {36786616}, issn = {2165-0497}, abstract = {Mosquitoes are important vector hosts for numerous viral pathogens and harbor a large number of mosquito-specific viruses as well as human-infecting viruses. Previous studies have mainly focused on the discovery of mosquito viruses, and our understanding of major ecological factors associated with virome structure in mosquitoes remains limited. We utilized metatranscriptomic sequencing to characterize the viromes of five mosquito species sampled across eight locations in Yunnan Province, China. This revealed the presence of 52 viral species, of which 19 were novel, belonging to 15 viral families/clades. Of particular note was Culex hepacivirus 1, clustering within the avian clade of hepaciviruses. Notably, both the viromic diversity and abundance of Aedes genus mosquitoes were significantly higher than those of the Culex genus, while Aedes albopictus mosquitoes harbored a higher diversity than Aedes aegypti mosquitoes. Our findings thus point to discernible differences in viromic structure between mosquito genera and even between mosquito species within the same genus. Importantly, such differences were not attributable to differences in sampling between geographical location. Our study also revealed the ubiquitous presence of the endosymbiont bacterium Wolbachia, with the genetic diversity and abundance also varying between mosquito species. In conclusion, our results suggested that the mosquito host species play an important role in shaping the virome's structure. IMPORTANCE This study revealed the huge capability of mosquitoes in harboring a rich diversity of RNA viruses, although relevant studies have characterized the intensively unparalleled diversity of RNA viruses previously. Furthermore, our findings showed discernible differences not only in viromic structure between mosquito genera and even between mosquito species within the same genus but also in the genetic diversity and abundance of Wolbachia between different mosquito populations. These findings emphasize the importance of host genetic background in shaping the virome composition of mosquitoes.}, } @article {pmid36785954, year = {2023}, author = {Sanaei, E and Albery, GF and Yeoh, YK and Lin, YP and Cook, LG and Engelstädter, J}, title = {Host phylogeny and ecological associations best explain Wolbachia host shifts in scale insects.}, journal = {Molecular ecology}, volume = {}, number = {}, pages = {}, doi = {10.1111/mec.16883}, pmid = {36785954}, issn = {1365-294X}, abstract = {Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well-suited to studying host shifts. Using Illumina multi-target amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a Generalised Additive Mixed Model (GAMM) to our data to estimate the influence of host phylogeny and the geographic distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps, and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.}, } @article {pmid36781724, year = {2023}, author = {Takasuka, K and Arakawa, K}, title = {The Method of Eliminating the Wolbachia Endosymbiont Genomes from Insect Samples Prior to a Long-Read Sequencing.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2632}, number = {}, pages = {101-112}, pmid = {36781724}, issn = {1940-6029}, abstract = {When extracting DNA of invertebrates for long-read sequencing, not only enough quantity and size of the DNA but, depending on the species, elimination of contamination of endosymbiotic Wolbachia genome also has to be achieved. These requirements become troublesome, especially in small-sized species with a limited number of individuals available for the experiment. In this chapter, using tiny parasitoid wasps (Reclinervellus nielseni) parasitizing spiders as hosts, we developed a method of eliminating the Wolbachia genomes by means of an antibiotic administration to adult wasps via honey solution. Twenty days of rifampicin treatment since their emergence from cocoons resulted in a significant decrease in the Wolbachia genomes while keeping good DNA conditions for nanopore sequencing. An adequate quantity of DNA was then gained by pooling several individuals. The method could be applied to other insects or invertebrates that can be maintained by laboratory feeding with liquid food.}, } @article {pmid36779765, year = {2023}, author = {Dell'Aglio, E and Lacotte, V and Peignier, S and Rahioui, I and Benzaoui, F and Vallier, A and Da Silva, P and Desouhant, E and Heddi, A and Rebollo, R}, title = {Weevil Carbohydrate Intake Triggers Endosymbiont Proliferation: A Trade-Off between Host Benefit and Endosymbiont Burden.}, journal = {mBio}, volume = {}, number = {}, pages = {e0333322}, doi = {10.1128/mbio.03333-22}, pmid = {36779765}, issn = {2150-7511}, abstract = {Nutritional symbioses between insects and intracellular bacteria (endosymbionts) are a major force of adaptation, allowing animals to colonize nutrient-poor ecological niches. Many beetles feeding on tyrosine-poor substrates rely on a surplus of aromatic amino acids produced by bacterial endosymbionts. This surplus of aromatic amino acids is crucial for the biosynthesis of a thick exoskeleton, the cuticle, which is made of a matrix of chitin with proteins and pigments built from tyrosine-derived molecules, providing an important defensive barrier against biotic and abiotic stress. Other endosymbiont-related advantages for beetles include faster development and improved fecundity. The association between Sitophilus oryzae and the Sodalis pierantonius endosymbiont represents a unique case study among beetles: endosymbionts undergo an exponential proliferation in young adults concomitant with the cuticle tanning, and then they are fully eliminated. While endosymbiont clearance, as well as total endosymbiont titer, are host-controlled processes, the mechanism triggering endosymbiont exponential proliferation remains poorly understood. Here, we show that endosymbiont exponential proliferation relies on host carbohydrate intake, unlike the total endosymbiont titer or the endosymbiont clearance, which are under host genetic control. Remarkably, insect fecundity was preserved, and the cuticle tanning was achieved, even when endosymbiont exponential proliferation was experimentally blocked, except in the context of a severely unbalanced diet. Moreover, a high endosymbiont titer coupled with nutrient shortage dramatically impacted host survival, revealing possible environment-dependent disadvantages for the host, likely due to the high energy cost of exponentially proliferating endosymbionts. IMPORTANCE Beetles thriving on tyrosine-poor diet sources often develop mutualistic associations with endosymbionts able to synthesize aromatic amino acids. This surplus of aromatic amino acids is used to reinforce the insect's protective cuticle. An exceptional feature of the Sitophilus oryzae/Sodalis pierantonius interaction is the exponential increase in endosymbiotic titer observed in young adult insects, in concomitance with cuticle biosynthesis. Here, we show that host carbohydrate intake triggers endosymbiont exponential proliferation, even in conditions that lead to the detriment of the host survival. In addition, when hosts thrive on a balanced diet, endosymbiont proliferation is dispensable for several host fitness traits. The endosymbiont exponential proliferation is therefore dependent on the nutritional status of the host, and its consequences on host cuticle biosynthesis and survival depend on food quality and availability.}, } @article {pmid36778977, year = {2022}, author = {Sinha, DK and Gupta, A and Padmakumari, AP and Bentur, JS and Nair, S}, title = {Infestation of Rice by Gall Midge Influences Density and Diversity of Pseudomonas and Wolbachia in the Host Plant Microbiome.}, journal = {Current genomics}, volume = {23}, number = {2}, pages = {126-136}, pmid = {36778977}, issn = {1389-2029}, abstract = {Background: The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, Orseolia oryzae), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant via oral secretions, and as a result, the host mounts an appropriate defense response(s) (i.e., up-regulation of the salicylic acid pathway) against these endosymbionts. Methods: The current study aimed to analyze the microbiome present at the feeding site of GM maggots to determine the exchange of bacterial species between GM and its host and to elucidate their role in rice-GM interaction using a next-generation sequencing approach. Results: Our results revealed differential representation of the phylum Proteobacteria in the GM-infested and -uninfested rice tissues. Furthermore, analysis of the species diversity of Pseudomonas and Wolbachia supergroups at the feeding sites indicated the exchange of bacterial species between GM and its host upon infestation. Conclusion: As rice-GM microbial associations remain relatively unstudied, these findings not only add to our current understanding of microbe-assisted insect-plant interactions but also provide valuable insights into how these bacteria drive insect-plant coevolution. Moreover, to the best of our knowledge, this is the first report analyzing the microbiome of a host plant (rice) at the feeding site of its insect pest (GM).}, } @article {pmid36769231, year = {2023}, author = {Tarlachkov, SV and Efeykin, BD and Castillo, P and Evtushenko, LI and Subbotin, SA}, title = {Distribution of Bacterial Endosymbionts of the Cardinium Clade in Plant-Parasitic Nematodes.}, journal = {International journal of molecular sciences}, volume = {24}, number = {3}, pages = {}, doi = {10.3390/ijms24032905}, pmid = {36769231}, issn = {1422-0067}, abstract = {Bacteria of the genus "Candidatus Cardinium" and related organisms composing the Cardinium clade are intracellular endosymbionts frequently occurring in several arthropod groups, freshwater mussels and plant-parasitic nematodes. Phylogenetic analyses based on two gene sequences (16S rRNA and gyrB) showed that the Cardinium clade comprised at least five groups: A, B, C, D and E. In this study, a screening of 142 samples of plant-parasitic nematodes belonging to 93 species from 12 families and two orders using PCR with specific primers and sequencing, revealed bacteria of Cardinium clade in 14 nematode samples belonging to 12 species of cyst nematodes of the family Heteroderidae. Furthermore, in this study, the genome of the Cardinium cHhum from the hop cyst nematode, Heterodera humuli, was also amplified, sequenced and analyzed. The comparisons of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values for the strain Cardinium cHhum with regard to related organisms with available genomes, combined with the data on 16S rRNA and gyrB gene sequence identities, showed that this strain represents a new candidate species within the genus "Candidatus Paenicardinium". The phylogenetic position of endosymbionts of the Cardinium clade detected in nematode hosts was also compared to known representatives of this clade from other metazoans. Phylogenetic reconstructions based on analysis of 16S rRNA, gyrB, sufB, gloEL, fusA, infB genes and genomes and estimates of genetic distances both indicate that the endosymbiont of the root-lesion nematode Pratylenchus penetrans represented a separate lineage and is designated herein as a new group F. The phylogenetic analysis also confirmed that endosymbionts of ostracods represent the novel group G. Evolutionary relationships of bacterial endosymbionts of the Cardinium clade within invertebrates are presented and discussed.}, } @article {pmid36757767, year = {2023}, author = {Halter, T and Köstlbacher, S and Rattei, T and Hendrickx, F and Manzano-Marín, A and Horn, M}, title = {One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus.}, journal = {Microbial genomics}, volume = {9}, number = {2}, pages = {}, doi = {10.1099/mgen.0.000943}, pmid = {36757767}, issn = {2057-5858}, abstract = {Bacterial endosymbionts of the groups Wolbachia, Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia, 'Candidatus Tisiphia' (formerly Torix group Rickettsia), Cardinium and Rhabdochlamydia. Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia, 'Ca. Tisiphia' and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium, 'Ca. Tisiphia' and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.}, } @article {pmid36755874, year = {2022}, author = {Du, S and Ye, F and Xu, S and Liang, Y and Wan, F and Guo, J and Liu, W}, title = {Apomixis for no bacteria-induced thelytoky in Diglyphus wani (Hymenoptera: Eulophidae).}, journal = {Frontiers in genetics}, volume = {13}, number = {}, pages = {1061100}, pmid = {36755874}, issn = {1664-8021}, abstract = {In Hymenoptera species, the reproductive mode is usually arrhenotoky, where haploid males arise from unfertilized eggs and diploid females from fertilized eggs. In addition, a few species reproduce by thelytoky, where diploid females arise from unfertilized eggs. Diploid females can be derived through various cytological mechanisms in thelytokous Hymenoptera species. Hitherto, these mechanisms were revealed mainly in endosymbiont-induced thelytokous Hymenoptera species. In contrast, thelytokous Hymenoptera species in which a reproductive manipulator has not been verified or several common endosymbionts have been excluded were paid less attention in their cytological mechanisms, for instance, Diglyphus wani (Hymenoptera: Eulophidae). Here, we investigated the cytological mechanism of D. wani using cytological methods and genetic markers. Our observations indicated that the diploid karyotypes of two strains of D. wani consist of four pairs of relatively large metacentric chromosomes and one pair of short submetacentric chromosomes (2n = 10). The arrhenotokous strains could complete normal meiosis, whereas the thelytokous strain lacked meiosis and did not expulse any polar bodies. This reproductive type of lacking meiosis is classified as apomictic thelytoky. Moreover, a total of 636 microsatellite sequences were obtained from thelytokous D. wani, dominated by dinucleotide repeats. Genetic markers results showed all three generations of offspring from thelytokous strain maintained the same genotype as their parents. Our results revealed that D. wani is the first eulophid parasitoid wasp in Hymenoptera whose thelytoky was not induced by bacteria to form an apomictic thelytoky. These findings provide a baseline for future inner molecular genetic studies of ameiotic thelytoky.}, } @article {pmid36754115, year = {2023}, author = {Prigot-Maurice, C and Lheraud, B and Guéritault, S and Beltran-Bech, S and Cordaux, R and Peccoud, J and Braquart-Varnier, C}, title = {Investigating Wolbachia symbiont-mediated host protection against a bacterial pathogen using a natural Wolbachia nuclear insert.}, journal = {Journal of invertebrate pathology}, volume = {}, number = {}, pages = {107893}, doi = {10.1016/j.jip.2023.107893}, pmid = {36754115}, issn = {1096-0805}, abstract = {Wolbachia bacterial endosymbionts provide protection against pathogens in various arthropod species but the underlying mechanisms remain misunderstood. By using a natural Wolbachia nuclear insert (f-element) in the isopod Armadillidium vulgare, we explored whether Wolbachia presence is mandatory to observe protection in this species or the presence of its genes is sufficient. We assessed survival of closely related females carrying or lacking the f-element (and lacking Wolbachia) challenged with the bacterial pathogen Salmonella enterica. Despite marginal significant effects, the f-element alone did not appear to confer survival benefits to its host, suggesting that Wolbachia presence in cells is crucial for protection.}, } @article {pmid36750192, year = {2023}, author = {Haydon, TD and Matthews, JL and Seymour, JR and Raina, JB and Seymour, JE and Chartrand, K and Camp, EF and Suggett, DJ}, title = {Metabolomic signatures of corals thriving across extreme reef habitats reveal strategies of heat stress tolerance.}, journal = {Proceedings. Biological sciences}, volume = {290}, number = {1992}, pages = {20221877}, doi = {10.1098/rspb.2022.1877}, pmid = {36750192}, issn = {1471-2954}, abstract = {Anthropogenic stressors continue to escalate worldwide, driving unprecedented declines in reef environmental conditions and coral health. One approach to better understand how corals can function in the future is to examine coral populations that thrive within present day naturally extreme habitats. We applied untargeted metabolomics (gas chromatography-mass spectrometry (GC-MS)) to contrast metabolite profiles of Pocillopora acuta colonies from hot, acidic and deoxygenated mangrove environments versus those from adjacent reefs. Under ambient temperatures, P. acuta predominantly associated with endosymbionts of the genera Cladocopium (reef) or Durusdinium (mangrove), exhibiting elevated metabolism in mangrove through energy-generating and biosynthesis pathways compared to reef populations. Under transient heat stress, P. acuta endosymbiont associations were unchanged. Reef corals bleached and exhibited extensive shifts in symbiont metabolic profiles (whereas host metabolite profiles were unchanged). By contrast, mangrove populations did not bleach and solely the host metabolite profiles were altered, including cellular responses in inter-partner signalling, antioxidant capacity and energy storage. Thus mangrove P. acuta populations resist periodically high-temperature exposure via association with thermally tolerant endosymbionts coupled with host metabolic plasticity. Our findings highlight specific metabolites that may be biomarkers of heat tolerance, providing novel insight into adaptive coral resilience to elevated temperatures.}, } @article {pmid36748607, year = {2022}, author = {Giannotti, D and Boscaro, V and Husnik, F and Vannini, C and Keeling, PJ}, title = {At the threshold of symbiosis: the genome of obligately endosymbiotic 'Candidatus Nebulobacter yamunensis' is almost indistinguishable from that of a cultivable strain.}, journal = {Microbial genomics}, volume = {8}, number = {12}, pages = {}, doi = {10.1099/mgen.0.000909}, pmid = {36748607}, issn = {2057-5858}, abstract = {Comparing obligate endosymbionts with their free-living relatives is a powerful approach to investigate the evolution of symbioses, and it has led to the identification of several genomic traits consistently associated with the establishment of symbiosis. 'Candidatus Nebulobacter yamunensis' is an obligate bacterial endosymbiont of the ciliate Euplotes that seemingly depends on its host for survival. A subsequently characterized bacterial strain with an identical 16S rRNA gene sequence, named Fastidiosibacter lacustris, can instead be maintained in pure culture. We analysed the genomes of 'Candidatus Nebulobacter' and Fastidiosibacter seeking to identify key differences between their functional traits and genomic structure that might shed light on a recent transition to obligate endosymbiosis. Surprisingly, we found almost no such differences: the two genomes share a high level of sequence identity, the same overall structure, and largely overlapping sets of genes. The similarities between the genomes of the two strains are at odds with their different ecological niches, confirmed here with a parallel growth experiment. Although other pairs of closely related symbiotic/free-living bacteria have been compared in the past, 'Candidatus Nebulobacter' and Fastidiosibacter represent an extreme example proving that a small number of (unknown) factors might play a pivotal role in the earliest stages of obligate endosymbiosis establishment.}, } @article {pmid36748430, year = {2022}, author = {Izraeli, Y and Lepetit, D and Atias, S and Mozes-Daube, N and Wodowski, G and Lachman, O and Luria, N and Steinberg, S and Varaldi, J and Zchori-Fein, E and Chiel, E}, title = {Genomic characterization of viruses associated with the parasitoid Anagyrus vladimiri (Hymenoptera: Encyrtidae).}, journal = {The Journal of general virology}, volume = {103}, number = {12}, pages = {}, doi = {10.1099/jgv.0.001810}, pmid = {36748430}, issn = {1465-2099}, abstract = {Knowledge on symbiotic microorganisms of insects has increased dramatically in recent years, yet relatively little data are available regarding non-pathogenic viruses. Here we studied the virome of the parasitoid wasp Anagyrus vladimiri Triapitsyn (Hymenoptera: Encyrtidae), a biocontrol agent of mealybugs. By high-throughput sequencing of viral nucleic acids, we revealed three novel viruses, belonging to the families Reoviridae [provisionally termed AnvRV (Anagyrus vladimiri reovirus)], Iflaviridae (AnvIFV) and Dicistroviridae (AnvDV). Phylogenetic analysis further classified AnvRV in the genus Idnoreovirus, and AnvDV in the genus Triatovirus. The genome of AnvRV comprises 10 distinct genomic segments ranging in length from 1.5 to 4.2 kb, but only two out of the 10 ORFs have a known function. AnvIFV and AnvDV each have one polypeptide ORF, which is typical of iflaviruses but very un-common among dicistroviruses. Five conserved domains were found along both the ORFs of those two viruses. AnvRV was found to be fixed in an A. vladimiri population that was obtained from a mass rearing facility, whereas its prevalence in field-collected A. vladimiri was ~15 %. Similarly, the prevalence of AnvIFV and AnvDV was much higher in the mass rearing population than in the field population. The presence of AnvDV was positively correlated with the presence of Wolbachia in the same individuals. Transmission electron micrographs of females' ovaries revealed clusters and viroplasms of reovirus-like particles in follicle cells, suggesting that AnvRV is vertically transmitted from mother to offspring. AnvRV was not detected in the mealybugs, supporting the assumption that this virus is truly associated with the wasps. The possible effects of these viruses on A. vladimiri's biology, and on biocontrol agents in general, are discussed. Our findings identify RNA viruses as potentially involved in the multitrophic system of mealybugs, their parasitoids and other members of the holobiont.}, } @article {pmid36744984, year = {2023}, author = {Banerjee, P and Sarkar, A and Ghosh, K and Mazumdar, A}, title = {A Metagenomic Based Approach on Abundance and Diversity of Bacterial Communities Across the Life Stages of Culicoides peregrinus (Diptera: Ceratopogonidae) a Vector of Bluetongue Virus.}, journal = {Journal of medical entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jme/tjad011}, pmid = {36744984}, issn = {1938-2928}, abstract = {During larval rearing of Culicoides peregrinus Kieffer (Diptera: Ceratopogonidae) it was obligatory to add a small quantity of mud from larval habitat to nutrient broth in culture plates. This initiated microbial growth in rearing plates which facilitated growth and development of immature. The primary aim was to enumerate gut microbial communities across the different life stages of C. peregrinus. Amplicon sequencing of the V3-V4 hypervariable region (16S rDNA) was done on Illumina Miseq platform to detect gut bacterial communities at different life stages, while ITS regions (18S rRNA) were targeted for fungal communities of the 4th instar larvae. The major findings were: 1) Phylum Proteobacteria and Firmicutes were the most abundant throughout the life stages, along with the highest bacterial alpha diversity in the egg, 2) bacterial compositions were similar to laboratory reared and field collected adults, and 3) abundant fungal phyla associated with the larval gut were Ascomycota and Basidiomycota. Furthermore, analyses of the gut microbiome with METAGENassist might be indicative of their likely function in the natural habitat. Abundant gut-associated bacteria and/or fungal genera detected in the present study could be used as dietary supplements to establish laboratory colonies for further vectorial research. While, individual roles of the bacteria or fungi in paratransgenesis are warned for their possible utilization to frame the management strategy in upcoming works.}, } @article {pmid36744754, year = {2023}, author = {Chen, J and Wang, MK and Xie, QX and Bing, XL and Li, TP and Hong, XY}, title = {NDUFA8 potentially rescues Wolbachia-induced cytoplasmic incompatibility in Laodelphax striatellus.}, journal = {Insect science}, volume = {}, number = {}, pages = {}, doi = {10.1111/1744-7917.13182}, pmid = {36744754}, issn = {1744-7917}, abstract = {The endosymbiont Wolbachia manipulates host reproduction by several strategies, one of the most important of which is cytoplasmic incompatibility (CI). CI can be rescued when Wolbachia-infected (WI) males mate with females infected with the same Wolbachia strain. However, the potential rescue mechanism of CI in the small brown planthopper Laodelphax striatellus is unclear. In this study, comparative transcriptome analysis was applied to explore the effect of Wolbachia on L. striatellus eggs. A total of 1387 differentially expressed genes were identified. RNAi of seven Wolbachia-upregulated key planthopper genes reduced egg reproduction, suggesting that Wolbachia might improve fecundity in L. striatellus by affecting these seven genes. Suppressing the expression of another upregulated gene, NDUFA8 (encoding NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8-like) by RNAi significantly increased the mortality of early embryos without affecting the number of deposited eggs. Wolbachia infection upregulated the mRNA level of NDUFA8, and dsNDUFA8 treatment of WI females re-created CI-like symptoms, suggesting that NDUFA8 is associated with the rescue phenotype. Because all L. striatellus populations worldwide are infected with Wolbachia, NDUFA8 is a potential pest control target. This article is protected by copyright. All rights reserved.}, } @article {pmid36743537, year = {2022}, author = {Mushtaq, S and Shafiq, M and Tariq, MR and Sami, A and Nawaz-Ul-Rehman, MS and Bhatti, MHT and Haider, MS and Sadiq, S and Abbas, MT and Hussain, M and Shahid, MA}, title = {Interaction between bacterial endophytes and host plants.}, journal = {Frontiers in plant science}, volume = {13}, number = {}, pages = {1092105}, pmid = {36743537}, issn = {1664-462X}, abstract = {Endophytic bacteria are mainly present in the plant's root systems. Endophytic bacteria improve plant health and are sometimes necessary to fight against adverse conditions. There is an increasing trend for the use of bacterial endophytes as bio-fertilizers. However, new challenges are also arising regarding the management of these newly discovered bacterial endophytes. Plant growth-promoting bacterial endophytes exist in a wide host range as part of their microbiome, and are proven to exhibit positive effects on plant growth. Endophytic bacterial communities within plant hosts are dynamic and affected by abiotic/biotic factors such as soil conditions, geographical distribution, climate, plant species, and plant-microbe interaction at a large scale. Therefore, there is a need to evaluate the mechanism of bacterial endophytes' interaction with plants under field conditions before their application. Bacterial endophytes have both beneficial and harmful impacts on plants but the exact mechanism of interaction is poorly understood. A basic approach to exploit the potential genetic elements involved in an endophytic lifestyle is to compare the genomes of rhizospheric plant growth-promoting bacteria with endophytic bacteria. In this mini-review, we will be focused to characterize the genetic diversity and dynamics of endophyte interaction in different host plants.}, } @article {pmid36740932, year = {2023}, author = {Becher, H and Nichols, RA}, title = {Assembly-free quantification of vagrant DNA inserts.}, journal = {Molecular ecology resources}, volume = {}, number = {}, pages = {}, doi = {10.1111/1755-0998.13764}, pmid = {36740932}, issn = {1755-0998}, abstract = {Inserts of DNA from extranuclear sources, such as organelles and microbes, are common in eukaryote nuclear genomes. However, sequence similarity between the nuclear and extranuclear DNA, and a history of multiple insertions, make the assembly of these regions challenging. Consequently, the number, sequence, and location of these vagrant DNAs cannot be reliably inferred from the genome assemblies of most organisms. We introduce two statistical methods to estimate the abundance of nuclear inserts even in the absence of a nuclear genome assembly. The first (intercept method) only requires low-coverage (<1x) sequencing data, as commonly generated for population studies of organellar and ribosomal DNAs. The second method additionally requires that a subset of the individuals carry extra-nuclear DNA with diverged genotypes. We validated our intercept method using simulations and by re-estimating the frequency of human NUMTs (nuclear mitochondrial inserts). We then applied it to the grasshopper Podisma pedestris, exceptional for both its large genome size and reports of numerous NUMT inserts, estimating that NUMTs make up 0.056% of the nuclear genome, equivalent to >500 times the mitochondrial genome size. We also re-analysed a museomics dataset of the parrot Psephotellus varius, obtaining an estimate of only 0.0043%, in line with reports from other species of bird. Our study demonstrates the utility of low-coverage high-throughput sequencing data for the quantification of nuclear vagrant DNAs. Beyond quantifying organellar inserts, these methods could also be used on endosymbiont-derived sequences. We provide an R implementation of our methods called "vagrantDNA" and code to simulate test datasets.}, } @article {pmid36735822, year = {2023}, author = {Sweet, AD and Browne, DR and Hernandez, AG and Johnson, KP and Cameron, SL}, title = {Draft genome assemblies of the avian louse Brueelia nebulosa and its associates using long-read sequencing from an individual specimen.}, journal = {G3 (Bethesda, Md.)}, volume = {}, number = {}, pages = {}, doi = {10.1093/g3journal/jkad030}, pmid = {36735822}, issn = {2160-1836}, abstract = {Sequencing high molecular weight (HMW) DNA with long-read and linked-read technologies has promoted a major increase in more complete genome sequences for non-model organisms. Sequencing approaches that rely on HMW DNA have been limited to larger organisms or pools of multiple individuals, but recent advances have allowed for sequencing from individuals of small-bodied organisms. Here, we use HMW DNA sequencing with PacBio long-reads and TELL-Seq linked-reads to assemble and annotate the genome from a single individual feather louse (Brueelia nebulosa) from a European Starling (Sturnus vulgaris). We assembled a genome with a relatively high scaffold N50 (637 kb) and with BUSCO scores (96.1%) comparable to louse genomes assembled from pooled individuals. We annotated a number of genes (10,938) similar to the human louse (Pediculus humanus) genome. Additionally, calling phased variants revealed that the Brueelia genome is more heterozygous (∼1%) then expected for a highly obligate and dispersal-limited parasite. We also assembled and annotated the mitochondrial genome and primary endosymbiont (Sodalis) genome from the individual louse, which showed evidence for heteroplasmy in the mitogenome and a reduced genome size in the endosymbiont compared to its free-living relative. Our study is a valuable demonstration of the capability to obtain high-quality genomes from individual small, non-model organisms. Applying this approach to other organisms could greatly increase our understanding of the diversity and evolution of individual genomes.}, } @article {pmid36732111, year = {2023}, author = {Shaw, S and Roditi, I}, title = {The sweet and sour sides of trypanosome social motility.}, journal = {Trends in parasitology}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.pt.2023.01.001}, pmid = {36732111}, issn = {1471-5007}, abstract = {Recent studies showed that the formation of elegant geometric patterns by communities of Trypanosoma brucei on semi-solid surfaces, dubbed social motility (SoMo) by its discoverers, is a manifestation of pH taxis. This is caused by procyclic forms generating and responding to pH gradients through glucose metabolism and cAMP signalling. These findings established that trypanosomes can sense and manipulate gradients, potentially helping them to navigate through host tissues. At the same time, the host itself and bystanders such as endosymbionts have the potential to shape the environment and influence the chances of successful transmission. We postulate that the ability to sense and contribute to the gradient landscape may also underlie the tissue tropism and migration of other parasites in their hosts.}, } @article {pmid36727281, year = {2023}, author = {Quach, QN and Clay, K and Lee, ST and Gardner, DR and Cook, D}, title = {Phylogenetic patterns of bioactive secondary metabolites produced by fungal endosymbionts in morning glories (Ipomoeeae, Convolvulaceae).}, journal = {The New phytologist}, volume = {}, number = {}, pages = {}, doi = {10.1111/nph.18785}, pmid = {36727281}, issn = {1469-8137}, abstract = {Heritable fungal endosymbiosis is under-investigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades and host species have significantly larger seed size than non-symbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.}, } @article {pmid36725749, year = {2023}, author = {Sullivan, TJ and Roberts, H and Bultman, TL}, title = {Genetic Covariation Between the Vertically Transmitted Endophyte Epichloë canadensis and Its Host Canada Wildrye.}, journal = {Microbial ecology}, volume = {}, number = {}, pages = {}, pmid = {36725749}, issn = {1432-184X}, abstract = {Symbiotic mutualisms are thought to be stabilized by correlations between the interacting genotypes which may be strengthened via vertical transmission and/or reduced genetic variability within each species. Vertical transmission, however, may weaken interactions over time as the endosymbionts would acquire mutations that could not be purged. Additionally, temporal variation in a conditional mutualism could create genetic variation and increased variation in the interaction outcome. In this study, we assessed genetic variation in both members of a symbiosis, the endosymbiotic fungal endophyte Epichloë canadensis and its grass host Canada wildrye (Elymus canadensis). Both species exhibited comparable levels of diversity, mostly within populations rather than between. There were significant differences between populations, although not in the same pattern for the two species, and the differences were not correlated with geographic distance for either species. Interindividual genetic distance matrices for the two species were significantly correlated, although all combinations of discriminant analysis of principle components (DAPC) defined multilocus genotype groups were found suggesting that strict genotype matching is not necessary. Variation in interaction outcome is common in grass/endophyte interactions, and our results suggest that the accumulation of mutations overtime combined with temporal variation in selection pressures increasing genetic variation in the symbiosis may be the cause.}, } @article {pmid36717919, year = {2023}, author = {Grandi, G and Chiappa, G and Ullman, K and Lindgren, PE and Olivieri, E and Sassera, D and Östlund, E and Omazic, A and Perissinotto, D and Söderlund, R}, title = {Characterization of the bacterial microbiome of Swedish ticks through 16S rRNA amplicon sequencing of whole ticks and of individual tick organs.}, journal = {Parasites & vectors}, volume = {16}, number = {1}, pages = {39}, doi = {10.1186/s13071-022-05638-4}, pmid = {36717919}, issn = {1756-3305}, abstract = {BACKGROUND: The composition of the microbial flora associated with ixodid ticks has been studied in several species, revealing the importance of geographical origin, developmental stage(s) and feeding status of the tick, as well as substantial differences between tissues and organs. Studying the microbiome in the correct context and scale is therefore necessary for understanding the interactions between tick-borne pathogens and other microorganisms as well as other aspects of tick biology.

METHODS: In the present study the microbial flora of whole Ixodes ricinus, I. persulcatus and I. trianguliceps ticks were analyzed with 16S rRNA amplicon sequencing. Additionally, tick organs (midguts, Malpighian tubules, ovaries, salivary glands) from flat and engorged I. ricinus female ticks were examined with the same methodology.

RESULTS: The most abundant bacteria belonged to the group of Proteobacteria (Cand. Midichloria mitochondrii and Cand. Lariskella). 16S amplicon sequencing of dissected tick organs provided more information on the diversity of I. ricinus-associated microbial flora, especially when organs were collected from engorged ticks. Bacterial genera significantly associated with tick feeding status as well as genera associated with the presence of tick-borne pathogens were identified.

CONCLUSIONS: These results contribute to the knowledge of microbial flora associated with ixodid ticks in their northernmost distribution limit in Europe and opens new perspectives for other investigations on the function of these bacteria, including those using other approaches like in vitro cultivation and in vitro models.}, } @article {pmid36715911, year = {2023}, author = {Nevalainen, LBM and Newton, ILG}, title = {Detection and Assessment of Wolbachia pipientis Infection.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2626}, number = {}, pages = {291-307}, pmid = {36715911}, issn = {1940-6029}, abstract = {Wolbachia pipientis is a widespread vertically transmitted intracellular bacterium naturally present in the model organism Drosophila melanogaster. As Wolbachia is present in a large number of Drosophila lines, it is critical for researchers to be able to identify which of their stocks maintain this infection to avoid any potential confounding variables. Here, we describe methods for detecting the bacterium and assessing the infection, including polymerase chain reaction (PCR) of DNA, multi-locus sequence typing (MLST) to identify strains, western blotting for protein detection, and immunohistochemistry and fluorescence in situ hybridization (FISH) of Drosophila ovaries to visually detect Wolbachia by fluorescence microscopy.}, } @article {pmid36714835, year = {2022}, author = {Niehs, SP and Scherlach, K and Dose, B and Uzum, Z and Stinear, TP and Pidot, SJ and Hertweck, C}, title = {A highly conserved gene locus in endofungal bacteria codes for the biosynthesis of symbiosis-specific cyclopeptides.}, journal = {PNAS nexus}, volume = {1}, number = {4}, pages = {pgac152}, pmid = {36714835}, issn = {2752-6542}, abstract = {The tight association of the pathogenic fungus Rhizopus microsporus and its toxin-producing, bacterial endosymbionts (Mycetohabitans spp.) is distributed worldwide and has significance for agriculture, food production, and human health. Intriguingly, the endofungal bacteria are essential for the propagation of the fungal host. Yet, little is known about chemical mediators fostering the symbiosis, and universal metabolites that support the mutualistic relationship have remained elusive. Here, we describe the discovery of a complex of specialized metabolites produced by endofungal bacteria under symbiotic conditions. Through full genome sequencing and comparative genomics of eight endofungal symbiont strains from geographically distant regions, we discovered a conserved gene locus (hab) for a nonribosomal peptide synthetase as a unifying trait. Bioinformatics analyses, targeted gene deletions, and chemical profiling uncovered unprecedented depsipeptides (habitasporins) whose structures were fully elucidated. Computational network analysis and labeling experiments granted insight into the biosynthesis of their nonproteinogenic building blocks (pipecolic acid and β-phenylalanine). Deletion of the hab gene locus was shown to impair the ability of the bacteria to enter their fungal host. Our study unveils a common principle of the endosymbiotic lifestyle of Mycetohabitans species and expands the repertoire of characterized chemical mediators of a globally occurring mutualistic association.}, } @article {pmid36714306, year = {2022}, author = {Barman, M and Samanta, S and Ahmed, B and Dey, S and Chakraborty, S and Deeksha, MG and Dutta, S and Samanta, A and Tarafdar, J and Roy, D}, title = {Transcription dynamics of heat-shock proteins (Hsps) and endosymbiont titres in response to thermal stress in whitefly, Bemisia tabaci (Asia-I).}, journal = {Frontiers in physiology}, volume = {13}, number = {}, pages = {1097459}, pmid = {36714306}, issn = {1664-042X}, abstract = {The sweet potato whitefly, Bemisia tabaci (Gennadius), is one of the several species complexes of whitefly that are currently significant agricultural pests. Bemisia tabaci infests more than 600 plant species and thrives under a wide range of temperature conditions. In addition to the direct damage caused by sucking plant sap, it vectors several plant viruses. Heat-shock proteins play a pivotal role in enabling the insect to extend its geographical location, survival, and reproduction under different stress conditions. B. tabaci harbours several endosymbionts under the genera Portiera, Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium, and Fritschea that directly or indirectly affect its fitness. By accelerating cuticle biosynthesis and sclerotisation, symbiotic microbes can reduce or enhance tolerance to extreme temperatures and detoxify heavy metals. Thus, symbionts or microbial communities can expand or constrain the abiotic niche space of their host and affect its ability to adapt to changing conditions. The present study delineates the effect of thermal stress on the expression of heat-shock genes and endosymbionts in B. tabaci. Studies of the expression level of heat-shock proteins with the help of quantitative real-time polymerase chain reaction (qRT-PCR) showed that heat- and cold-shock treatment fuels the increased expression of heat-shock proteins (Hsp40 and Hsp70). However, Hsp90 was not induced by a heat- and cold-shock treatment. A significant decrease in the relative titre of secondary endosymbionts, such as Rickettsia, Arsenophonus, and Wolbachia, were recorded in B. tabaci upon heat treatment. However, the titre of the primary symbiont, C. Portiera, was relatively unaffected by both cold and heat treatments. These results are indicative of the fact that Hsp genes and endosymbionts in B. tabaci are modulated in response to thermal stress, and this might be responsible for the adaptation of whitefly under changing climatic scenario.}, } @article {pmid36703713, year = {2023}, author = {Quicray, M and Wilhelm, L and Enriquez, T and He, S and Scheifler, M and Visser, B}, title = {The Drosophila-parasitizing wasp Leptopilina heterotoma: A comprehensive model system in ecology and evolution.}, journal = {Ecology and evolution}, volume = {13}, number = {1}, pages = {e9625}, pmid = {36703713}, issn = {2045-7758}, abstract = {The parasitoid Leptopilina heterotoma has been used as a model system for more than 70 years, contributing greatly to diverse research areas in ecology and evolution. Here, we synthesized the large body of work on L. heterotoma with the aim to identify new research avenues that could be of interest also for researchers studying other parasitoids and insects. We start our review with a description of typical L. heterotoma characteristics, as well as that of the higher taxonomic groups to which this species belongs. We then continue discussing host suitability and immunity, foraging behaviors, as well as fat accumulation and life histories. We subsequently shift our focus towards parasitoid-parasitoid interactions, including L. heterotoma coexistence within the larger guild of Drosophila parasitoids, chemical communication, as well as mating and population structuring. We conclude our review by highlighting the assets of L. heterotoma as a model system, including its intermediate life history syndromes, the ease of observing and collecting natural hosts and wasps, as well as recent genomic advances.}, } @article {pmid36699601, year = {2022}, author = {Kueneman, JG and Gillung, J and Van Dyke, MT and Fordyce, RF and Danforth, BN}, title = {Solitary bee larvae modify bacterial diversity of pollen provisions in the stem-nesting bee, Osmia cornifrons (Megachilidae).}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {1057626}, pmid = {36699601}, issn = {1664-302X}, abstract = {Microbes, including diverse bacteria and fungi, play an important role in the health of both solitary and social bees. Among solitary bee species, in which larvae remain in a closed brood cell throughout development, experiments that modified or eliminated the brood cell microbiome through sterilization indicated that microbes contribute substantially to larval nutrition and are in some cases essential for larval development. To better understand how feeding larvae impact the microbial community of their pollen/nectar provisions, we examine the temporal shift in the bacterial community in the presence and absence of actively feeding larvae of the solitary, stem-nesting bee, Osmia cornifrons (Megachilidae). Our results indicate that the O. cornifrons brood cell bacterial community is initially diverse. However, larval solitary bees modify the microbial community of their pollen/nectar provisions over time by suppressing or eliminating rare taxa while favoring bacterial endosymbionts of insects and diverse plant pathogens, perhaps through improved conditions or competitive release. We suspect that the proliferation of opportunistic plant pathogens may improve nutrient availability of developing larvae through degradation of pollen. Thus, the health and development of solitary bees may be interconnected with pollen bacterial diversity and perhaps with the propagation of plant pathogens.}, } @article {pmid36694551, year = {2023}, author = {de Gier, W}, title = {Phylomorphometrics reveal ecomorphological convergence in pea crab carapace shapes (Brachyura, Pinnotheridae).}, journal = {Ecology and evolution}, volume = {13}, number = {1}, pages = {e9744}, pmid = {36694551}, issn = {2045-7758}, abstract = {Most members of the speciose pea crab family (Decapoda: Brachyura: Pinnotheridae) are characterized by their symbioses with marine invertebrates in various host phyla. The ecology of pea crabs is, however, understudied, and the degree of host dependency of most species is still unclear. With the exception of one lineage of ectosymbiotic echinoid-associated crabs, species within the subfamily Pinnotherinae are endosymbionts, living within the body cavities of mollusks, ascidians, echinoderms, and brachiopods. By contrast, most members of the two other subfamilies are considered to have an ectosymbiotic lifestyle, sharing burrows and tubes with various types of worms and burrowing crustaceans (inquilism). The body shapes within the family are extremely variable, mainly in the width and length of the carapace. The variation of carapace shapes in the family, focusing on pinnotherines, is mapped using landmark-based morphometrics. Mean carapace shapes of species groups (based on their host preference) are statistically compared. In addition, a phylomorphometric approach is used to study three different convergence events (across subfamilies; between three genera; and within one genus), and link these events with the associated hosts.}, } @article {pmid36691279, year = {2023}, author = {Cooper, W and Swisher Grimm, K and Angelella, G and Mustafa, T}, title = {Acquisition and transmission of "Candidatus Liberibacter solanacearum" differs among Wolbachia-infected and -uninfected haplotypes of Bactericera cockerelli.}, journal = {Plant disease}, volume = {}, number = {}, pages = {}, doi = {10.1094/PDIS-11-22-2701-RE}, pmid = {36691279}, issn = {0191-2917}, abstract = {"Candidatus Liberibacter solanacearum" (Lso) causes disease symptoms and economic losses in potato, tomato, and other solanaceous crops in North America. Lso is transmitted to plants by potato psyllid, Bactericera cockerelli, which occurs as distinct haplotypes named western, central, and northwestern that differ in presence or absence of the bacterial endosymbiont, Wolbachia. Previous work showed that all three vector haplotypes can transmit Lso, but it was not clear whether acquisition and transmission rates of Lso were equal among the haplotypes. The goal of our study was to compare Lso infection rates among psyllids of the western, central, and northwestern haplotypes. Using data collected from several years of periodic testing of Lso infection of laboratory-reared potato psyllid colonies, we showed that psyllids of the western and central haplotypes are more likely to harbor Lso than are psyllids of the northwestern haplotype. We then used greenhouse assays to demonstrate that psyllids of the northwestern haplotype are less likely to acquire and transmit Lso compared with those of the western haplotype. Lso infection rates corresponded with Wolbachia infection among the three psyllid haplotypes. The Wolbachia-infected central and western haplotypes were more likely to harbor and transmit Lso compared with the Wolbachia-free northwestern haplotype. Results demonstrate that potato psyllids of the western and central haplotypes pose a greater risk for spread of Lso in crops and suggest a pattern between infection with Lso and Wolbachia in potato psyllid.}, } @article {pmid36689552, year = {2023}, author = {Vancaester, E and Blaxter, M}, title = {Phylogenomic analysis of Wolbachia genomes from the Darwin Tree of Life biodiversity genomics project.}, journal = {PLoS biology}, volume = {21}, number = {1}, pages = {e3001972}, doi = {10.1371/journal.pbio.3001972}, pmid = {36689552}, issn = {1545-7885}, abstract = {The Darwin Tree of Life (DToL) project aims to sequence all described terrestrial and aquatic eukaryotic species found in Britain and Ireland. Reference genome sequences are generated from single individuals for each target species. In addition to the target genome, sequenced samples often contain genetic material from microbiomes, endosymbionts, parasites, and other cobionts. Wolbachia endosymbiotic bacteria are found in a diversity of terrestrial arthropods and nematodes, with supergroups A and B the most common in insects. We identified and assembled 110 complete Wolbachia genomes from 93 host species spanning 92 families by filtering data from 368 insect species generated by the DToL project. From 15 infected species, we assembled more than one Wolbachia genome, including cases where individuals carried simultaneous supergroup A and B infections. Different insect orders had distinct patterns of infection, with Lepidopteran hosts mostly infected with supergroup B, while infections in Diptera and Hymenoptera were dominated by A-type Wolbachia. Other than these large-scale order-level associations, host and Wolbachia phylogenies revealed no (or very limited) cophylogeny. This points to the occurrence of frequent host switching events, including between insect orders, in the evolutionary history of the Wolbachia pandemic. While supergroup A and B genomes had distinct GC% and GC skew, and B genomes had a larger core gene set and tended to be longer, it was the abundance of copies of bacteriophage WO who was a strong determinant of Wolbachia genome size. Mining raw genome data generated for reference genome assemblies is a robust way of identifying and analysing cobiont genomes and giving greater ecological context for their hosts.}, } @article {pmid36686690, year = {2022}, author = {Büttiker, P and Weissenberger, S and Esch, T and Anders, M and Raboch, J and Ptacek, R and Kream, RM and Stefano, GB}, title = {Dysfunctional mitochondrial processes contribute to energy perturbations in the brain and neuropsychiatric symptoms.}, journal = {Frontiers in pharmacology}, volume = {13}, number = {}, pages = {1095923}, pmid = {36686690}, issn = {1663-9812}, abstract = {Mitochondria are complex endosymbionts that evolved from primordial purple nonsulfur bacteria. The incorporation of bacteria-derived mitochondria facilitates a more efficient and effective production of energy than what could be achieved based on previous processes alone. In this case, endosymbiosis has resulted in the seamless coupling of cytochrome c oxidase and F-ATPase to maximize energy production. However, this mechanism also results in the generation of reactive oxygen species (ROS), a phenomenon that can have both positive and negative ramifications on the host. Recent studies have revealed that neuropsychiatric disorders have a pro-inflammatory component in which ROS is capable of initiating damage and cognitive malfunction. Our current understanding of cognition suggests that it is the product of a neuronal network that consumes a substantial amount of energy. Thus, alterations or perturbations of mitochondrial function may alter not only brain energy supply and metabolite generation, but also thought processes and behavior. Mitochondrial abnormalities and oxidative stress have been implicated in several well-known psychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). As cognition is highly energy-dependent, we propose that the neuronal pathways underlying maladaptive cognitive processing and psychiatric symptoms are most likely dependent on mitochondrial function, and thus involve brain energy translocation and the accumulation of the byproducts of oxidative stress. We also hypothesize that neuropsychiatric symptoms (e.g., disrupted emotional processing) may represent the vestiges of an ancient masked evolutionary response that can be used by both hosts and pathogens to promote self-repair and proliferation via parasitic and/or symbiotic pathways.}, } @article {pmid36683703, year = {2022}, author = {Liu, Y and He, ZQ and Wen, Q and Peng, J and Zhou, YT and Mandour, N and McKenzie, CL and Ahmed, MZ and Qiu, BL}, title = {Parasitoid-mediated horizontal transmission of Rickettsia between whiteflies.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {1077494}, pmid = {36683703}, issn = {2235-2988}, abstract = {Intracellular bacterial endosymbionts of arthropods are mainly transmitted vertically from mother to offspring, but phylogenetically distant insect hosts often harbor identical endosymbionts, indicating that horizontal transmission from one species to another occurs in nature. Here, we investigated the parasitoid Encarsia formosa-mediated horizontal transmission of the endosymbiont Rickettsia between different populations of whitefly Bemisia tabaci MEAM1. Rickettsia was successfully transmitted from the positive MEAM1 nymphs (R [+]) into E. formosa and retained at least for 48 h in E. formosa adults. Fluorescence in situ hybridization (FISH) visualization results revealed that the ovipositors, mouthparts, and digestive tract of parasitoid adults get contaminated with Rickettsia. Random non-lethal probing of Rickettisia-negative (R[-]) MEAM1 nymphs by these Rickettsia-carrying E. formosa resulted in newly infected MEAM1 nymphs, and the vertical transmission of Rickettsia within the recipient females can remain at least up to F3 generation. Further phylogenetic analyses revealed that Rickettsia had high fidelity during the horizontal transmission in whiteflies and parasitoids. Our findings may help to explain why Rickettsia bacteria are so abundant in arthropods and suggest that, in some insect species that shared the same parasitoids, Rickettsia may be maintained in populations by horizontal transmission.}, } @article {pmid36677450, year = {2023}, author = {Hoffman, T and Olsen, B and Lundkvist, Å}, title = {The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African-Western Palearctic.}, journal = {Microorganisms}, volume = {11}, number = {1}, pages = {}, doi = {10.3390/microorganisms11010158}, pmid = {36677450}, issn = {2076-2607}, abstract = {Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.}, } @article {pmid36677447, year = {2023}, author = {Fujishima, M and Kawano, H and Miyakawa, I}, title = {A 63-kDa Periplasmic Protein of the Endonuclear Symbiotic Bacterium Holospora obtusa Secreted to the Outside of the Bacterium during the Early Infection Process Binds Weakly to the Macronuclear DNA of the Host Paramecium caudatum.}, journal = {Microorganisms}, volume = {11}, number = {1}, pages = {}, doi = {10.3390/microorganisms11010155}, pmid = {36677447}, issn = {2076-2607}, abstract = {The Gram-negative bacterium Holospora obtusa is a macronucleus-specific symbiont of the ciliate Paramecium caudatum. It is known that an infection of this bacterium induces high level expressions of the host hsp60 and hsp70 genes, and the host cell acquires both heat-shock and high salt resistances. In addition, an infectious form of H. obtusa-specific 63-kDa periplasmic protein with a DNA-binding domain in its amino acid sequence is secreted into the host macronucleus after invasion into the macronucleus and remain within the nucleus. These facts suggest that binding of the 63-kDa protein to the host macronuclear DNA causes changes in the host gene expressions and enhances an environmental adaptability of the host cells. This 63-kDa protein was renamed as periplasmic region protein 1 (PRP1) to distinguish it from other proteins with similar molecular weights. To confirm whether PRP1 indeed binds to the host DNA, SDS-DNA PAGE and DNA affinity chromatography with calf thymus DNA and P. caudatum DNA were conducted and confirmed that PRP1 binds weakly to the P. caudatum DNA with a monoclonal antibody raised for the 63-kDa protein.}, } @article {pmid36675947, year = {2023}, author = {Thimmappa, BC and Salhi, LN and Forget, L and Sarrasin, M and Bustamante Villalobos, P and Lang, BF and Burger, G}, title = {Nuclear Genome Sequence and Gene Expression of an Intracellular Fungal Endophyte Stimulating the Growth of Cranberry Plants.}, journal = {Journal of fungi (Basel, Switzerland)}, volume = {9}, number = {1}, pages = {}, doi = {10.3390/jof9010126}, pmid = {36675947}, issn = {2309-608X}, abstract = {Ericaceae thrive in poor soil, which we postulate is facilitated by microbes living inside those plants. Here, we investigate the growth stimulation of the American cranberry (Vaccinium macrocarpon) by one of its fungal endosymbionts, EC4. We show that the symbiont resides inside the epidermal root cells of the host but extends into the rhizosphere via its hyphae. Morphological classification of this fungus is ambiguous, but phylogenetic inference based on 28S rRNA identifies EC4 as a Codinaeella species (Chaetosphaeriaceae, Sordariomycetes, Ascomycetes). We sequenced the genome and transcriptome of EC4, providing the first 'Omics' information of a Chaetosphaeriaceae fungus. The 55.3-Mbp nuclear genome contains 17,582 potential protein-coding genes, of which nearly 500 have the capacity to promote plant growth. For comparing gene sets involved in biofertilization, we annotated the published genome assembly of the plant-growth-promoting Trichoderma hamatum. The number of proteins involved in phosphate transport and solubilization is similar in the two fungi. In contrast, EC4 has ~50% more genes associated with ammonium, nitrate/nitrite transport, and phytohormone synthesis. The expression of 36 presumed plant-growth-promoting EC4 genes is stimulated when the fungus is in contact with the plant. Thus, Omics and in-plantae tests make EC4 a promising candidate for cranberry biofertilization on nutrient-poor soils.}, } @article {pmid36675893, year = {2023}, author = {Akram, S and Ahmed, A and He, P and He, P and Liu, Y and Wu, Y and Munir, S and He, Y}, title = {Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction.}, journal = {Journal of fungi (Basel, Switzerland)}, volume = {9}, number = {1}, pages = {}, doi = {10.3390/jof9010072}, pmid = {36675893}, issn = {2309-608X}, abstract = {Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.}, } @article {pmid36675187, year = {2023}, author = {Deng, Y and Wang, K and Hu, Z and Hu, Q and Tang, Y}, title = {Different Geographic Strains of Dinoflagellate Karlodinium veneficum Host Highly Diverse Fungal Community and Potentially Serve as Possible Niche for Colonization of Fungal Endophytes.}, journal = {International journal of molecular sciences}, volume = {24}, number = {2}, pages = {}, doi = {10.3390/ijms24021672}, pmid = {36675187}, issn = {1422-0067}, abstract = {In numerous studies, researchers have explored the interactions between fungi and their hosting biota in terrestrial systems, while much less attention has been paid to the counterpart interactions in aquatic, and particularly marine, ecosystems. Despite the growing recognition of the potential functions of fungi in structuring phytoplankton communities, the current insights were mostly derived from phytoplankton hosts, such as diatoms, green microalgae, and cyanobacteria. Dinoflagellates are the second most abundant group of phytoplankton in coastal marine ecosystems, and they are notorious for causing harmful algal blooms (HABs). In this study, we used high-throughput amplicon sequencing to capture global snapshots of specific fungal assemblages associated with laboratory-cultured marine dinoflagellate. We investigated a total of 13 clonal cultures of the dinoflagellate Karlodinium veneficum that were previously isolated from 5 geographic origins and have been maintained in our laboratory from several months to more than 14 years. The total recovered fungal microbiome, which consisted of 349 ASVs (amplicon sequencing variants, sequences clustered at a 100% sequence identity), could be assigned to 4 phyla, 18 classes, 37 orders, 65 families, 97 genera, and 131 species. The fungal consortium displayed high diversity and was dominated by filamentous fungi and ascomycetous and basidiomycetous yeasts. A core set of three genera among all the detected fungi was constitutively present in the K. veneficum strains isolated from geographically distant regions, with the top two most abundant genera, Thyridium and Pseudeurotium, capable of using hydrocarbons as the sole or major source of carbon and energy. In addition, fungal taxa previously documented as endophytes in other hosts were also found in all tested strains of K. veneficum. Because host-endophyte interactions are highly variable and strongly case-dependent, these fungal taxa were not necessarily genuine endosymbionts of K. veneficum; instead, it raised the possibility that dinoflagellates could potentially serve as an alternative ecological niche for the colonization of fungal endophytes. Our findings lay the foundation for further investigations into the potential roles or functions of fungi in the regulation of the growth dynamics and HABs of marine dinoflagellates in the field.}, } @article {pmid36674613, year = {2023}, author = {Wiesinger, A and Wenderlein, J and Ulrich, S and Hiereth, S and Chitimia-Dobler, L and Straubinger, RK}, title = {Revealing the Tick Microbiome: Insights into Midgut and Salivary Gland Microbiota of Female Ixodes ricinus Ticks.}, journal = {International journal of molecular sciences}, volume = {24}, number = {2}, pages = {}, doi = {10.3390/ijms24021100}, pmid = {36674613}, issn = {1422-0067}, abstract = {The ectoparasite Ixodes ricinus is an important vector for many tick-borne diseases (TBD) in the northern hemisphere, such as Lyme borreliosis, rickettsiosis, human granulocytic anaplasmosis, or tick-borne encephalitis virus. As climate change will lead to rising temperatures in the next years, we expect an increase in tick activity, tick population, and thus in the spread of TBD. Consequently, it has never been more critical to understand relationships within the microbial communities in ticks that might contribute to the tick's fitness and the occurrence of TBD. Therefore, we analyzed the microbiota in different tick tissues such as midgut, salivary glands, and residual tick material, as well as the microbiota in complete Ixodes ricinus ticks using 16S rRNA gene amplicon sequencing. By using a newly developed DNA extraction protocol for tick tissue samples and a self-designed mock community, we were able to detect endosymbionts and pathogens that have been described in the literature previously. Further, this study displayed the usefulness of including a mock community during bioinformatic analysis to identify essential bacteria within the tick.}, } @article {pmid36670832, year = {2023}, author = {Silva, RXG and Madeira, D and Cartaxana, P and Calado, R}, title = {Assessing the Trophic Impact of Bleaching: The Model Pair Berghia stephanieae/Exaiptasia diaphana.}, journal = {Animals : an open access journal from MDPI}, volume = {13}, number = {2}, pages = {}, doi = {10.3390/ani13020291}, pmid = {36670832}, issn = {2076-2615}, abstract = {Bleaching events associated with climate change are increasing worldwide, being a major threat to tropical coral reefs. Nonetheless, the indirect impacts promoted by the bleaching of organisms hosting photosynthetic endosymbionts, such as those impacting trophic interactions, have received considerably less attention by the scientific community. Bleaching significantly affects the nutritional quality of bleached organisms. The consequences promoted by such shifts remain largely overlooked, namely on specialized predators that have evolved to prey upon organisms hosting photosynthetic endosymbionts and benefit nutritionally, either directly or indirectly, from the available pool of photosynthates. In the present study, we advocate the use of the model predator-prey pair featuring the stenophagous nudibranch sea slug Berghia stephanieae that preys upon the photosymbiotic glass anemone Exaiptasia diaphana to study the impacts of bleaching on trophic interactions. These model organisms are already used in other research fields, and one may benefit from knowledge available on their physiology, omics, and culture protocols under controlled laboratory conditions. Moreover, B. stephanieae can thrive on either photosymbiotic or aposymbiotic (bleached) glass anemones, which can be easily maintained over long periods in the laboratory (unlike photosymbiotic corals). As such, one can investigate if and how nutritional shifts induced by bleaching impact highly specialized predators (stenophagous species), as well as if and how such effects cascade over consecutive generations. Overall, by using this model predator-prey pair one can start to truly unravel the trophic effects of bleaching events impacting coral reef communities, as well as their prevalence over time.}, } @article {pmid36670494, year = {2023}, author = {Chamankar, B and Maleki-Ravasan, N and Karami, M and Forouzan, E and Karimian, F and Naeimi, S and Choobdar, N}, title = {The structure and diversity of microbial communities in Paederus fuscipes (Coleoptera: Staphylinidae): from ecological paradigm to pathobiome.}, journal = {Microbiome}, volume = {11}, number = {1}, pages = {11}, pmid = {36670494}, issn = {2049-2618}, abstract = {BACKGROUND: Paederus fuscipes is medically the most famous rove beetle, which causes dermatitis or conjunctivitis in humans, as well as gastrointestinal toxicosis in livestock, via releasing toxic hemolymph containing pederin. Pedrin biosynthesis genes have been identified in uncultured Pseudomonas-like endosymbionts that are speculated to be acquired through a horizontal transfer. However, the composition of the P. fuscipes microbial community, especially of the gut and genital microbiome, remains unclear. This study was aimed to characterize the structure and diversity of P. fuscipes-associated bacterial communities in terms of gender, organ, and location using the Illumina HiSeq platform in the southern littorals of Caspian Sea.

RESULTS: The OTUs identified from P. fuscipes specimens were collapsed into 40 phyla, 112 classes, 249 orders, 365 families, 576 genera, and 106 species. The most abundant families were Pseudomonadaceae, Spiroplasmataceae, Weeksellaceae, Enterococcaceae, and Rhizobiaceae, respectively. Thirty top genera made up > 94% of the P. fuscipes microbiome, with predominating Pseudomonas, followed by the Spiroplasma, Apibacter, Enterococcus, Dysgonomonas, Sebaldella, Ruminococcus, and Wolbachia. Interesting dissimilarities were also discovered within and between the beetle microbiomes in terms of genders and organs. Analyses showed that Spiroplasma / Apibacter as well as Pseudomonas / Pseudomonas were the most abundant in the genitals / intestines of male and female beetles, respectively. Bacterial richness did not display any significant difference in the three provinces but was higher in male beetles than in females and more in the genitals than intestines.

CONCLUSIONS: The present study identified Pseudomonas-like endobacterium as a common symbiont of P. fuscipes beetles; this bacterium begins its journey from gut and genitalia of females to reach the male rove beetles. Additionally, male and female rove beetles were characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes. Evidence of the extension of P. fuscipes microbiome from the environmental paradigm to the pathobiome was also presented herein. A comprehensive survey of P. fuscipes microbiome components may eventually lead to ecological insights into the production and utilization of defensive compound of pederin and also the management of linear dermatitis with the use of available antibiotics against bacterial pathogens released by the beetles. Video Abstract.}, } @article {pmid36669676, year = {2023}, author = {Awad, M and Piálková, R and Haelewaters, D and Nedvěd, O}, title = {Infection patterns of Harmonia axyridis (Coleoptera: Coccinellidae) by ectoparasitic microfungi and endosymbiotic bacteria.}, journal = {Journal of invertebrate pathology}, volume = {}, number = {}, pages = {107887}, doi = {10.1016/j.jip.2023.107887}, pmid = {36669676}, issn = {1096-0805}, abstract = {The invasive alien ladybird Harmonia axyridis (Coleoptera: Coccinellidae) hosts a wide range of natural enemies. Many observations have been done in nature but experimental studies of interactions of multiple enemies on Ha. axyridis are rare. In light of this knowledge gap, we tested whether the host phenotype and presence of bacterial endosymbionts Spiroplasma and Wolbachia affected parasitism of Ha. axyridis by the ectoparasitic fungus Hesperomyces harmoniae (Ascomycota: Laboulbeniales). We collected 379 Ha. axyridis in the Czech Republic, processed specimens, including screening for He. harmoniae and a molecular assessment for bacteria, and calculated fecundity and hatchability of females. We found that high hatchability rate (71%) was conditioned by high fecundity (20 eggs daily or more). The average parasite prevalence of He. harmoniae was 53%, while the infection rate of Spiroplasma was 73% in ladybirds that survived in winter conditions. Wolbachia was only present in 2% of the analyzed ladybirds. Infection by either He. harmoniae or Spiroplasma did not differ among host color morphs. In the novemdecimsignata morph, younger individuals (with orange elytra) were more heavily parasitized compared to old ones (with red elytra). Fecundity and hatchability rate of females were unaffected by infection with either He. harmoniae or Spiroplasma. However, female ladybirds co-infected with He. harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont.}, } @article {pmid36653630, year = {2023}, author = {Mayfield, AB}, title = {Multi-macromolecular Extraction from Endosymbiotic Anthozoans.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2625}, number = {}, pages = {17-56}, pmid = {36653630}, issn = {1940-6029}, abstract = {Obligately symbiotic associations between reef-building corals (anthozoan cnidarians) and photosynthetically active dinoflagellates of the family Symbiodiniaceae comprise the functional basis of all coral reef ecosystems. Given the existential threats of global climate change toward these thermo-sensitive entities, there is an urgent need to better understand the physiological implications of changes in the abiotic milieu of scleractinian corals and their mutualistic algal endosymbionts. Although initially slow to leverage the immense breakthroughs in molecular biotechnology that have benefited humankind, coral biologists are making up for lost time in exploiting an array of ever-advancing molecular tools for answering key questions pertaining to the survival of corals in an ever-changing world. In order to comprehensively characterize the multi-omic landscape of the coral holobiont-the cnidarian host, its intracellular dinoflagellates, and a plethora of other microbial constituents-I introduce a series of protocols herein that yield large quantities of high-quality RNA, DNA, protein, lipids, and polar metabolites from a diverse array of reef corals and endosymbiotic sea anemones. Although numerous published articles in the invertebrate zoology field feature protocols that lead to sufficiently high yield of intact host coral macromolecules, through using the approach outlined herein one may simultaneously acquire a rich, multi-compartmental biochemical pool that truly reflects the complex and dynamic nature of these animal-plant chimeras.}, } @article {pmid36653505, year = {2023}, author = {Prada, F and Franzellitti, S and Caroselli, E and Cohen, I and Marini, M and Campanelli, A and Sana, L and Mancuso, A and Marchini, C and Puglisi, A and Candela, M and Mass, T and Tassi, F and LaJeunesse, TC and Dubinsky, Z and Falini, G and Goffredo, S}, title = {Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent.}, journal = {Communications biology}, volume = {6}, number = {1}, pages = {66}, pmid = {36653505}, issn = {2399-3642}, abstract = {Ocean acidification caused by shifts in ocean carbonate chemistry resulting from increased atmospheric CO2 concentrations is threatening many calcifying organisms, including corals. Here we assessed autotrophy vs heterotrophy shifts in the Mediterranean zooxanthellate scleractinian coral Balanophyllia europaea acclimatized to low pH/high pCO2 conditions at a CO2 vent off Panarea Island (Italy). Dinoflagellate endosymbiont densities were higher at lowest pH Sites where changes in the distribution of distinct haplotypes of a host-specific symbiont species, Philozoon balanophyllum, were observed. An increase in symbiont C/N ratios was observed at low pH, likely as a result of increased C fixation by higher symbiont cell densities. δ[13]C values of the symbionts and host tissue reached similar values at the lowest pH Site, suggesting an increased influence of autotrophy with increasing acidification. Host tissue δ[15]N values of 0‰ strongly suggest that diazotroph N2 fixation is occurring within the coral tissue/mucus at the low pH Sites, likely explaining the decrease in host tissue C/N ratios with acidification. Overall, our findings show an acclimatization of this coral-dinoflagellate mutualism through trophic adjustment and symbiont haplotype differences with increasing acidification, highlighting that some corals are capable of acclimatizing to ocean acidification predicted under end-of-century scenarios.}, } @article {pmid36651852, year = {2023}, author = {Takagi, T and Aoyama, K and Motone, K and Aburaya, S and Yamashiro, H and Miura, N and Inoue, K}, title = {Mutualistic Interactions between Dinoflagellates and Pigmented Bacteria Mitigate Environmental Stress.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0246422}, doi = {10.1128/spectrum.02464-22}, pmid = {36651852}, issn = {2165-0497}, abstract = {Scleractinian corals form symbiotic relationships with a variety of microorganisms, including endosymbiotic dinoflagellates of the family Symbiodiniaceae, and with bacteria, which are collectively termed coral holobionts. Interactions between hosts and their symbionts are critical to the physiological status of corals. Coral-microorganism interactions have been studied extensively, but dinoflagellate-bacterial interactions remain largely unexplored. Here, we developed a microbiome manipulation method employing KAS-antibiotic treatment (kanamycin, ampicillin, and streptomycin) to favor pigmented bacteria residing on cultured Cladocopium and Durusdinium, major endosymbionts of corals, and isolated several carotenoid-producing bacteria from cell surfaces of the microalgae. Following KAS-antibiotic treatment of Cladocopium sp. strain NIES-4077, pigmented bacteria increased 8-fold based on colony-forming assays from the parental strain, and 100% of bacterial sequences retrieved through 16S rRNA amplicon sequencing were affiliated with the genus Maribacter. Microbiome manipulation enabled host microalgae to maintain higher maximum quantum yield of photosystem II (variable fluorescence divided by maximum fluorescence [Fv/Fm]) under light-stress conditions, compared to the parental strain. Furthermore, by combining culture-dependent and -independent techniques, we demonstrated that species of the family Symbiodiniaceae and pigmented bacteria form strong interactions. Dinoflagellates protected bacteria from antibiotics, while pigmented bacteria protected microalgal cells from light stress via carotenoid production. Here, we describe for the first time a symbiotic relationship in which dinoflagellates and bacteria mutually reduce environmental stress. Investigations of microalgal-bacterial interactions further document bacterial contributions to coral holobionts and may facilitate development of novel techniques for microbiome-mediated coral reef conservation. IMPORTANCE Coral reefs cover less than 0.1% of the ocean floor, but about 25% of all marine species depend on coral reefs at some point in their life cycles. However, rising ocean temperatures associated with global climate change are a serious threat to coral reefs, causing dysfunction of the photosynthetic apparatus of endosymbiotic microalgae of corals, and overproducing reactive oxygen species harmful to corals. We manipulated the microbiome using an antibiotic treatment to favor pigmented bacteria, enabling their symbiotic microalgal partners to maintain higher photosynthetic function under insolation stress. Furthermore, we investigated mechanisms underlying microalgal-bacterial interactions, describing for the first time a symbiotic relationship in which the two symbionts mutually reduce environmental stress. Our findings extend current insights about microalgal-bacterial interactions, enabling better understanding of bacterial contributions to coral holobionts under stressful conditions and offering hope of reducing the adverse impacts of global warming on coral reefs.}, } @article {pmid36651455, year = {2023}, author = {Mata-Somarribas, C and Quesada-López, J and Matamoros, MF and Cervantes-Gómez, C and Mejía, A and Chacón, K and Bendig, I and Campos, R and Quesada-Morera, R and Cantanhêde, LM and Pereira, LOR and Cupolillo, E}, title = {Raising the suspicion of a non-autochthonous infection: identification of Leishmania guyanensis from Costa Rica exhibits a Leishmaniavirus related to Brazilian north-east and French Guiana viral genotypes.}, journal = {Memorias do Instituto Oswaldo Cruz}, volume = {117}, number = {}, pages = {e220162}, doi = {10.1590/0074-02760220162}, pmid = {36651455}, issn = {1678-8060}, abstract = {BACKGROUND: Costa Rica has a history of neglecting prevention, control and research of leishmaniasis, including limited understanding on Leishmania species causing human disease across the country and a complete lack of knowledge on the Leishmania RNA virus, described as a factor linked to the worsening and metastasis of leishmanial lesions.

OBJECTIVES: The aim of this work was to describe a case of cutaneous leishmaniasis by Leishmania (Viannia) guyanensis, bearing infection with Leishmaniavirus 1 (LRV1) in Costa Rica, raising the suspicion of imported parasites in the region.

METHODS: The Leishmania strain was previously identified by routine hsp70 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in Costa Rica and subsequently characterised by isoenzyme electrophoresis and Sanger sequencing in Brazil. Screening for LRV1 was conducted with a dual RT-PCR approach and sequencing of the fragment obtained.

FINDINGS: Since 2016 Costa Rica performs Leishmania isolation and typing as part of its epidemiological surveillance activities. Amongst 113 strains typed until 2019, only one was characterised as a L. (V.) guyanensis, corresponding to the first confirmed report of this species in the country. Interestingly, the same strain tested positive for LRV1. Sequencing of the viral orf1 and 2, clustered this sample with other LRV1 genotypes of South American origin, from the Northeast of Brazil and French Guiana.

MAIN CONCLUSION: The unique characteristics of this finding raised the suspicion that it was not an autochthonous strain. Notwithstanding its presumed origin, this report points to the occurrence of said endosymbiont in Central American Leishmania strains. The possibility of its local dispersion represents one more challenge faced by regional health authorities in preventing and controlling leishmaniasis.}, } @article {pmid36646785, year = {2023}, author = {Sétamou, M and Soto, YL and Tachin, M and Alabi, OJ}, title = {Report on the first detection of Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) in the Republic of Benin, West Africa.}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {801}, pmid = {36646785}, issn = {2045-2322}, abstract = {The Asian citrus psyllid (ACP), Diaphorina citri, was detected for the first time in the Republic of Benin, West Africa. The ACP is a known vector of Candidatus Liberibacter asiaticus (CLas), the putative causal agent of the devastating Huanglongbing (HLB; citrus greening disease). During visual surveys, ACP was only observed on residential citrus trees in southern Benin, but not in residential areas or commercial groves in the central and northern parts of the country. Its identity was confirmed morphologically and molecularly via DNA barcoding with published primers. Analysis of the obtained sequences showed that the ACP recorded in Benin clustered with the ones previously reported from Nigeria, suggesting a common origin of both populations. The ACP samples from Benin also carried Ca. Carsonella ruddii and Ca. Profftella armatura, two commonly found ACP endosymbionts. However, all the sampled ACP individuals tested negative for Ca. Liberibacter africanus, Ca. Liberibacter americanus, and CLas by quantitative polymerase chain reaction. This is the second report of the ACP in West Africa after Nigeria, the eastern bordering country of the Republic of Benin. Benin has an expanding commercial citrus industry, especially in the southern part of the country. Although the ACP samples tested negative for the HLB associated bacteria, the detection of ACP in the country requires swift actions including area-wide surveys to determine the extent of spread of this pest and the implementation of eradication or control efforts to prevent its establishment and spread of HLB in the country.}, } @article {pmid36636344, year = {2023}, author = {Hussain, M and Zhang, G and Leitner, M and Hedges, LM and Asgari, S}, title = {Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti.}, journal = {iScience}, volume = {26}, number = {1}, pages = {105836}, pmid = {36636344}, issn = {2589-0042}, abstract = {The endosymbiotic bacterium Wolbachia pipientis blocks replication of several arboviruses in transinfected Aedes aegypti mosquitoes. However, the mechanism of virus blocking remains poorly understood. Here, we characterized an RNase HI gene from Wolbachia, which is rapidly induced in response to dengue virus (DENV) infection. Knocking down w RNase HI using antisense RNA in Wolbachia-transinfected mosquito cell lines and A. aegypti mosquitoes led to increased DENV replication. Furthermore, overexpression of wRNase HI, in the absence of Wolbachia, led to reduced replication of a positive sense RNA virus, but had no effect on a negative sense RNA virus, a familiar scenario in Wolbachia-infected cells. Altogether, our results provide compelling evidence for the missing link between early Wolbachia-mediated virus blocking and degradation of viral RNA. These findings and the successful pioneered knockdown of Wolbachia genes using antisense RNA in cell line and mosquitoes enable new ways to manipulate and study the complex endosymbiont-host interactions.}, } @article {pmid36628964, year = {2023}, author = {Durand, S and Lheraud, B and Giraud, I and Bech, N and Grandjean, F and Rigaud, T and Peccoud, J and Cordaux, R}, title = {Heterogeneous distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare.}, journal = {Biology letters}, volume = {19}, number = {1}, pages = {20220457}, doi = {10.1098/rsbl.2022.0457}, pmid = {36628964}, issn = {1744-957X}, abstract = {In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the f element is overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element in some males, which probably reflects insufficient titer to induce feminization or presence of masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and mitochondrial haplotypes, but no association between the f element and mitochondrial background. Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of genetic conflicts and their impact on the variability of sex determination systems.}, } @article {pmid36627918, year = {2023}, author = {Singh, T and Sakai, K and Ishida-Castañeda, J and Iguchi, A}, title = {Short-term improvement of heat tolerance in naturally growing Acropora corals in Okinawa.}, journal = {PeerJ}, volume = {11}, number = {}, pages = {e14629}, pmid = {36627918}, issn = {2167-8359}, abstract = {Mass bleaching and subsequent mortality of reef corals by heat stress has increased globally since the late 20th century, due to global warming. Some experimental studies have reported that corals may increase heat tolerance for short periods, but only a few such studies have monitored naturally-growing colonies. Therefore, we monitored the survival, growth, and bleaching status of Acropora corals in fixed plots by distinguishing individual colonies on a heat-sensitive reef flat in Okinawa, Japan. The level of heat stress, assessed by the modified version of degree heating week duration in July and August, when the seawater temperature was the highest, was minimally but significantly higher in 2017 than in 2016; however, the same colonies exhibited less bleaching and mortality in 2017 than in 2016. Another study conducted at the same site showed that the dominant unicellular endosymbiotic algal species did not change before and after the 2016 bleaching, indicating that shifting and switching of the Symbiodiniaceae community did not contribute to improved heat tolerance. Colonies that suffered from partial mortality in 2016 were completely bleached at higher rates in 2017 than those without partial mortality in 2016. The present results suggest that either genetic or epigenetic changes in coral hosts and/or algal symbionts, or the shifting or switching of microbes other than endosymbionts, may have improved coral holobiont heat tolerance.}, } @article {pmid36626858, year = {2023}, author = {Husnik, F}, title = {Organellogenesis: Host proteins control symbiont cell divisions.}, journal = {Current biology : CB}, volume = {33}, number = {1}, pages = {R22-R25}, doi = {10.1016/j.cub.2022.11.028}, pmid = {36626858}, issn = {1879-0445}, abstract = {Understanding the order and importance of events through which endosymbionts transition into cellular organelles (organellogenesis) is central to hypotheses about the origin of the eukaryotic cell. A new study on host-symbiont integration in a unicellular eukaryote reveals host-derived cell-division proteins that are targeted to the cell envelope of a bacterial endosymbiont and involved in its cell division.}, } @article {pmid36624259, year = {2023}, author = {Zhang, S and Wang, T and Lima, RM and Pettkó-Szandtner, A and Kereszt, A and Downie, JA and Kondorosi, E}, title = {Widely conserved AHL transcription factors are essential for NCR gene expression and nodule development in Medicago.}, journal = {Nature plants}, volume = {}, number = {}, pages = {}, pmid = {36624259}, issn = {2055-0278}, abstract = {Symbiotic nitrogen fixation by Rhizobium bacteria in the cells of legume root nodules alleviates the need for nitrogen fertilizers. Nitrogen fixation requires the endosymbionts to differentiate into bacteroids which can be reversible or terminal. The latter is controlled by the plant, it is more beneficial and has evolved in multiple clades of the Leguminosae family. The plant effectors of terminal differentiation in inverted repeat-lacking clade legumes (IRLC) are nodule-specific cysteine-rich (NCR) peptides, which are absent in legumes such as soybean where there is no terminal differentiation of rhizobia. It was assumed that NCRs co-evolved with specific transcription factors, but our work demonstrates that expression of NCR genes does not require NCR-specific transcription factors. Introduction of the Medicago truncatula NCR169 gene under its own promoter into soybean roots resulted in its nodule-specific expression, leading to bacteroid changes associated with terminal differentiation. We identified two AT-Hook Motif Nuclear Localized (AHL) transcription factors from both M. truncatula and soybean nodules that bound to AT-rich sequences in the NCR169 promoter inducing its expression. Whereas mutation of NCR169 arrested bacteroid development at a late stage, the absence of MtAHL1 or MtAHL2 completely blocked bacteroid differentiation indicating that they also regulate other NCR genes required for the development of nitrogen-fixing nodules. Regulation of NCRs by orthologous transcription factors in non-IRLC legumes opens up the possibility of increasing the efficiency of nitrogen fixation in legumes lacking NCRs.}, } @article {pmid36617670, year = {2023}, author = {Torp, MK and Vaage, J and Stensløkken, KO}, title = {Mitochondria-derived damage associated molecular patterns and inflammation in the ischemic-reperfused heart.}, journal = {Acta physiologica (Oxford, England)}, volume = {}, number = {}, pages = {e13920}, doi = {10.1111/apha.13920}, pmid = {36617670}, issn = {1748-1716}, abstract = {Cardiac cell death after myocardial infarction release endogenous structures termed damage associated molecular patterns (DAMPs) that trigger the innate immune system and initiate a sterile inflammation in the myocardium. Cardiomyocytes are energy demanding cells and 30% of their volume are mitochondria. Mitochondria are evolutionary endosymbionts originating from bacteria containing molecular patterns similar to bacteria, termed mitochondrial DAMPs (mDAMPs). Consequently, mitochondrial debris may be particularly immunogenic and damaging. However, the role of mDAMPs in myocardial infarction is not clarified. Identifying the most harmful mDAMPs and inhibiting their early inflammatory signaling may reduce infarct size and the risk of developing post-infarct heart failure. The focus of this review is the role of mDAMPs in the immediate pro-inflammatory phase after myocardial infarction before arrival of immune cells in the myocardium. We discuss different mDAMPs, their role in physiology and present knowledge regarding their role in the inflammatory response of acute myocardial infarction.}, } @article {pmid36605741, year = {2022}, author = {Büttner, H and Pidot, SJ and Scherlach, K and Hertweck, C}, title = {Endofungal bacteria boost anthelminthic host protection with the biosurfactant symbiosin.}, journal = {Chemical science}, volume = {14}, number = {1}, pages = {103-112}, pmid = {36605741}, issn = {2041-6520}, abstract = {Effective protection of soil fungi from predators is crucial for their survival in the niche. Thus, fungi have developed efficient defence strategies. We discovered that soil beneficial Mortierella fungi employ a potent cytotoxin (necroxime) against fungivorous nematodes. Interestingly, this anthelminthic agent is produced by bacterial endosymbionts (Candidatus Mycoavidus necroximicus) residing within the fungus. Analysis of the symbiont's genome indicated a rich biosynthetic potential, yet nothing has been known about additional metabolites and their potential synergistic functions. Here we report that two distinct Mortierella endosymbionts produce a novel cyclic lipodepsipeptide (symbiosin), that is clearly of bacterial origin, but has striking similarities to various fungal specialized metabolites. The structure and absolute configuration of symbiosin were fully elucidated. By comparative genomics of symbiosin-positive strains and in silico analyses of the deduced non-ribosomal synthetases, we assigned the (sym) biosynthetic gene cluster and proposed an assembly line model. Bioassays revealed that symbiosin is not only an antibiotic, in particular against mycobacteria, but also exhibits marked synergistic effects with necroxime in anti-nematode tests. By functional analyses and substitution experiments we found that symbiosin is a potent biosurfactant and that this particular property confers a boost in the anthelmintic action, similar to formulations of therapeutics in human medicine. Our findings illustrate that "combination therapies" against parasites already exist in ecological contexts, which may inspire the development of biocontrol agents and therapeutics.}, } @article {pmid36604515, year = {2023}, author = {Dharamshi, JE and Köstlbacher, S and Schön, ME and Collingro, A and Ettema, TJG and Horn, M}, title = {Gene gain facilitated endosymbiotic evolution of Chlamydiae.}, journal = {Nature microbiology}, volume = {8}, number = {1}, pages = {40-54}, pmid = {36604515}, issn = {2058-5276}, abstract = {Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.}, } @article {pmid36602726, year = {2023}, author = {Xiao, B and Li, D and Liao, B and Zheng, H and Yang, X and Xie, Y and Xie, Z and Li, C}, title = {Effects of microplastic combined with Cr(III) on apoptosis and energy pathway of coral endosymbiont.}, journal = {Environmental science and pollution research international}, volume = {}, number = {}, pages = {}, pmid = {36602726}, issn = {1614-7499}, abstract = {The combined effect of polyethylene (PE) microplastics and chromium (Cr(III)) on the scleractinian coral Acropora pruinosa (A. pruinosa) was investigated. The endpoints analysed in this study included the endosymbiont density, the chlorophyll a + c content, and the activity of enzymes involved in apoptosis (caspase-1, caspase-3), glycolysis (lactate dehydrogenase, LDH), the pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH) and electron transfer coenzyme (nicotinamide adenine dinucleotide, NAD[+]/NADH). During the 7-day exposure to PE and Cr(III) stress, the endosymbiont density and chlorophyll content decreased gradually. The caspase-1 and caspase-3 activities increased in the high-concentration Cr(III) exposure group. Furthermore, the LDH and G6PDH activities decreased significantly, and the NAD[+]/NADH was decreased significantly. In summary, the results showed that PE and Cr(III) stress inhibited the endosymbiont energy metabolism enzymes and further led to endosymbiont apoptosis in coral. In addition, under exposure to the combination of stressors, when the concentration of Cr(III) remained at 1 × 10[-2] mg/L, the toxic effects of heavy metals on the endosymbiont were temporarily relieved with elevated PE concentrations. In contrast, when coral polyps were exposed to 5 mg/L PE and increasing Cr(III) concentrations, their metabolic activities were seriously disturbed, which increased the burden of energy consumption. In the short term, the toxic effect of Cr(III) was more obvious than that of PE because Cr(III) exposure leads to endosymbiont apoptosis and irreversible damage. This is the first study to provide insights into the combined effect of microplastic and Cr(III) stress on the apoptosis and energy pathways of coral endosymbionts. This study suggested that microplastics combined with Cr(III) are an important factor affecting the apoptosis and energy metabolism of endosymbionts, accelerating the collapse of the balance between the coral host and symbiotic endosymbiont.}, } @article {pmid36602054, year = {2023}, author = {Jin, L and Zhang, BW and Lu, JW and Liao, JA and Zhu, QJ and Lin, Y and Yu, XQ}, title = {The mechanism of Cry41-related toxin against Myzus persicae based on its interaction with Buchnera-derived ATP-dependent-6-phosphofructokinase.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.7340}, pmid = {36602054}, issn = {1526-4998}, abstract = {BACKGROUND: Myzus persicae (Hemiptera: Aphididae) is one of the most notorious pests to many crops worldwide. Most Cry toxins produced by Bacillus thuringiensis show very low toxicity to M. persicae; however, a study showed that Cry41-related toxin had moderate toxic activity against M. persicae. In our previous work, potential Cry41-related toxin binding proteins in M. persicae were identified, including Cathepsin B, calcium-transporting ATPase, and Buchnera-derived ATP-dependent-6-phosphofructokinase (PFKA). Buchnera is an endosymbiont present in almost all aphids and it provides necessary nutrients for aphid's growth. This study investigated the role of Buchnera-derived PFKA in Cry41-related toxicity against M. persicae.

RESULTS: In this study, recombinant PFKA was expressed and purified, and in vitro assays revealed that PFKA bound to Cry41-related toxin, and Cry41-related toxin at 25 μg/mL significantly inhibited the activity of PFKA. Additionally, when M. persicae was treated with 30 μg/mL of Cry41-related toxin for 24 h, the expression of dnak, a single-copy gene in Buchnera, was significantly decreased, indicating a decrease in the number of Buchnera.

CONCLUSION: Our results suggest that Cry41-related toxin interacts with Buchnera-derived PFKA to inhibit its enzymatic activity and likely impair cell viability, resulting in a decrease in the number of Buchnera, and finally leading to M. persicae death. These findings open new perspectives in understanding the mode of action of Cry toxins and are useful to help improve the Cry toxicity for aphid control. This article is protected by copyright. All rights reserved.}, } @article {pmid36598738, year = {2023}, author = {Scholz, H}, title = {From Natural Behavior to Drug Screening: Invertebrates as Models to Study Mechanisms Associated with Alcohol Use Disorders.}, journal = {Current topics in behavioral neurosciences}, volume = {}, number = {}, pages = {}, pmid = {36598738}, issn = {1866-3370}, abstract = {Humans consume ethanol-containing beverages, which may cause an uncontrollable or difficult-to-control intake of ethanol-containing liquids and may result in alcohol use disorders. How the transition at the molecular level from "normal" ethanol-associated behaviors to addictive behaviors occurs is still unknown. One problem is that the components contributing to normal ethanol intake and their underlying molecular adaptations, especially in neurons that regulate behavior, are not clear. The fruit fly Drosophila melanogaster and the earthworm Caenorhabditis elegans show behavioral similarities to humans such as signs of intoxication, tolerance, and withdrawal. Underlying the phenotypic similarities, invertebrates and vertebrates share mechanistic similarities. For example in Drosophila melanogaster, the dopaminergic neurotransmitter system regulates the positive reinforcing properties of ethanol and in Caenorhabditis elegans, serotonergic neurons regulate feeding behavior. Since these mechanisms are fundamental molecular mechanisms and are highly conserved, invertebrates are good models for uncovering the basic principles of neuronal adaptation underlying the behavioral response to ethanol. This review will focus on the following aspects that might shed light on the mechanisms underlying normal ethanol-associated behaviors. First, the current status of what is required at the behavioral and cellular level to respond to naturally occurring levels of ethanol is summarized. Low levels of ethanol delay the development and activate compensatory mechanisms that in turn might be beneficial for some aspects of the animal's physiology. Repeated exposure to ethanol however might change brain structures involved in mediating learning and memory processes. The smell of ethanol is already a key component in the environment that is able to elicit behavioral changes and molecular programs. Minimal networks have been identified that regulate normal ethanol consumption. Other environmental factors that influence ethanol-induced behaviors include the diet, dietary supplements, and the microbiome. Second, the molecular mechanisms underlying neuronal adaptation to the cellular stressor ethanol are discussed. Components of the heat shock and oxidative stress pathways regulate adaptive responses to low levels of ethanol and in turn change behavior. The adaptive potential of the brain cells is challenged when the organism encounters additional cellular stressors caused by aging, endosymbionts or environmental toxins or excessive ethanol intake. Finally, to underline the conserved nature of these mechanisms between invertebrates and higher organisms, recent approaches to identify drug targets for ethanol-induced behaviors are provided. Already approved drugs regulate ethanol-induced behaviors and they do so in part by interfering with cellular stress pathways. In addition, invertebrates have been used to identify new compounds targeting molecules involved in the regulation in ethanol withdrawal-like symptoms. This review primarily highlights the advances of the last 5 years concerning Drosophila melanogaster, but also provides intriguing examples of Caenorhabditis elegans and Apis mellifera in support.}, } @article {pmid36597782, year = {2023}, author = {Mahdhi, A and Mars, M and Rejili, M}, title = {Members of Ensifer and Rhizobium genera are new bacterial endosymbionts nodulating Pisum sativum (L.).}, journal = {FEMS microbiology ecology}, volume = {}, number = {}, pages = {}, doi = {10.1093/femsec/fiad001}, pmid = {36597782}, issn = {1574-6941}, abstract = {Eighty-four Pisum sativum legume nodulating bacteria (LNB) were isolated from seven geographical sites from southern Tunisia. Phylogenetic analyses based on partial sequences of 16S rRNA gene and the housekeeping genes glnII, and recA grouped strains into six clusters, four of which belonged to the genus Rhizobium and two to the Ensifer genus. Among Rhizobium clusters, 41 strains were affiliated to Rhizobium leguminosarum, two strains to R. pisi, two strains to R. etli, and interestingly two strains belonged to previously undescribed Rhizobium species. The remaining two strains were closely related to Ensifer medicae (two strains) and Ensifer meliloti (two strains). A symbiotic nodC gene-based phylogeny and host specificity test showed that all Rhizobium strains nodulating pea belonged to the symbiovar viciae, whereas the Ensifer strains were associated with the symbiovar meliloti never described to date. All strains under investigation differed in the number of induced root nodules and the effectiveness of atmospheric nitrogen fixation. The R. leguminosarum PsZA23, R. leguminosarum PsGBL42 and E. medicae PsTA22a, forming the most effective symbiosis with the plant host, are potential candidates for inoculation programs.}, } @article {pmid36589876, year = {2022}, author = {Uni, S and Mat Udin, AS and Tan, PE and Rodrigues, J and Martin, C and Junker, K and Agatsuma, T and Low, VL and Lim, YA and Saijuntha, W and Omar, H and Zainuri, NA and Fukuda, M and Kimura, D and Matsubayashi, M and Uga, S and Takaoka, H and Azirun, MS and Ramli, R}, title = {Description and molecular characterisation of Pelecitus copsychi Uni, Mat Udin & Martin n. sp. (Nematoda: Onchocercidae) from the white-rumped shama Copsychus malabaricus (Scopoli) (Passeriformes: Muscicapidae) of Pahang, Malaysia.}, journal = {Current research in parasitology & vector-borne diseases}, volume = {2}, number = {}, pages = {100078}, pmid = {36589876}, issn = {2667-114X}, abstract = {Species of the genus Pelecitus Railliet & Henry, 1910 the most widely distributed avian filariae in Africa and South America. Zoonotic cases in humans were reported in South America. While investigating the filarial fauna of wild animals in Malaysia, we discovered an undescribed filaria from the swollen footpad of the left leg of Copsychus malabaricus (Scopoli) in Pahang, Peninsular Malaysia. Adults of both sexes have a corkscrew-shaped body. Based on comparison of their morphological characteristics (i.e. pre-oesophageal cuticular ring distinct, oesophagus divided, vulva protuberant and situated at the level of anterior half of oesophagus, spicules strongly sclerotized and left spicule with broad blade) with other Pelecitus species, they are here described as Pelecitus copsychi Uni, Mat Udin & Martin n. sp. Multi-locus sequence analyses based on seven genes (12S rDNA, cox1, 18S rDNA, 28S rDNA, MyoHC, rbp1 and hsp70) were performed to determine the phylogenetic position of the new species. The calculated p-distance between the cox1 gene sequences for P. copsychi n. sp. and Pelecitus fulicaeatrae (Diesing, 1861) was 14.1%. Intraspecific genetic variation between two individuals of the new species was 0.4%. In both the Bayesian inference and maximum-likelihood trees, P. copsychi n. sp. was positioned in the second clade of ONC5, containing three genera of the subfamily Dirofilariinae (Foleyella Seurat, 1917, Pelecitus and Loa Stiles, 1905). Immunostaining and molecular analyses remained negative for the presence of Wolbachia endosymbionts. Our findings corroborate the division of the subfamily Dirofilariinae into ONC3 with Dirofilaria Railliet & Henry, 1911 and ONC5 with Pelecitus.}, } @article {pmid36585292, year = {2022}, author = {Minahan, NT and Wu, WJ and Tsai, KH}, title = {Rickettsia felis is an emerging human pathogen associated with cat fleas: A review of findings in Taiwan.}, journal = {Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.jmii.2022.12.006}, pmid = {36585292}, issn = {1995-9133}, abstract = {Rickettsia felis is an emerging rickettsial agent principally associated with cat fleas (Ctenocephalides felis), formerly discovered in 1990. Since then, clinical cases of R. felis infection have been identified globally by specific DNA sequences in patients with undifferentiated febrile illness, including in Taiwan, but such evidence is limited. R. felis rickettsiosis is self-limiting and easily treated with doxycycline, but its diagnosis remains a challenge. Environmental risk factors for R. felis rickettsiosis have yet to be clearly demonstrated, and its transmission biology is incompletely understood. Cat fleas are naturally infected with R. felis at varying rates, and vector competence in the transmission of R. felis has been demonstrated in animal models, including dogs, which may serve as reservoir hosts. In northern Taiwan, despite ∼20% of cat fleas infesting companion animals consistently found to be infected with R. felis, only a few cases of potential R. felis infection have been identified through a retrospective serological investigation, though without molecular confirmation. Ecological studies have identified divergent R. felis-like organisms in different arthropod hosts, but these strains appear to serve as nonpathogenic endosymbionts. Although its association with disease is limited, we believe cat flea-borne R. felis warrants increased recognition in an aging population due to immunosenescence and the proximity of companion animals to the elderly. Adopting a One Health approach involving collaboration and communication between clinicians, veterinarians, public health practitioners, and environmental scientists will improve our knowledge about this neglected pathogen and promote the prevention and control of vector-borne diseases.}, } @article {pmid36569075, year = {2022}, author = {Obert, T and Zhang, T and Rurik, I and Vďačný, P}, title = {First molecular evidence of hybridization in endosymbiotic ciliates (Protista, Ciliophora).}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {1067315}, pmid = {36569075}, issn = {1664-302X}, abstract = {Hybridization is an important evolutionary process that can fuel diversification via formation of hybrid species or can lead to fusion of previously separated lineages by forming highly diverse species complexes. We provide here the first molecular evidence of hybridization in wild populations of ciliates, a highly diverse group of free-living and symbiotic eukaryotic microbes. The impact of hybridization was studied on the model of Plagiotoma, an obligate endosymbiont of the digestive tube of earthworms, using split decomposition analyses and species networks, 2D modeling of the nuclear rRNA molecules and compensatory base change analyses as well as multidimensional morphometrics. Gene flow slowed down and eventually hampered the diversification of Lumbricus-dwelling plagiotomids, which collapsed into a single highly variable biological entity, the P. lumbrici complex. Disruption of the species boundaries was suggested also by the continuum of morphological variability in the phenotypic space. On the other hand, hybridization conspicuously increased diversity in the nuclear rDNA cistron and somewhat weakened the host structural specificity of the P. lumbrici complex, whose members colonize a variety of phylogenetically closely related anecic and epigeic earthworms. By contrast, another recorded species, P. aporrectodeae sp. n., showed no signs of introgression, no variability in the rDNA cistron, and very high host specificity. These contrasting eco-evolutionary patterns indicate that hybridization might decrease the alpha-diversity by dissolving species boundaries, weaken the structural host specificity by broadening ecological amplitudes, and increase the nuclear rDNA variability by overcoming concerted evolution within the P. lumbrici species complex.}, } @article {pmid36558828, year = {2022}, author = {Cabezas-Cruz, A and Fogaça, AC}, title = {Lock and Key: Why Rickettsia Endosymbionts Do Not Harm Vertebrate Hosts?.}, journal = {Pathogens (Basel, Switzerland)}, volume = {11}, number = {12}, pages = {}, doi = {10.3390/pathogens11121494}, pmid = {36558828}, issn = {2076-0817}, abstract = {Are tick endosymbionts transmitted to and able to injure vertebrate hosts [...].}, } @article {pmid36555070, year = {2022}, author = {Fan, ZY and Liu, Y and He, ZQ and Wen, Q and Chen, XY and Khan, MM and Osman, M and Mandour, NS and Qiu, BL}, title = {Rickettsia Infection Benefits Its Whitefly Hosts by Manipulating Their Nutrition and Defense.}, journal = {Insects}, volume = {13}, number = {12}, pages = {}, doi = {10.3390/insects13121161}, pmid = {36555070}, issn = {2075-4450}, abstract = {Endosymbionts play an essential role in the biology, physiology and immunity of insects. Many insects, including the whitefly Bemisia&nbsp;tabaci, are infected with the facultative endosymbiont Rickettsia. However, the mutualism between Rickettsia and its whitefly host remains unclear. This study investigated the biological and physiological benefits of Rickettsia infection to B. tabaci. Results revealed that infection of Rickettsia increased the fertility, the survival rate from nymph to adult and the number of female whiteflies. In addition, this facilitation caused a significant reduction in nymphal developmental duration but did not affect percentage rate of egg hatching. Rickettsia infected B. tabaci had significantly higher glycogen, soluble sugar and trehalose contents than Rickettsia negative B. tabaci individuals. Rickettsia also improved the immunity of its whitefly hosts. Rickettsia infested B. tabaci had lower mortality rates and higher semi-lethal concentrations (LC50) when exposed to the fungus Akanthomyces&nbsp;attenuatus and the insecticides imidacloprid and spirotetramat. The percentage of parasitism by Encarsia&nbsp;formosa was also reduced by Rickettsia infection. Overall, Rickettsia infection benefits B. tabaci by improving the nutritional composition of its host, and also protects B. tabaci by enhancing its resistance towards insecticides (imidacloprid and spirotetramat), entomopathogenic fungi (A. attenuatus) and its main parasitoid (E.&nbsp;formosa); all of which could significantly impact on current management strategies.}, } @article {pmid36555052, year = {2022}, author = {Tomanović, Ž and Kavallieratos, NG and Ye, Z and Nika, EP and Petrović, A and Vollhardt, IMG and Vorburger, C}, title = {Cereal Aphid Parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, Biodiversity, and Ecology.}, journal = {Insects}, volume = {13}, number = {12}, pages = {}, doi = {10.3390/insects13121142}, pmid = {36555052}, issn = {2075-4450}, abstract = {Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology of cereal aphid parasitoids in Europe, an important group of natural enemies contributing to cereal aphid control. We review the knowledge obtained from the integrative taxonomy of 26 cereal aphid primary parasitoid species, including two allochthonous species (Lysiphlebus testaceipes and Trioxys sunnysidensis) and two recently described species (Lipolexis labialis and Paralipsis brachycaudi). We further review 28 hyperparasitoid species belonging to three hymenopteran superfamilies and four families (Ceraphronoidea: Megaspillidae; Chalcidoidea: Pteromalidae, Encyrtidae; Cynipoidea: Figitidae). We also compile knowledge on the presence of secondary endosymbionts in cereal aphids, as these are expected to influence the community composition and biocontrol efficiency of cereal aphid parasitoids. To study aphid-parasitoid-hyperparasitoid food webs more effectively, we present two kinds of DNA-based approach: (i) diagnostic PCR (mainly multiplex PCR), and (ii) DNA sequence-based methods. Finally, we also review the effects of landscape complexity on the different trophic levels in the food webs of cereal aphids and their associated parasitoids, as well as the impacts of agricultural practices and environmental variation.}, } @article {pmid36554995, year = {2022}, author = {Gümüşsoy, A and Yüksel, E and Özer, G and İmren, M and Canhilal, R and Amer, M and Dababat, AA}, title = {Identification and Biocontrol Potential of Entomopathogenic Nematodes and Their Endosymbiotic Bacteria in Apple Orchards against the Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae).}, journal = {Insects}, volume = {13}, number = {12}, pages = {}, doi = {10.3390/insects13121085}, pmid = {36554995}, issn = {2075-4450}, abstract = {The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is one of the major pests in pome fruit production worldwide. Heavy treatment of the larvae of C. pomonella with insecticides triggered the development of resistance to many groups of insecticides. In addition, the increasing concern about the adverse effects of synthetic insecticides on human health and the environment has led to the development of sustainable and eco-friendly control practices for C. pomonella. The entomopathogenic nematodes (EPNs) (Steinernema and Heterorhabditis spp.) and their endosymbionts (Xenorhabdus and Photorhabdus spp.) represent a newly emerging approach to controlling a wide range of insect pests. In the present study, field surveys were conducted in apple orchards to isolate and identify EPNs and their endosymbionts and evaluate their insecticidal efficacy on the larvae of C. pomonella. EPNs were isolated from 12 of 100 soil samples (12%). Seven samples were identified as Steinernema feltiae (Filipjev, 1934) (Rhabditida: Steinernematidae), whereas five samples were assigned to Heterorhabditis bacteriophora (Poinar, 1976) (Rhabditida: Heterorhabditidae). The pathogenicity of the EPN species/isolates was screened on the last instar larvae of G. mellonella. The two most pathogenic isolates from each EPN species were tested against fifth instar larvae of C. pomonella under controlled conditions. The maximum mortality (100%) was achieved by all EPN species/isolates at a concentration of 100 IJs/larva 96 h after treatment. The endosymbionts of selected H. bacteriophora and S. feltiae species were identified as Photorhabdus luminescens subsp. kayaii and Xenorhabdus bovienii, respectively. The mortality rates ranged between 25 and 62% when the fifth larval instar larvae of C. pomonella were exposed to the treatment of cell-free supernatants of symbiotic bacteria. In essence, the present survey indicated that EPNs and their symbiotic bacteria have good potential for biological control of C. pomonella.}, } @article {pmid36548668, year = {2022}, author = {Zeng, W and Li, Z and Jiang, T and Cheng, D and Yang, L and Hang, T and Duan, L and Zhu, D and Fang, Y and Zhang, Y}, title = {Identification of Bacterial Communities and Tick-Borne Pathogens in Haemaphysalis spp. Collected from Shanghai, China.}, journal = {Tropical medicine and infectious disease}, volume = {7}, number = {12}, pages = {}, doi = {10.3390/tropicalmed7120413}, pmid = {36548668}, issn = {2414-6366}, abstract = {Ticks can carry and transmit a large number of pathogens, including bacteria, viruses and protozoa, posing a huge threat to human health and animal husbandry. Previous investigations have shown that the dominant species of ticks in Shanghai are Haemaphysalis flava and Haemaphysalis longicornis. However, no relevant investigations and research have been carried out in recent decades. Therefore, we investigated the bacterial communities and tick-borne pathogens (TBPs) in Haemaphysalis spp. from Shanghai, China. Ixodid ticks were collected from 18 sites in Shanghai, China, and identified using morphological and molecular methods. The V3-V4 hypervariable regions of the bacterial 16S rRNA gene were amplified from the pooled tick DNA samples and subject to metagenomic analysis. The microbial diversity in the tick samples was estimated using the alpha diversity that includes the observed species index and Shannon index. The Unifrac distance matrix as determined using the QIIME software was used for unweighted Unifrac Principal coordinates analysis (PCoA). Individual tick DNA samples were screened with genus-specific or group-specific nested polymerase chain reaction (PCR) for these TBPs and combined with a sequencing assay to confirm the results of the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. We found H. flava and H. longicornis to be the dominant species of ticks in Shanghai in this study. Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria are the main bacterial communities of Haemaphysalis spp. The total species abundances of Proteobacteria, Firmicutes and Bacteroidetes, are 48.8%, 20.8% and 18.1%, respectively. At the level of genus analysis, H. longicornis and H. flava carried at least 946 genera of bacteria. The bacteria with high abundance include Lactobacillus, Coxiella, Rickettsia and Muribaculaceae. Additionally, Rickettsia rickettsii, Rickettsia japonica, Candidatus Rickettsia jingxinensis, Anaplasma bovis, Ehrlichia ewingii, Ehrlichia chaffeensis, Coxiella spp. and Coxiella-like endosymbiont were detected in Haemaphysalis spp. from Shanghai, China. This study is the first report of bacterial communities and the prevalence of some main pathogens in Haemaphysalis spp. from Shanghai, China, and may provide insights and evidence for bacterial communities and the prevalence of the main pathogen in ticks. This study also indicates that people and other animals in Shanghai, China, are exposed to several TBPs.}, } @article {pmid36546855, year = {2022}, author = {Fujiwara, A and Meng, XY and Kamagata, Y and Tsuchida, T}, title = {Subcellular Niche Segregation of Co-Obligate Symbionts in Whiteflies.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0468422}, doi = {10.1128/spectrum.04684-22}, pmid = {36546855}, issn = {2165-0497}, abstract = {Many insects contain endosymbiotic bacteria within their bodies. In multiple endosymbiotic systems comprising two or more symbionts, each of the symbionts is generally localized in a different host cell or tissue. Bemisia tabaci (Sweet potato whitefly) possesses a unique endosymbiotic system where co-obligate symbionts are localized in the same bacteriocytes. Using fluorescence in situ hybridization, we found that endosymbionts in B. tabaci MEAM1 occupy distinct subcellular habitats, or niches, within a single bacteriocyte. Hamiltonella was located adjacent to the nucleus of the bacteriocyte, while Portiera was present in the cytoplasm surrounding Hamiltonella. Immunohistochemical analysis revealed that the endoplasmic reticulum separates the two symbionts. Habitat segregation was maintained for longer durations in female bacteriocytes. The same segregation was observed in three genetically distinct B. tabaci groups (MEAM1, MED Q1, and Asia II 6) and Trialeurodes vaporariorum, which shared a common ancestor with Bemisia over 80 million years ago, even though the coexisting symbionts and the size of bacteriocytes were different. These results suggest that the habitat segregation system existed in the common ancestor and was conserved in both lineages, despite different bacterial partners coexisting with Portiera. Our findings provide insights into the evolution and maintenance of complex endosymbiotic systems and highlight the importance of organelles for the construction of separate niches for endosymbionts. IMPORTANCE Co-obligate endosymbionts in B. tabaci are exceptionally localized within the same bacteriocyte (a specialized cell for endosymbiosis), but the underlying mechanism for their coexistence remains largely unknown. This study provides evidence for niche segregation at the subcellular level between the two symbionts. We showed that the endoplasmic reticulum is a physical barrier separating the two species. Despite differences in co-obligate partners, this subcellular niche segregation was conserved across various whitefly species. The physical proximity of symbionts may enable the efficient biosynthesis of essential nutrients via shared metabolic pathways. The expression "Good fences make good neighbors" appears to be true for insect endosymbiotic systems.}, } @article {pmid36534288, year = {2023}, author = {Espino-Vázquez, AN and Córdova-López, G and Cabrera-Rangel, JF and Mendoza-Servín, JV and Partida-Martínez, LP}, title = {The Rhizopus Holobiont: A Model to Decipher Fungal-Bacterial-Viral Symbioses.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2610}, number = {}, pages = {137-147}, pmid = {36534288}, issn = {1940-6029}, abstract = {Rhizopus microsporus is an early-diverging fungal species that inhabits the soil, is used for the fermentation of diverse Asian and African foods, and can be a pathogen of plants, animals, and humans.Toxin-producing strains of R. microsporus live in symbiosis with Gram-negative betaproteobacteria from the genus Mycetohabitans (Burkholderia sensu lato). These bacterial endosymbionts increase the metabolic plasticity of the fungal holobiont by producing the "mycotoxins," control their asexual reproduction, and influence their sexual success. Recently, we identified two viruses of the genus Narnavirus in some R. microsporus strains that harbor Mycetohabitans. By eliminating bacteria and/or viruses from host R. microsporus strains, we have been able to study the role of these symbionts in fungal biology. Remarkably, the absence of these bacterial and viral symbionts decreases sexual reproduction. In this chapter, the method developed to eliminate and genotype the Narnavirus RmNV-20S and RmNV-23S in R. microsporus is described in detail.}, } @article {pmid36533142, year = {2022}, author = {Zucker, F and Bischoff, V and Olo Ndela, E and Heyerhoff, B and Poehlein, A and Freese, HM and Roux, S and Simon, M and Enault, F and Moraru, C}, title = {New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria.}, journal = {Virus evolution}, volume = {8}, number = {2}, pages = {veac070}, pmid = {36533142}, issn = {2057-1577}, abstract = {The Microviridae family represents one of the major clades of single-stranded DNA (ssDNA) phages. Their cultivated members are lytic and infect Proteobacteria, Bacteroidetes, and Chlamydiae. Prophages have been predicted in the genomes from Bacteroidales, Hyphomicrobiales, and Enterobacteriaceae and cluster within the 'Alpavirinae', 'Amoyvirinae', and Gokushovirinae. We have isolated 'Ascunsovirus oldenburgi' ICBM5, a novel phage distantly related to known Microviridae. It infects Sulfitobacter dubius SH24-1b and uses both a lytic and a carrier-state life strategy. Using ICBM5 proteins as a query, we uncovered in publicly available resources sixty-five new Microviridae prophages and episomes in bacterial genomes and retrieved forty-seven environmental viral genomes (EVGs) from various viromes. Genome clustering based on protein content and phylogenetic analysis showed that ICBM5, together with Rhizobium phages, new prophages, episomes, and EVGs cluster within two new phylogenetic clades, here tentatively assigned the rank of subfamily and named 'Tainavirinae' and 'Occultatumvirinae'. They both infect Rhodobacterales. Occultatumviruses also infect Hyphomicrobiales, including nitrogen-fixing endosymbionts from cosmopolitan legumes. A biogeographical assessment showed that tainaviruses and occultatumviruses are spread worldwide, in terrestrial and marine environments. The new phage isolated here sheds light onto new and diverse branches of the Microviridae tree, suggesting that much of the ssDNA phage diversity remains in the dark.}, } @article {pmid36530420, year = {2022}, author = {Zhang, H and Gao, J and Ma, Z and Liu, Y and Wang, G and Liu, Q and Du, Y and Xing, D and Li, C and Zhao, T and Jiang, Y and Dong, Y and Guo, X and Zhao, T}, title = {Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {1082809}, pmid = {36530420}, issn = {2235-2988}, abstract = {BACKGROUND: Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China.

METHODS: A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied.

RESULTS: 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%.

CONCLUSIONS: Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.}, } @article {pmid36519169, year = {2022}, author = {Arai, H and Inoue, MN and Kageyama, D}, title = {Male-killing mechanisms vary between Spiroplasma species.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {1075199}, doi = {10.3389/fmicb.2022.1075199}, pmid = {36519169}, issn = {1664-302X}, abstract = {Male-killing, a male-specific death of arthropod hosts during development, is induced by Spiroplasma (Mollicutes) endosymbionts of the Citri-Poulsonii and the Ixodetis groups, which are phylogenetically distant groups. Spiroplasma poulsonii induces male-killing in Drosophila melanogaster (Diptera) using the Spaid toxin that harbors ankyrin repeats, whereas little is known about the origin and mechanisms of male-killing induced by Spiroplasma ixodetis. Here, we analyzed the genome and the biological characteristics of a male-killing S. ixodetis strain sHm in the moth Homona magnanima (Tortricidae, Lepidoptera). Strain sHm harbored a 2.1 Mb chromosome and two potential plasmids encoding Type IV effectors, putatively involved in virulence and host-symbiont interactions. Moreover, sHm did not harbor the spaid gene but harbored 10 ankyrin genes that were homologous to those in other S. ixodetis strains. In contrast to the predominant existence of S. poulsonii in hemolymph, our quantitative PCR assays revealed a systemic distribution of strain sHm in H. magnanima, with particularly high titers in Malpighian tubules but low titers in hemolymph. Furthermore, transinfection assays confirmed that strain sHm can infect cultured cells derived from distantly related insects, namely Aedes albopictus (Diptera) and Bombyx mori (Lepidoptera). These results suggest different origins and characteristics of S. ixodetis- and S. poulsonii-induced male-killing.}, } @article {pmid36516405, year = {2022}, author = {Roldán, EL and Stelinski, LL and Pelz-Stelinski, KS}, title = {Foliar Antibiotic Treatment Reduces Candidatus Liberibacter asiaticus Acquisition by the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), but Does not Reduce Tree Infection Rate.}, journal = {Journal of economic entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jee/toac200}, pmid = {36516405}, issn = {1938-291X}, abstract = {Huanglongbing (HLB), or citrus greening, is the most destructive disease of cultivated citrus worldwide. Candidatus Liberibacter asiaticus (CLas), the putative causal agent of HLB, is transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). In Florida, D. citri was first reported in 1998, and CLas was confirmed in 2005. Management of HLB relies on the use of insecticides to reduce vector populations. In 2016, antibiotics were approved to manage CLas infection in citrus. Diaphorina citri is host to several bacterial endosymbionts and reducing endosymbiont abundance is known to cause a corresponding reduction in host fitness. We hypothesized that applications of oxytetracycline and streptomycin would reduce: CLas populations in young and mature citrus trees, CLas acquisition by D. citri, and D. citri abundance. Our results indicate that treatment of citrus with oxytetracycline and streptomycin reduced acquisition of CLas by D. citri adults and emerging F1 nymphs as compared with that observed in trees treated only with insecticides, but not with antibiotics. However, under field conditions, neither antibiotic treatment frequency tested affected CLas infection of young or mature trees as compared with insecticide treatment alone (negative control); whereas trees enveloped with mesh screening that excluded vectors did prevent bacterial infection (positive control). Populations of D. citri were not consistently affected by antibiotic treatment under field conditions, as compared with an insecticide only comparison. Collectively, our results suggest that while foliar application of oxytetracycline and streptomycin to citrus reduces acquisition of CLas bacteria by the vector, even high frequency applications of these formulations under field conditions do not prevent or reduce tree infection.}, } @article {pmid36515176, year = {2022}, author = {Wang, D and He, H and Wei, C}, title = {Cellular and potential molecular mechanisms underlying transovarial transmission of the obligate symbiont Sulcia in cicadas.}, journal = {Environmental microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1111/1462-2920.16310}, pmid = {36515176}, issn = {1462-2920}, abstract = {Vertical transmission of symbionts in insects is critical to persistence of symbioses across host generations. The key time point and related cellular/molecular mechanisms underlying the transmission in most insects remain unclear. Here, we reveal that in the bacteriome-endosymbiont system of the cicada Meimuna mongolica, the obligate symbiont Candidatus Sulcia muelleri (hereafter Sulcia) proliferates and migrates to the ovaries mainly after the adult emergence of cicadas. Sulcia cells swell to approximately twice their previous size with the outer membrane changed to be more irregular during this process. Almost all the Sulcia genes involved in biosynthesis of essential amino acids, heat shock protein, energy metabolism, DNA replication and repair and protein export were highly expressed in all life stages of cicadas. Among which, genes involved in DNA replication and synthesis of leucine and arginine were up-regulated in the newly emerged adults relative to 5[th] -instar nymphs. Signal transduction is the pronounced function exhibited in both Sulcia and the cicada bacteriomes in newly emerged adults. The results suggest host sensing of arginine and leucine integrate Sulcia's output of host-EAAs into mTORC1 signaling. This study highlights the importance of signaling pathways in regulating the host/symbiont interaction and symbiont transmission in sap-feeding auchenorrhynchous insects. This article is protected by copyright. All rights reserved.}, } @article {pmid36510006, year = {2022}, author = {Elder, H and Million, WC and Bartels, E and Krediet, CJ and Muller, EM and Kenkel, CD}, title = {Long-term maintenance of a heterologous symbiont association in Acropora palmata on natural reefs.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, pmid = {36510006}, issn = {1751-7370}, abstract = {The sensitivity of reef-building coral to elevated temperature is a function of their symbiosis with dinoflagellate algae in the family Symbiodiniaceae. Changes in the composition of the endosymbiont community in response to thermal stress can increase coral thermal tolerance. Consequently, this mechanism is being investigated as a human-assisted intervention for rapid acclimation of coral in the face of climate change. Successful establishment of novel symbioses that increase coral thermal tolerance have been demonstrated in laboratory conditions; however, it is unclear how long these heterologous relationships persist in nature. Here, we test the persistence of a novel symbiosis between Acropora palmata and Durusdinium spp. from Mote Marine Laboratory's ex situ nursery by outplanting clonal replicates (ramets) of five A. palmata host genotypes to natural reefs in the lower Florida Keys. Amplicon sequencing analysis of ITS2-type profiles revealed that the majority of surviving ramets remained dominated by Durusdinium spp. two years after transplantation. However, 15% of ramets, including representatives of all genotypes, exhibited some degree of symbiont shuffling or switching at six of eight sites, including complete takeover by site-specific strains of the native symbiont, Symbiodinium fitti. The predominant long-term stability of the novel symbiosis supports the potential effectiveness of symbiont modification as a management tool. Although, the finding that 6-7 year-old coral can alter symbiont community composition in the absence of bleaching indicates that Symbiodiniaceae communities are indeed capable of great flexibility under ambient conditions.}, } @article {pmid36505058, year = {2022}, author = {Alarcón, ME and Polo, PG and Akyüz, SN and Rafiqi, AM}, title = {Evolution and ontogeny of bacteriocytes in insects.}, journal = {Frontiers in physiology}, volume = {13}, number = {}, pages = {1034066}, pmid = {36505058}, issn = {1664-042X}, abstract = {The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.}, } @article {pmid36504780, year = {2022}, author = {Li, T and Wei, Y and Zhao, C and Li, S and Gao, S and Zhang, Y and Wu, Y and Lu, C}, title = {Facultative symbionts are potential agents of symbiont-mediated RNAi in aphids.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {1020461}, pmid = {36504780}, issn = {1664-302X}, abstract = {Aphids are major crop pests, and they can be controlled through the application of the promising RNA interference (RNAi) techniques. However, chemical synthesis yield of dsRNA for RNAi is low and costly. Another sustainable aphid pest control strategy takes advantage of symbiont-mediated RNAi (SMR), which can generate dsRNA by engineered microbes. Aphid host the obligate endosymbiont Buchnera aphidicola and various facultative symbionts that not only have a wide host range but are also vertically and horizontally transmitted. Thus, we described the potential of facultative symbionts in aphid pest control by SMR. We summarized the community and host range of these facultative symbionts, and then reviewed their probable horizontal transmitted routes and ecological functions. Moreover, recent advances in the cultivation and genetic engineering of aphid facultative symbionts were discussed. In addition, current legislation of dsRNA-based pest control strategies and their safety assessments were reviewed.}, } @article {pmid36504779, year = {2022}, author = {Liberman, R and Benayahu, Y and Huchon, D}, title = {Octocorals in the Gulf of Aqaba exhibit high photosymbiont fidelity.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {1005471}, pmid = {36504779}, issn = {1664-302X}, abstract = {Symbiotic associations, widespread in terrestrial and marine ecosystems, are of considerable ecological importance. Many tropical coral species are holobionts, formed by the obligate association between a cnidarian host and endosymbiotic dinoflagellates of the family Symbiodiniaceae. The latter are abundant on coral reefs from very shallow water down to the upper mesophotic zone (30-70 m). The research on scleractinians has revealed that the photosymbiont lineages present in the cnidarian host play an important role in the coral's ability to thrive under different environmental conditions, such as light regime and temperature. However, little is known regarding octocoral photosymbionts, and in particular regarding those found deeper than 30 m. Here, we used ribosomal (ITS2) and chloroplast (23S) markers to uncover, for the first time, the dominant Symbiodiniaceae taxa present in 19 mesophotic octocoral species (30-70 m depth) from the Gulf of Aqaba/Eilat (northern Red Sea). In addition, using high-throughput sequencing of the ITS2 region we characterized both the dominant and the rare Symbiodiniaceae lineages found in several species across depth. The phylogenetic analyses of both markers were in agreement and revealed that most of the studied mesophotic octocorals host the genus Cladocopium. Litophyton spp. and Klyxum utinomii were exceptions, as they harbored Symbiodinium and Durusdinium photosymbionts, respectively. While the dominant algal lineage of each coral species did not vary across depth, the endosymbiont community structure significantly differed between host species, as well as between different depths for some host species. The findings from this study contribute to the growing global-catalogue of Cnidaria-Symbiodiniaceae associations. Unravelling the Symbiodiniaceae composition in octocoral holobionts across environmental gradients, depth in particular, may enable a better understanding of how specialized those associations are, and to what extent coral holobionts are able to modify their photosymbionts.}, } @article {pmid36502993, year = {2022}, author = {V Venkataravanappa, and Kodandaram, MH and Prasanna, HC and Reddy, MK and Reddy, CNL}, title = {Unraveling different begomoviruses, DNA satellites and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystem.}, journal = {Microbial pathogenesis}, volume = {}, number = {}, pages = {105892}, doi = {10.1016/j.micpath.2022.105892}, pmid = {36502993}, issn = {1096-1208}, abstract = {Bemisia tabaci species complex contains more than 46 cryptic species. It has emerged as an important pest causing significant yield loss in many cultivated crops. This pest is also a vector for more than 100 species of begomoviruses, that are a major threat for the cultivation of many crops in different regions of the world. The relation between cryptic species of the B. tabaci species complex and associated begomoviruses that infect different crops remains unclear. In the present study, four cryptic species (Asia I, China 3, Asia II 5 and Asia II-1) of B. tabaci and four associated endosymbionts (Arsenophonus, Cardinium, Rickettsia and Wolbachia) were identified in different vegetable crops. The vector-based PCR detection revealed five different begomoviruses such as okra enation leaf curl virus (OELCuV), tomato leaf curl Palampur virus (ToLCPalV), squash leaf curl China virus (SLCCNV), chilli leaf curl virus (ChiLCuV), and tomato leaf curl New Delhi virus (ToLCNDV). Of these begomoviruses, the maximum infection rate was observed (9.1%) for OELCuV, followed by 7.3% for ToLCNDV. The infection rate of the other three viruses (SLCCNV, ChiLCuV, ToLCPalV) ranged from 0.9 to 2.7% in cryptic species of B. tabaci. Further, each cryptic species was infected with multiple virus species and the virus infection rate of Asia I, Asia II-5, China 3 and Asia II-1 was 21.2%, 15.1%, 15.1% and 0.6% respectively. Similarly, in case of betasatellites the highest infection rate was 12% for ToLCBDB, followed by 6% for OLCuB and PaLCB. With regard to alphasatellites, the highest infection rate was 18.2% for AEV and 3% for CLCuMuA. This study demonstrates the distribution of cryptic species of whitefly and their endosymbionts, and associated begomoviruses and DNA satellites in vegetable ecosystem. We believe that the information generated here is useful for evolving an effective pest management strategies for vegetable production.}, } @article {pmid36501390, year = {2022}, author = {Yu, W and Bosquée, E and Fan, J and Liu, Y and Bragard, C and Francis, F and Chen, J}, title = {Proteomic and Transcriptomic Analysis for Identification of Endosymbiotic Bacteria Associated with BYDV Transmission Efficiency by Sitobion miscanthi.}, journal = {Plants (Basel, Switzerland)}, volume = {11}, number = {23}, pages = {}, doi = {10.3390/plants11233352}, pmid = {36501390}, issn = {2223-7747}, abstract = {Sitobion miscanthi, an important viral vector of barley yellow dwarf virus (BYDV), is also symbiotically associated with endosymbionts, but little is known about the interactions between endosymbionts, aphid and BYDV. Therefore, two aphids' geographic populations, differing in their BYDV transmission efficiency, after characterizing their endosymbionts, were treated with antibiotics to investigate how changes in the composition of their endosymbiont population affected BYDV transmission efficiency. After antibiotic treatment, Rickettsia was eliminated from two geographic populations. BYDV transmission efficiency by STY geographic population dropped significantly, by -44.2% with ampicillin and -25.01% with rifampicin, but HDZ geographic population decreased by only 14.19% with ampicillin and 23.88% with rifampicin. Transcriptomic analysis showed that the number of DEGs related to the immune system, carbohydrate metabolism and lipid metabolism did increase in the STY rifampicin treatment, while replication and repair, glycan biosynthesis and metabolism increased in the STY ampicillin treatment. Proteomic analysis showed that the abundance of symbionin symL, nascent polypeptide-associated complex subunit alpha and proteasome differed significantly between the two geographic populations. We found that the endosymbionts can mediate vector viral transmission. They should therefore be included in investigations into aphid-virus interactions and plant disease epidemiology. Our findings should also help with the development of strategies to prevent virus transmission.}, } @article {pmid36480982, year = {2022}, author = {Morales, J and Ehret, G and Poschmann, G and Reinicke, T and Maurya, AK and Kröninger, L and Zanini, D and Wolters, R and Kalyanaraman, D and Krakovka, M and Bäumers, M and Stühler, K and Nowack, ECM}, title = {Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2022.11.020}, pmid = {36480982}, issn = {1879-0445}, abstract = {The trypanosomatid Angomonas deanei is a model to study endosymbiosis. Each cell contains a single β-proteobacterial endosymbiont that divides at a defined point in the host cell cycle and contributes essential metabolites to the host metabolism. Additionally, one endosymbiont gene, encoding an ornithine cyclodeaminase (OCD), was transferred by endosymbiotic gene transfer (EGT) to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here, we used protein mass spectrometry to identify nucleus-encoded proteins that co-purify with the endosymbiont. Expression of fluorescent fusion constructs of these proteins in A. deanei confirmed seven host proteins to be recruited to specific sites within the endosymbiont. These endosymbiont-targeted proteins (ETPs) include two proteins annotated as dynamin-like protein and peptidoglycan hydrolase that form a ring-shaped structure around the endosymbiont division site that remarkably resembles organellar division machineries. The EGT-derived OCD was not among the ETPs, but instead localizes to the glycosome, likely enabling proline production in the glycosome. We hypothesize that recalibration of the metabolic capacity of the glycosomes that are closely associated with the endosymbiont helps to supply the endosymbiont with metabolites it is auxotrophic for and thus supports the integration of host and endosymbiont metabolic networks. Hence, scrutiny of endosymbiosis-induced protein re-localization patterns in A. deanei yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.}, } @article {pmid36478675, year = {2022}, author = {Adegoke, A and Kumar, D and Budachetri, K and Karim, S}, title = {Hematophagy and tick-borne Rickettsial pathogen shape the microbial community structure and predicted functions within the tick vector, Amblyomma maculatum.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {1037387}, doi = {10.3389/fcimb.2022.1037387}, pmid = {36478675}, issn = {2235-2988}, abstract = {BACKGROUND: Ticks are the primary vectors of emerging and resurging pathogens of public health significance worldwide. Analyzing tick bacterial composition, diversity, and functionality across developmental stages and tissues is crucial for designing new strategies to control ticks and prevent tick-borne diseases.

MATERIALS AND METHODS: Here, we explored the microbial communities across the developmental timeline and in different tissues of the Gulf-Coast ticks (Amblyomma maculatum). Using a high-throughput sequencing approach, the influence of blood meal and Rickettsia parkeri, a spotted fever group rickettsiae infection in driving changes in microbiome composition, diversity, and functionality was determined.

RESULTS: This study shows that the core microbiome of Am. maculatum comprises ten core bacterial genera. The genus Rickettsia, Francisella, and Candidatus_Midichloria are the key players, with positive interactions within each developmental stage and adult tick organ tested. Blood meal and Rickettsia parkeri led to an increase in the bacterial abundance in the tissues. According to functional analysis, the increase in bacterial numbers is positively correlated to highly abundant energy metabolism orthologs with blood meal. Correlation analysis identified an increase in OTUs identified as Candidatus Midichloria and a subsequent decrease in Francisella OTUs in Rickettsia parkeri infected tick stages and tissues. Results demonstrate the abundance of Rickettsia and Francisella predominate in the core microbiome of Am. maculatum, whereas Candidatus_Midichloria and Cutibacterium prevalence increase with R. parkeri-infection. Network analysis and functional annotation suggest that R. parkeri interacts positively with Candidatus_Midichloria and negatively with Francisella.

CONCLUSION: We conclude that tick-transmitted pathogens, such as R. parkeri establishes infection by interacting with the core microbiome of the tick vector.}, } @article {pmid36473013, year = {2022}, author = {Liu, L and Sonenshine, DE and Sultana, H and Neelakanta, G}, title = {Identification of a rickettsial endosymbiont in a soft tick Ornithodoros turicata americanus.}, journal = {PloS one}, volume = {17}, number = {12}, pages = {e0278582}, doi = {10.1371/journal.pone.0278582}, pmid = {36473013}, issn = {1932-6203}, abstract = {Bacterial endosymbionts are abundantly found in both hard and soft ticks. Occidentia massiliensis, a rickettsial endosymbiont, was first identified in the soft tick Ornithodoros sonrai collected from Senegal and later was identified in a hard tick Africaniella transversale. In this study, we noted the presence of Occidentia species, designated as Occidentia-like species, in a soft tick O. turicata americanus. Sequencing and phylogenetic analyses of the two genetic markers, 16S rRNA and groEL confirmed the presence of Occidentia-like species in O. turicata americanus ticks. The Occidentia-like species was noted to be present in all developmental stages of O. turicata americanus and in different tick tissues including ovaries, synganglion, guts and salivary gland. The levels of Occidentia-like species 16S rRNA transcripts were noted to be significantly higher in ovaries than in a gut tissue. In addition, Occidentia-like species groEL expression was noted to be significantly higher in tick synganglion than in ovaries and gut tissues. Furthermore, levels of Occidentia-like species 16S rRNA transcripts increased significantly upon O. turicata americanus blood feeding. Taken together, our study not only shows that Occidentia-like species is present in O. turicata americanus but also suggests that this bacterium may play a role in tick-bacteria interactions.}, } @article {pmid36472572, year = {2022}, author = {Pilgrim, J}, title = {The opportunities of research parasitism: A case study using the Barcode of Life Data System (BOLD).}, journal = {GigaScience}, volume = {11}, number = {}, pages = {}, doi = {10.1093/gigascience/giac123}, pmid = {36472572}, issn = {2047-217X}, abstract = {The Barcode of Life Data System (BOLD) is primarily used to identify biological specimens based on a mitochondrial gene sequence and has been an underpinning resource for life science researchers. Importantly, curators of BOLD archive DNA extracts where possible, and also record contaminant sequences that can be made available on request. This collegial offering of samples and data led to our work describing the serendipitous discovery of new interactions between a Torix Rickettsia bacterium and their arthropod hosts and resulted in winning the 2022 Junior Research Parasite Award. A case study of this work is presented, which discusses the opportunities provided by secondary data and how careful maintenance of such large-scale repositories plays a vital role in scientific research that goes beyond obvious lines of enquiry.}, } @article {pmid36467722, year = {2022}, author = {Hodosi, R and Kazimirova, M and Soltys, K}, title = {What do we know about the microbiome of I. ricinus?.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {990889}, pmid = {36467722}, issn = {2235-2988}, mesh = {Animals ; *Ixodes ; *Microbiota ; Coxiella ; Symbiosis ; *Rickettsia ; *Francisella tularensis ; }, abstract = {I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.}, } @article {pmid36466669, year = {2022}, author = {El Hamss, H and Maruthi, MN and Ally, HM and Omongo, CA and Wang, HL and van Brunschot, S and Colvin, J and Delatte, H}, title = {Spatio-temporal changes in endosymbiont diversity and composition in the African cassava whitefly, Bemisia tabaci SSA1.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {986226}, pmid = {36466669}, issn = {1664-302X}, abstract = {Sap-sucking insects, including whiteflies, are amongst the most devastating and widely distributed organisms on the planet. They are often highly invasive and endosymbiont communities within these insects help them adapt to new or changing environments. Bemisia tabaci (Gennadius; Hemiptera: Aleyrodidae) whitefly species are vectors of more than 500 known plant-viruses and harbour highly diverse endosymbionts communities. To date, however, whitefly-endosymbiont interactions, community structure and their spatio-temporal changes are still poorly understood. In this study, we investigated the spatio-temporal changes in the composition and diversity of bacterial endosymbionts in the agricultural crop pest whitefly species, Bemisia tabaci sub-Saharan Africa 1-subgroup 1 and 2 (SSA1-SG1 and SSA1-SG2). 16S rRNA amplicon sequencing analysis was carried out to characterise endosymbiont compositionsin field-collected SSA1 (SSA1-SG1 and SSA1-SG2) populations infesting cassava in Uganda in 1997 and 2017. We detected Portiera, Arsenophonus, Wolbachia, Hamiltonella and Hemipteriphilus, with Arsenophonus and Wolbachia infections being predominant. Hemipteriphilus and Hamiltonella frequencies were very low and were detected in seven and two samples, respectively. Bacterial diversity based on three independent parameters including Simpson index, number of haplotypes and Bray-Curtis dissimilarity matrix was significantly higher in 1997 than in 2017. This period also coincided with the advent of super-abundant cassava-whitefly populations on cassava crops in Uganda. We discuss how endosymbionts may influence the biology and behaviour of whiteflies leading to population explosions.}, } @article {pmid36458425, year = {2022}, author = {Higashi, CHV and Nichols, WL and Chevignon, G and Patel, V and Allison, SE and Kim, KL and Strand, MR and Oliver, KM}, title = {An aphid symbiont confers protection against a specialized RNA virus, another increases vulnerability to the same pathogen.}, journal = {Molecular ecology}, volume = {}, number = {}, pages = {}, doi = {10.1111/mec.16801}, pmid = {36458425}, issn = {1365-294X}, abstract = {Insects often harbor heritable symbionts that provide defense against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their anti-fungal and anti-parasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titers were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.}, } @article {pmid36456664, year = {2022}, author = {Milenovic, M and Gouttepifre, A and Eickermann, M and Junk, J and Rapisarda, C}, title = {Plant-mediated rifampicin treatment of Bemisia tabaci disrupts but does not eliminate endosymbionts.}, journal = {Scientific reports}, volume = {12}, number = {1}, pages = {20766}, pmid = {36456664}, issn = {2045-2322}, mesh = {Animals ; Rifampin/pharmacology ; *Halomonadaceae ; Anti-Bacterial Agents/pharmacology ; *Rickettsia ; *Hemiptera ; }, abstract = {Whiteflies are among the most important global insect pests in agriculture; their sustainable control has proven challenging and new methods are needed. Bacterial symbionts of whiteflies are poorly understood potential target of novel whitefly control methods. Whiteflies harbour an obligatory bacterium, Candidatus Portiera aleyrodidarum, and a diverse set of facultative bacterial endosymbionts. Function of facultative microbial community is poorly understood largely due to the difficulty in their selective elimination without removal of the primary endosymbiont. Since the discovery of secondary endosymbionts, antibiotic rifampicin has emerged as the most used tool for their manipulation. Its effectiveness is however much less clear, with contrasting reports on its effects on the endosymbiont community. The present study builds upon most recent method of rifampicin application in whiteflies and evaluates its ability to eliminate obligatory Portiera and two facultative endosymbionts (Rickettsia and Arsenophnus). Our results show that rifampicin reduces but does not eliminate any of the three endosymbionts. Additionally, rifampicin causes direct negative effect on whiteflies, likely by disrupting mitochondria. Taken together, results signify the end of a rifampicin era in whitefly endosymbiont studies. Finally, we propose refinement of current quantification and data analysis methods which yields additional insights in cellular metabolic scaling.}, } @article {pmid36447246, year = {2022}, author = {Dieng, MM and Augustinos, AA and Demirbas-Uzel, G and Doudoumis, V and Parker, AG and Tsiamis, G and Mach, RL and Bourtzis, K and Abd-Alla, AMM}, title = {Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations.}, journal = {Parasites & vectors}, volume = {15}, number = {1}, pages = {447}, pmid = {36447246}, issn = {1756-3305}, mesh = {Animals ; Cytomegalovirus ; *Tsetse Flies ; *Coinfection ; *Glossinidae ; Hypertrophy ; *Infertility ; Salivary Glands ; }, abstract = {BACKGROUND: Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host.

METHODS: In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR.

RESULTS: The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 10[3.31] seem to be absent when Wolbachia infection is present at high density (> 10[7.36]), suggesting a potential protective role of Wolbachia against GpSGHV.

CONCLUSION: The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.}, } @article {pmid36445499, year = {2022}, author = {Ramirez, P and Leavitt, JC and Gill, JJ and Mateos, M}, title = {Preliminary Characterization of Phage-Like Particles from the Male-Killing Mollicute Spiroplasma poulsonii (an Endosymbiont of Drosophila).}, journal = {Current microbiology}, volume = {80}, number = {1}, pages = {6}, pmid = {36445499}, issn = {1432-0991}, mesh = {Male ; Animals ; Drosophila ; *Bacteriophages/genetics ; Drosophila melanogaster ; *Spiroplasma/genetics ; }, abstract = {Bacteriophages are vastly abundant, diverse, and influential, but with few exceptions (e.g. the Proteobacteria genera Wolbachia and Hamiltonella), the role of phages in heritable bacteria-arthropod interactions, which are ubiquitous and diverse, remains largely unexplored. Despite prior studies documenting phage-like particles in the mollicute Spiroplasma associated with Drosophila flies, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. We used a density step gradient to isolate phage-like particles from the male-killing bacterium Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Several lines of evidence suggest that we recovered phage-like particles of similar features (shape, size, DNA content) to those previously reported in Drosophila-associated Spiroplasma strains. We recovered three ~ 19 kb phage-like contigs (two in NSRO and one in MSRO-Br) containing 21-24 open reading frames, a read-alignment pattern consistent with circular permutation, and terminal redundancy (at least in NSRO). Although our results do not allow us to distinguish whether these phage-like contigs represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We also recovered two smaller non-phage-like contigs encoding a known Spiroplasma toxin (Ribosome Inactivating Protein; RIP), and an insertion element, suggesting that they are packaged into particles. Substantial homology of our particle-derived contigs was found in the genome assemblies of members of the Spiroplasma poulsonii clade.}, } @article {pmid36445124, year = {2022}, author = {Kang, ZW and Zhang, M and Cao, HH and Guo, SS and Liu, FH and Liu, TX}, title = {Facultative Endosymbiont Serratia symbiotica Inhibits the Apterization of Pea Aphid To Enhance Its Spread.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0406622}, doi = {10.1128/spectrum.04066-22}, pmid = {36445124}, issn = {2165-0497}, abstract = {Aphids display wing polyphenism, and the mother can produce a wingless morph for reproduction and a winged morph for dispersal. It is believed that the wingless morph is an adaptive status under favorable conditions and is determined prenatally. In this study, we have found that winged nymphs of the pea aphid, Acyrthosiphon pisum, can change from winged to wingless during normal development. Our results showed that winged nymphs could become the wingless morph by apterization in response to changes from stressful to favorable conditions. The acquired wingless aphids had higher fecundity than the winged morph. However, this process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola. Our results showed that despite temporal improvement of living conditions causing the induction of apterization of winged nymphs, the inhibition effect of S. symbiotica on this process was activated simultaneously. This finding, for the first time, reveals that the wingless morph can be changed postnatally, which explains a novel regulating mechanism of wing polyphenism driven by external abiotic stimuli and internal biotic regulation together in aphids. IMPORTANCE Wing polyphenism is an important adaptative response to environmental changes for aphids. Endosymbionts are widespread in aphids and also confer the ability to withstand unfavorable conditions. However, little is known about whether endosymbionts are involved in the wing polyphenism. In this study, we report a new finding that winged nymphs of the pea aphid could turn into adults without wings or wing-related structures through apterization when winged nymphs escaped from stressful to favorable environments. Further analysis revealed that the facultative symbiont S. symbiotica could prevent the temporal determination of the host in wing suppression by inhibiting apterization, to enhance its spread. Our findings provide a novel angle to understanding the wing polyphenism regulation of aphids.}, } @article {pmid36441823, year = {2022}, author = {Runyen-Janecky, LJ and Scheutzow, JD and Farsin, R and Cabo, LF and Wall, KE and Kuhn, KM and Amador, R and D'Souza, SJ and Vigneron, A and Weiss, BL}, title = {Heme-induced genes facilitate endosymbiont (Sodalis glossinidius) colonization of the tsetse fly (Glossina morsitans) midgut.}, journal = {PLoS neglected tropical diseases}, volume = {16}, number = {11}, pages = {e0010833}, doi = {10.1371/journal.pntd.0010833}, pmid = {36441823}, issn = {1935-2735}, abstract = {Tsetse flies (Glossina spp.) feed exclusively on vertebrate blood. After a blood meal, the enteric endosymbiont Sodalis glossinidius is exposed to various environmental stressors including high levels of heme. To investigate how S. glossinidius morsitans (Sgm), the Sodalis subspecies that resides within the gut of G. morsitans) tolerates the heme-induced oxidative environment of tsetse's midgut, we used RNAseq to identify bacterial genes that are differentially expressed in cells cultured in high versus lower heme environments. Our analysis identified 436 genes that were significantly differentially expressed (> or < 2-fold) in the presence of high heme [219 heme-induced genes (HIGs) and 217 heme-repressed genes (HRGs)]. HIGs were enriched in Gene Ontology (GO) terms related to regulation of a variety of biological functions, including gene expression and metabolic processes. We observed that 11 out of 13 Sgm genes that were heme regulated in vitro were similarly regulated in bacteria that resided within tsetse's midgut 24 hr (high heme environment) and 96 hr (low heme environment) after the flies had consumed a blood meal. We used intron mutagenesis to make insertion mutations in 12 Sgm HIGs and observed no significant change in growth in vitro in any of the mutant strains in high versus low heme conditions. However, Sgm strains that carried mutations in genes encoding a putative undefined phosphotransferase sugar (PTS) system component (SG2427), fucose transporter (SG0182), bacterioferritin (SG2280), and a DNA-binding protein (SGP1-0002) presented growth and/or survival defects in tsetse midguts as compared to normal Sgm. These findings suggest that the uptake up of sugars and storage of iron represent strategies that Sgm employs to successfully reside within the high heme environment of its tsetse host's midgut. Our results are of epidemiological relevance, as many hematophagous arthropods house gut-associated bacteria that mediate their host's competency as a vector of disease-causing pathogens.}, } @article {pmid36436891, year = {2022}, author = {Rialch, A and Sankar, M and Silamparasan, M and Madhusoodan, AP and Kharayat, NS and Gautam, S and Gurav, AR and Thankappan, S}, title = {Molecular detection of Coxiella-like endosymbionts in Rhipicephalus microplus from north India.}, journal = {Veterinary parasitology, regional studies and reports}, volume = {36}, number = {}, pages = {100803}, doi = {10.1016/j.vprsr.2022.100803}, pmid = {36436891}, issn = {2405-9390}, mesh = {Humans ; Female ; Animals ; Coxiella/genetics ; *Rhipicephalus/genetics ; RNA, Ribosomal, 16S/genetics ; Phylogeny ; Pilot Projects ; *Rickettsia/genetics ; *Francisella ; }, abstract = {Apart from the tick-borne pathogens affecting human and animal health, ticks also harbor various non-pathogenic endosymbionts with dynamic ecological interactions. These endosymbionts are unexplored from the Indian ticks; hence this pilot study was conducted. Seventy-nine ticks were collected from Nainital district of Uttarakhand state of north India and were identified as Rhipicephalus microplus morphologically and by molecular analysis. PCR and sequence analysis were carried out to detect the presence of Rickettsia-like, Coxiella-like and Francisella-like endosymbionts in these ticks. Based on the partial 16S rRNA gene sequence, Coxiella-like endosymbiont (CLE) was detected in the adult and other life-cycle stages of ticks with 96.6-97.7% nucleotide sequence identity with the published CLE sequences from GenBank. The phylogenetic analysis revealed that the CLE from R. microplus were clustered with the CLE from other Rhipicephalus species. All these CLE formed distinct clades from the pathogenic Coxiella burnetii. None of the tick samples was found positive for Rickettsia-like and Francisella-like endosymbionts in the present study. We also demonstrated the vertical transmission of CLE from surface sterilized and laboratory reared fully engorged adult females to the eggs and the larvae. However, large scale studies are to be conducted to detect various endosymbionts and endosymbiont-tick associations in the Indian tick species and to explore these associations for tick and tick-borne disease control.}, } @article {pmid36429867, year = {2022}, author = {Chen, K and Roe, RM and Ponnusamy, L}, title = {Biology, Systematics, Microbiome, Pathogen Transmission and Control of Chiggers (Acari: Trombiculidae, Leeuwenhoekiidae) with Emphasis on the United States.}, journal = {International journal of environmental research and public health}, volume = {19}, number = {22}, pages = {}, doi = {10.3390/ijerph192215147}, pmid = {36429867}, issn = {1660-4601}, mesh = {Animals ; Humans ; *Trombiculidae/microbiology ; *Scrub Typhus/epidemiology ; *Orientia tsutsugamushi ; *Acari ; *Microbiota ; Biology ; }, abstract = {Chiggers are the larval stage of Trombiculidae and Leeuwenhoekiidae mites of medical and veterinary importance. Some species in the genus Leptotrombidium and Herpetacarus vector Orientia species, the bacteria that causes scrub typhus disease in humans. Scrub typhus is a life-threatening, febrile disease. Chigger bites can also cause dermatitis. There were 248 chigger species reported from the US from almost every state. However, there are large gaps in our knowledge of the life history of other stages of development. North American wide morphological keys are needed for better species identification, and molecular sequence data for identification are minimal and not clearly matched with morphological data. The role of chiggers in disease transmission in the US is especially understudied, and the role of endosymbionts in Orientia infection are suggested in the scientific literature but not confirmed. The most common chiggers in the eastern United States were identified as Eutrombicula alfreddugesi but were likely misidentified and should be replaced with Eutrombicula cinnabaris. Scrub typhus was originally believed to be limited to the Tsutsugamushi Triangle and the chigger genus, Leptotrombidium, but there is increasing evidence this is not the case. The potential of Orientia species establishing in the US is high. In addition, several other recognized pathogens to infect humans, namely Hantavirus, Bartonella, Borrelia, and Rickettsia, were also detected in chiggers. The role that chiggers play in these disease transmissions in the US needs further investigation. It is possible some of the tick-borne diseases and red meat allergies are caused by chiggers.}, } @article {pmid36424352, year = {2022}, author = {Zhang, J and Li, T and Hong, Z and Ma, C and Fang, X and Zheng, F and Teng, W and Zhang, C and Si, T}, title = {Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered Saccharomyces cerevisiae.}, journal = {Angewandte Chemie (International ed. in English)}, volume = {}, number = {}, pages = {}, doi = {10.1002/anie.202214344}, pmid = {36424352}, issn = {1521-3773}, abstract = {Discovery of the Asgard superphylum of archaea provides new evidence supporting the two-domain model of life: eukaryotes originated from an Asgard-related archaeon that engulfed a bacterial endosymbiont. However, how eukaryotes acquired bacterial-like membrane lipids with a sn-glycerol-3-phosphate (G3P) backbone instead of the archaeal-like sn-glycerol-1-phosphate (G1P) backbone remains unknown. Here we reconstituted archaeal lipid production in Saccharomyces cerevisiae by expressing unsaturated archaeol-synthesizing enzymes. Using Golden Gate cloning for pathway assembly, modular gene replacement was performed, revealing the potential biosynthesis of both G1P- and G3P-based unsaturated archaeol by uncultured Asgard archaea. Unexpectedly, hybrid neutral lipids containing both archaeal isoprenoids and eukaryotic fatty acids were observed in recombinant S. cerevisiae. The ability of yeast and archaeal diacylglycerol acyltransferases to synthesize such hybrid lipids was demonstrated.}, } @article {pmid36422292, year = {2022}, author = {Villacorta, JB and Rodriguez, CV and Peran, JE and Batucan, JD and Concepcion, GP and Salvador-Reyes, LA and Junio, HA}, title = {Mining Small Molecules from Teredinibacter turnerae Strains Isolated from Philippine Teredinidae.}, journal = {Metabolites}, volume = {12}, number = {11}, pages = {}, pmid = {36422292}, issn = {2218-1989}, abstract = {Endosymbiotic relationship has played a significant role in the evolution of marine species, allowing for the development of biochemical machinery for the synthesis of diverse metabolites. In this work, we explore the chemical space of exogenous compounds from shipworm endosymbionts using LC-MS-based metabolomics. Priority T. turnerae strains (1022X.S.1B.7A, 991H.S.0A.06B, 1675L.S.0A.01) that displayed antimicrobial activity, isolated from shipworms collected from several sites in the Philippines were cultured, and fractionated extracts were subjected for profiling using ultrahigh-performance liquid chromatography with high-resolution mass spectrometry quadrupole time-of-flight mass analyzer (UHPLC-HRMS QTOF). T. turnerae T7901 was used as a reference microorganism for dereplication analysis. Tandem MS data were analyzed through the Global Natural Products Social (GNPS) molecular networking, which resulted to 93 clusters with more than two nodes, leading to four putatively annotated clusters: lipids, lysophosphatidylethanolamines, cyclic dipeptides, and rhamnolipids. Additional clusters were also annotated through molecular networking with cross-reference to previous publications. Tartrolon D cluster with analogues, turnercyclamycins A and B; teredinibactin A, dechloroteredinibactin, and two other possible teredinibactin analogues; and oxylipin (E)-11-oxooctadec-12-enoic acid were putatively identified as described. Molecular networking also revealed two additional metabolite clusters, annotated as lyso-ornithine lipids and polyethers. Manual fragmentation analysis corroborated the putative identification generated from GNPS. However, some of the clusters remained unclassified due to the limited structural information on marine natural products in the public database. The result of this study, nonetheless, showed the diversity in the chemical space occupied by shipworm endosymbionts. This study also affirms the use of bioinformatics, molecular networking, and fragmentation mechanisms analysis as tools for the dereplication of high-throughput data to aid the prioritization of strains for further analysis.}, } @article {pmid36419550, year = {2022}, author = {Li, J and Chen, D and Yu, B and He, J and Huang, Z and Zheng, P and Mao, X and Li, H and Yu, J and Luo, J and Yan, H and Luo, Y}, title = {Batch and sampling time exert a larger influence on the fungal community than gastrointestinal location in model animals: A meaningful case study.}, journal = {Frontiers in nutrition}, volume = {9}, number = {}, pages = {1021215}, pmid = {36419550}, issn = {2296-861X}, abstract = {Fungi play a fundamental role in the intestinal ecosystem and health, but our knowledge of fungal composition and distribution in the whole gastrointestinal tract (GIT) is very limited. The physiological similarity between humans and pigs in terms of digestive and associated metabolic processes places, the pig in a superior position over other non-primate models. Here, we aimed to characterize the diversity and composition of fungi in the GIT of pigs. Using high-throughput sequencing, we evaluated the fungal community in different locations of GIT of 11 pigs with 128.41 ± 1.25 kg body weight acquired successively. Among them, five pigs are sacrificed in April 2019 (Batch 1) and the other six are sacrificed in January 2020 (Batch 2). All subjects with similar genetic backgrounds, housing, management, and diet. Finally, no significant difference is found in the α-diversity (Richness) of the fungal community among all intestinal segments. Basidiomycota and Ascomycota are the two predominant fungal phyla, but Batch 1 harbored a notably high abundance of Basidiomycota and Batch 2 harbored a high abundance of Ascomycota. Moreover, the two batches harbored completely different fungal compositions and core fungal genera. FUNGuild (Fungal Functional Guild) analysis revealed that most of the fungal species present in the GIT are saprotroph, plant pathogen, and animal endosymbiont. Our study is the first to report that even under the same condition, large variations in fungal composition in the host GIT still occur from batch-to-batch and sampling time. The implications of our observations serve as references to the development of better models of the human gut.}, } @article {pmid36419378, year = {2023}, author = {Lin, YT and Xu, T and Ip, JC and Sun, Y and Fang, L and Luan, T and Zhang, Y and Qian, PY and Qiu, JW}, title = {Interactions among deep-sea mussels and their epibiotic and endosymbiotic chemoautotrophic bacteria: Insights from multi-omics analysis.}, journal = {Zoological research}, volume = {44}, number = {1}, pages = {106-125}, doi = {10.24272/j.issn.2095-8137.2022.279}, pmid = {36419378}, issn = {2095-8137}, mesh = {Animals ; *Ecosystem ; *Bivalvia/genetics ; Bacteria/genetics ; Symbiosis ; Carbon/metabolism ; }, abstract = {Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel (Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.}, } @article {pmid36417831, year = {2022}, author = {Power, RI and Šlapeta, J}, title = {Exploration of the sensitivity to macrocyclic lactones in the canine heartworm (Dirofilaria immitis) in Australia using phenotypic and genotypic approaches.}, journal = {International journal for parasitology. Drugs and drug resistance}, volume = {20}, number = {}, pages = {145-158}, doi = {10.1016/j.ijpddr.2022.11.003}, pmid = {36417831}, issn = {2211-3207}, abstract = {Canine heartworm disease is a potentially deadly cardiopulmonary disease caused by the mosquito-borne filarial nematode Dirofilaria immitis. In Australia, the administration of macrocyclic lactone (ML) drugs has successfully reduced the prevalence of D. immitis infection. However, the recent re-emergence of D. immitis in dogs in Queensland, Australia and the identification of ML-resistant isolates in the USA poses an important question of whether ML-resistance has emerged in this parasite in Australia. The aim of this study was to utilise phenotypic and genotypic approaches to examine the sensitivity to ML drugs in D. immitis in Australia. To do this, we surveyed 45 dogs from Queensland and New South Wales across 3 years (2019-2022) for the presence of D. immitis infection using an antigen test, quantitative Modified Knott's test, and qPCR targeting both D. immitis and the D. immitis symbiont Wolbachia. A phenotype observed by utilising sequential quantification of microfilariae for 23/45 dogs was coupled with genetic testing of filtered microfilariae for SNPs previously associated with ML-resistance in isolates from the USA. Sixteen (16/45) dogs tested positive for D. immitis infection despite reportedly receiving 'rigorous' heartworm prevention for 12 months prior to the study, according to the owners' assessment. The phenotype and genotypic assays in this study did not unequivocally demonstrate the presence of ML-resistant D. immitis in Australia. Although the failure of 16 dogs to reduce microfilaremia by >90% after ML treatment was considered a suspect phenotype of ML-resistance, no genotypic evidence was discovered using the genetic SNP analysis. The traditional quantitative Modified Knott's test can be substituted by qPCR targeting D. immitis or associated Wolbachia endosymbiont DNA for a more rapid measurement of microfilariae levels. More definitive phenotypic evidence of resistance is critically needed before the usefulness of SNPs for the detection of ML-resistance in Australia can be properly assessed.}, } @article {pmid36412071, year = {2022}, author = {Shimpi, GG and Bentlage, B}, title = {Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes.}, journal = {BioEssays : news and reviews in molecular, cellular and developmental biology}, volume = {}, number = {}, pages = {e2200190}, doi = {10.1002/bies.202200190}, pmid = {36412071}, issn = {1521-1878}, abstract = {In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.}, } @article {pmid36407602, year = {2022}, author = {An, Y and Wang, Y and Wang, X and Xiao, J}, title = {Development of chloroplast transformation and gene expression regulation technology in land plants.}, journal = {Frontiers in plant science}, volume = {13}, number = {}, pages = {1037038}, pmid = {36407602}, issn = {1664-462X}, abstract = {Chloroplasts in land plants have their own small circular DNA that is presumed to have originated from cyanobacteria-related endosymbionts, and the chloroplast genome is an attractive target to improve photosynthetic ability and crop yield. However, to date, most transgenic or genetic engineering technologies for plants are restricted to manipulations of the nuclear genome. In this review, we provide a comprehensive overview of chloroplast genetic engineering and regulation of gene expression from the perspective of history and biology, focusing on current and latest methods. In addition, we suggest techniques that may regulate the chloroplast gene expression at the transcriptional or post-transcriptional level.}, } @article {pmid36404929, year = {2022}, author = {Yorimoto, S and Hattori, M and Kondo, M and Shigenobu, S}, title = {Complex host/symbiont integration of a multi-partner symbiotic system in the eusocial aphid Ceratovacuna japonica.}, journal = {iScience}, volume = {25}, number = {12}, pages = {105478}, pmid = {36404929}, issn = {2589-0042}, abstract = {Some hemipteran insects rely on multiple endosymbionts for essential nutrients. However, the evolution of multi-partner symbiotic systems is not well-established. Here, we report a co-obligate symbiosis in the eusocial aphid, Ceratovacuna japonica. 16S rRNA amplicon sequencing unveiled co-infection with a novel Arsenophonus sp. symbiont and Buchnera aphidicola, a common obligate endosymbiont in aphids. Both symbionts were housed within distinct bacteriocytes and were maternally transmitted. The Buchnera and Arsenophonus symbionts had streamlined genomes of 432,286 bp and 853,149 bp, respectively, and exhibited metabolic complementarity in riboflavin and peptidoglycan synthesis pathways. These anatomical and genomic properties were similar to those of independently evolved multi-partner symbiotic systems, such as Buchnera-Serratia in Lachninae and Periphyllus aphids, representing remarkable parallelism. Furthermore, symbiont populations and bacteriome morphology differed between reproductive and soldier castes. Our study provides the first example of co-obligate symbiosis in Hormaphidinae and gives insight into the evolutionary genetics of this complex system.}, } @article {pmid36389419, year = {2022}, author = {Wang, P and Ding, L and Li, F and Liao, J and Wang, M}, title = {Herbivore camping reshapes the taxonomy, function and network of pasture soil microbial communities.}, journal = {PeerJ}, volume = {10}, number = {}, pages = {e14314}, pmid = {36389419}, issn = {2167-8359}, abstract = {Although the effects of herbivore camping on soil physicochemical properties have been studied, whether the effects alter the soil microbial communities (e.g., composition, functions, taxonomic and functional diversities, network) remain unknown, especially below the surface. Here, using paired subsoil samples from half month-camping and non-camping, we showed for the first time that camping significantly changed the relative abundance of 21 bacterial phylotypes and five fungal phylotypes. Specifically, we observed significant increases in the relative abundance of putative chitinase and terpenes vanillin-decomposition genes, nitrite reduction function (nirB, nasA), decreases in the relative abundance of putative carbon fixation genes (ackA, PGK, and Pak), starch-decomposition gene (dexB), gene coding nitrogenase (anfG), and tetracycline resistance gene (tetB) for bacterial communities, and significant decreases in the relative abundance of animal endosymbiont and increases in the relative abundance of litter saprotroph and endophyte for fungal communities. However, camping did not significantly impact the taxonomic and functional diversity. The niche restriction was the main driving force of bacterial and fungal community assembly. Compared to no camping, camping increased the stability of bacterial networks but decreased the stability of fungal networks. Camping exerted a positive effect on the network by compressing the niche width and reduced the change in the network by reducing the niche overlap. Our results suggest that camping restructures the soil microbial composition, function, and network, and provides a novel insight into the effect of animal camping on soil microbial communities in grassland.}, } @article {pmid36361939, year = {2022}, author = {Alves, R and Pazos-Gil, M and Medina-Carbonero, M and Sanz-Alcázar, A and Delaspre, F and Tamarit, J}, title = {Evolution of an Iron-Detoxifying Protein: Eukaryotic and Rickettsia Frataxins Contain a Conserved Site Which Is Not Present in Their Bacterial Homologues.}, journal = {International journal of molecular sciences}, volume = {23}, number = {21}, pages = {}, pmid = {36361939}, issn = {1422-0067}, mesh = {Humans ; Bacterial Proteins/chemistry/metabolism ; Escherichia coli/metabolism ; Escherichia coli Proteins/genetics ; Eukaryota/metabolism ; Friedreich Ataxia/genetics/metabolism ; Iron/metabolism ; *Iron-Binding Proteins/chemistry/metabolism ; *Neurodegenerative Diseases ; *Rickettsia/metabolism ; Tyrosine/metabolism ; Mitochondria/metabolism/microbiology ; }, abstract = {Friedreich's ataxia is a neurodegenerative disease caused by mutations in the frataxin gene. Frataxin homologues, including bacterial CyaY proteins, can be found in most species and play a fundamental role in mitochondrial iron homeostasis, either promoting iron assembly into metaloproteins or contributing to iron detoxification. While several lines of evidence suggest that eukaryotic frataxins are more effective than bacterial ones in iron detoxification, the residues involved in this gain of function are unknown. In this work, we analyze conservation of amino acid sequence and protein structure among frataxins and CyaY proteins to identify four highly conserved residue clusters and group them into potential functional clusters. Clusters 1, 2, and 4 are present in eukaryotic frataxins and bacterial CyaY proteins. Cluster 3, containing two serines, a tyrosine, and a glutamate, is only present in eukaryotic frataxins and on CyaY proteins from the Rickettsia genus. Residues from cluster 3 are blocking a small cavity of about 40 Å present in E. coli's CyaY. The function of this cluster is unknown, but we hypothesize that its tyrosine may contribute to prevent formation of reactive oxygen species during iron detoxification. This cluster provides an example of gain of function during evolution in a protein involved in iron homeostasis, as our results suggests that Cluster 3 was present in the endosymbiont ancestor of mitochondria and was conserved in eukaryotic frataxins.}, } @article {pmid36360278, year = {2022}, author = {Montes-Rodríguez, IM and Cadilla, CL and López-Garriga, J and González-Méndez, R}, title = {Bioinformatic Characterization and Molecular Evolution of the Lucina pectinata Hemoglobins.}, journal = {Genes}, volume = {13}, number = {11}, pages = {}, pmid = {36360278}, issn = {2073-4425}, support = {U54 MD007600/MD/NIMHD NIH HHS/United States ; P20 GM103475/GM/NIGMS NIH HHS/United States ; R25 GM088023/GM/NIGMS NIH HHS/United States ; P41 RR006009/RR/NCRR NIH HHS/United States ; T36 GM008789/GM/NIGMS NIH HHS/United States ; }, mesh = {Animals ; *Computational Biology ; Phylogeny ; Amino Acid Sequence ; Hemoglobins/genetics/metabolism ; *Bivalvia/genetics/metabolism ; Evolution, Molecular ; Sulfides ; Oxygen/metabolism ; }, abstract = {(1) Introduction: Lucina pectinata is a clam found in sulfide-rich mud environments that has three hemoglobins believed to be responsible for the transport of hydrogen sulfide (HbILp) and oxygen (HbIILp and HbIIILp) to chemoautotrophic endosymbionts. The physiological roles and evolution of these globins in sulfide-rich environments are not well understood. (2) Methods: We performed bioinformatic and phylogenetic analyses with 32 homologous mollusk globin sequences. Phylogenetics suggests a first gene duplication resulting in sulfide binding and oxygen binding genes. A more recent gene duplication gave rise to the two oxygen-binding hemoglobins. Multidimensional scaling analysis of the sequence space shows evolutionary drift of HbIILp and HbIIILp, while HbILp was closer to the Calyptogena hemoglobins. Further corroboration is seen by conservation in the coding region of hemoglobins from L. pectinata compared to those from Calyptogena. (3) Conclusions: Presence of glutamine in position E7 in organisms living in sulfide-rich environments can be considered an adaptation to prevent loss of protein function. In HbILp a substitution of phenylalanine in position B10 is accountable for its unique reactivity towards H2S. It appears that HbILp has been changing over time, apparently not subject to functional constraints of binding oxygen, and acquired a unique function for a specialized environment.}, } @article {pmid36355038, year = {2022}, author = {Raval, PK and Garg, SG and Gould, SB}, title = {Endosymbiotic selective pressure at the origin of eukaryotic cell biology.}, journal = {eLife}, volume = {11}, number = {}, pages = {}, pmid = {36355038}, issn = {2050-084X}, mesh = {*Eukaryotic Cells/physiology ; *Symbiosis/genetics ; Biological Evolution ; Eukaryota/genetics ; Archaea/genetics ; Cell Nucleus ; Meiosis ; Biology ; Phylogeny ; }, abstract = {The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.}, } @article {pmid36354861, year = {2022}, author = {Ali, S and Sajjad, A and Shakeel, Q and Farooqi, MA and Aqueel, MA and Tariq, K and Ullah, MI and Iqbal, A and Jamal, A and Saeed, MF and Manachini, B}, title = {Influence of Bacterial Secondary Symbionts in Sitobion avenae on Its Survival Fitness against Entomopathogenic Fungi, Beauveria bassiana and Metarhizium brunneum.}, journal = {Insects}, volume = {13}, number = {11}, pages = {}, pmid = {36354861}, issn = {2075-4450}, abstract = {The research was focused on the ability of wheat aphids Sitobion avenae, harboring bacterial secondary symbionts (BSS) Hamiltonella defensa or Regiella insecticola, to withstand exposure to fungal isolates of Beauveria bassiana and Metarhizium brunneum. In comparison to aphids lacking bacterial secondary symbionts, BSS considerably increased the lifespan of wheat aphids exposed to B. bassiana strains (Bb1022, EABb04/01-Tip) and M. brunneum strains (ART 2825 and BIPESCO 5) and also reduced the aphids' mortality. The wheat aphid clones lacking bacterial secondary symbionts were shown to be particularly vulnerable to M. brunneum strain BIPESCO 5. As opposed to wheat aphids carrying bacterial symbionts, fungal pathogens infected the wheat aphids lacking H. defensa and R. insecticola more quickly. When treated with fungal pathogens, bacterial endosymbionts had a favorable effect on the fecundity of their host aphids compared to the aphids lacking these symbionts, but there was no change in fungal sporulation on the deceased aphids. By defending their insect hosts against natural enemies, BSS increase the population of their host society and may have a significant impact on the development of their hosts.}, } @article {pmid36352292, year = {2022}, author = {Xing, R and Zhang, HC and Gao, QB and Zhang, FQ and Chi, XF and Chen, SL}, title = {Bacterial communities associated with mushrooms in the Qinghai-Tibet Plateau are shaped by soil parameters.}, journal = {International microbiology : the official journal of the Spanish Society for Microbiology}, volume = {}, number = {}, pages = {}, pmid = {36352292}, issn = {1618-1905}, abstract = {Fungi capable of producing fruit bodies are essential food and medicine resources. Despite recent advances in the study of microbial communities in mycorrhizospheres, little is known about the bacterial communities contained in fruit bodies. Using high-throughput sequencing, we investigated the bacterial communities in four species of mushrooms located on the alpine meadow and saline-alkali soil of the Qinghai-Tibet Plateau (QTP). Proteobacteria (51.7% on average) and Actinobacteria (28.2% on average) were the dominant phyla in all of the sampled fairy ring fruit bodies, and Acidobacteria (27.5% on average) and Proteobacteria (25.7% on average) dominated their adjacent soils. For the Agria. Bitorquis, Actinobacteria was the dominant phylum in its fruit body (67.5% on average) and adjacent soils (65.9% on average). The alpha diversity (i.e., Chao1, Shannon, Richness, and Simpson indexes) of the bacterial communities in the fruit bodies were significantly lower than those in the soil samples. All of the fungi shared more than half of their bacterial phyla and 16.2% of their total operational taxonomic units (OTUs) with their adjacent soil. Moreover, NH4[+] and pH were the key factors associated with bacterial communities in the fruit bodies and soils, respectively. These results indicate that the fungi tend to create a unique niche that selects for specific members of the bacterial community. Using culture-dependent methods, we also isolated 27 bacterial species belonging to three phyla and five classes from fruit bodies and soils. The strains isolated will be useful for future research on interactions between mushroom-forming fungi and their bacterial endosymbionts.}, } @article {pmid36339946, year = {2022}, author = {Compton, A and Tu, Z}, title = {Natural and Engineered Sex Ratio Distortion in Insects.}, journal = {Frontiers in ecology and evolution}, volume = {10}, number = {}, pages = {}, pmid = {36339946}, issn = {2296-701X}, support = {R01 AI121284/AI/NIAID NIH HHS/United States ; R01 AI123338/AI/NIAID NIH HHS/United States ; R01 AI157491/AI/NIAID NIH HHS/United States ; R21 AI154871/AI/NIAID NIH HHS/United States ; }, abstract = {Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.}, } @article {pmid36336686, year = {2022}, author = {McIlroy, SE and terHorst, CP and Teece, M and Coffroth, MA}, title = {Nutrient dynamics in coral symbiosis depend on both the relative and absolute abundance of Symbiodiniaceae species.}, journal = {Microbiome}, volume = {10}, number = {1}, pages = {192}, pmid = {36336686}, issn = {2049-2618}, mesh = {Animals ; *Anthozoa/physiology ; Symbiosis/physiology ; *Dinoflagellida/physiology ; Nitrogen ; Carbon ; Nutrients ; Coral Reefs ; }, abstract = {BACKGROUND: Symbionts provide a variety of reproductive, nutritional, and defensive resources to their hosts, but those resources can vary depending on symbiont community composition. As genetic techniques open our eyes to the breadth of symbiont diversity within myriad microbiomes, symbiosis research has begun to consider what ecological mechanisms affect the identity and relative abundance of symbiont species and how this community structure impacts resource exchange among partners. Here, we manipulated the in hospite density and relative ratio of two species of coral endosymbionts (Symbiodinium microadriaticum and Breviolum minutum) and used stable isotope enrichment to trace nutrient exchange with the host, Briareum asbestinum.

RESULTS: The patterns of uptake and translocation of carbon and nitrogen varied with both density and ratio of symbionts. Once a density threshold was reached, carbon acquisition decreased with increasing proportions of S. microadriaticum. In hosts dominated by B. minutum, nitrogen uptake was density independent and intermediate. Conversely, for those corals dominated by S. microadriaticum, nitrogen uptake decreased as densities increased, and as a result, these hosts had the overall highest (at low density) and lowest (at high density) nitrogen enrichment.

CONCLUSIONS: Our findings show that the uptake and sharing of nutrients was strongly dependent on both the density of symbionts within the host, as well as which symbiont species was dominant. Together, these complex interactive effects suggest that host regulation and the repression of in hospite symbiont competition can ultimately lead to a more productive mutualism. Video Abstract.}, } @article {pmid36330308, year = {2022}, author = {Beekman, MM and Donner, SH and Litjens, JJH and Dicke, M and Zwaan, BJ and Verhulst, EC and Pannebakker, BA}, title = {Do aphids in Dutch sweet pepper greenhouses carry heritable elements that protect them against biocontrol parasitoids?.}, journal = {Evolutionary applications}, volume = {15}, number = {10}, pages = {1580-1593}, pmid = {36330308}, issn = {1752-4571}, abstract = {Biological control (biocontrol) of crop pests is a sustainable alternative to the use of biodiversity and organismal health-harming chemical pesticides. Aphids can be biologically controlled with parasitoid wasps; however, variable results of parasitoid-based aphid biocontrol in greenhouses are reported. Aphids may display genetically encoded (endogenous) defences that increase aphid resistance against parasitoids as under high parasitoid pressure there will be selection for parasitoid-resistant aphids, potentially affecting the success of parasitoid-based aphid biocontrol in greenhouses. Additionally, aphids may carry secondary bacterial endosymbionts that protect them against parasitoids. We studied whether there is variation in either of these heritable elements in aphids in greenhouses of sweet pepper, an agro-economically important crop in the Netherlands that is prone to aphid pests and where pest management heavily relies on biocontrol. We sampled aphid populations in organic (biocontrol only) and conventional (biocontrol and pesticides) sweet pepper greenhouses in the Netherlands during the 2019 crop growth season. We assessed the aphid microbiome through both diagnostic PCR and 16S rRNA sequencing and did not detect any secondary endosymbionts in the two most encountered aphid species, Myzus persicae and Aulacorthum solani. We also compared multiple aphid lines collected from different greenhouses for variation in levels of endogenous-based resistance against the parasitoids commonly used as biocontrol agents. We found no differences in the levels of endogenous-based resistance between different aphid lines. This study does not support the hypothesis that protective endosymbionts or the presence of endogenous resistant aphid lines affects the success of parasitoid-based biocontrol of aphids in Dutch greenhouses. Future investigations will need to address what is causing the variable successes of aphid biocontrol and what (biological and management-related) lessons can be learned for aphid control in other crops, and biocontrol in general.}, } @article {pmid36321837, year = {2022}, author = {McGlynn, SE and Perkins, G and Sim, MS and Mackey, M and Deerinck, TJ and Thor, A and Phan, S and Ballard, D and Ellisman, MH and Orphan, VJ}, title = {A Cristae-Like Microcompartment in Desulfobacterota.}, journal = {mBio}, volume = {}, number = {}, pages = {e0161322}, doi = {10.1128/mbio.01613-22}, pmid = {36321837}, issn = {2150-7511}, abstract = {Some Alphaproteobacteria contain intracytoplasmic membranes (ICMs) and proteins homologous to those responsible for the mitochondrial cristae, an observation which has given rise to the hypothesis that the Alphaproteobacteria endosymbiont had already evolved cristae-like structures and functions. However, our knowledge of microbial fine structure is still limited, leaving open the possibility of structurally homologous ICMs outside the Alphaproteobacteria. Here, we report on the detailed characterization of lamellar cristae-like ICMs in environmental sulfate-reducing Desulfobacterota that form syntrophic partnerships with anaerobic methane-oxidizing (ANME) archaea. These structures are junction-bound to the cytoplasmic membrane and resemble the form seen in the lamellar cristae of opisthokont mitochondria. Extending these observations, we also characterized similar structures in Desulfovibrio carbinolicus, a close relative of the magnetotactic D. magneticus, which does not contain magnetosomes. Despite a remarkable structural similarity, the key proteins involved in cristae formation have not yet been identified in Desulfobacterota, suggesting that an analogous, but not a homologous, protein organization system developed during the evolution of some members of Desulfobacterota. IMPORTANCE Working with anaerobic consortia of methane oxidizing ANME archaea and their sulfate-reducing bacterial partners recovered from deep sea sediments and with the related sulfate-reducing bacterial isolate D. carbinolicus, we discovered that their intracytoplasmic membranes (ICMs) appear remarkably similar to lamellar cristae. Three-dimensional electron microscopy allowed for the novel analysis of the nanoscale attachment of ICMs to the cytoplasmic membrane, and these ICMs are structurally nearly identical to the crista junction architecture seen in metazoan mitochondria. However, the core junction-forming proteins must be different. The outer membrane vesicles were observed to bud from syntrophic Desulfobacterota, and darkly stained granules were prominent in both Desulfobacterota and D. carbinolicus. These findings expand the taxonomic breadth of ICM-producing microorganisms and add to our understanding of three-dimensional microbial fine structure in environmental microorganisms.}, } @article {pmid36319835, year = {2022}, author = {Moffat, JJ and Coffroth, MA and Wallingford, PD and terHorst, CP}, title = {Symbiont genotype influences holobiont response to increased temperature.}, journal = {Scientific reports}, volume = {12}, number = {1}, pages = {18394}, pmid = {36319835}, issn = {2045-2322}, mesh = {Animals ; Temperature ; Coral Reefs ; *Anthozoa/physiology ; *Dinoflagellida/physiology ; Symbiosis ; Genotype ; }, abstract = {As coral reefs face warming oceans and increased coral bleaching, a whitening of the coral due to loss of microalgal endosymbionts, the possibility of evolutionary rescue offers some hope for reef persistence. In tightly linked mutualisms, evolutionary rescue may occur through evolution of the host and/or endosymbionts. Many obligate mutualisms are composed of relatively small, fast-growing symbionts with greater potential to evolve on ecologically relevant time scales than their relatively large, slower growing hosts. Numerous jellyfish species harbor closely related endosymbiont taxa to other cnidarian species such as coral, and are commonly used as a model system for investigating cnidarian mutualisms. We examined the potential for adaptation of the upside-down jellyfish Cassiopea xamachana to increased temperature via evolution of its microalgal endosymbiont, Symbiodinium microadriaticum. We quantified trait variation among five algal genotypes in response to three temperatures (26 °C, 30 °C, and 32 °C) and fitness of hosts infected with each genotype. All genotypes showed positive growth rates at each temperature, but rates of respiration and photosynthesis decreased with increased temperature. Responses varied among genotypes but were unrelated to genetic similarity. The effect of temperature on asexual reproduction and the timing of development in the host also depended on the genotype of the symbiont. Natural selection could favor different algal genotypes at different temperatures, affecting host fitness. This eco-evolutionary interaction may be a critical component of understanding species resilience in increasingly stressful environments.}, } @article {pmid36315059, year = {2022}, author = {Shantz, AA and Ladd, MC and Ezzat, L and Schmitt, RJ and Holbrook, SJ and Schmeltzer, E and Vega Thurber, R and Burkepile, DE}, title = {Positive interactions between corals and damselfish increase coral resistance to temperature stress.}, journal = {Global change biology}, volume = {}, number = {}, pages = {}, doi = {10.1111/gcb.16480}, pmid = {36315059}, issn = {1365-2486}, abstract = {By the century's end, many tropical seas will reach temperatures exceeding most coral species' thermal tolerance on an annual basis. The persistence of corals in these regions will, therefore, depend on their abilities to tolerate recurrent thermal stress. Although ecologists have long recognized that positive interspecific interactions can ameliorate environmental stress to expand the realized niche of plants and animals, coral bleaching studies have largely overlooked how interactions with community members outside of the coral holobiont shape the bleaching response. Here, we subjected a common coral, Pocillopora grandis, to 10 days of thermal stress in aquaria with and without the damselfish Dascyllus flavicaudus (yellowtail dascyllus), which commonly shelter within these corals, to examine how interactions with damselfish impacted coral thermal tolerance. Corals often benefit from nutrients excreted by animals they interact with and prior to thermal stress, corals grown with damselfish showed improved photophysiology (Fv /Fm) and developed larger endosymbiont populations. When exposed to thermal stress, corals with fish performed as well as control corals maintained at ambient temperatures without fish. In contrast, corals exposed to thermal stress without fish experienced photophysiological impairment, a more than 50% decline in endosymbiont density, and a 36% decrease in tissue protein content. At the end of the experiment, thermal stress caused average calcification rates to decrease by over 80% when damselfish were absent but increase nearly 25% when damselfish were present. Our study indicates that damselfish-derived nutrients can increase coral thermal tolerance and are consistent with the Stress Gradient Hypothesis, which predicts that positive interactions become increasingly important for structuring communities as environmental stress increases. Because warming of just a few degrees can exceed corals' temperature tolerance to trigger bleaching and mortality, positive interactions could play a critical role in maintaining some coral species in warming regions until climate change is aggressively addressed.}, } @article {pmid36314939, year = {2022}, author = {Palmieri, L and Pavarini, R and Sharma, PP}, title = {Draft Genome Sequence of "Candidatus Nardonella dryophthoridicola" Strain NARMHE1, Endosymbiont of Metamasius hemipterus (Coleoptera, Curculionidae, Dryophthorinae).}, journal = {Microbiology resource announcements}, volume = {11}, number = {11}, pages = {e0073822}, pmid = {36314939}, issn = {2576-098X}, abstract = {Here, we report the draft genome and annotation of "Candidatus Nardonella dryophthoridicola" strain NARMHE1, obtained via Oxford Nanopore sequencing of the ovaries of its host, the weevil Metamasius hemipterus, from a population from southeast Brazil.}, } @article {pmid36311398, year = {2022}, author = {Park, E and Poulin, R}, title = {Extremely divergent COI sequences within an amphipod species complex: A possible role for endosymbionts?.}, journal = {Ecology and evolution}, volume = {12}, number = {10}, pages = {e9448}, pmid = {36311398}, issn = {2045-7758}, abstract = {Some heritable endosymbionts can affect host mtDNA evolution in various ways. Amphipods host diverse endosymbionts, but whether their mtDNA has been influenced by these endosymbionts has yet to be considered. Here, we investigated the role of endosymbionts (microsporidians and Rickettsia) in explaining highly divergent COI sequences in Paracalliope fluviatilis species complex, the most common freshwater amphipods in New Zealand. We first contrasted phylogeographic patterns using COI, ITS, and 28S sequences. While molecular species delimitation methods based on 28S sequences supported 3-4 potential species (N, C, SA, and SB) among freshwater lineages, COI sequences supported 17-27 putative species reflecting high inter-population divergence. The deep divergence between NC and S lineages (~20%; 28S) and the substitution saturation on the 3rd codon position of COI detected even within one lineage (SA) indicate a very high level of morphological stasis. Interestingly, individuals infected and uninfected by Rickettsia comprised divergent COI lineages in one of four populations tested, suggesting a potential influence of endosymbionts in mtDNA patterns. We propose several plausible explanations for divergent COI lineages, although they would need further testing with multiple lines of evidence. Lastly, due to common morphological stasis and the presence of endosymbionts, phylogeographic patterns of amphipods based on mtDNA should be interpreted with caution.}, } @article {pmid36302793, year = {2022}, author = {Spanner, C and Darienko, T and Filker, S and Sonntag, B and Pröschold, T}, title = {Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts.}, journal = {Scientific reports}, volume = {12}, number = {1}, pages = {18089}, pmid = {36302793}, issn = {2045-2322}, mesh = {*Paramecium/genetics ; Phylogeny ; *Oligohymenophorea ; *Alveolata ; *Chlorella vulgaris ; *Ciliophora ; *Chlorophyta/genetics ; Symbiosis/genetics ; }, abstract = {Paramecium bursaria is a mixotrophic ciliate species, which is common in stagnant and slow-flowing, nutrient-rich waters. It is usually found living in symbiosis with zoochlorellae (green algae) of the genera Chlorella or Micractinium. We investigated P. bursaria isolates from around the world, some of which have already been extensively studied in various laboratories, but whose morphological and genetic identity has not yet been completely clarified. Phylogenetic analyses of the SSU and ITS rDNA sequences revealed five highly supported lineages, which corresponded to the syngen and most likely to the biological species assignment. These syngens R1-R5 could also be distinguished by unique synapomorphies in the secondary structures of the SSU and the ITS. Considering these synapomorphies, we could clearly assign the existing GenBank entries of P. bursaria to specific syngens. In addition, we discovered synapomorphies at amino acids of the COI gene for the identification of the syngens. Using the metadata of these entries, most syngens showed a worldwide distribution, however, the syngens R1 and R5 were only found in Europe. From morphology, the syngens did not show any significant deviations. The investigated strains had either Chlorella variabilis, Chlorella vulgaris or Micractinium conductrix as endosymbionts.}, } @article {pmid36301108, year = {2022}, author = {Halter, T and Hendrickx, F and Horn, M and Manzano-Marín, A}, title = {A Novel Widespread MITE Element in the Repeat-Rich Genome of the Cardinium Endosymbiont of the Spider Oedothorax gibbosus.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0262722}, doi = {10.1128/spectrum.02627-22}, pmid = {36301108}, issn = {2165-0497}, abstract = {Free-living bacteria have evolved multiple times to become host-restricted endosymbionts. The transition from a free-living to a host-restricted lifestyle comes with a number of different genomic changes, including a massive loss of genes. In host-restricted endosymbionts, gene inactivation and genome reduction are facilitated by mobile genetic elements, mainly insertion sequences (ISs). ISs are small autonomous mobile elements, and one of, if not the most, abundant transposable elements in bacteria. Proliferation of ISs is common in some facultative endosymbionts, and is likely driven by the transmission bottlenecks, which increase the level of genetic drift. In this study, we present a manually curated genome annotation for a Cardinium endosymbiont of the dwarf spider Oedothorax gibbosus. Cardinium species are host-restricted endosymbionts that, similarly to ColbachiaWolbachia spp., include strains capable of manipulating host reproduction. Through the focus on mobile elements, the annotation revealed a rampant spread of ISs, extending earlier observations in other Cardinium genomes. We found that a large proportion of IS elements are pseudogenized, with many displaying evidence of recent inactivation. Most notably, we describe the lineage-specific emergence and spread of a novel IS-derived Miniature Inverted repeat Transposable Element (MITE), likely being actively maintained by intact copies of its parental IS982-family element. This study highlights the relevance of manual curation of these repeat-rich endosymbiont genomes for the discovery of novel MITEs, as well as the possible role these understudied elements might play in genome streamlining. IMPORTANCE Cardinium bacteria, a widespread symbiont lineage found across insects and nematodes, have been linked to reproductive manipulation of their hosts. However, the study of Cardinium has been hampered by the lack of comprehensive genomic resources. The high content of mobile genetic elements, namely, insertion sequences (ISs), has long complicated the analyses and proper annotations of these genomes. In this study, we present a manually curated annotation of the Cardinium symbiont of the spider Oedothorax gibbosus. Most notably, we describe a novel IS-like element found exclusively in this strain. We show that this mobile element likely evolved from a defective copy of its parental IS and then spread throughout the genome, contributing to the pseudogenization of several other mobile elements. We propose this element is likely being maintained by the intact copies of its parental IS element and that other similar elements in the genome could potentially follow this route.}, } @article {pmid36299729, year = {2022}, author = {Lima, MS and Hamerski, L and Silva, TA and da Cruz, MLR and Varasteh, T and Tschoeke, DA and Atella, GC and de Souza, W and Thompson, FL and Thompson, CC}, title = {Insights on the biochemical and cellular changes induced by heat stress in the Cladocopium isolated from coral Mussismilia braziliensis.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {973980}, pmid = {36299729}, issn = {1664-302X}, abstract = {Corals are treatened by global warming. Bleaching is one immediate effect of global warming, resulting from the loss of photosynthetic endosymbiont dinoflagellates. Understanding host-symbiont associations are critical for assessing coral's habitat requirements and its response to environmental changes. Cladocopium (formerly family Symbiodiniaceae clade C) are dominant endosymbionts in the reef-building coral, Mussismilia braziliensis. This study aimed to investigate the effect of temperature on the biochemical and cellular features of Cladocopium. Heat stress increased oxygen (O2) and decreased proteins, pigments (Chla + Chlc2), hexadecanoic acid- methyl ester, methyl stearate, and octadecenoic acid (Z)- methyl ester molecules. In addition, there was an increase in neutral lipids such as esterified cholesterol and a decrease in free fatty acids that may have been incorporated for the production of lipid droplets. Transmission electron microscopy (TEM) demonstrated that Cladocopium cells subjected to heat stress had thinner cell walls, deformation of chloroplasts, and increased lipid droplets after 3 days at 28°C. These findings indicate that thermal stress negatively affects isolated Cladocopium spp. from Mussismilia host coral.}, } @article {pmid36299486, year = {2022}, author = {Hargitai, D and Kenéz, L and Al-Lami, M and Szenczi, G and Lőrincz, P and Juhász, G}, title = {Autophagy controls Wolbachia infection upon bacterial damage and in aging Drosophila.}, journal = {Frontiers in cell and developmental biology}, volume = {10}, number = {}, pages = {976882}, pmid = {36299486}, issn = {2296-634X}, abstract = {Autophagy is a conserved catabolic process in eukaryotic cells that degrades intracellular components in lysosomes, often in an organelle-specific selective manner (mitophagy, ERphagy, etc). Cells also use autophagy as a defense mechanism, eliminating intracellular pathogens via selective degradation known as xenophagy. Wolbachia pipientis is a Gram-negative intracellular bacterium, which is one of the most common parasites on Earth affecting approximately half of terrestrial arthropods. Interestingly, infection grants the host resistance against other pathogens and modulates lifespan, so this bacterium resembles an endosymbiont. Here we demonstrate that Drosophila somatic cells normally degrade a subset of these bacterial cells, and autophagy is required for selective elimination of Wolbachia upon antibiotic damage. In line with these, Wolbachia overpopulates in autophagy-compromised animals during aging while its presence fails to affect host lifespan unlike in case of control flies. The autophagic degradation of Wolbachia thus represents a novel antibacterial mechanism that controls the propagation of this unique bacterium, behaving both as parasite and endosymbiont at the same time.}, } @article {pmid36296266, year = {2022}, author = {Díaz-Abad, L and Bacco-Mannina, N and Miguel Madeira, F and Serrao, EA and Regalla, A and Patrício, AR and Frade, PR}, title = {Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle (Chelonia mydas) Gut Microbiome.}, journal = {Microorganisms}, volume = {10}, number = {10}, pages = {}, pmid = {36296266}, issn = {2076-2607}, abstract = {The fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% "amplicon sequence variants", ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.}, } @article {pmid36296199, year = {2022}, author = {Mofokeng, LS and Smit, NJ and Cook, CA}, title = {Molecular Detection of Tick-Borne Bacteria from Amblyomma (Acari: Ixodidae) Ticks Collected from Reptiles in South Africa.}, journal = {Microorganisms}, volume = {10}, number = {10}, pages = {}, pmid = {36296199}, issn = {2076-2607}, abstract = {Reptiles are hosts for various tick species and tick-associated organisms, many of which are zoonotic. However, little is known about the presence and diversity of tick-borne bacteria infecting reptiles and their ticks in South Africa. Amblyomma ticks (n = 253) collected from reptiles were screened for the presence of Coxiella, Anaplasma, Rickettsia, and Borrelia species by amplification, sequencing and phylogenetic analysis of the 16S rRNA, 23S rRNA, gltA, OmpA, and Flagellin genes, respectively. This study recorded the presence of reptile associated Borrelia species and Coxiella-like endosymbiont in South Africa for the first time. Furthermore, a spotted fever group Rickettsia species was observed in 7 Amblyomma marmoreum and 14 Amblyomma sylvaticum from tortoises of genera Kinixys and Chersina. Francisella-like endosymbiont was observed from 2 Amblyomma latum collected from the Mozambique spitting cobra, Naja mossambica. Coxiella burnetii and Anaplasma spp., were not detected from the current samples. Although the direct evidence that reptiles can act as reservoir hosts remains to be determined, observations from this study provide indications that reptilian ticks may play a role in the transmission of pathogenic bacteria to homothermic animals. Furthermore, the absence of Anaplasma spp., and C. burnetii does not mean that these pathogens should be completely neglected.}, } @article {pmid36293276, year = {2022}, author = {Lesiak-Markowicz, I and Walochnik, J and Stary, A and Fürnkranz, U}, title = {Characterisation of Trichomonas vaginalis Isolates Collected from Patients in Vienna between 2019 and 2021.}, journal = {International journal of molecular sciences}, volume = {23}, number = {20}, pages = {}, pmid = {36293276}, issn = {1422-0067}, mesh = {Female ; Humans ; *Trichomonas vaginalis/genetics ; Metronidazole/pharmacology ; HeLa Cells ; *Trichomonas Infections ; Mycoplasma hominis/genetics ; *Totiviridae ; }, abstract = {Trichomonas vaginalis (TV) is the causative agent of trichomoniasis, the most common nonviral sexually transmitted disease. TV can carry symbionts such as Trichomonas vaginalis virus (TVV) or Mycoplasma hominis. Four distinct strains of TV are known: TVV1, TVV2, TVV3, and TVV4. The aim of the current study was to characterise TV isolates from Austrian patients for the presence of symbionts, and to determine their effect on metronidazole susceptibility and cytotoxicity against HeLa cells. We collected 82 TV isolates and detected presence of TVV (TVV1, TVV2, or TVV3) in 29 of them (35%); no TVV4 was detected. M. hominis was detected in vaginal/urethral swabs by culture in 37% of the TV-positive patients; M. hominis DNA was found in 28% of the TV isolates by PCR. In 15% of the patients, M. hominis was detected in the clinical samples as well as within the respective TV isolates. In 22% of the patients, M. hominis was detected by culture only. In 11 patients, M. hominis was detected only within the respective cultured TV isolates (13%), while the swab samples were negative for M. hominis. Our results provide a first insight into the distribution of symbionts in TV isolates from Austrian patients. We did not observe significant effects of the symbionts on metronidazole susceptibility, cytotoxicity, or severity of symptoms.}, } @article {pmid36282692, year = {2022}, author = {Haziqah-Rashid, A and Stobierska, K and Glenn, L and Metelmann, S and Sherlock, K and Chrostek, E and C Blagrove, MS}, title = {Determining Temperature Preference of Mosquitoes and Other Ectotherms.}, journal = {Journal of visualized experiments : JoVE}, volume = {}, number = {187}, pages = {}, doi = {10.3791/64356}, pmid = {36282692}, issn = {1940-087X}, mesh = {Animals ; Temperature ; *Culicidae ; Aluminum ; Incubators ; Insecta ; }, abstract = {Most insects and other ectotherms have a relatively narrow optimal temperature window, and deviation from their optima can have significant effects on their fitness, as well as other characteristics. Consequently, many such ectotherms seek out their optimal temperature range. Although temperature preferences of mosquitoes and other insects have been well studied, the traditional experimental setup is performed using a temperature gradient on an aluminum surface in a highly enclosed space. In some cases, this equipment restricts many natural behaviors, such as flying, which may be important in preference selection. The objective of this study is to observe insect preference for air temperature by using a two-chamber apparatus with sufficient room for flight. The two chambers consist of independent temperature-controlled incubators, each with a large aperture. The incubators are connected by these apertures using a short acrylic bridge. Inside the incubators are two netted cages, linked via the apertures and bridge, allowing the insects to freely fly between the different conditions. The acrylic bridge also acts as a temperature gradient between the two incubators. Due to the spacious area in the cage and easy construction, this method can be used to study any small ectotherm and/or any manipulation which may alter temperature preference including sensory organ manipulation, diet, gut flora, and endosymbiont presence at biosafety levels 1 or 2 (BSL 1 or 2). Additionally, the apparatus can be used for the study of pathogen infection using further containment (e.g., inside of a biosafety cabinet) at BSL 3.}, } @article {pmid36270115, year = {2022}, author = {Araújo, IM and Cordeiro, MD and Soares, RFP and Guterres, A and Sanavria, A and Baêta, BA and da Fonseca, AH}, title = {Survey of bacterial and protozoan agents in ticks and fleas found on wild animals in the state of Rio de Janeiro, Brazil.}, journal = {Ticks and tick-borne diseases}, volume = {13}, number = {6}, pages = {102037}, doi = {10.1016/j.ttbdis.2022.102037}, pmid = {36270115}, issn = {1877-9603}, abstract = {This study evaluates the presence of bacterial and protozoan agents in ticks and fleas found on wild animals in the state of Rio de Janeiro, Brazil. These ectoparasites were collected on mammal species Hydrochoerus hydrochaeris, Tapirus terrestris, Dicotyles tajacu, Didelphis aurita, Cuniculus paca, Cerdocyon thous, and Coendou prehensilis, and on the terrestrial bird Dromaius novaehollandiae. Ticks and fleas were identified morphologically using specific taxonomic keys. A total of 396 ticks and 54 fleas were tested via polymerase chain reaction (PCR) for the presence of Rickettsia spp., Borrelia spp., microorganisms of the order Piroplasmida and Anaplasmataceae family. This total is distributed among nine tick species of the genus Amblyomma and one flea species. Rickettsia bellii was detected in Amblyomma dubitatum and Amblyomma pacae; Rickettsia sp. strain AL was found in Amblyomma longirostre; Rickettsia parkeri strain Atlantic rainforest was found in Amblyomma ovale; and "Candidatus Rickettsia senegalensis" and Rickettsia felis were detected in Ctenocephalides felis felis. Wolbachia sp. was detected in C. f. felis, and Borrelia sp. was detected in Amblyomma calcaratum (here named Borrelia sp. strain Acalc110). All tested samples were negative for Ehrlichia spp. and microorganisms of the Piroplasmida order. This study detected a new bacterial strain, Borrelia sp. strain Acalc 110 (which is genetically close to B. miyamotoi and B. venezuelensis) and the Rickettsia sp. strain 19P, which is 100% similar to "Ca. R. senegalensis", a bacterium recently discovered and now being reported for the first time in Brazil.}, } @article {pmid36261834, year = {2022}, author = {Numan, M and Islam, N and Adnan, M and Zaman Safi, S and Chitimia-Dobler, L and Labruna, MB and Ali, A}, title = {First genetic report of Ixodes kashmiricus and associated Rickettsia sp.}, journal = {Parasites & vectors}, volume = {15}, number = {1}, pages = {378}, pmid = {36261834}, issn = {1756-3305}, mesh = {Humans ; Male ; Female ; Animals ; Sheep/genetics ; *Ixodes/microbiology ; Phylogeny ; *Rickettsia/genetics ; *Ixodidae/microbiology ; Goats ; DNA, Ribosomal ; }, abstract = {BACKGROUND: Hard ticks (Ixodidae) are hematophagous ectoparasites that transmit various pathogens to a variety of hosts including humans. Transhumant herds have been involved in the spread of ticks and associated Rickettsia spp., and studies on this neglected topic have been unexplored in many regions including Pakistan. This study aimed to investigate ticks infesting transhumant herds of sheep (Ovis aries) and goats (Capra hircus) in district Shangla, Khyber Pakhtunkhwa, Pakistan.

METHODS: Of the 144 examined animals, 112 hosts (68 sheep and 44 goats) of transhumant herds were infested by 419 ticks of different life stages including nymphs (105; 25%), males (58; 14%) and females (256; 61%). For molecular analyses, DNA was extracted from 64 collected ticks and subjected to PCR for the amplification of tick 16S rDNA and ITS2 partial sequences and for the amplification of rickettsial gltA and ompA gene sequences.

RESULTS: All tick specimens were identified as Ixodes kashmiricus based on morphological features. The obtained 16S rDNA and ITS2 sequences showed 95.7% and 95.3% identity, respectively, with Ixodes kazakstani reported from Kyrgyzstan. In the phylogenetic tree, the sequences clustered with members of the Ixodes ricinus species complex, including I. kazakstani and Ixodes apronophorus. Additionally, rickettsial gltA and ompA partial sequences were 99.7% identical to Rickettsia sp. endosymbiont of Ixodes spp. from Panama and Costa Rica and 99.2% with Rickettsia endosymbiont from the USA. Phylogenetically, the rickettsial gltA and ompA partial sequences from I. kashmiricus clustered with various haplotypes of Rickettsia endosymbiont, which were sister cladded to Rickettsia monacensis.

CONCLUSIONS: This is the first genetic report of I. kashmiricus and associated Rickettsia sp. Large-scale tick surveillance studies across the country are needed to investigate Ixodes ticks and associated pathogens.}, } @article {pmid36250862, year = {2022}, author = {Huggins, LG and Colella, V and Atapattu, U and Koehler, AV and Traub, RJ}, title = {Nanopore Sequencing Using the Full-Length 16S rRNA Gene for Detection of Blood-Borne Bacteria in Dogs Reveals a Novel Species of Hemotropic Mycoplasma.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0308822}, doi = {10.1128/spectrum.03088-22}, pmid = {36250862}, issn = {2165-0497}, abstract = {Dogs across the globe are afflicted by diverse blood- and vector-borne bacteria (VBB), many of which cause severe disease and can be fatal. Diagnosis of VBB infections can be challenging due to the low concentration of bacteria in the blood, the frequent occurrence of coinfections, and the wide range of known, emerging, and potentially novel VBB species encounterable. Therefore, there is a need for diagnostics that address these challenges by being both sensitive and capable of detecting all VBB simultaneously. We detail the first employment of a nanopore-based sequencing methodology conducted on the Oxford Nanopore Technologies (ONT) MinION device to accurately elucidate the "hemobacteriome" from canine blood through sequencing of the full-length 16S rRNA gene. We detected a diverse range of important canine VBB, including Ehrlichia canis, Anaplasma platys, Mycoplasma haemocanis, Bartonella clarridgeiae, "Candidatus Mycoplasma haematoparvum", a novel species of hemotropic mycoplasma, and Wolbachia endosymbionts of filarial worms, indicative of filariasis. Our nanopore-based protocol was equivalent in sensitivity to both quantitative PCR (qPCR) and Illumina sequencing when benchmarked against these methods, achieving high agreement as defined by the kappa statistics (k > 0.81) for three key VBB. Utilizing the ability of the ONT' MinION device to sequence long read lengths provides an excellent alternative diagnostic method by which the hemobacteriome can be accurately characterized to the species level in a way previously unachievable using short reads. We envision our method to be translatable to multiple contexts, such as the detection of VBB in other vertebrate hosts, including humans, while the small size of the MinION device is highly amenable to field use. IMPORTANCE Blood- and vector-borne bacteria (VBB) can cause severe pathology and even be lethal for dogs in many regions across the globe. Accurate characterization of all the bacterial pathogens infecting a canine host is critical, as coinfections are common and emerging and novel pathogens that may go undetected by traditional diagnostics frequently arise. Deep sequencing using devices from Oxford Nanopore Technologies (ONT) provides a solution, as the long read lengths achievable provide species-level taxonomic identification of pathogens that previous short-read technologies could not accomplish. We developed a protocol using ONT' MinION sequencer to accurately detect and classify a wide spectrum of VBB from canine blood at a sensitivity comparable to that of regularly used diagnostics, such as qPCR. This protocol demonstrates great potential for use in biosurveillance and biosecurity operations for the detection of VBB in a range of vertebrate hosts, while the MinION sequencer's portability allows this method to be used easily in the field.}, } @article {pmid36246278, year = {2022}, author = {Li, Z and Czajkowski, R}, title = {Editorial: Insights in microbial symbioses: 2021.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {1022893}, doi = {10.3389/fmicb.2022.1022893}, pmid = {36246278}, issn = {1664-302X}, } @article {pmid36246272, year = {2022}, author = {Bensig, EO and Valadez-Cano, C and Kuang, Z and Freire, IR and Reyes-Prieto, A and MacLellan, SR}, title = {The two-component regulatory system CenK-CenR regulates expression of a previously uncharacterized protein required for salinity and oxidative stress tolerance in Sinorhizobium meliloti.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {1020932}, pmid = {36246272}, issn = {1664-302X}, abstract = {Genes of unknown function constitute a considerable fraction of most bacterial genomes. In a Tn5-based search for stress response genes in the nitrogen-fixing facultative endosymbiont Sinorhizobium (Ensifer) meliloti, we identified a previously uncharacterized gene required for growth on solid media with increased NaCl concentrations. The encoded protein carries a predicted thioredoxin fold and deletion of the gene also results in increased sensitivity to hydrogen peroxide and cumene hydroperoxide. We have designated the gene srlA (stress resistance locus A) based on these phenotypes. A deletion mutant yields phenotypic revertants on high salt medium and genome sequencing revealed that all revertants carry a mutation in genes homologous to either cenK or cenR. srlA promoter activity is abolished in these revertant host backgrounds and in a strain carrying a deletion in cenK. We also observed that the srlA promoter is autoregulated, displaying low activity in a wildtype (wt) host background and high activity in the srl deletion mutant background. The srlA promoter includes a conserved inverted repeat directly upstream of the predicted -35 subsequence. A mutational analysis demonstrated that the site is required for the high promoter activity in the srlA deletion background. Electromobility shift assays using purified wildtype CenR response regulator and a D55E phosphomimetic derivative suggest this protein acts as a likely Class II activator by binding promoter DNA. These results document the first identified CenK-CenR regulon member in S. meliloti and demonstrate this two-component regulatory system and gene srlA influences cellular growth and persistence under certain stress-inducing conditions.}, } @article {pmid36244047, year = {2022}, author = {Grostieta, E and Zazueta-Islas, HM and Cruz-Valdez, T and Ballados-González, GG and Álvarez-Castillo, L and García-Esparza, SM and Cruz-Romero, A and Romero-Salas, D and Aguilar-Domínguez, M and Becker, I and Sánchez-Montes, S}, title = {Molecular detection of Coxiella-like endosymbionts and absence of Coxiella burnetii in Amblyomma mixtum from Veracruz, Mexico.}, journal = {Experimental & applied acarology}, volume = {88}, number = {1}, pages = {113-125}, pmid = {36244047}, issn = {1572-9702}, mesh = {Humans ; Animals ; Cattle ; Horses ; *Coxiella burnetii/genetics ; Coxiella/genetics ; *Q Fever/veterinary ; Amblyomma ; Phylogeny ; Mexico ; *Ticks ; Livestock ; *Cattle Diseases ; *Horse Diseases ; }, abstract = {Ticks are obligate ectoparasites associated with a wide range of vertebrate hosts, including domestic animals. Moreover, ticks are capable of transmitting many pathogens such as Coxiella. To date, Coxiella burnetii, the etiological agent of coxiellosis or Q fever, is the only valid species of the genera. Nevertheless, a wide range of agents denominated Coxiella-like have been detected in recent studies, mainly associated with ticks. The pathogenicity of these Coxiella-like agents is controversial as some of them can infect both birds and humans. In Mexico, knowledge about Q fever is scarce and limited to historical serological records, and there is an overall lack of molecular proof of any agent of the genus Coxiella circulating in the country. Therefore, the aim of this study was to detect the presence of Coxiella in ticks associated with cattle in all 10 regions of Veracruz, Mexico. To accomplish this objective, first, we identified ticks collected from cattle and horses in Veracruz. Then, for Coxiella detection, DNA extraction from ticks and PCR amplification of the 16S-rDNA of Coxiella was performed. Finally, we performed a phylogenetic reconstruction to determine the Coxiella lineages detected. From the 10 regions sampled we collected 888 ticks grouped in 180 pools, and only five Amblyomma mixtum from the locality of Castán, and one from Los Angeles from Tuxpan were found positive, which represents a frequency of 20% for each locality. This study represents the first attempt at molecular detection of Coxiella in ticks associated with cattle in the state of Veracruz, the major livestock producer in the country. The findings of the present study are relevant as they establish a precedent regarding the circulation of Coxiella-like agents, as well as the absence in three municipalities of the state of Veracruz of C. burnetii, an abortive agent of livestock importance.}, } @article {pmid36240631, year = {2022}, author = {Ip, JC and Zhang, Y and Xie, JY and Yeung, YH and Qiu, JW}, title = {Stable Symbiodiniaceae composition in three coral species during the 2017 natural bleaching event in subtropical Hong Kong.}, journal = {Marine pollution bulletin}, volume = {184}, number = {}, pages = {114224}, doi = {10.1016/j.marpolbul.2022.114224}, pmid = {36240631}, issn = {1879-3363}, mesh = {Animals ; *Anthozoa ; Coral Reefs ; Hong Kong ; *Dinoflagellida ; Symbiosis ; }, abstract = {Adaptive changes in endosymbiotic Symbiodiniaceae communities have been reported during and after bleaching events in tropical coral species, but little is known about such shifts in subtropical species. Here we examined the Symbiodiniaceae communities in three coral species (Montipora peltiformis, Pavona decussata, and Platygyra carnosa) based on samples collected during and after the 2017 bleaching event in subtropical Hong Kong waters. In all of the collected samples, ITS2 meta-sequencing revealed that P. decussata and P. carnosa were predominantly associated with Cladocopium C1 and C1c, whereas M. peltiformis was mainly associated with two Cladocopium C21 types and C1. For each species, the predominant endosymbionts exhibited high fidelity, and the relatively low abundance ITS2-types showed minor changes between the bleached and recovered corals. Our study provided the first details of coral-algal association in Hong Kong waters, suggesting the selection of certain genotypes as a potential adaptive mechanism to the marginal environmental conditions.}, } @article {pmid36217008, year = {2022}, author = {Brumfield, KD and Raupp, MJ and Haji, D and Simon, C and Graf, J and Cooley, JR and Janton, ST and Meister, RC and Huq, A and Colwell, RR and Hasan, NA}, title = {Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X.}, journal = {Scientific reports}, volume = {12}, number = {1}, pages = {16967}, pmid = {36217008}, issn = {2045-2322}, support = {R01ES030317A/NH/NIH HHS/United States ; }, mesh = {Animals ; Bacteria/genetics ; *Gastrointestinal Microbiome/genetics ; *Hemiptera/genetics ; RNA, Ribosomal, 16S/genetics ; Soil ; United States ; }, abstract = {Periodical cicadas (Hemiptera: Magicicada) have coevolved with obligate bacteriome-inhabiting microbial symbionts, yet little is known about gut microbial symbiont composition or differences in composition among allochronic Magicicada broods (year classes) which emerge parapatrically or allopatrically in the eastern United States. Here, 16S rRNA amplicon sequencing was performed to determine gut bacterial community profiles of three periodical broods, including II (Connecticut and Virginia, 2013), VI (North Carolina, 2017), and X (Maryland, 2021, and an early emerging nymph collected in Ohio, 2017). Results showed similarities among all nymphal gut microbiomes and between morphologically distinct 17-year Magicicada, namely Magicicada septendecim (Broods II and VI) and 17-year Magicicada cassini (Brood X) providing evidence of a core microbiome, distinct from the microbiome of burrow soil inhabited by the nymphs. Generally, phyla Bacteroidetes [Bacteroidota] (> 50% relative abundance), Actinobacteria [Actinomycetota], or Proteobacteria [Pseudomonadota] represented the core. Acidobacteria and genera Cupriavidus, Mesorhizobium, and Delftia were prevalent in nymphs but less frequent in adults. The primary obligate endosymbiont, Sulcia (Bacteroidetes), was dominant amongst core genera detected. Chryseobacterium were common in Broods VI and X. Chitinophaga, Arthrobacter, and Renibacterium were common in Brood X, and Pedobacter were common to nymphs of Broods II and VI. Further taxonomic assignment of unclassified Alphaproteobacteria sequencing reads allowed for detection of multiple copies of the Hodgkinia 16S rRNA gene, distinguishable as separate operational taxonomic units present simultaneously. As major emergences of the broods examined here occur at 17-year intervals, this study will provide a valuable comparative baseline in this era of a changing climate.}, } @article {pmid36214563, year = {2022}, author = {Zhou, JC and Zhao, X and Huo, LX and Shang, D and Dong, H and Zhang, LS}, title = {Wolbachia-Driven Memory Loss in a Parasitic Wasp Increases Superparasitism to Enhance Horizontal Transmission.}, journal = {mBio}, volume = {}, number = {}, pages = {e0236222}, doi = {10.1128/mbio.02362-22}, pmid = {36214563}, issn = {2150-7511}, abstract = {Horizontal transmission of the endosymbiont, Wolbachia, may occur during superparasitism when parasitoid females deposit a second clutch of eggs on a host. Wolbachia may increase the superparasitism tendency of Trichogramma wasps by depriving their memory. To test this hypothesis, we investigated the effects of conditioning experience and memory inhibitors (actinomycin D [ACD] and anisomycin [ANI]) on memory capacity, and expressions of memory-related genes (CREB1 and PKA), and superparasitism frequency of Wolbachia-infected (TDW) and uninfected (TD) lines of Trichogramma dendrolimi after conditioning with lemon or peppermint odor. We detected the presence of Wolbachia in eggs, larvae, pre-pupae, pupae, and adults of Trichogramma by using fluorescence in situ hybridization. The results showed that TDW females had a more reduced memory capacity than TD females after conditioning. Compared with TD females, TDW females showed a higher proportion of superparasitism and a downregulation of CREB1 and PKA genes after conditioning. TD females fed ACD or ANI showed a higher tendency for superparasitism and a downregulation of CREB1 and PKA, along with memory loss after conditioning than TD females fed honey solution only. The presence of Wolbachia was detected in the anterior region of the larva, pre-pupa, and pupa, but was not found in the head of the adult. The results provide evidence of host behavioral manipulation of Wolbachia by depriving memory of host Trichogramma wasps based on Poulin' s criteria. These host behavioral changes led by Wolbachia may be caused by the virulence of Wolbachia on the nervous system of the host. IMPORTANCE The endosymbiotic bacteria, Wolbachia, live widely within cells of arthropods. Wolbachia are not only transmitted vertically from host mother to offspring, but are also transmitted horizontally among host individuals. Horizontal transmission is expected to occur during superparasitism when host parasitoid females deposit a clutch of eggs on a host previously parasitized by the same parasitoid species. Thus, a question is proposed regarding whether superparasitism behavior is a behavior modification induced by the symbiont to favor symbiont transmission. This study highlights behavioral mechanisms of Wolbachia-induced superparasitism in Trichogramma wasps and the manipulation of symbionts on host parasitoids.}, } @article {pmid36209116, year = {2022}, author = {Kim, JI and Tanifuji, G and Jeong, M and Shin, W and Archibald, JM}, title = {Gene loss, pseudogenization, and independent genome reduction in non-photosynthetic species of Cryptomonas (Cryptophyceae) revealed by comparative nucleomorph genomics.}, journal = {BMC biology}, volume = {20}, number = {1}, pages = {227}, pmid = {36209116}, issn = {1741-7007}, mesh = {*Cryptophyta/genetics ; *Genome ; Genomics ; Photosynthesis ; Phylogeny ; Plastids/genetics ; }, abstract = {BACKGROUND: Cryptophytes are ecologically important algae of interest to evolutionary cell biologists because of the convoluted history of their plastids and nucleomorphs, which are derived from red algal secondary endosymbionts. To better understand the evolution of the cryptophyte nucleomorph, we sequenced nucleomorph genomes from two photosynthetic and two non-photosynthetic species in the genus Cryptomonas. We performed a comparative analysis of these four genomes and the previously published genome of the non-photosynthetic species Cryptomonas paramecium CCAP977/2a.

RESULTS: All five nucleomorph genomes are similar in terms of their general architecture, gene content, and gene order and, in the non-photosynthetic strains, loss of photosynthesis-related genes. Interestingly, in terms of size and coding capacity, the nucleomorph genome of the non-photosynthetic species Cryptomonas sp. CCAC1634B is much more similar to that of the photosynthetic C. curvata species than to the non-photosynthetic species C. paramecium.

CONCLUSIONS: Our results reveal fine-scale nucleomorph genome variation between distantly related congeneric taxa containing photosynthetic and non-photosynthetic species, including recent pseudogene formation, and provide a first glimpse into the possible impacts of the loss of photosynthesis on nucleomorph genome coding capacity and structure in independently evolved colorless strains.}, } @article {pmid36205078, year = {2022}, author = {Iwata, M and Yoshinaga, M and Mizutani, K and Kikawada, T and Kikuta, S}, title = {Proton gradient mediates hemolymph trehalose influx into aphid bacteriocytes.}, journal = {Archives of insect biochemistry and physiology}, volume = {}, number = {}, pages = {e21971}, doi = {10.1002/arch.21971}, pmid = {36205078}, issn = {1520-6327}, abstract = {Aphids harbor proteobacterial endosymbionts such as Buchnera aphidicola housed in specialized bacteriocytes derived from host cells. The endosymbiont Buchnera supplies essential amino acids such as arginine to the host cells and, in turn, obtains sugars needed for its survival from the hemolymph. The mechanism of sugar supply in aphid bacteriocytes has been rarely studied. It also remains unclear how Buchnera acquires its carbon source. The hemolymph sugars in Acyrthosiphon pisum are composed of the disaccharide trehalose containing two glucose molecules. Here, we report for the first time that trehalose is transported and used as a potential carbon source by Buchnera across the bacteriocyte plasma membrane via trehalose transporters. The current study characterized the bacteriocyte trehalose transporter Ap_ST11 (LOC100159441) using the Xenopus oocyte expression system. The Ap_ST11 transporter was found to be proton-dependent with a Km value ≥700 mM. We re-examined the hemolymph trehalose at 217.8 mM using a fluorescent trehalose sensor. The bacteriocytes did not obtain trehalose by facilitated diffusion along the gradient across cellular membranes. These findings suggest that trehalose influx into the bacteriocytes depends on the extracellular proton-driven secondary electrochemical transporter.}, } @article {pmid36194551, year = {2022}, author = {Gäbelein, CG and Reiter, MA and Ernst, C and Giger, GH and Vorholt, JA}, title = {Engineering Endosymbiotic Growth of E. coli in Mammalian Cells.}, journal = {ACS synthetic biology}, volume = {11}, number = {10}, pages = {3388-3396}, pmid = {36194551}, issn = {2161-5063}, mesh = {Animals ; Humans ; *Symbiosis ; *Escherichia coli/genetics ; HeLa Cells ; Biological Evolution ; Bacteria ; Amino Acids, Aromatic ; Mammals ; }, abstract = {Endosymbioses are cellular mergers in which one cell lives within another cell and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in emerging endosymbiotic systems and enable the engineering of cells with novel properties. Here, we tested the potential of different bacteria for artificial endosymbiosis in mammalian cells. To this end, we adopted the fluidic force microscopy technology to inject diverse bacteria directly into the cytosol of HeLa cells and examined the endosymbiont-host interactions by real-time fluorescence microscopy. Among them, Escherichia coli grew exponentially within the cytoplasm, however, at a faster pace than its host cell. To slow down the intracellular growth of E. coli, we introduced auxotrophies in E. coli and demonstrated that the intracellular growth rate can be reduced by limiting the uptake of aromatic amino acids. In consequence, the survival of the endosymbiont-host pair was prolonged. The presented experimental framework enables studying endosymbiotic candidate systems at high temporal resolution and at the single cell level. Our work represents a starting point for engineering a stable, vertically inherited endosymbiosis.}, } @article {pmid36192976, year = {2022}, author = {Morales-Quintana, L and Miño, R and Mendez-Yañez, A and Gundel, PE and Ramos, P}, title = {Do fungal-endosymbionts improve crop nutritional quality and tolerance to stress by boosting flavonoid-mediated responses?.}, journal = {Food research international (Ottawa, Ont.)}, volume = {161}, number = {}, pages = {111850}, doi = {10.1016/j.foodres.2022.111850}, pmid = {36192976}, issn = {1873-7145}, mesh = {*Antioxidants ; Endophytes/physiology ; *Flavonoids ; Humans ; Nutritive Value ; Plants ; Symbiosis ; }, abstract = {Climate change is threatening human activities, but the combination of water scarcity and heat waves are particularly challenging agriculture. Accumulating literature shows that beneficial fungal endophytes improve plant performance, a condition that seems to be magnified in presence of stress. Because evidence points out to an endophytic mediation of antioxidant activity in plants, we here focused on flavonoids for two main reasons: (i) they are involved in plant tolerance to abiotic stress, and (ii) they are known to be healthy for human consumption. With these two premises as guidance, we explored the literature trying to link mechanistically the relationship between endophytes and plant responses to stress as well as identifying patterns and knowledge gaps. Overall, fungal endophytes improve plant growth and tolerance to environmental stresses. However, evidence for endophytes boosting flavonoid mediated responses in plants is relatively scarce. Reports showing endophytes promoting flavonoid contents in grains and fresh fruits are rather limited which may be related to (long) length of the required experiments for testing it. The use of endophytes isolated from extreme environments (e.g., dry and cold deserts, acid lakes, etc.) is proposed to be better in conferring tolerance to plants under very stressful conditions. However, the real challenge is to test the capacity of these endophytes to established and maintain persistent and functional symbiosis under productive conditions. In summary, there is a clear potential for symbiotically modifying crop plants as a strategy to develop more tolerant varieties to face the stress and eventually increase the quality of the agricultural products.}, } @article {pmid36179855, year = {2022}, author = {Ünal, M and Yüksel, E and Canhilal, R}, title = {Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae).}, journal = {Experimental parasitology}, volume = {242}, number = {}, pages = {108394}, doi = {10.1016/j.exppara.2022.108394}, pmid = {36179855}, issn = {1090-2449}, mesh = {Animals ; Humans ; Larva/microbiology ; *Xenorhabdus ; *Photorhabdus ; *Insecticides ; *Moths ; Sugars ; Pest Control, Biological/methods ; }, abstract = {The black cutworm (BCW), Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is one of the destructive cutworm species. Black cutworm is a highly polyphagous pest that feeds on more than 30 plants, many of which are of economic importance such as maize, sugar beet, and potato. The control of BCW larvae relies heavily on the application of synthetic insecticides which have a detrimental impact on human health and the natural environment. In addition, increasing insecticide resistance in many insect species requires a novel and sustainable approach to controlling insect pests. The endosymbionts of entomopathogenic nematodes (EPNs) (Xenorhabdus and Phorohabdus spp.) represent a newly emerging green approach to controlling a wide range of insect pests. In the current study, the oral and contact efficacy of cell suspension (4 × 10[7] cells ml[-1]) and cell-free supernatants of different symbiotic bacteria (X. nematophilai, X. bovienii, X. budapestensis, and P. luminescent subsp. kayaii) were evaluated against the mixed groups of 1st-2nd and 3rd-4th instars larvae of BCW under controlled conditions. The oral treatment of the cell suspension and cell-free supernatants resulted in higher mortality rates than contact treatments. In general, larval mortality was higher in the 1st-2nd instar larvae than in the 3rd-4th instar larvae. The highest (75%) mortality was obtained from the cell suspension of X. budapestensis. The results indicated that the oral formulations of the cell suspension and cell-free supernatants of bacterial strains may have a good control potential against the 1st-2nd larvae BCW. However, the efficacy of the cell suspension and cell-free supernatants of tested bacterial strains should be further evaluated under greenhouse and field conditions.}, } @article {pmid36175838, year = {2022}, author = {Rayamajhee, B and Sharma, S and Willcox, M and Henriquez, FL and Rajagopal, RN and Shrestha, GS and Subedi, D and Bagga, B and Carnt, N}, title = {Assessment of genotypes, endosymbionts and clinical characteristics of Acanthamoeba recovered from ocular infection.}, journal = {BMC infectious diseases}, volume = {22}, number = {1}, pages = {757}, pmid = {36175838}, issn = {1471-2334}, mesh = {*Acanthamoeba/genetics ; *Acanthamoeba Keratitis ; *Disinfectants ; *Eye Infections ; Genotype ; Humans ; In Situ Hybridization, Fluorescence ; Retrospective Studies ; }, abstract = {INTRODUCTION: Acanthamoeba is an emerging pathogen, infamous for its resilience against antiprotozoal compounds, disinfectants and harsh environments. It is known to cause keratitis, a sight-threatening, painful and difficult to treat corneal infection which is often reported among contact lens wearers and patients with ocular trauma. Acanthamoeba comprises over 24 species and currently 23 genotypes (T1-T23) have been identified.

AIMS: This retrospective study was designed to examine the Acanthamoeba species and genotypes recovered from patients with Acanthamoeba keratitis (AK), determine the presence of endosymbionts in ocular isolates of Acanthamoeba and review the clinical presentations.

METHODOLOGY: Thirteen culture-confirmed AK patients treated in a tertiary eye care facility in Hyderabad, India from February to October 2020 were included in this study. The clinical manifestations, medications and visual outcomes of all patients were obtained from medical records. The Acanthamoeba isolates were identified by sequencing the ribosomal nuclear subunit (rns) gene. Acanthamoeba isolates were assessed for the presence of bacterial or fungal endosymbionts using molecular assays, PCR and fluorescence in situ hybridization (FISH).

RESULTS: The mean age of the patients was 33 years (SD ± 17.4; 95% CI 22.5 to 43.5 years). Six (46.2%) cases had AK associated risk factors; four patients had ocular trauma and two were contact lens wearers. A. culbertsoni (6/13, 46.2%) was the most common species, followed by A. polyphaga and A. triangularis. Most of the isolates (12/13) belonged to genotype T4 and one was a T12; three sub-clusters T4A, T4B, and T4F were identified within the T4 genotype. There was no significant association between Acanthamoeba types and clinical outcomes. Eight (61.5%) isolates harboured intracellular bacteria and one contained Malassezia restricta. The presence of intracellular microbes was associated with a higher proportion of stromal infiltrates (88.9%, 8/9), epithelial defect (55.6%, 5/9) and hypopyon (55.6%, 5/9) compared to 50% (2/4), 25% (1/4) and 25% (1/4) AK cases without intracellular microbes, respectively.

CONCLUSIONS: Genotype T4 was the predominant isolate in southern India. This is the second report of T12 genotype identified from AK patient in India, which is rarely reported worldwide. The majority of the Acanthamoeba clinical isolates in this study harboured intracellular microbes, which may impact clinical characteristics of AK.}, } @article {pmid36172550, year = {2022}, author = {Wu, D and Yang, L and Gu, J and Tarkowska, D and Deng, X and Gan, Q and Zhou, W and Strnad, M and Lu, Y}, title = {A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum.}, journal = {Frontiers in plant science}, volume = {13}, number = {}, pages = {927200}, pmid = {36172550}, issn = {1664-462X}, abstract = {Dinoflagellate inhabitants of the reef-building corals exchange nutrients and signals with host cells, which often benefit the growth of both partners. Phytohormones serve as central hubs for signal integration between symbiotic microbes and their hosts, allowing appropriate modulation of plant growth and defense in response to various stresses. However, the presence and function of phytohormones in photosynthetic dinoflagellates and their function in the holobionts remain elusive. We hypothesized that endosymbiotic dinoflagellates may produce and employ phytohormones for stress responses. Using the endosymbiont of reef corals Breviolum minutum as model, this study aims to exam whether the alga employ analogous signaling systems by an integrated multiomics approach. We show that key gibberellin (GA) biosynthetic genes are widely present in the genomes of the selected dinoflagellate algae. The non-13-hydroxylation pathway is the predominant route for GA biosynthesis and the multifunctional GA dioxygenase in B. minutum has distinct substrate preference from high plants. GA biosynthesis is modulated by the investigated bleaching-stimulating stresses at both transcriptional and metabolic levels and the exogenously applied GAs improve the thermal tolerance of the dinoflagellate. Our results demonstrate the innate ability of a selected Symbiodiniaceae to produce the important phytohormone and the active involvement of GAs in the coordination and the integration of the stress response.}, } @article {pmid36172295, year = {2022}, author = {Tiwary, A and Babu, R and Sen, R and Raychoudhury, R}, title = {Bacterial supergroup-specific "cost" of Wolbachia infections in Nasonia vitripennis.}, journal = {Ecology and evolution}, volume = {12}, number = {9}, pages = {e9219}, pmid = {36172295}, issn = {2045-7758}, abstract = {The maternally inherited endosymbiont, Wolbachia, is known to alter the reproductive biology of its arthropod hosts for its own benefit and can induce both positive and negative fitness effects in many hosts. Here, we describe the effects of the maintenance of two distinct Wolbachia infections, one each from supergroups A and B, on the parasitoid host Nasonia vitripennis. We compare the effect of Wolbachia infections on various traits between the uninfected, single A-infected, single B-infected, and double-infected lines with their cured versions. Contrary to some previous reports, our results suggest that there is a significant cost associated with the maintenance of Wolbachia infections where traits such as family size, fecundity, longevity, and rates of male copulation are compromised in Wolbachia-infected lines. The double Wolbachia infection has the most detrimental impact on the host as compared to single infections. Moreover, there is a supergroup-specific negative impact on these wasps as the supergroup B infection elicits the most pronounced negative effects. These negative effects can be attributed to a higher Wolbachia titer seen in the double and the single supergroup B infection lines when compared to supergroup A. Our findings raise important questions on the mechanism of survival and maintenance of these reproductive parasites in arthropod hosts.}, } @article {pmid36169529, year = {2022}, author = {Favoreto, AL and Carvalho, VR and Domingues, MM and Ribeiro, MF and Cavallini, G and Lawson, SA and Silva, WM and Zanuncio, JC and Wilcken, CF}, title = {Wolbachia pipientis: first detection in populations of Glycaspis brimblecombei (Hemiptera: Aphalaridae) and Psyllaephagus bliteus (Hymenoptera: Encyrtidae) in Brazil.}, journal = {Brazilian journal of biology = Revista brasleira de biologia}, volume = {82}, number = {}, pages = {e264475}, doi = {10.1590/1519-6984.264475}, pmid = {36169529}, issn = {1678-4375}, mesh = {Animals ; Brazil ; *Eucalyptus ; *Hemiptera ; Humans ; *Hymenoptera ; *Wolbachia ; }, abstract = {The sucking insect, Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), is originally from Australia and reduces the productivity of Eucalyptus crops. The parasitoid Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae) is the main agent used in the integrated management of G. brimblecombei. Endosymbionts, in insects, are important in the adaptation and protection of their hosts to the environment. The intracellular symbionts Wolbachia, induces reproductive changes such as cytoplasmic incompatibility, feminization, male death and parthenogenesis. The objective of this study was to report the first record of Wolbachia pipientis in populations of G. brimblecombei and of its parasitoid P. bliteus in the field in Brazil. Branches with adults of G. brimblecombei and P. bliteus were collected from eucalyptus trees in commercial farms in six Brazilian states and, after emergence, the insects obtained were frozen at -20 °C. Polymerase chain reaction (PCR) was performed to detect the Wolbachia endosymbiont. Wolbachia pipientis was identified in individuals of G. brimblecombei and its parasitoid P. bliteus from populations of the counties of Agudos and Mogi-Guaçu (São Paulo State), Itamarandiba (Minas Gerais State) and São Jerônimo da Serra (Paraná State) in Brazil.}, } @article {pmid36163269, year = {2022}, author = {Ferrarini, MG and Dell'Aglio, E and Vallier, A and Balmand, S and Vincent-Monégat, C and Hughes, S and Gillet, B and Parisot, N and Zaidman-Rémy, A and Vieira, C and Heddi, A and Rebollo, R}, title = {Efficient compartmentalization in insect bacteriomes protects symbiotic bacteria from host immune system.}, journal = {Microbiome}, volume = {10}, number = {1}, pages = {156}, pmid = {36163269}, issn = {2049-2618}, mesh = {Animals ; Bacteria ; Immune System ; Insect Proteins ; *Peptidoglycan ; Symbiosis ; *Weevils/microbiology ; }, abstract = {BACKGROUND: Many insects house symbiotic intracellular bacteria (endosymbionts) that provide them with essential nutrients, thus promoting the usage of nutrient-poor habitats. Endosymbiont seclusion within host specialized cells, called bacteriocytes, often organized in a dedicated organ, the bacteriome, is crucial in protecting them from host immune defenses while avoiding chronic host immune activation. Previous evidence obtained in the cereal weevil Sitophilus oryzae has shown that bacteriome immunity is activated against invading pathogens, suggesting endosymbionts might be targeted and impacted by immune effectors during an immune challenge. To pinpoint any molecular determinants associated with such challenges, we conducted a dual transcriptomic analysis of S. oryzae's bacteriome subjected to immunogenic peptidoglycan fragments.

RESULTS: We show that upon immune challenge, the bacteriome actively participates in the innate immune response via induction of antimicrobial peptides (AMPs). Surprisingly, endosymbionts do not undergo any transcriptomic changes, indicating that this potential threat goes unnoticed. Immunohistochemistry showed that TCT-induced AMPs are located outside the bacteriome, excluding direct contact with the endosymbionts.

CONCLUSIONS: This work demonstrates that endosymbiont protection during an immune challenge is mainly achieved by efficient confinement within bacteriomes, which provides physical separation between host systemic response and endosymbionts. Video Abstract.}, } @article {pmid36160860, year = {2022}, author = {An, L and Bhowmick, B and Liang, D and Suo, P and Liao, C and Zhao, J and Han, Q}, title = {The microbiota changes of the brown dog tick, Rhipicephalus sanguineus under starvation stress.}, journal = {Frontiers in physiology}, volume = {13}, number = {}, pages = {932130}, pmid = {36160860}, issn = {1664-042X}, abstract = {Rhipicephalus sanguineus, the brown dog tick, is the most widespread tick in the world and a predominant vector of multiple pathogens affecting wild and domestic animals. There is an increasing interest in understanding the role of tick microbiome in pathogen acquisition and transmission as well as in environment-vector interfaces. Several studies suggested that the tick microbial communities are under the influence of several factors including the tick species, dietary bloodmeal, and physiological stress. Compared with insects, very little of the microbial community is known to contribute to the nutrition of the host. Therefore, it is of significance to elucidate the regulation of the microbial community of Rh. Sanguineus under starvation stress. Starvation stress was induced in wild-type adults (1 month, 2 months, 4 months, 6 months) and the microbial composition and diversity were analyzed before and after blood feeding. After the evaluation, it was found that the microbial community composition of Rh. sanguineus changed significantly with starvation stress. The dominant symbiotic bacteria Coxiella spp. of Rh. sanguineus gradually decreased with the prolongation of starvation stress. We also demonstrated that the starvation tolerance of Rh. sanguineus was as long as 6 months. Next, Coxiella-like endosymbionts were quantitatively analyzed by fluorescence quantitative PCR. We found a pronounced tissue tropism in the Malpighian tubule and female gonad, and less in the midgut and salivary gland organs. Finally, the blood-fed nymphs were injected with ofloxacin within 24 h. The nymphs were allowed to develop into adults. It was found that the adult blood-sucking rate, adult weight after blood meal, fecundity (egg hatching rate), and feeding period of the newly hatched larvae were all affected to varying degrees, indicating that the removal of most symbiotic bacteria had an irreversible effect on it.}, } @article {pmid36156240, year = {2022}, author = {Bespalaya, YV and Sousa, R and Gofarov, MY and Kondakov, AV and Kropotin, AV and Palatov, DM and Vikhrev, IV and Bolotov, IN}, title = {An exploration of the hidden endosymbionts of Corbicula in the native range.}, journal = {Ecology}, volume = {}, number = {}, pages = {e3836}, doi = {10.1002/ecy.3836}, pmid = {36156240}, issn = {1939-9170}, } @article {pmid36151951, year = {2022}, author = {Niu, R and Zhu, X and Wang, L and Zhang, K and Li, D and Ji, J and Niu, L and Gao, X and Luo, J and Cui, J}, title = {Evaluation of Hamiltonella on Aphis gossypii fitness based on life table parameters and RNA sequencing.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.7200}, pmid = {36151951}, issn = {1526-4998}, abstract = {BACKGROUND: Insect endosymbionts are widespread in nature and known to play key roles in regulating host biology. As a secondary endosymbiont, bacteria in the genus Hamiltonella help cotton aphids (Aphis gossypii) defend against parasitism by parasitoid wasps, however, the potential negative impacts of these bacteria on cotton aphid biology remain largely unclear.

RESULTS: This study aims to evaluate the potential impacts of Hamiltonella on the growth and development of cotton aphids based on life table parameters and RNA sequencing. The results showed that infection with Hamiltonella resulted in smaller body type and lower body weight in aphids. Compared to the control group, there were significant differences in the finite and intrinsic rates of increase and mean generation time. Furthermore, the RNA sequencing data revealed that the genes related to energy synthesis and nutrient metabolism pathways were significantly downregulated and genes related to molting and nervous system pathways were significantly upregulated in the Hamiltonella population.

CONCLUSION: Our results confirm that Hamiltonella retarded the growth and development of cotton aphids accompanied by the downregulation of genes related to energy synthesis and nutrient metabolism, which provides new insights into aphid-symbiont interactions and may support the development of improved aphid management strategies. © 2022 Society of Chemical Industry.}, } @article {pmid36151871, year = {2022}, author = {Bing, XL and Xia, CB and Ye, QT and Gong, X and Cui, JR and Peng, CW and Hong, XY}, title = {Wolbachia manipulates reproduction of spider mites by influencing herbivore salivary proteins.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.7201}, pmid = {36151871}, issn = {1526-4998}, abstract = {BACKGROUND: The endosymbiont Wolbachia is known for manipulating host reproduction. Wolbachia also can affect host fitness by mediating interactions between plant and herbivores. However, it remains unclear whether saliva proteins are involved in this process.

RESULTS: We found that Wolbachia infection decreased the number of deposited eggs but increased the egg hatching rate in the spider mite Tetranychus urticae Koch (Acari: Tetranychidae), a cosmopolitan pest that infects >1000 species of plants. Transcriptomic and proteomic analyses revealed that Wolbachia-infected mites upregulated the gene expression levels of many T. urticae salivary proteins including a cluster of Tetranychidae-specific, functionally uncharacterized SHOT1s (secreted host-responsive proteins of Tetranychidae). The SHOT1 genes were expressed more in the feeding stages (nymphs and adults) of mites than in eggs and highly enriched in the proterosomas. RNA interference experiments showed that knockdown of SHOT1s significantly decreased Wolbachia density, increased the number of deposited eggs and decreased the egg hatching rate.

CONCLUSION: Together, these results indicate that SHOT1s are positively correlated with Wolbachia density and account for Wolbachia-mediated phenotypes. Our results provide new evidence that herbivore salivary proteins are related to Wolbachia-mediated manipulations of host performance on plants. © 2022 Society of Chemical Industry.}, } @article {pmid36149408, year = {2022}, author = {Warecki, B and Titen, SWA and Alam, MS and Vega, G and Lemseffer, N and Hug, K and Minden, JS and Sullivan, W}, title = {Wolbachia action in the sperm produces developmentally deferred chromosome segregation defects during the Drosophila mid-blastula transition.}, journal = {eLife}, volume = {11}, number = {}, pages = {}, pmid = {36149408}, issn = {2050-084X}, support = {R35 GM139595/GM/NIGMS NIH HHS/United States ; }, mesh = {Animals ; Blastula ; Chromatin ; Chromosome Segregation ; Cytoplasm ; Drosophila/genetics ; Female ; In Situ Hybridization, Fluorescence ; Male ; Semen ; Spermatozoa ; *Wolbachia/genetics ; }, abstract = {Wolbachia, a vertically transmitted endosymbiont infecting many insects, spreads rapidly through uninfected populations by a mechanism known as cytoplasmic incompatibility (CI). In CI, a paternally delivered modification of the sperm leads to chromatin defects and lethality during and after the first mitosis of embryonic development in multiple species. However, whether CI-induced defects in later stage embryos are a consequence of the first division errors or caused by independent defects remains unresolved. To address this question, we focused on ~1/3 of embryos from CI crosses in Drosophila simulans that develop apparently normally through the first and subsequent pre-blastoderm divisions before exhibiting mitotic errors during the mid-blastula transition and gastrulation. We performed single embryo PCR and whole genome sequencing to find a large percentage of these developed CI-derived embryos bypass the first division defect. Using fluorescence in situ hybridization, we find increased chromosome segregation errors in gastrulating CI-derived embryos that had avoided the first division defect. Thus, Wolbachia action in the sperm induces developmentally deferred defects that are not a consequence of the first division errors. Like the immediate defect, the delayed defect is rescued through crosses to infected females. These studies inform current models on the molecular and cellular basis of CI.}, } @article {pmid36143478, year = {2022}, author = {Johnson, KP}, title = {Genomic Approaches to Uncovering the Coevolutionary History of Parasitic Lice.}, journal = {Life (Basel, Switzerland)}, volume = {12}, number = {9}, pages = {}, pmid = {36143478}, issn = {2075-1729}, abstract = {Next-generation sequencing technologies are revolutionizing the fields of genomics, phylogenetics, and population genetics. These new genomic approaches have been extensively applied to a major group of parasites, the lice (Insecta: Phthiraptera) of birds and mammals. Two louse genomes have been assembled and annotated to date, and these have opened up new resources for the study of louse biology. Whole genome sequencing has been used to assemble large phylogenomic datasets for lice, incorporating sequences of thousands of genes. These datasets have provided highly supported trees at all taxonomic levels, ranging from relationships among the major groups of lice to those among closely related species. Such approaches have also been applied at the population scale in lice, revealing patterns of population subdivision and inbreeding. Finally, whole genome sequence datasets can also be used for additional study beyond that of the louse nuclear genome, such as in the study of mitochondrial genome fragmentation or endosymbiont function.}, } @article {pmid36143410, year = {2022}, author = {Johnston-Monje, D and Gutiérrez, JP and Becerra Lopez-Lavalle, LA}, title = {Stochastic Inoculum, Biotic Filtering and Species-Specific Seed Transmission Shape the Rare Microbiome of Plants.}, journal = {Life (Basel, Switzerland)}, volume = {12}, number = {9}, pages = {}, pmid = {36143410}, issn = {2075-1729}, abstract = {A plant's health and productivity is influenced by its associated microbes. Although the common/core microbiome is often thought to be the most influential, significant numbers of rare or uncommon microbes (e.g., specialized endosymbionts) may also play an important role in the health and productivity of certain plants in certain environments. To help identify rare/specialized bacteria and fungi in the most important angiosperm plants, we contrasted microbiomes of the seeds, spermospheres, shoots, roots and rhizospheres of Arabidopsis, Brachypodium, maize, wheat, sugarcane, rice, tomato, coffee, common bean, cassava, soybean, switchgrass, sunflower, Brachiaria, barley, sorghum and pea. Plants were grown inside sealed jars on sterile sand or farm soil. Seeds and spermospheres contained some uncommon bacteria and many fungi, suggesting at least some of the rare microbiome is vertically transmitted. About 95% and 86% of fungal and bacterial diversity inside plants was uncommon; however, judging by read abundance, uncommon fungal cells are about half of the mycobiome, while uncommon bacterial cells make up less than 11% of the microbiome. Uncommon-seed-transmitted microbiomes consisted mostly of Proteobacteria, Firmicutes, Bacteriodetes, Ascomycetes and Basidiomycetes, which most heavily colonized shoots, to a lesser extent roots, and least of all, rhizospheres. Soil served as a more diverse source of rare microbes than seeds, replacing or excluding the majority of the uncommon-seed-transmitted microbiome. With the rarest microbes, their colonization pattern could either be the result of stringent biotic filtering by most plants, or uneven/stochastic inoculum distribution in seeds or soil. Several strong plant-microbe associations were observed, such as seed transmission to shoots, roots and/or rhizospheres of Sarocladium zeae (maize), Penicillium (pea and Phaseolus), and Curvularia (sugarcane), while robust bacterial colonization from cassava field soil occurred with the cyanobacteria Leptolyngbya into Arabidopsis and Panicum roots, and Streptomyces into cassava roots. Some abundant microbes such as Sakaguchia in rice shoots or Vermispora in Arabidopsis roots appeared in no other samples, suggesting that they were infrequent, stochastically deposited propagules from either soil or seed (impossible to know based on the available data). Future experiments with culturing and cross-inoculation of these microbes between plants may help us better understand host preferences and their role in plant productivity, perhaps leading to their use in crop microbiome engineering and enhancement of agricultural production.}, } @article {pmid36129743, year = {2022}, author = {Weiss, BL and Rio, RVM and Aksoy, S}, title = {Microbe Profile: Wigglesworthia glossinidia: the tsetse fly's significant other.}, journal = {Microbiology (Reading, England)}, volume = {168}, number = {9}, pages = {}, doi = {10.1099/mic.0.001242}, pmid = {36129743}, issn = {1465-2080}, mesh = {Amidohydrolases/metabolism ; Animals ; Antiparasitic Agents/metabolism ; Symbiosis ; *Tsetse Flies/parasitology/physiology ; Vitamins/metabolism ; *Wigglesworthia/metabolism ; }, abstract = {Wigglesworthia glossinidia is an obligate, maternally transmitted endosymbiont of tsetse flies. The ancient association between these two organisms accounts for many of their unique physiological adaptations. Similar to other obligate mutualists, Wigglesworthia's genome is dramatically reduced in size, yet it has retained the capacity to produce many B-vitamins that are found at inadequate quantities in the fly's vertebrate blood-specific diet. These Wigglesworthia-derived B-vitamins play essential nutritional roles to maintain tsetse's physiological homeostasis as well as that of other members of the fly's microbiota. In addition to its nutritional role, Wigglesworthia contributes towards the development of tsetse's immune system during the larval period. Tsetse produce amidases that degrade symbiotic peptidoglycans and prevent activation of antimicrobial responses that can damage Wigglesworthia. These amidases in turn exhibit antiparasitic activity and decrease tsetse's ability to be colonized with parasitic trypanosomes, which reduce host fitness. Thus, the Wigglesworthia symbiosis represents a fine-tuned association in which both partners actively contribute towards achieving optimal fitness outcomes.}, } @article {pmid36125236, year = {2022}, author = {Brinker, P and Chen, F and Chehida, YB and Beukeboom, LW and Fontaine, MC and Salles, JF}, title = {Microbiome composition is shaped by geography and population structure in the parasitic wasp Asobara japonica, but not in the presence of the endosymbiont Wolbachia.}, journal = {Molecular ecology}, volume = {}, number = {}, pages = {}, doi = {10.1111/mec.16699}, pmid = {36125236}, issn = {1365-294X}, abstract = {The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.}, } @article {pmid36124671, year = {2022}, author = {Brophy, M and Walker, KR and Adamson, JE and Ravenscraft, A}, title = {Tropical and Temperate Lineages of Rhipicephalus sanguineus s.l. Ticks (Acari: Ixodidae) Host Different Strains of Coxiella-like Endosymbionts.}, journal = {Journal of medical entomology}, volume = {59}, number = {6}, pages = {2022-2029}, doi = {10.1093/jme/tjac132}, pmid = {36124671}, issn = {1938-2928}, mesh = {Dogs ; Animals ; *Rhipicephalus sanguineus/genetics ; Coxiella/genetics ; *Ixodidae/microbiology ; RNA, Ribosomal, 16S/genetics ; Phylogeny ; Bacteria/genetics ; *Dog Diseases ; }, abstract = {Nonpathogenic bacteria likely play important roles in the biology and vector competence of ticks and other arthropods. Coxiella, a gram-negative gammaproteobacterium, is one of the most commonly reported maternally inherited endosymbionts in ticks and has been associated with over 40 tick species. Species-specific Coxiella-like endosymbionts (CLEs) have been reported in the brown dog tick, Rhipicephalus sanguineus sensu lato (Acari: Ixodidae), throughout the world, while recent research suggests low Coxiella diversity among tick species. We investigated CLE diversity among R. sanguineus s.l. ticks across Arizona. We detected 37 recurrent sequence variants (SVs) of the symbiont, indicating greater diversity in these symbiotic bacteria than previously reported. However, two SVs accounted for the vast majority of 16S rRNA amplicon reads. These two dominant CLEs were both closely related to Candidatus C. mudrowiae, an identified symbiont of Rhipicephalus turanicus ticks. One strain strongly associated with the tropical lineage of R. sanguineus s.l. while the other was found almost exclusively in the temperate lineage, supporting the conclusion that CLEs are primarily vertically transmitted. However, occasional mismatches between tick lineage and symbiont SV indicate that horizontal symbiont transfer may occur, perhaps via cofeeding of ticks from different lineages on the same dog. This study advances our understanding of CLE diversity in Rh. sanguineus s.l.}, } @article {pmid36110209, year = {2022}, author = {Zhang, HD and Gao, J and Xing, D and Guo, XX and Li, CX and Dong, YD and Zheng, Z and Ma, Z and Wu, ZM and Zhu, XJ and Zhao, MH and Liu, QM and Yan, T and Chu, HL and Zhao, TY}, title = {Fine-scale genetic structure and wolbachia infection of aedes albopictus (Diptera: Culicidae) in Nanjing city, China.}, journal = {Frontiers in genetics}, volume = {13}, number = {}, pages = {827655}, pmid = {36110209}, issn = {1664-8021}, abstract = {Background: Aedes albopictus is an indigenous primary vector of dengue and Zika viruses in China. Wolbachia is a gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Compared with research on the dispersion of Ae. albopictus at the macrospatial level (mainly at the country or continent level), little is known about its variation and Wolbachia infection at the microspatial level, which is essential for its management. Meanwhile, no local cases of dengue fever have been recorded in the history of Nanjing, which implies that few adulticides have been applied in the city. Thus, the present study examines how the Ae. albopictus population varies and the Wolbachia infection status of each population among microspatial regions of Nanjing City. Methods: The genetic structure of 17 Aedes albopictus populations collected from urban, urban fringe, and rural regions of Nanjing City was investigated based on 9 microsatellite loci and the mitochondrial coxI gene. The Wolbachia infection status of each population was also assessed with Wolbachia A- and Wolbachia B-specific primers. Results: Nine out of 58 tested pairs of microsatellite markers were highly polymorphic, with a mean PIC value of 0.560, and these markers were therefore chosen for microsatellite genotyping analysis. The Na value of each Ae. albopictus population was very high, and the urban area populations (7.353 ± 4.975) showed a lower mean value than the urban fringe region populations (7.866 ± 5.010). A total of 19 coxI haplotypes were observed among 329 Ae. albopictus individuals via haplotype genotyping, with the highest diversity observed among the urban fringe Ae. albopictus populations (Hd = 0.456) and the lowest among the urban populations (Hd = 0.277). Each Ae. albopictus population showed significant departure from HWE, and significant population expansion was observed in only three populations from the urban (ZSL), urban fringe (HAJY), and rural areas (HSZY) (p < 0.05). Combined with DAPC analysis, all the Ae. albopictus populations were adequately allocated to two clades with significant genetic differences according to population structure analysis, and the best K value was equal to two. AMOVA results showed that most (96.18%) of the genetic variation detected in Ae. albopictus occurred within individuals (FIT = 0.22238, p < 0.0001), while no significant positive correlation was observed via isolation by distance (IBD) analysis (R [2] = 0.03262, p = 0.584). The TCS network of all haplotypes showed that haplotype 1 (H1) and haplotype 4 (H4) were the most frequent haplotypes among all populations, and the haplotype frequency significantly increased from urban regions (36.84%) to rural regions (68.42%). Frequent migration was observed among Ae. albopictus populations from rural to urban regions via the urban fringe region, with four direct migration routes between rural and urban regions. Furthermore, Wolbachia genotyping results showed that most of the individuals of each population were coinfected with Wolbachia A and Wolbachia B. The independent infection rate of Wolbachia A was slightly higher than that of Wolbachia B, and no significant differences were observed among different regions. Conclusion: In the microspatial environment of Nanjing City, the urban fringe region is an important region for the dispersion of Ae. albopictus populations between rural and urban areas, and Wolbachia A and Wolbachia B coinfection is the most common Wolbachia infection status in all Ae. albopictus populations among different regions.}, } @article {pmid36109147, year = {2022}, author = {Matthey-Doret, C and Colp, MJ and Escoll, P and Thierry, A and Moreau, P and Curtis, B and Sahr, T and Sarrasin, M and Gray, MW and Lang, BF and Archibald, JM and Buchrieser, C and Koszul, R}, title = {Chromosome-scale assemblies of Acanthamoeba castellanii genomes provide insights into Legionella pneumophila infection-related chromatin reorganization.}, journal = {Genome research}, volume = {32}, number = {9}, pages = {1698-1710}, pmid = {36109147}, issn = {1549-5469}, abstract = {The unicellular amoeba Acanthamoeba castellanii is ubiquitous in aquatic environments, where it preys on bacteria. The organism also hosts bacterial endosymbionts, some of which are parasitic, including human pathogens such as Chlamydia and Legionella spp. Here we report complete, high-quality genome sequences for two extensively studied A. castellanii strains, Neff and C3. Combining long- and short-read data with Hi-C, we generated near chromosome-level assemblies for both strains with 90% of the genome contained in 29 scaffolds for the Neff strain and 31 for the C3 strain. Comparative genomics revealed strain-specific functional enrichment, most notably genes related to signal transduction in the C3 strain and to viral replication in Neff. Furthermore, we characterized the spatial organization of the A. castellanii genome and showed that it is reorganized during infection by Legionella pneumophila Infection-dependent chromatin loops were found to be enriched in genes for signal transduction and phosphorylation processes. In genomic regions where chromatin organization changed during Legionella infection, we found functional enrichment for genes associated with metabolism, organelle assembly, and cytoskeleton organization. Given Legionella infection is known to alter its host's cell cycle, to exploit the host's organelles, and to modulate the host's metabolism in its favor, these changes in chromatin organization may partly be related to mechanisms of host control during Legionella infection.}, } @article {pmid36100023, year = {2022}, author = {Brown, KT and Mello-Athayde, MA and Sampayo, EM and Chai, A and Dove, S and Barott, KL}, title = {Environmental memory gained from exposure to extreme pCO2 variability promotes coral cellular acid-base homeostasis.}, journal = {Proceedings. Biological sciences}, volume = {289}, number = {1982}, pages = {20220941}, pmid = {36100023}, issn = {1471-2954}, mesh = {Animals ; *Anthozoa/physiology ; Ecosystem ; Homeostasis ; Hydrogen-Ion Concentration ; Seawater ; }, abstract = {Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid-base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.}, } @article {pmid36099809, year = {2022}, author = {Dhali, S and Acharya, S and Pradhan, M and Patra, DK and Pradhan, C}, title = {Synergistic effect of Bacillus and Rhizobium on cytological and photosynthetic performance of Macrotyloma uniflorum (Lam.) Verdc. Grown in Cr (VI) contaminated soil.}, journal = {Plant physiology and biochemistry : PPB}, volume = {190}, number = {}, pages = {62-69}, doi = {10.1016/j.plaphy.2022.08.027}, pmid = {36099809}, issn = {1873-2690}, mesh = {*Bacillus ; Biodegradation, Environmental ; Chromium/pharmacology ; *Fabaceae/microbiology ; Photosynthesis ; Plant Roots ; *Rhizobium ; Soil ; *Soil Pollutants/analysis ; }, abstract = {Macrotyloma uniflorum (horse gram) is considered an under-utilized legume crop despite its nutritional and medicinal values. In India, it has wide acceptance among farming communities. This investigation emphasized on the possible application of two endosymbionts (Bacillus sp. AS03 and Rhizobium sp. AS05) of horse gram cultivated on Cr (VI)-contaminated soil. The photosynthetic performance (PIφ) of Cr treated plants co-inoculated with AS03 and AS05 was significantly improved compared with non-inoculated Cr treated plants based on photosynthetic yield, which was evidenced from the rise in the fluorescence at I-P transient and rate of photosynthesis (pN), indicating synergistic action between plant and bacteria (AS03 and AS05). The smooth electron transport from PS II to PS I was achieved in the Cr stressed plants inoculated with both the bacterial strains. The detrimental effects of Cr toxicity on the root tips were also minimized with bioinoculation as revealed from mitotic index. Plants with dual inoculation of AS03 and AS05 had significantly lesser chromosomal aberration in the roots. Dual inoculation biochar or seed inoculation have beneficial impact on the plant photosynthetic performance along with improved growth of roots in plants treated with Cr (VI). The results of the current work suggest the possitive effect of dual inoculation of Cr tolerant endosymbionts, Bacillus sp. (AS03) and nodulating Rhizobium sp. (AS05), in reducing cytological as well as physiological stress of plants in Cr (VI) contaminated soil.}, } @article {pmid36098749, year = {2022}, author = {Angelella, G and Nalam, V and Nachappa, P and White, J and Kaplan, I}, title = {Correction to: Endosymbionts Differentially Alter Exploratory Probing Behavior of a Nonpersistent Plant Virus Vector.}, journal = {Microbial ecology}, volume = {}, number = {}, pages = {}, doi = {10.1007/s00248-022-02107-4}, pmid = {36098749}, issn = {1432-184X}, } @article {pmid36094208, year = {2022}, author = {Kinjo, Y and Bourguignon, T and Hongoh, Y and Lo, N and Tokuda, G and Ohkuma, M}, title = {Coevolution of Metabolic Pathways in Blattodea and Their Blattabacterium Endosymbionts, and Comparisons with Other Insect-Bacteria Symbioses.}, journal = {Microbiology spectrum}, volume = {10}, number = {5}, pages = {e0277922}, pmid = {36094208}, issn = {2165-0497}, mesh = {Animals ; *Cockroaches/microbiology ; Genome, Bacterial ; Phylogeny ; Symbiosis ; Insecta ; Bacteria/genetics ; Metabolic Networks and Pathways/genetics ; Amino Acids ; Amino Acids, Essential/genetics ; Arginine/genetics ; Folic Acid ; Vitamins ; }, abstract = {Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.}, } @article {pmid36093053, year = {2022}, author = {Gabr, A and Stephens, TG and Bhattacharya, D}, title = {Loss of key endosymbiont genes may facilitate early host control of the chromatophore in Paulinella.}, journal = {iScience}, volume = {25}, number = {9}, pages = {104974}, pmid = {36093053}, issn = {2589-0042}, abstract = {The primary plastid endosymbiosis (∼124 Mya) that occurred in the heterotrophic amoeba lineage, Paulinella, is at an earlier stage of evolution than in Archaeplastida, and provides an excellent model for studying organelle integration. Using genomic data from photosynthetic Paulinella, we identified a plausible mechanism for the evolution of host control of endosymbiont (termed the chromatophore) biosynthetic pathways and functions. Specifically, random gene loss from the chromatophore and compensation by nuclear-encoded gene copies enables host control of key pathways through a minimal number of evolutionary innovations. These gene losses impact critical enzymatic steps in nucleotide biosynthesis and the more peripheral components of multi-protein DNA replication complexes. Gene retention in the chromatophore likely reflects the need to maintain a specific stoichiometric balance of the encoded products (e.g., involved in DNA replication) rather than redox state, as in the highly reduced plastid genomes of algae and plants.}, } @article {pmid36085198, year = {2022}, author = {Medina, GA and Flores-Martin, SN and Pereira, WA and Figueroa, EG and Guzmán, NH and Letelier, PJ and Andaur, MR and Leyán, PI and Boguen, RE and Hernández, AH and Fernández, H}, title = {Long-term survive of Aliarcobacter butzleri in two models symbiotic interaction with Acanthamoeba castellanii.}, journal = {Archives of microbiology}, volume = {204}, number = {10}, pages = {610}, pmid = {36085198}, issn = {1432-072X}, mesh = {*Acanthamoeba castellanii/microbiology ; *Arcobacter ; Symbiosis ; }, abstract = {Aliarcobacter butzleri (formerly known as Arcobacter butzleri) is an emerging food-borne zoonotic pathogen that establishes in vitro endosymbiotic relationships with Acanthamoeba castellanii, a free-living amoeba. Previously, we described that this bacterium acts as an endocytobiont of A. castellanii, surviving for at least 10 days in absence of bacterial replication. Thus, the aim of this study was to evaluate the ability of A. butzleri to survive as a long-term endosymbiont of A. castellanii for 30 days in two models of symbiotic interaction with A. castellanii: (i) endosymbiotic culture followed by gentamicin protection assay and (ii) transwell co-culture assay. The results allow us to conclude that A. butzleri is capable of surviving as an endosymbiont of A. castellanii for at least 30 days, without multiplying, under controlled laboratory conditions. In addition, in the absence of nutrients and as both microorganisms remain in the same culture, separated by semi-permeable membranes, A. castellanii does not promote the survival of A. butzleri, nor does it multiply. Our findings suggest that the greater survival capacity of A. butzleri is associated with their endosymbiont status inside A. castellanii, pointing out the complexity of this type of symbiotic relationship.}, } @article {pmid36054322, year = {2022}, author = {Štarhová Serbina, L and Gajski, D and Pafčo, B and Zurek, L and Malenovský, I and Nováková, E and Schuler, H and Dittmer, J}, title = {Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts.}, journal = {Environmental microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1111/1462-2920.16180}, pmid = {36054322}, issn = {1462-2920}, abstract = {Psyllids are phloem-feeding insects that can transmit plant pathogens such as phytoplasmas, intracellular bacteria causing numerous plant diseases worldwide. Their microbiomes are essential for insect physiology and may also influence the capacity of vectors to transmit pathogens. Using 16S rRNA gene metabarcoding, we compared the microbiomes of three sympatric psyllid species associated with pear trees in Central Europe. All three species are able to transmit 'Candidatus Phytoplasma pyri', albeit with different efficiencies. Our results revealed potential relationships between insect biology and microbiome composition that varied during psyllid ontogeny and between generations in Cacopsylla pyri and C. pyricola, as well as between localities in C. pyri. In contrast, no variations related to psyllid life cycle and geography were detected in C. pyrisuga. In addition to the primary endosymbiont Carsonella ruddii, we detected another highly abundant endosymbiont (unclassified Enterobacteriaceae). C. pyri and C. pyricola shared the same taxon of Enterobacteriaceae which is related to endosymbionts harboured by other psyllid species from various families. In contrast, C. pyrisuga carried a different Enterobacteriaceae taxon related to the genus Sodalis. Our study provides new insights into host-symbiont interactions in psyllids and highlights the importance of host biology and geography in shaping microbiome structure.}, } @article {pmid36042402, year = {2022}, author = {Twort, VG and Blande, D and Duplouy, A}, title = {One's trash is someone else's treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts.}, journal = {BMC microbiology}, volume = {22}, number = {1}, pages = {209}, pmid = {36042402}, issn = {1471-2180}, mesh = {Animals ; *Lepidoptera ; Phylogeny ; *Spiroplasma/genetics ; Symbiosis/genetics ; *Wolbachia/genetics ; }, abstract = {BACKGROUND: Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis.

RESULTS: In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here.

CONCLUSIONS: Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.}, } @article {pmid36042324, year = {2022}, author = {Dharamshi, JE and Gaarslev, N and Steffen, K and Martin, T and Sipkema, D and Ettema, TJG}, title = {Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae.}, journal = {The ISME journal}, volume = {16}, number = {12}, pages = {2725-2740}, pmid = {36042324}, issn = {1751-7370}, mesh = {Animals ; Ecosystem ; Phylogeny ; *Chlamydia/genetics ; Bacteria ; Genomics ; *Porifera ; }, abstract = {Sponge microbiomes contribute to host health, nutrition, and defense through the production of secondary metabolites. Chlamydiae, a phylum of obligate intracellular bacteria ranging from animal pathogens to endosymbionts of microbial eukaryotes, are frequently found associated with sponges. However, sponge-associated chlamydial diversity has not yet been investigated at the genomic level and host interactions thus far remain unexplored. Here, we sequenced the microbiomes of three sponge species and found high, though variable, Chlamydiae relative abundances of up to 18.7% of bacteria. Using genome-resolved metagenomics 18 high-quality sponge-associated chlamydial genomes were reconstructed, covering four chlamydial families. Among these, Candidatus Sororchlamydiaceae shares a common ancestor with Chlamydiaceae animal pathogens, suggesting long-term co-evolution with animals. Based on gene content, sponge-associated chlamydiae resemble members from the same family more than sponge-associated chlamydiae of other families, and have greater metabolic versatility than known chlamydial animal pathogens. Sponge-associated chlamydiae are also enriched in genes for degrading diverse compounds found in sponges. Unexpectedly, we identified widespread genetic potential for secondary metabolite biosynthesis across Chlamydiae, which may represent an unexplored source of novel natural products. This finding suggests that Chlamydiae members may partake in defensive symbioses and that secondary metabolites play a wider role in mediating intracellular interactions. Furthermore, sponge-associated chlamydiae relatives were found in other marine invertebrates, pointing towards wider impacts of the Chlamydiae phylum on marine ecosystems.}, } @article {pmid36042261, year = {2022}, author = {Madsen, CS and Makela, AV and Greeson, EM and Hardy, JW and Contag, CH}, title = {Engineered endosymbionts that alter mammalian cell surface marker, cytokine and chemokine expression.}, journal = {Communications biology}, volume = {5}, number = {1}, pages = {888}, pmid = {36042261}, issn = {2399-3642}, mesh = {Animals ; Chemokines ; *Cytokines/genetics ; *Listeria monocytogenes/genetics ; Mammals ; Phagosomes ; Transcription Factors ; }, abstract = {Developing modular tools that direct mammalian cell function and activity through controlled delivery of essential regulators would improve methods of guiding tissue regeneration, enhancing cellular-based therapeutics and modulating immune responses. To address this challenge, Bacillus subtilis was developed as a chassis organism for engineered endosymbionts (EES) that escape phagosome destruction, reside in the cytoplasm of mammalian cells, and secrete proteins that are transported to the nucleus to impact host cell response and function. Two synthetic operons encoding either the mammalian transcription factors Stat-1 and Klf6 or Klf4 and Gata-3 were recombined into the genome of B. subtilis expressing listeriolysin O (LLO) from Listeria monocytogenes and expressed from regulated promoters. Controlled expression of the mammalian proteins from B. subtilis LLO in the cytoplasm of J774A.1 macrophage/monocyte cells altered surface marker, cytokine and chemokine expression. Modulation of host cell fates displayed some expected patterns towards anti- or pro-inflammatory phenotypes by each of the distinct transcription factor pairs with further demonstration of complex regulation caused by a combination of the EES interaction and transcription factors. Expressing mammalian transcription factors from engineered intracellular B. subtilis as engineered endosymbionts comprises a new tool for directing host cell gene expression for therapeutic and research purposes.}, } @article {pmid36039907, year = {2022}, author = {Wang, R and Sun, R and Zhang, Z and Vannini, C and Di Giuseppe, G and Liang, A}, title = {"Candidatus Euplotechlamydia quinta," a novel chlamydia-like bacterium hosted by the ciliate Euplotes octocarinatus (Ciliophora, Spirotrichea).}, journal = {The Journal of eukaryotic microbiology}, volume = {}, number = {}, pages = {e12945}, doi = {10.1111/jeu.12945}, pmid = {36039907}, issn = {1550-7408}, abstract = {Our knowledge of ciliate endosymbiont diversity greatly expanded over the past decades due to the development of characterization methods for uncultivable bacteria. Chlamydia-like bacteria have been described as symbionts of free-living amoebae and other phylogenetically diverse eukaryotic hosts. In the present work, a systematic survey of the bacterial diversity associated with the ciliate Euplotes octocarinatus strain Zam5b-1 was performed, using metagenomic screening as well as classical full-cycle rRNA approach, and a novel chlamydial symbiont was characterized. The metagenomic screening revealed 16S rRNA gene sequences from Polynucleobacter necessarius, three previously reported accessory symbionts, and a novel chlamydia-like bacterium. Following the full-cycle rRNA approach, we obtained the full-length 16S rRNA gene sequence of this chlamydia-like bacterium and developed probes for diagnostic fluorescence in situ hybridizations. The phylogenetic analysis of the 16S rRNA gene sequences unambiguously places the new bacterium in the family Rhabdochlamydiaceae. This is the first report of chlamydia-like bacterium being found in Euplotes. Based on the obtained data, the bacterium is proposed as a new candidate genus and species: "Candidatus Euplotechlamydia quinta."}, } @article {pmid36034709, year = {2022}, author = {Jha, B and Reverte, M and Ronet, C and Prevel, F and Morgenthaler, FD and Desponds, C and Lye, LF and Owens, KL and Scarpellino, L and Dubey, LK and Sabine, A and Petrova, TV and Luther, SA and Beverley, SM and Fasel, N}, title = {In and out: Leishmania metastasis by hijacking lymphatic system and migrating immune cells.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {941860}, pmid = {36034709}, issn = {2235-2988}, support = {R01 AI130222/AI/NIAID NIH HHS/United States ; }, mesh = {Humans ; *Leishmania ; *Leishmania braziliensis ; *Leishmaniasis, Mucocutaneous ; Lymphatic System ; *Neoplasms ; }, abstract = {The lymphatic system plays a crucial role in mounting immune response against intracellular pathogens, and recent studies have documented its role in facilitating tumor dissemination linked largely with cancer cells. However, in mucocutaneous leishmaniasis (MCL) caused by Leishmania Viannia subgenus showing infectious metastasis and resulting in severe distant secondary lesions, the route of escape of these parasites to secondary sites has not yet been investigated in detail. Our results demonstrated that when infection was associated with inflammation and additionally exacerbated by the presence of dsRNA viral endosymbiont (LRV1), lymphatic vessels could serve as efficient routes for infected cells to egress from the primary site and colonize distant organs. We challenged this hypothesis by using the intracellular Leishmania protozoan parasites Leishmania guyanensis (Lgy) associated with or without a dsRNA viral endosymbiont, exacerbating the infection and responsible for a strong inflammatory response, and favoring metastasis of the infection. We analyzed possible cargo cells and the routes of dissemination through flow cytometry, histological analysis, and in vivo imaging in our metastatic model to show that parasites disseminated not only intracellularly but also as free extracellular parasites using migrating immune cells, lymph nodes (LNs), and lymph vessels, and followed intricate connections of draining and non-draining lymph node to finally end up in the blood and in distant skin, causing new lesions.}, } @article {pmid36034693, year = {2022}, author = {Kopelyanskiy, D and Desponds, C and Prevel, F and Rossi, M and Migliorini, R and Snäkä, T and Eren, RO and Claudinot, S and Lye, LF and Pasparakis, M and Beverley, SM and Fasel, N}, title = {Leishmania guyanensis suppressed inducible nitric oxide synthase provoked by its viral endosymbiont.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {944819}, pmid = {36034693}, issn = {2235-2988}, support = {R01 AI029646/AI/NIAID NIH HHS/United States ; R01 AI130222/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; Cytokines ; Humans ; Interleukin-17 ; *Leishmania ; *Leishmania guyanensis/virology ; Leishmaniavirus ; Mice ; NF-kappa B ; Nitric Oxide ; *Nitric Oxide Synthase Type II/metabolism ; Toll-Like Receptor 3 ; }, abstract = {Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis.}, } @article {pmid36015007, year = {2022}, author = {Špitalská, E and Minichová, L and Hamšíková, Z and Stanko, M and Kazimírová, M}, title = {Bartonella, Rickettsia, Babesia, and Hepatozoon Species in Fleas (Siphonaptera) Infesting Small Mammals of Slovakia (Central Europe).}, journal = {Pathogens (Basel, Switzerland)}, volume = {11}, number = {8}, pages = {}, pmid = {36015007}, issn = {2076-0817}, abstract = {Fleas (Siphonaptera) as obligate, blood-feeding ectoparasites are, together with ticks, hosted by small mammals and can transmit causative agents of serious infections. This study aimed to determine and characterize the presence and genetic diversity of Bartonella, Rickettsia, and apicomplexan parasites (Babesia, Hepatozoon) in fleas feeding on small mammals from three different habitat types (suburban, natural, and rural) in Slovakia. The most common pathogen in the examined fleas was Bartonella spp. (33.98%; 95% CI: 30.38-37.58), followed by Rickettsia spp. (19.1%; 95% CI: 16.25-22.24) and apicomplexan parasites (4.36%; 95% CI: 2.81-5.91). Bartonella strains belonging to B. taylorii, B. grahamii, B. elizabethae, Bartonella sp. wbs11, and B. rochalimae clades were identified in Ctenophthalmus agyrtes, C. congener, C. assimilis, C. sciurorum, C. solutus, C. bisoctodentatus, Palaeopsylla similis, Megabothris turbidus, and Nosopsyllus fasciatus within all habitats. The presence of Rickettsia helvetica, R. monacensis, and rickettsiae, belonging to the R. akari and R. felis clusters, and endosymbionts with a 96-100% identity with the Rickettsia endosymbiont of Nosopsyllus laeviceps laeviceps were also revealed in C. agyrtes, C. solutus, C. assimilis, C. congener, M. turbidus, and N. fasciatus. Babesia and Hepatozoon DNA was detected in the fleas from all habitat types. Hepatozoon sp. was detected in C. agyrtes, C. assimilis, and M. turbidus, while Babesia microti was identified from C. agyrtes, C. congener, and P. similis. The present study demonstrated the presence of zoonotic pathogens in fleas, parasitizing the wild-living small mammals of southwestern and central Slovakia and widens our knowledge of the ecology and genomic diversity of Bartonella, Rickettsia, Babesia, and Hepatozoon.}, } @article {pmid36012723, year = {2022}, author = {Zong, Q and Mao, B and Zhang, HB and Wang, B and Yu, WJ and Wang, ZW and Wang, YF}, title = {Comparative Ubiquitome Analysis Reveals Deubiquitinating Effects Induced by Wolbachia Infection in Drosophila melanogaster.}, journal = {International journal of molecular sciences}, volume = {23}, number = {16}, pages = {}, pmid = {36012723}, issn = {1422-0067}, mesh = {Animals ; Cytoplasm/metabolism ; *Drosophila melanogaster/genetics ; Female ; Male ; Proteasome Endopeptidase Complex/metabolism ; Semen ; Testis/metabolism ; *Wolbachia ; }, abstract = {The endosymbiotic Wolbachia bacteria frequently cause cytoplasmic incompatibility (CI) in their insect hosts, where Wolbachia-infected males cross with uninfected females, leading to no or fewer progenies, indicating a paternal modification by Wolbachia. Recent studies have identified a Wolbachia protein, CidB, containing a DUB (deubiquitylating enzyme) domain, which can be loaded into host sperm nuclei and involved in CI, though the DUB activity is not necessary for CI in Drosophila melanogaster. To investigate whether and how Wolbachia affect protein ubiquitination in testes of male hosts and are thus involved in male fertility, we compared the protein and ubiquitinated protein expressions in D. melanogaster testes with and without Wolbachia. A total of 643 differentially expressed proteins (DEPs) and 309 differentially expressed ubiquitinated proteins (DEUPs) were identified to have at least a 1.5-fold change with a p-value of <0.05. Many DEPs were enriched in metabolic pathway, ribosome, RNA transport, and post-translational protein modification pathways. Many DEUPs were involved in metabolism, ribosome, and proteasome pathways. Notably, 98.1% DEUPs were downregulated in the presence of Wolbachia. Four genes coding for DEUPs in ubiquitin proteasome pathways were knocked down, respectively, in Wolbachia-free fly testes. Among them, Rpn6 and Rpn7 knockdown caused male sterility, with no mature sperm in seminal vesicles. These results reveal deubiquitylating effects induced by Wolbachia infection, suggesting that Wolbachia can widely deubiquitinate proteins that have crucial functions in male fertility of their hosts, but are not involved in CI. Our data provide new insights into the regulatory mechanisms of endosymbiont/host interactions and male fertility.}, } @article {pmid36005392, year = {2022}, author = {Richter, I and Radosa, S and Cseresnyés, Z and Ferling, I and Büttner, H and Niehs, SP and Gerst, R and Scherlach, K and Figge, MT and Hillmann, F and Hertweck, C}, title = {Toxin-Producing Endosymbionts Shield Pathogenic Fungus against Micropredators.}, journal = {mBio}, volume = {13}, number = {5}, pages = {e0144022}, pmid = {36005392}, issn = {2150-7511}, support = {P40 OD010440/OD/NIH HHS/United States ; }, mesh = {Animals ; *Burkholderia/metabolism ; *Antimitotic Agents/metabolism ; Macrolides ; Symbiosis ; *Oryza/microbiology ; *Toxins, Biological ; Seedlings ; Soil ; }, abstract = {The fungus Rhizopus microsporus harbors a bacterial endosymbiont (Mycetohabitans rhizoxinica) for the production of the antimitotic toxin rhizoxin. Although rhizoxin is the causative agent of rice seedling blight, the toxinogenic bacterial-fungal alliance is, not restricted to the plant disease. It has been detected in numerous environmental isolates from geographically distinct sites covering all five continents, thus raising questions regarding the ecological role of rhizoxin beyond rice seedling blight. Here, we show that rhizoxin serves the fungal host in fending off protozoan and metazoan predators. Fluorescence microscopy and coculture experiments with the fungivorous amoeba Protostelium aurantium revealed that ingestion of R. microsporus spores is toxic to P. aurantium. This amoebicidal effect is caused by the dominant bacterial rhizoxin congener rhizoxin S2, which is also lethal toward the model nematode Caenorhabditis elegans. By combining stereomicroscopy, automated image analysis, and quantification of nematode movement, we show that the fungivorous nematode Aphelenchus avenae actively feeds on R. microsporus that is lacking endosymbionts, whereas worms coincubated with symbiotic R. microsporus are significantly less lively. This study uncovers an unexpected ecological role of rhizoxin as shield against micropredators. This finding suggests that predators may function as an evolutionary driving force to maintain toxin-producing endosymbionts in nonpathogenic fungi. IMPORTANCE The soil community is a complex system characterized by predator-prey interactions. Fungi have developed effective strategies to defend themselves against predators. Understanding these strategies is of critical importance for ecology, medicine, and biotechnology. In this study, we shed light on the defense mechanisms of the phytopathogenic Rhizopus-Mycetohabitans symbiosis that has spread worldwide. We report an unexpected role of rhizoxin, a secondary metabolite produced by the bacterium M. rhizoxinica residing within the hyphae of R. microsporus. We show that this bacterial secondary metabolite is utilized by the fungal host to successfully fend off fungivorous protozoan and metazoan predators and thus identified a fundamentally new function of this infamous cytotoxic compound. This endosymbiont-dependent predator defense illustrates an unusual strategy employed by fungi that has broader implications, since it may serve as a model for understanding how animal predation acts as an evolutionary driving force to maintain endosymbionts in nonpathogenic fungi.}, } @article {pmid36003934, year = {2022}, author = {Nishide, Y and Oguchi, K and Murakami, M and Moriyama, M and Koga, R and Fukatsu, T}, title = {Endosymbiotic bacteria of the boar louse Haematopinus apri (Insecta: Phthiraptera: Anoplura).}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {962252}, pmid = {36003934}, issn = {1664-302X}, abstract = {Insects exclusively feeding on vertebrate blood are usually dependent on symbiotic bacteria for provisioning of B vitamins. Among them, sucking lice are prominent in that their symbiotic bacteria as well as their symbiotic organs exhibit striking diversity. Here we investigated the bacterial diversity associated with the boar louse Haematopinus apri in comparison with the hog louse Haematopinus suis. Amplicon sequencing analysis identified the primary endosymbiont predominantly detected from all populations of H. apri with some minor secondary bacterial associates. Sequencing and phylogenetic analysis of bacterial 16S rRNA gene confirmed that the endosymbionts of the boar louse H. apri, the hog louse H. suis and the cattle louse Haematopinus eurysternus form a distinct clade in the Gammaproteobacteria. The endosymbiont clade of Haematopinus spp. was phylogenetically distinct from the primary endosymbionts of other louse lineages. Fluorescence in situ hybridization visualized the endosymbiont localization within midgut epithelium, ovarial ampulla and posterior oocyte of H. apri, which were substantially the same as the endosymbiont localization previously described in H. suis and H. eurysternus. Mitochondrial haplotype analysis revealed that, although the domestic pig was derived from the wild boar over the past 8,000 years of human history, the populations of H. apri constituted a distinct sister clade to the populations of H. suis. Based on these results, we discussed possible evolutionary trajectories of the boar louse, the hog louse and their endosymbionts in the context of swine domestication. We proposed 'Candidatus Haematopinicola symbiotica' for the distinct clade of the endosymbionts of Haematopinus spp.}, } @article {pmid36003268, year = {2022}, author = {Davies, OK and Dorey, JB and Stevens, MI and Gardner, MG and Bradford, TM and Schwarz, MP}, title = {Unparalleled mitochondrial heteroplasmy and Wolbachia co-infection in the non-model bee, Amphylaeus morosus.}, journal = {Current research in insect science}, volume = {2}, number = {}, pages = {100036}, pmid = {36003268}, issn = {2666-5158}, abstract = {Mitochondrial heteroplasmy is the occurrence of more than one type of mitochondrial DNA within a single individual. Although generally reported to occur in a small subset of individuals within a species, there are some instances of widespread heteroplasmy across entire populations. Amphylaeus morosus is an Australian native bee species in the diverse and cosmopolitan bee family Colletidae. This species has an extensive geographical range along the eastern Australian coast, from southern Queensland to western Victoria, covering approximately 2,000 km. Seventy individuals were collected from five localities across this geographical range and sequenced using Sanger sequencing for the mitochondrial cytochrome c oxidase subunit I (COI) gene. These data indicate that every individual had the same consistent heteroplasmic sites but no other nucleotide variation, suggesting two conserved and widespread heteroplasmic mitogenomes. Ion Torrent shotgun sequencing revealed that heteroplasmy occurred across multiple mitochondrial protein-coding genes and is unlikely explained by transposition of mitochondrial genes into the nuclear genome (NUMTs). DNA sequence data also demonstrated a consistent co-infection of Wolbachia across the A. morosus distribution with every individual infected with both bacterial strains. Our data are consistent with the presence of two mitogenomes within all individuals examined in this species and suggest a major divergence from standard patterns of mitochondrial inheritance. Because the host's mitogenome and the Wolbachia genome are genetically linked through maternal inheritance, we propose three possible hypotheses that could explain maintenance of the widespread and conserved co-occurring bacterial and mitochondrial genomes in this species.}, } @article {pmid36000911, year = {2022}, author = {Qi, Y and Ai, L and Zhu, C and Ye, F and Lv, R and Wang, J and Mao, Y and Lu, N and Tan, W}, title = {Wild Hedgehogs and Their Parasitic Ticks Coinfected with Multiple Tick-Borne Pathogens in Jiangsu Province, Eastern China.}, journal = {Microbiology spectrum}, volume = {10}, number = {5}, pages = {e0213822}, pmid = {36000911}, issn = {2165-0497}, mesh = {Animals ; Humans ; *Ticks/microbiology/parasitology ; Hedgehogs/parasitology ; *Coinfection/epidemiology/veterinary ; *Rickettsia/genetics ; *Tick-Borne Diseases/epidemiology/veterinary/microbiology ; Ehrlichia/genetics ; *Parasites ; }, abstract = {The increasing awareness of emerging tickborne pathogens (TBPs) has inspired much research. In the present study, the coinfections of TBPs both in ticks and their wild hedgehog hosts in Jiangsu province, Eastern China were determined by metagenome next-generation sequencing and nested PCR. As a result, Rickettsia japonica (81.1%), novel Rickettsia sp. SFGR-1 (5.1%), Anaplasma bovis (12%), A. platys (6.3%), novel Ehrlichia spp. Ehr-1 (16%) and Ehr-2 (0.6%), E. ewingii-like strain (0.6%), Coxiella burnetii (10.9%), and a novel Coxiella-like endosymbiont (CLE) strain (61.1%) were detected in Haemaphysalis flava ticks. A. bovis (43.8%), Ehrlichia sp. Ehr-1 (83.3%), and C. burnetii (80%) were detected in Erinaceus amurensis hedgehogs. Coinfection rates with various TBPs were 71.5% and 83.3% in ticks and hedgehogs, respectively, both with double-pathogen/endosymbiont coinfection rates over 50%. We found the following. (i) Er. amurensis hedgehogs seem to contribute to the natural cycles of R. japonica, A. bovis, Ehrlichia sp., and C. burnetii and may be reservoirs of them except for R. japonica, and A. bovis is proved to infect hedgehogs for the first time. (ii) H. flava is proved to harbor various TBPs as a reservoir host, including CLE identified for the first time, which could inhibit coinfection of C. burnetii while promoting that of Rickettsia spp. in H. flava. (iii) Four novel TBP species were identified. This study provides useful epidemiological information crucial for assessing the potential infection risks to humans, thus benefiting the development of strategies to prevent and control tick-borne diseases. IMPORTANCE In the present study, we found the following. (i) Er. amurensis hedgehogs seem to contribute to the natural cycles of R. japonica, A. bovis, Ehrlichia sp., and C. burnetii and may be reservoirs of them except for R. japonica, and A. bovis is proved to infect hedgehogs for the first time. (ii) H. flava is proved to harbor various tickborne pathogens (TBPs) as a reservoir host, including Coxiella-like endosymbiont (CLE) identified for the first time, which could inhibit coinfection of C. burnetii while promoting that of Rickettsia spp. in H. flava. (iii) Four novel TBP species were identified. This study provides useful epidemiological information on TBPs harbored and transmitted by ticks and their hosts, for assessing the potential infection risks to humans, thus benefiting the developing strategies for tick-borne diseases prevention and control.}, } @article {pmid35997584, year = {2022}, author = {Breusing, C and Klobusnik, NH and Hauer, MA and Beinart, RA}, title = {Genome assembly of the chemosynthetic endosymbiont of the hydrothermal vent snail Alviniconcha adamantis from the Mariana Arc.}, journal = {G3 (Bethesda, Md.)}, volume = {12}, number = {10}, pages = {}, pmid = {35997584}, issn = {2160-1836}, mesh = {Ammonia ; Animals ; Bacteria/genetics ; Ecosystem ; *Gammaproteobacteria/genetics ; *Hydrothermal Vents/microbiology ; Phylogeny ; Snails ; Symbiosis/genetics ; Urea ; Waste Products ; }, abstract = {Chemosynthetic animal-microbe symbioses sustain hydrothermal vent communities in the global deep sea. In the Indo-Pacific Ocean, hydrothermal ecosystems are often dominated by gastropod species of the genus Alviniconcha, which live in association with chemosynthetic Gammaproteobacteria or Campylobacteria. While the symbiont genomes of most extant Alviniconcha species have been sequenced, no genome information is currently available for the gammaproteobacterial endosymbiont of Alviniconcha adamantis-a comparatively shallow living species that is thought to be the ancestor to all other present Alviniconcha lineages. Here, we report the first genome sequence for the symbiont of A. adamantis from the Chamorro Seamount at the Mariana Arc. Our phylogenomic analyses show that the A. adamantis symbiont is most closely related to Chromatiaceae endosymbionts of the hydrothermal vent snails Alviniconcha strummeri and Chrysomallon squamiferum, but represents a distinct bacterial species or possibly genus. Overall, the functional capacity of the A. adamantis symbiont appeared to be similar to other chemosynthetic Gammaproteobacteria, though several flagella and chemotaxis genes were detected, which are absent in other gammaproteobacterial Alviniconcha symbionts. These differences might suggest potential contrasts in symbiont transmission dynamics, host recognition, or nutrient transfer. Furthermore, an abundance of genes for ammonia transport and urea usage could indicate adaptations to the oligotrophic waters of the Mariana region, possibly via recycling of host- and environment-derived nitrogenous waste products. This genome assembly adds to the growing genomic resources for chemosynthetic bacteria from hydrothermal vents and will be valuable for future comparative genomic analyses assessing gene content evolution in relation to environment and symbiotic lifestyles.}, } @article {pmid35997363, year = {2022}, author = {Sgroi, G and Iatta, R and Lovreglio, P and Stufano, A and Laidoudi, Y and Mendoza-Roldan, JA and Bezerra-Santos, MA and Veneziano, V and Di Gennaro, F and Saracino, A and Chironna, M and Bandi, C and Otranto, D}, title = {Detection of Endosymbiont Candidatus Midichloria mitochondrii and Tickborne Pathogens in Humans Exposed to Tick Bites, Italy.}, journal = {Emerging infectious diseases}, volume = {28}, number = {9}, pages = {1824-1832}, pmid = {35997363}, issn = {1080-6059}, mesh = {Animals ; Humans ; *Ixodes/microbiology ; Phylogeny ; *Rickettsia/genetics ; Rickettsiales ; *Tick Bites/epidemiology ; }, abstract = {During 2021, we collected blood and serum samples from 135 persons exposed to tick bites in southern Italy. We serologically and molecularly screened for zoonotic tickborne pathogens and only molecularly screened for Candidatus Midichloria mitochondrii. Overall, 62 (45.9%) persons tested positive for tickborne pathogens. Coxiella burnetii was detected most frequently (27.4%), along with Rickettsia spp. (21.5%) and Borrelia spp. (10.4%). We detected Candidatus M. mitochondrii DNA in 46 (34.1%) participants who had statistically significant associations to tickborne pathogens (p<0.0001). Phylogenetic analysis of Candidatus M. mitochondrii sequences revealed 5 clades and 8 human sequence types that correlated with vertebrates, Ixodes spp. ticks, and countries in Europe. These data demonstrated a high circulation of tickborne pathogens and Candidatus M. mitochondrii DNA in persons participating in outdoor activities in southern Italy. Our study shows how coordinated surveillance among patients, clinicians, and veterinarians could inform a One Health approach for monitoring and controlling the circulation of tickborne pathogens.}, } @article {pmid35994143, year = {2022}, author = {Hirunkanokpun, S and Ahantarig, A and Baimai, V and Pramual, P and Rakthong, P and Trinachartvanit, W}, title = {Correction to: Spotted fever group Rickettsia, Anaplasma and Coxiella‑like endosymbiont in Haemaphysalis ticks from mammals in Thailand.}, journal = {Veterinary research communications}, volume = {}, number = {}, pages = {}, doi = {10.1007/s11259-022-09988-3}, pmid = {35994143}, issn = {1573-7446}, } @article {pmid35992676, year = {2022}, author = {Sadanandane, C and Gunasekaran, K and Panneer, D and Subbarao, SK and Rahi, M and Vijayakumar, B and Athithan, V and Sakthivel, A and Dinesh, S and Jambulingam, P}, title = {Studies on the fitness characteristics of wMel- and wAlbB-introgressed Aedes aegypti (Pud) lines in comparison with wMel- and wAlbB-transinfected Aedes aegypti (Aus) and wild-type Aedes aegypti (Pud) lines.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {947857}, pmid = {35992676}, issn = {1664-302X}, abstract = {Wolbachia, an intracellular maternally transmitted endosymbiont, has been shown to interfere with the replication of dengue virus in Aedes aegypti mosquitoes. The Wolbachia-transinfected Ae. aegypti has been currently released in many countries to test its effectiveness in preventing the transmission of dengue virus. ICMR-Vector Control Research Centre in collaboration with World Mosquito Program Monash University, Australia, has generated two new Wolbachia-introgressed Ae. aegypti Puducherry (Pud) lines via backcrossing Ae. aegypti females of Australian (Aus) strains, infected with wMel and wAlbB Wolbachia with wild-type Ae. aegypti Puducherry (Pud) males. Wolbachia infections are known to induce a fitness cost and confer benefit on the host mosquito populations that will influence spread of the Wolbachia into native wild mosquito populations during the field release. Hence, the induced fitness cost or benefit/advantage in the two newly generated Ae. aegypti (Pud) lines was assessed in the laboratory in comparison with the wild-type Ae. aegypti (Pud) strain. In addition, maternal transmission (MT) efficiency, induced cytoplasmic incompatibility (CI), and insecticide resistance status of the two (Pud) lines were determined to assess the likely frequency of wMel and wAlbB infections in the native wild population after field invasion. The study shows that wMel and wAlbB infections did not induce any fitness cost on the two newly generated (Pud) lines. Rather, in terms of wing length, fecundity, egg hatch rate, and adult survival, the Wolbachia introgression conferred fitness benefits on the (Pud) lines compared to uninfected Wolbachia free wild Ae. aegypti population. wMel and wAlbB exhibited a high maternal transmission (99-100%) and induced nearly complete (98-100%) cytoplasmic incompatibility. Both the (Pud) lines were resistant to deltamethrin, malathion, DDT, and temephos, and the level of resistance was almost the same between the two lines as in the wild type. Overall, the stable association of wMel and wAlbB established with Ae. aegypti and the reproductive advantages of the (Pud) lines encourage a pilot release in the field for population replacement potential.}, } @article {pmid35992159, year = {2022}, author = {Bekkar, A and Isorce, N and Snäkä, T and Claudinot, S and Desponds, C and Kopelyanskiy, D and Prével, F and Reverte, M and Xenarios, I and Fasel, N and Teixeira, F}, title = {Dissection of the macrophage response towards infection by the Leishmania-viral endosymbiont duo and dynamics of the type I interferon response.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {941888}, pmid = {35992159}, issn = {2235-2988}, mesh = {Animals ; Humans ; *Interferon Type I/immunology ; *Leishmania/virology ; *Leishmaniasis/immunology/parasitology/virology ; *Leishmaniavirus ; *Macrophages/immunology/parasitology ; Mice ; }, abstract = {Leishmania RNA virus 1 (LRV1) is a double-stranded RNA virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor that worsens the leishmaniasis outcome in a type I interferon (IFN)-dependent manner and contributes to treatment failure. Understanding how macrophages respond toward Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. To dissect the macrophage response toward infection, RNA sequencing was performed on murine wild-type and Ifnar-deficient bone marrow-derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1. Additionally, macrophages were treated with poly I:C (mimetic virus) or with type I IFNs. By implementing a weighted gene correlation network analysis, the groups of genes (modules) with similar expression patterns, for example, functionally related, coregulated, or the members of the same functional pathway, were identified. These modules followed patterns dependent on Leishmania, LRV1, or Leishmania exacerbated by the presence of LRV1. Not only the visualization of how individual genes were embedded to form modules but also how different modules were related to each other were observed. Thus, in the context of the observed hyperinflammatory phenotype associated to the presence of LRV1, it was noted that the biomarkers tumor-necrosis factor α (TNF-α) and the interleukin 6 (IL-6) belonged to different modules and that their regulating specific Src-family kinases were segregated oppositely. In addition, this network approach revealed the strong and sustained effect of LRV1 on the macrophage response and genes that had an early, late, or sustained impact during infection, uncovering the dynamics of the IFN response. Overall, this study contributed to shed light and dissect the intricate macrophage response toward infection by the Leishmania-LRV1 duo and revealed the crosstalk between modules made of coregulated genes and provided a new resource that can be further explored to study the impact of Leishmania on the macrophage response.}, } @article {pmid35987324, year = {2022}, author = {Fujii, S and Somei, K and Asaeda, Y and Igawa, T and Hattori, K and Yoshida, T and Sambongi, Y}, title = {Heterologous expression and biochemical comparison of two homologous SoxX proteins of endosymbiotic Candidatus Vesicomyosocius okutanii and free-living Hydrogenovibrio crunogenus from deep-sea environments.}, journal = {Protein expression and purification}, volume = {200}, number = {}, pages = {106157}, doi = {10.1016/j.pep.2022.106157}, pmid = {35987324}, issn = {1096-0279}, mesh = {Animals ; Bacteria/genetics ; *Bivalvia/genetics/metabolism ; Cytochromes c ; *Gammaproteobacteria ; Phylogeny ; Piscirickettsiaceae ; Sulfur/metabolism ; Sulfur Compounds ; }, abstract = {Candidatus Vesicomyosocius okutanii is a currently uncultured endosymbiotic bacterium of Phreagena okutanii, a clam that inhabits deep-sea vent environments. The genome of Ca. V. okutanii encodes a sulfur-oxidizing (Sox) enzyme complex, presumably generating biological energy for the host from inorganic sulfur compounds. Here, Ca. V. okutanii SoxX (VoSoxX), a mono-heme cytochrome c component of the Sox complex, was shown to be phylogenetically related to its homologous counterpart (HcSoxX) from a free-living deep-sea bacterium, Hydrogenovibrio crunogenus. Both proteins were heterologously expressed in Escherichia coli co-expressing cytochrome c maturation genes for comparative biochemical analysis. The VoSoxX recombinant had significantly lower thermal stability than HcSoxX, reflecting the difference in growth conditions of the source bacteria. The endosymbiont inhabits a mild intracellular environment, whereas the free-living bacterium dwells in a harsh environment. This study represents the first successful case of heterologous expression of genes from Ca. V. okutanii, allowing further biochemical studies of the molecular mechanism of sulfur oxidation in deep-sea environments.}, } @article {pmid35979496, year = {2022}, author = {Říhová, J and Bell, KC and Nováková, E and Hypša, V}, title = {Lightella neohaematopini: A new lineage of highly reduced endosymbionts coevolving with chipmunk lice of the genus Neohaematopinus.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {900312}, pmid = {35979496}, issn = {1664-302X}, abstract = {Sucking lice (Anoplura) are known to have established symbiotic associations multiple times with different groups of bacteria as diverse as Enterobacteriales, Legionellales, and Neisseriales. This diversity, together with absence of a common coevolving symbiont (such as Buchnera, in aphids), indicates that sucking lice underwent a series of symbiont acquisitions, losses, and replacements. To better understand evolution and significance of louse symbionts, genomic and phylogenetic data are needed from a broader taxonomic diversity of lice and their symbiotic bacteria. In this study, we extend the known spectrum of the louse symbionts with a new lineage associated with Neohaematopinus pacificus, a louse species that commonly parasitizes North American chipmunks. The recent coevolutionary analysis showed that rather than a single species, these lice form a cluster of unique phylogenetic lineages specific to separate chipmunk species (or group of closely related species). Using metagenomic assemblies, we show that the lice harbor a bacterium which mirrors their phylogeny and displays traits typical for obligate mutualists. Phylogenetic analyses place this bacterium within Enterobacteriaceae on a long branch related to another louse symbiont, "Candidatus Puchtella pedicinophila." We propose for this symbiotic lineage the name "Candidatus Lightella neohaematopini." Based on the reconstruction of metabolic pathways, we suggest that like other louse symbionts, L. neohaematopini provides its host with at least some B vitamins. In addition, several samples harbored another symbiotic bacterium phylogenetically affiliated with the Neisseriales-related symbionts described previously from the lice Polyplax serrata and Hoplopleura acanthopus. Characterizing these bacteria further extend the known diversity of the symbiotic associations in lice and show unique complexity and dynamics of the system.}, } @article {pmid35976120, year = {2022}, author = {Shastry, V and Bell, KL and Buerkle, CA and Fordyce, JA and Forister, ML and Gompert, Z and Lebeis, SL and Lucas, LK and Marion, ZH and Nice, CC}, title = {A continental-scale survey of Wolbachia infections in blue butterflies reveals evidence of interspecific transfer and invasion dynamics.}, journal = {G3 (Bethesda, Md.)}, volume = {12}, number = {10}, pages = {}, pmid = {35976120}, issn = {2160-1836}, mesh = {Animals ; *Butterflies/genetics/microbiology ; DNA, Mitochondrial/genetics ; Haplotypes/genetics ; Phylogeny ; *Wolbachia/genetics ; }, abstract = {Infections by maternally inherited bacterial endosymbionts, especially Wolbachia, are common in insects and other invertebrates but infection dynamics across species ranges are largely under studied. Specifically, we lack a broad understanding of the origin of Wolbachia infections in novel hosts, and the historical and geographical dynamics of infections that are critical for identifying the factors governing their spread. We used Genotype-by-Sequencing data from previous population genomics studies for range-wide surveys of Wolbachia presence and genetic diversity in North American butterflies of the genus Lycaeides. As few as one sequence read identified by assembly to a Wolbachia reference genome provided high accuracy in detecting infections in host butterflies as determined by confirmatory PCR tests, and maximum accuracy was achieved with a threshold of only 5 sequence reads per host individual. Using this threshold, we detected Wolbachia in all but 2 of the 107 sampling localities spanning the continent, with infection frequencies within populations ranging from 0% to 100% of individuals, but with most localities having high infection frequencies (mean = 91% infection rate). Three major lineages of Wolbachia were identified as separate strains that appear to represent 3 separate invasions of Lycaeides butterflies by Wolbachia. Overall, we found extensive evidence for acquisition of Wolbachia through interspecific transfer between host lineages. Strain wLycC was confined to a single butterfly taxon, hybrid lineages derived from it, and closely adjacent populations in other taxa. While the other 2 strains were detected throughout the rest of the continent, strain wLycB almost always co-occurred with wLycA. Our demographic modeling suggests wLycB is a recent invasion. Within strain wLycA, the 2 most frequent haplotypes are confined almost exclusively to separate butterfly taxa with haplotype A1 observed largely in Lycaeides melissa and haplotype A2 observed most often in Lycaeides idas localities, consistent with either cladogenic mode of infection acquisition from a common ancestor or by hybridization and accompanying mutation. More than 1 major Wolbachia strain was observed in 15 localities. These results demonstrate the utility of using resequencing data from hosts to quantify Wolbachia genetic variation and infection frequency and provide evidence of multiple colonizations of novel hosts through hybridization between butterfly lineages and complex dynamics between Wolbachia strains.}, } @article {pmid35973490, year = {2022}, author = {Qi, S and Al Naggar, Y and Li, J and Liu, Z and Xue, X and Wu, L and El-Seedi, HR and Wang, K}, title = {Acaricide flumethrin-induced sublethal risks in honeybees are associated with gut symbiotic bacterium Gilliamella apicola through microbe-host metabolic interactions.}, journal = {Chemosphere}, volume = {307}, number = {Pt 3}, pages = {136030}, doi = {10.1016/j.chemosphere.2022.136030}, pmid = {35973490}, issn = {1879-1298}, mesh = {*Acaricides/toxicity ; Animals ; Anti-Bacterial Agents ; Bacteria ; Bees ; Gammaproteobacteria ; Glycerophospholipids ; *Pesticides ; Pyrethrins ; }, abstract = {Flumethrin is one of the few acaricides that permit the control of Varroa disease or varroosis in bee colonies. However, flumethrin accumulates in hive products. We previously discovered that sublethal doses of flumethrin induce significant physiological stress in honeybees (Apis mellifera L.), however its potential impacts on the honeybee gut microenvironment remains unknown. To fill this gap, honeybees were exposed to a field-relevant concentration of flumethrin (10 μg/L) for 14 d and its potential impacts on gut system were evaluated. The results indicated that flumethrin triggered immune responses in the gut but had limited effects on survival and gut microbial composition. However, survival stress drastically increased in bees exposed to antibiotics, suggesting that the gut microbiota is closely related to flumethrin-induced dysbiosis in the bee gut. Based on a non-targeted metabolomics approach, flumethrin at 10 μg/L considerably altered the composition of intestinal metabolites, and we discovered that this metabolic stress was closely linked with a reduction of gut core bacterial endosymbiont Gilliamella spp. through a combination of microbiological and metabolomics investigations. Finally, an in vitro study showed that while flumethrin does not directly inhibit the growth of Gilliamella apicola isolates, it does have a significant impact on the glycerophospholipid metabolism in bacteria cells, which was also observed in host bees. These findings indicated that even though flumethrin administered at environmental relevant concentrations does not significantly induce death in honeybees, it still alters the metabolism balance between honeybees and the gut symbiotic bacterium, G. apicola. The considerable negative impact of flumethrin on the honeybee gut microenvironment emphasizes the importance of properly monitoring acaricide to avoid potential environmental concerns, and further studies are needed to illustrate the mode of action of bee health-gut microbiota-exogenous pesticides.}, } @article {pmid35972515, year = {2022}, author = {Oliveira, CYB and Abreu, JL and Santos, EP and Matos, ÂP and Tribuzi, G and Oliveira, CDL and Veras, BO and Bezerra, RS and Müller, MN and Gálvez, AO}, title = {Light induces peridinin and docosahexaenoic acid accumulation in the dinoflagellate Durusdinium glynnii.}, journal = {Applied microbiology and biotechnology}, volume = {106}, number = {18}, pages = {6263-6276}, pmid = {35972515}, issn = {1432-0614}, mesh = {Antioxidants ; Carotenoids ; Chlorophyll ; *Dinoflagellida ; Docosahexaenoic Acids ; }, abstract = {Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.}, } @article {pmid35968950, year = {2022}, author = {Aquino, MF and Simoes-Barbosa, A}, title = {A Microbial Piñata: Bacterial Endosymbionts of Trichomonas vaginalis Come in Different Flavors.}, journal = {mBio}, volume = {13}, number = {4}, pages = {e0132322}, pmid = {35968950}, issn = {2150-7511}, mesh = {Bacteria/genetics ; Female ; Humans ; *Mycoplasma ; Mycoplasma hominis/genetics ; *Trichomonas vaginalis/genetics ; Vagina/microbiology ; }, abstract = {The protozoan parasite Trichomonas vaginalis causes trichomoniasis, a prevalent human urogenital infection with significant morbidity that is commonly associated with vaginal dysbiosis. Exacerbation of T. vaginalis pathogenicity has been related to endosymbionts, including mycoplasma, and thought for a while to be solely attributable to Mycoplasma hominis. In a recent publication, Margarita and colleagues (https://journals.asm.org/doi/10.1128/mbio.00918-22) showed that endosymbiosis extends to a second species of mycoplasma known as "Candidatus Mycoplasma girerdii." Those authors confirmed the strong association of T. vaginalis with both species of mycoplasma by reassessing clinical samples. Additionally, they showed that in vitro symbiosis of protozoa and bacteria resulted in the modulation of gene expression of T. vaginalis and enhancement of parasite cytoadhesion and hemolytic activity in culture assays. In this commentary, we portray T. vaginalis as a synergistically interacting multimicrobe organism-a "microbial piñata"-whose endosymbionts contribute significantly to the pathophysiology of this medically important protozoan parasite.}, } @article {pmid35967981, year = {2022}, author = {Shropshire, JD and Hamant, E and Conner, WR and Cooper, BS}, title = {cifB-transcript levels largely explain cytoplasmic incompatibility variation across divergent Wolbachia.}, journal = {PNAS nexus}, volume = {1}, number = {3}, pages = {pgac099}, pmid = {35967981}, issn = {2752-6542}, support = {R35 GM124701/GM/NIGMS NIH HHS/United States ; }, abstract = {Divergent hosts often associate with intracellular microbes that influence their fitness. Maternally transmitted Wolbachia bacteria are the most common of these endosymbionts, due largely to cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-infected males. Closely related infections in females rescue CI, providing a relative fitness advantage that drives Wolbachia to high frequencies. One prophage-associated gene (cifA) governs rescue, and two contribute to CI (cifA and cifB), but CI strength ranges from very strong to very weak for unknown reasons. Here, we investigate CI-strength variation and its mechanistic underpinnings in a phylogenetic context across 20 million years (MY) of Wolbachia evolution in Drosophila hosts diverged up to 50 MY. These Wolbachia encode diverse Cif proteins (100% to 7.4% pairwise similarity), and AlphaFold structural analyses suggest that CifB sequence similarities do not predict structural similarities. We demonstrate that cifB-transcript levels in testes explain CI strength across all but two focal systems. Despite phylogenetic discordance among cifs and the bulk of the Wolbachia genome, closely related Wolbachia tend to cause similar CI strengths and transcribe cifB at similar levels. This indicates that other non-cif regions of the Wolbachia genome modulate cif-transcript levels. CI strength also increases with the length of the host's larval life stage, presumably due to prolonged cif action. Our findings reveal that cifB-transcript levels largely explain CI strength, while highlighting other covariates. Elucidating CI's mechanism contributes to our understanding of Wolbachia spread in natural systems and to improving the efficacy of CI-based biocontrol of arboviruses and agricultural pests globally.}, } @article {pmid35963240, year = {2022}, author = {Su, Y and Lin, HC and Teh, LS and Chevance, F and James, I and Mayfield, C and Golic, KG and Gagnon, JA and Rog, O and Dale, C}, title = {Rational engineering of a synthetic insect-bacterial mutualism.}, journal = {Current biology : CB}, volume = {32}, number = {18}, pages = {3925-3938.e6}, doi = {10.1016/j.cub.2022.07.036}, pmid = {35963240}, issn = {1879-0445}, support = {R35 GM136389/GM/NIGMS NIH HHS/United States ; }, mesh = {Amino Acids, Aromatic ; Animals ; Bacteria/genetics ; Insecta/microbiology ; Phenylalanine ; Phylogeny ; *Symbiosis ; Tyrosine ; *Weevils/genetics ; }, abstract = {Many insects maintain mutualistic associations with bacterial endosymbionts, but little is known about how they originate in nature. In this study, we describe the establishment and manipulation of a synthetic insect-bacterial symbiosis in a weevil host. Following egg injection, the nascent symbiont colonized many tissues, including prototypical somatic and germinal bacteriomes, yielding maternal transmission over many generations. We then engineered the nascent symbiont to overproduce the aromatic amino acids tyrosine and phenylalanine, which facilitate weevil cuticle strengthening and accelerated larval development, replicating the function of mutualistic symbionts that are widely distributed among weevils and other beetles in nature. Our work provides empirical support for the notion that mutualistic symbioses can be initiated in insects by the acquisition of environmental bacteria. It also shows that certain bacterial genera, including the Sodalis spp. used in our study, are predisposed to develop these associations due to their ability to maintain benign infections and undergo vertical transmission in diverse insect hosts, facilitating the partner-fidelity feedback that is critical for the evolution of obligate mutualism. These experimental advances provide a new platform for laboratory studies focusing on the molecular mechanisms and evolutionary processes underlying insect-bacterial symbiosis.}, } @article {pmid35955579, year = {2022}, author = {Zuber, L and Domínguez-Santos, R and García-Ferris, C and Silva, FJ}, title = {Identification of the Gene Repertoire of the IMD Pathway and Expression of Antimicrobial Peptide Genes in Several Tissues and Hemolymph of the Cockroach Blattella germanica.}, journal = {International journal of molecular sciences}, volume = {23}, number = {15}, pages = {}, pmid = {35955579}, issn = {1422-0067}, mesh = {Adenosine Monophosphate ; Animals ; Antimicrobial Peptides ; *Blattellidae/genetics ; Female ; *Flavobacteriaceae ; Hemolymph ; }, abstract = {Antimicrobial peptide (AMP) genes, triggered by Toll and IMD pathways, are essential components of the innate immune system in the German cockroach Blattella germanica. Besides their role in killing pathogenic bacteria, AMPs could be involved in controlling its symbiotic systems (endosymbiont and microbiota). We found that the IMD pathway was active in the adult female transcriptomes of six tissues (salivary glands, foregut, midgut, hindgut, Malpighian tubules and fat body) and hemolymph. Total expression of AMP genes was high in hemolymph and salivary glands and much lower in the other sample types. The expression of specific AMP genes was very heterogeneous among sample types. Two genes, defensin_g10 and drosomycin_g5, displayed relevant expression in the seven sample types, although higher in hemolymph. Other genes only displayed high expression in one tissue. Almost no expression of attacin-like and blattellicin genes was observed in any sample type, although some of them were among the genes with the highest expression in adult female whole bodies. The expression of AMP genes in salivary glands could help control pathogens ingested with food and even determine gut microbiota composition. The low expression levels in midgut and hindgut are probably related to the presence of beneficial microbiota. Furthermore, a reduction in the expression of AMP genes in fat body could be the way to prevent damage to the population of the endosymbiont Blattabacterium cuenoti within bacteriocytes.}, } @article {pmid35945408, year = {2022}, author = {Hirunkanokpun, S and Ahantarig, A and Baimai, V and Pramual, P and Rakthong, P and Trinachartvanit, W}, title = {Spotted fever group Rickettsia, Anaplasma and Coxiella-like endosymbiont in Haemaphysalis ticks from mammals in Thailand.}, journal = {Veterinary research communications}, volume = {46}, number = {4}, pages = {1209-1219}, pmid = {35945408}, issn = {1573-7446}, mesh = {Animals ; Male ; *Rickettsia/genetics ; *Ticks/genetics/microbiology ; RNA, Ribosomal, 16S/genetics ; Phylogeny ; Thailand ; Ferrets ; DNA, Bacterial/genetics ; *Ixodidae/genetics/microbiology ; Anaplasma/genetics ; Coxiella/genetics ; *Spotted Fever Group Rickettsiosis/veterinary ; }, abstract = {Ticks are ectoparasites of vertebrates and vectors of various pathogenic microorganisms. In this study, the presence of bacteria and protozoa was evaluated by PCR and DNA sequencing in 233 mammal ticks collected from 8 provinces in Thailand. Sequence and phylogenetic analyses of partial rickettsial ompA, ompB, sca4 and partial Coxiella 16S rRNA, GroEL, rpoB genes clearly revealed, for the first time, a co-infection of SFG Rickettsia belonging to R. massiliae subgroup and Coxiella-like endosymbiont (CLE), Cox-hein, in a male of Haemaphysalis heinrichi tick infesting Burmese ferret-badger in Loei province. Moreover, a male of H. hystricis tick infesting the same host was infected with another CLE, Cox-hys. Based on the 16S rRNA gene sequence, Anaplasma sp., closely related to Anaplasma bovis was also detected in a male of H. heinrichi infesting the same Burmese ferret-badger. In addition, the third CLE, Cox-asia, found in H. asiatica collected from Asian palm civet in Chiang Rai province, was different from both Cox-hein and Cox-hys. This study provided important data and broadened our knowledge on tick-borne pathogens and endosymbionts in Thailand and Southeast Asia.}, } @article {pmid35930552, year = {2022}, author = {Gao, RF and Wang, Y and Wang, Y and Wang, ZW and Zhang, GM}, title = {Genome insights from the identification of a novel Pandoraea sputorum isolate and its characteristics.}, journal = {PloS one}, volume = {17}, number = {8}, pages = {e0272435}, pmid = {35930552}, issn = {1932-6203}, mesh = {*Burkholderiaceae/genetics ; Phylogeny ; Quorum Sensing ; RNA, Ribosomal, 16S/genetics ; Sequence Analysis, DNA ; }, abstract = {In this study, we sequenced a bacteria isolate Pandoraea sp. 892iso isolated from a Phytophthora rubi strain which is an important plant pathogenic oomycete, identified through genome and combined the data with existing genomic data from other 28 the genus of Pandoraea species. Next, we conducted a comparative genomic analysis of the genome structure, evolutionary relationships, and pathogenic characteristics of Pandoraea species. Our results identified Pandoraea sp. 892iso as Pandoraea sputorum at both the genome and gene levels. At the genome level, we carried out phylogenetic analysis of single-copy, gene co-linearity, ANI (average nucleotide identity) and AAI (average amino acid identity) indices, rpoB similarity, MLSA phylogenetic analysis, and genome-to-genome distance calculator calculations to identify the relationship between Pandoraea sp. 892iso and P. sputorum. At the gene level, the quorum sensing genes ppnI and ppnR and the OXA-159 gene were assessed. It is speculated that Pandoraea sp. 892iso is the endosymbiont of the Oomycetes strain of Phytophthora rubi.}, } @article {pmid35925827, year = {2023}, author = {Kwak, Y and Argandona, JA and Degnan, PH and Hansen, AK}, title = {Chromosomal-level assembly of Bactericera cockerelli reveals rampant gene family expansions impacting genome structure, function and insect-microbe-plant-interactions.}, journal = {Molecular ecology resources}, volume = {23}, number = {1}, pages = {233-252}, doi = {10.1111/1755-0998.13693}, pmid = {35925827}, issn = {1755-0998}, mesh = {Animals ; *Hemiptera/genetics ; Symbiosis/genetics ; Genome ; Bacteria/genetics ; Chromosomes ; }, abstract = {Lineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B. cockerelli genome has experienced significantly more gene expansion events compared to other Hemipteran representatives with fully sequenced genomes. We also reveal that B. cockerelli's genome is the largest psyllid genome (567 Mb) sequenced to date and is ~15% larger than the other two psyllid species genomes sequenced (Pachypsylla venusta and Diaphorina citri). Structurally, B. cockerelli appears to have an additional chromosome compared to the distantly related psyllid species P. venusta due to a previous chromosomal fission or fusion event. The increase in genome size and dynamic nature of the B. cockerelli genome may largely be contributed to the widespread expansion of type I and II repeat elements that are rampant across all of B. cockerelli's. chromosomes. These repeat elements are distributed near equally in both euchromatic and heterochromatic regions. Furthermore, significant gene family expansions and gene duplications were uncovered for genes that are expected to be important in its adaptation to insect-plant and microbe interactions, which include transcription factors, proteases, odorant receptors, and horizontally transferred genes that are involved in the nutritional symbioses with their long-term nutritional endosymbiont Carsonella.}, } @article {pmid35923389, year = {2022}, author = {Tibbs-Cortes, LE and Tibbs-Cortes, BW and Schmitz-Esser, S}, title = {Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {866930}, pmid = {35923389}, issn = {1664-302X}, abstract = {The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.}, } @article {pmid35916900, year = {2022}, author = {Jin, C and Mo, Y and Zhao, L and Xiao, Z and Zhu, S and He, Z and Chen, Z and Zhang, M and Shu, L and Qiu, R}, title = {Host-Endosymbiont Relationship Impacts the Retention of Bacteria-Containing Amoeba Spores in Porous Media.}, journal = {Environmental science & technology}, volume = {56}, number = {17}, pages = {12347-12357}, doi = {10.1021/acs.est.2c02899}, pmid = {35916900}, issn = {1520-5851}, mesh = {*Amoeba/microbiology ; *Dictyostelium/metabolism/microbiology ; Porosity ; Spores, Bacterial ; Symbiosis ; }, abstract = {Amoebae are protists that are commonly found in water, soil, and other habitats around the world and have complex interactions with other microorganisms. In this work, we investigated how host-endosymbiont interactions between amoebae and bacteria impacted the retention behavior of amoeba spores in porous media. A model amoeba species, Dictyostelium discoideum, and a representative bacterium, Burkholderia agricolaris B1qs70, were used to prepare amoeba spores that carried bacteria. After interacting with B. agricolaris, the retention of D. discoideum spores was enhanced compared to noninfected spores. Diverse proteins, especially proteins contributing to the looser exosporium structure and cell adhesion functionality, are secreted in higher quantities on the exosporium surface of infected spores compared to that of noninfected ones. Comprehensive examinations using a quartz crystal microbalance with dissipation (QCM-D), a parallel plate chamber, and a single-cell force microscope present coherent evidence that changes in the exosporium of D. discoideum spores due to infection by B. agricolaris enhance the connections between spores in the suspension and the spores that were previously deposited on the collector surface, thus resulting in more retention compared to the uninfected ones in porous media. This work provides novel insight into the retention of amoeba spores after bacterial infection in porous media and suggests that the host-endosymbiont relationship regulates the fate of biocolloids in drinking water systems, groundwater, and other porous environments.}, } @article {pmid35916448, year = {2022}, author = {Wang, J and Gou, QY and Luo, GY and Hou, X and Liang, G and Shi, M}, title = {Total RNA sequencing of Phlebotomus chinensis sandflies in China revealed viral, bacterial, and eukaryotic microbes potentially pathogenic to humans.}, journal = {Emerging microbes & infections}, volume = {11}, number = {1}, pages = {2080-2092}, pmid = {35916448}, issn = {2222-1751}, support = {U01 AI151810/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; Bacteria/genetics ; Eukaryota/genetics ; Humans ; Mammals ; *Phlebotomus/genetics ; *Phlebovirus/genetics ; *Psychodidae/genetics ; RNA ; Sequence Analysis, RNA ; }, abstract = {Phlebotomus chinensis sandfly is a neglected insect vector in China that is well-known for carrying Leishmania. Recent studies have expanded its pathogen repertoire with two novel arthropod-borne phleboviruses capable of infecting humans and animals. Despite these discoveries, our knowledge of the general pathogen diversity and overall microbiome composition of this vector species is still very limited. Here we carried out a meta-transcriptomics analysis that revealed the actively replicating/transcribing RNA viruses, DNA viruses, bacteria, and eukaryotic microbes, namely, the "total microbiome", of several sandfly populations in China. Strikingly, "microbiome" made up 1.8% of total non-ribosomal RNA and comprised more than 87 species, among which 70 were novel, including divergent members of the genera Flavivirus and of the family Trypanosomatidae. Importantly, among these microbes we were able to reveal four distinguished types of human and/or mammalian pathogens, including two phleboviruses (hedi and wuxiang viruses), one novel Spotted fever group rickettsia, as well as a member of Leishmania donovani complex, among which hedi virus and Leishmania each had > 50% pool prevalence rate and relatively high abundance levels. Our study also showed the ubiquitous presence of an endosymbiont, namely Wolbachia, although no anti-viral or anti-pathogen effects were detected based on our data. In summary, our results uncovered the much un-explored diversity of microbes harboured by sandflies in China and demonstrated that high pathogen diversity and abundance are currently present in multiple populations, implying disease potential for exposed local human population or domestic animals.}, } @article {pmid35914568, year = {2022}, author = {Rosário, AAD and Dias-Lima, AG and Lambert, SM and Souza, BMPDS and Bravo, F}, title = {Identification and molecular characterization of Wolbachia strains and natural infection for Leishmania sp. in neotropical Phlebotominae (Diptera: Psychodidae) species, leishmaniasis vectors.}, journal = {Acta tropica}, volume = {235}, number = {}, pages = {106624}, doi = {10.1016/j.actatropica.2022.106624}, pmid = {35914568}, issn = {1873-6254}, mesh = {Animals ; Brazil ; Insect Vectors/parasitology ; *Leishmania infantum/genetics ; *Leishmaniasis ; *Parasites ; *Psychodidae/parasitology ; *Wolbachia/genetics ; }, abstract = {Recently, Wolbachia infection has been described in leishmaniasis vector sandflies. This endosymbiont bacterium is present in 60% of insects, and has been suggested as a mechanism of biological control of vector insects, because it causes a series of changes in the invertebrate host. In addition, recent studies have shown that this bacterium can prevent the development of parasites in vector insects. In this context, the present study aims to molecularly characterize the circulating strain of this bacterium in sandflies in the State of Bahia, Brazil, as well as the natural infection rate of Leishmania sp., and to evaluate the coinfection between Wolbachia and Leishmania. Seven hundred and forty-five (745) specimens of sandflies were collected in nine municipalities of Bahia, belonging to two species, Lutzomyia longipalpis (Lutz and Neiva, 1912) and Nyssomyia whitmani (Antunes and Coutinho, 1939). The results confirm infection by the protozoan Leishmania infantum and Wolbachia in both species collected. The identified strain of Wolbachia in sandflies was wStv MI, known to lead to a phenotype of cytoplasmic incompatibility in vector insects.}, } @article {pmid35913594, year = {2022}, author = {Patra, AK and Kwon, YM and Yang, Y}, title = {Complete gammaproteobacterial endosymbiont genome assembly from a seep tubeworm Lamellibrachia satsuma.}, journal = {Journal of microbiology (Seoul, Korea)}, volume = {60}, number = {9}, pages = {916-927}, pmid = {35913594}, issn = {1976-3794}, mesh = {Animals ; Bacteria/genetics ; *Hydrothermal Vents/microbiology ; *Microbiota ; *Polychaeta/genetics/microbiology ; Symbiosis ; }, abstract = {Siboglinid tubeworms thrive in hydrothermal vent and seep habitats via a symbiotic relationship with chemosynthetic bacteria. Difficulties in culturing tubeworms and their symbionts in a laboratory setting have hindered the study of host-microbe interactions. Therefore, released symbiont genomes are fragmented, thereby limiting the data available on the genome that affect subsequent analyses. Here, we present a complete genome of gammaproteobacterial endosymbiont from the tubeworm Lamellibrachia satsuma collected from a seep in Kagoshima Bay, assembled using a hybrid approach that combines sequences generated from the Illumina and Oxford Nano-pore platforms. The genome consists of a single circular chromosome with an assembly size of 4,323,754 bp and a GC content of 53.9% with 3,624 protein-coding genes. The genome is of high quality and contains no assembly gaps, while the completeness and contamination are 99.33% and 2.73%, respectively. Comparative genome analysis revealed a total of 1,724 gene clusters shared in the vent and seep tubeworm symbionts, while 294 genes were found exclusively in L. satsuma symbionts such as transposons, genes for defense mechanisms, and inorganic ion transportations. The addition of this complete endosymbiont genome assembly would be valuable for comparative studies particularly with tubeworm symbiont genomes as well as with other chemosynthetic microbial communities.}, } @article {pmid35906526, year = {2022}, author = {Gabriel, E and Krauß, N and Lamparter, T}, title = {Evidence for evolutionary relationship between archaeplastidal and cyanobacterial phytochromes based on their chromophore pockets.}, journal = {Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology}, volume = {21}, number = {11}, pages = {1961-1974}, pmid = {35906526}, issn = {1474-9092}, mesh = {*Phytochrome/chemistry ; Phylogeny ; *Cyanobacteria/chemistry ; Biological Evolution ; Plants/metabolism ; Amino Acids/metabolism ; Bacterial Proteins/chemistry ; }, abstract = {Phytochromes are photoreceptor proteins with a bilin chromophore that undergo photoconversion between two spectrally different forms, Pr and Pfr. In plants, phytochromes play a central role in growth and differentiation during the entire life cycle. Phytochromes of plants and other groups of archaeplastida have a common evolutionary origin in prokaryotes, but the exact prokaryotic origin is as yet uncertain. Two possibilities are presently discussed: either, archaeplastidal phytochromes arose from the last eukaryotic common ancestor (LECA) or they arose from the cyanobacterial endosymbiont that gave rise to plastids. We first constructed standard phylogenetic trees based on N-terminal protein sequences of the chromophore module. As usual, variation of algorithms and parameters led to different trees. A relationship between cyanobacteria and archaeplastida was observed in 7 out of 36 trees. The lack of consistency between results obtained from variation of parameters of tree constructions reflects the uncertainty of archaeplastidal origin. To gain more information about a possible cyanobacterial and archaeplastidal relationship, we performed phylogenetic studies based on the amino acids that line the chromophore pockets. These amino acids are highly conserved and could provide more accurate information about long evolutionary time scales, but the reduction of traits could also lead to insignificant results. From 30 selected chromophore-binding amino acids, 6 were invariant. The subsequent studies were thus based on the information dependent on 24 or fewer amino acid positions. Again, multiple trees were constructed to get information about the robustness of relationships. The very low number of information-containing traits resulted in low bootstrap values and many indistinguishable leaves. However, the major groups fungi, bacteria, cyanobacteria, and plants remained united. Without exception, cyanobacteria and archaeplastida were always closely linked. In this respect, the results were more robust than those of the classic approach, based on long contiguous sequences. We therefore consider cyanobacteria as the most likely origin of archaeplastidal phytochromes.}, } @article {pmid35898209, year = {2022}, author = {Matsuo, E and Morita, K and Nakayama, T and Yazaki, E and Sarai, C and Takahashi, K and Iwataki, M and Inagaki, Y}, title = {Comparative Plastid Genomics of Green-Colored Dinoflagellates Unveils Parallel Genome Compaction and RNA Editing.}, journal = {Frontiers in plant science}, volume = {13}, number = {}, pages = {918543}, pmid = {35898209}, issn = {1664-462X}, abstract = {Dinoflagellates possess plastids that are diverse in both pigmentation and evolutionary background. One of the plastid types found in dinoflagellates is pigmented with chlorophylls a and b (Chl a + b) and originated from the endosymbionts belonging to a small group of green algae, Pedinophyceae. The Chl a + b-containing plastids have been found in three distantly related dinoflagellates Lepidodinium spp., strain MGD, and strain TGD, and were proposed to be derived from separate partnerships between a dinoflagellate (host) and a pedinophycean green alga (endosymbiont). Prior to this study, a plastid genome sequence was only available for L. chlorophorum, which was reported to bear the features that were not found in that of the pedinophycean green alga Pedinomonas minor, a putative close relative of the endosymbiont that gave rise to the current Chl a + b-containing plastid. In this study, we sequenced the plastid genomes of strains MGD and TGD to compare with those of L. chlorophorum as well as pedinophycean green algae. The mapping of the RNA-seq reads on the corresponding plastid genome identified RNA editing on plastid gene transcripts in the three dinoflagellates. Further, the comparative plastid genomics revealed that the plastid genomes of the three dinoflagellates achieved several features, which are not found in or much less obvious than the pedinophycean plastid genomes determined to date, in parallel.}, } @article {pmid35895627, year = {2022}, author = {Calle-Tobón, A and Pérez-Pérez, J and Forero-Pineda, N and Chávez, OT and Rojas-Montoya, W and Rúa-Uribe, G and Gómez-Palacio, A}, title = {Local-scale virome depiction in Medellín, Colombia, supports significant differences between Aedes aegypti and Aedes albopictus.}, journal = {PloS one}, volume = {17}, number = {7}, pages = {e0263143}, pmid = {35895627}, issn = {1932-6203}, mesh = {*Aedes/classification/virology ; Animals ; Colombia ; *Insect Viruses/genetics ; Mosquito Vectors/virology ; *RNA Viruses/genetics ; *Virome/genetics ; Wolbachia/genetics ; }, abstract = {Aedes spp. comprise the primary group of mosquitoes that transmit arboviruses such as dengue, Zika, and chikungunya viruses to humans, and thus these insects pose a significant burden on public health worldwide. Advancements in next-generation sequencing and metagenomics have expanded our knowledge on the richness of RNA viruses harbored by arthropods such as Ae. aegypti and Ae. albopictus. Increasing evidence suggests that vector competence can be modified by the microbiome (comprising both bacteriome and virome) of mosquitoes present in endemic zones. Using an RNA-seq-based metataxonomic approach, this study determined the virome structure, Wolbachia presence and mitochondrial diversity of field-caught Ae. aegypti and Ae. albopictus mosquitoes in Medellín, Colombia, a municipality with a high incidence of mosquito-transmitted arboviruses. The two species are sympatric, but their core viromes differed considerably in richness, diversity, and abundance; although the community of viral species identified was large and complex, the viromes were dominated by few virus species. BLAST searches of assembled contigs suggested that at least 17 virus species (16 of which are insect-specific viruses [ISVs]) infect the Ae. aegypti population. Dengue virus 3 was detected in one sample and it was the only pathogenic virus detected. In Ae. albopictus, up to 11 ISVs and one plant virus were detected. Therefore, the virome composition appears to be species-specific. The bacterial endosymbiont Wolbachia was identified in all Ae. albopictus samples and in some Ae. aegypti samples collected after 2017. The presence of Wolbachia sp. in Ae. aegypti was not related to significant changes in the richness, diversity, or abundance of this mosquito's virome, although it was related to an increase in the abundance of Aedes aegypti To virus 2 (Metaviridae). The mitochondrial diversity of these mosquitoes suggested that the Ae. aegypti population underwent a change that started in the second half of 2017, which coincides with the release of Wolbachia-infected mosquitoes in Medellín, indicating that the population of wMel-infected mosquitoes released has introduced new alleles into the wild Ae. aegypti population of Medellín. However, additional studies are required on the dispersal speed and intergenerational stability of wMel in Medellín and nearby areas as well as on the introgression of genetic variants in the native mosquito population.}, } @article {pmid35889112, year = {2022}, author = {Hoffman, T and Sjödin, A and Öhrman, C and Karlsson, L and McDonough, RF and Sahl, JW and Birdsell, D and Wagner, DM and Carra, LG and Wilhelmsson, P and Pettersson, JH and Barboutis, C and Figuerola, J and Onrubia, A and Kiat, Y and Piacentini, D and Jaenson, TGT and Lindgren, PE and Moutailler, S and Fransson, T and Forsman, M and Nilsson, K and Lundkvist, Å and Olsen, B}, title = {Co-Occurrence of Francisella, Spotted Fever Group Rickettsia, and Midichloria in Avian-Associated Hyalomma rufipes.}, journal = {Microorganisms}, volume = {10}, number = {7}, pages = {}, pmid = {35889112}, issn = {2076-2607}, abstract = {The migratory behavior of wild birds contributes to the geographical spread of ticks and their microorganisms. In this study, we aimed to investigate the dispersal and co-occurrence of Francisella and spotted fever group Rickettsia (SFGR) in ticks infesting birds migrating northward in the African-Western Palaearctic region (AWPR). Birds were trapped with mist nests across the Mediterranean basin during the 2014 and 2015 spring migration. In total, 575 ticks were collected from 244 birds. We screened the ticks for the species Francisella tularensis, the genus Francisella, and SFGR by microfluidic real-time PCR. Confirmatory analyses and metagenomic sequencing were performed on tick samples that putatively tested positive for F. tularensis during initial screenings. Hyalomma rufipes was the most common tick species and had a high prevalence of Francisella, including co-occurrence of Francisella and SFGR. Metagenomic analysis of total DNA extracted from two H. rufipes confirmed the presence of Francisella, Rickettsia, and Midichloria. Average nucleotide identity and phylogenetic inference indicated the highest identity of the metagenome-assembled genomes to a Francisella-like endosymbiont (FLE), Rickettsia aeschlimannii, and Midichloria mitochondrii. The results of this study suggest that (i) FLE- and SFGR-containing ticks are dispersed by northbound migratory birds in the AWPR, (ii) H. rufipes likely is not involved in transmission of F. tularensis in the AWPR, and (iii) a dual endosymbiosis of FLEs and Midichloria may support some of the nutritional requirements of H. rufipes.}, } @article {pmid35889091, year = {2022}, author = {Mendoza-Hoffmann, F and Zarco-Zavala, M and Ortega, R and Celis-Sandoval, H and Torres-Larios, A and García-Trejo, JJ}, title = {Evolution of the Inhibitory and Non-Inhibitory ε, ζ, and IF1 Subunits of the F1FO-ATPase as Related to the Endosymbiotic Origin of Mitochondria.}, journal = {Microorganisms}, volume = {10}, number = {7}, pages = {}, pmid = {35889091}, issn = {2076-2607}, abstract = {The F1FO-ATP synthase nanomotor synthesizes >90% of the cellular ATP of almost all living beings by rotating in the "forward" direction, but it can also consume the same ATP pools by rotating in "reverse." To prevent futile F1FO-ATPase activity, several different inhibitory proteins or domains in bacteria (ε and ζ subunits), mitochondria (IF1), and chloroplasts (ε and γ disulfide) emerged to block the F1FO-ATPase activity selectively. In this study, we analyze how these F1FO-ATPase inhibitory proteins have evolved. The phylogeny of the α-proteobacterial ε showed that it diverged in its C-terminal side, thus losing both the inhibitory function and the ATP-binding/sensor motif that controls this inhibition. The losses of inhibitory function and the ATP-binding site correlate with an evolutionary divergence of non-inhibitory α-proteobacterial ε and mitochondrial δ subunits from inhibitory bacterial and chloroplastidic ε subunits. Here, we confirm the lack of inhibitory function of wild-type and C-terminal truncated ε subunits of P. denitrificans. Taken together, the data show that ζ evolved to replace ε as the primary inhibitor of the F1FO-ATPase of free-living α-proteobacteria. However, the ζ inhibitory function was also partially lost in some symbiotic α-proteobacteria and totally lost in some strictly parasitic α-proteobacteria such as the Rickettsiales order. Finally, we found that ζ and IF1 likely evolved independently via convergent evolution before and after the endosymbiotic origin mitochondria, respectively. This led us to propose the ε and ζ subunits as tracer genes of the pre-endosymbiont that evolved into the actual mitochondria.}, } @article {pmid35887442, year = {2022}, author = {Chen, C and Qi, J and He, Y and Lu, Y and Wang, Y}, title = {Genomic and Chemical Profiling of B9, a Unique Penicillium Fungus Derived from Sponge.}, journal = {Journal of fungi (Basel, Switzerland)}, volume = {8}, number = {7}, pages = {}, pmid = {35887442}, issn = {2309-608X}, abstract = {This study presented the first insights into the genomic and chemical profiles of B9, a specific Penicillium strain derived from sponges of the South China Sea that demonstrated the closest morphological and phylogenetic affinity to P. paxillin. Via the Illumina MiSeq sequencing platform, the draft genome was sequenced, along with structural assembly and functional annotation. There were 34 biosynthetic gene clusters (BGCs) predicted against the antiSMASH database, but only 4 gene clusters could be allocated to known BGCs (≥50% identities). Meanwhile, the comparison between B9 and P. paxillin ATCC 10480 demonstrated clear distinctions in morphology, which might be ascribed to the unique environmental adaptability of marine endosymbionts. In addition, two novel pyridinones, penicidihydropyridone A (2) and penicidihydropyridone B (3), were isolated from cultures of B9, and structurally characterized by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The absolute configurations were confirmed by comparison of experimental and calculated electronic circular dichroism (ECD) curves. In addition, structure-based molecular docking indicated that both neo-pyridinones might block the programmed cell death protein 1(PD-1) pathway by competitively binding a programmed cell death 1 ligand 1(PD-L1) dimer. This was verified by the significant inhibition rates of the PD-1/L1 interaction. These indicated that Penicillium sp. B9 possessed a potential source of active secondary metabolites.}, } @article {pmid35876309, year = {2022}, author = {Schuler, H and Dittmer, J and Borruso, L and Galli, J and Fischnaller, S and Anfora, G and Rota-Stabelli, O and Weil, T and Janik, K}, title = {Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma.}, journal = {Environmental microbiology}, volume = {24}, number = {10}, pages = {4771-4786}, doi = {10.1111/1462-2920.16138}, pmid = {35876309}, issn = {1462-2920}, mesh = {Animals ; *Hemiptera/microbiology ; *Malus/microbiology ; *Microbiota/genetics ; *Phytoplasma/genetics ; Plant Diseases/microbiology ; RNA, Ribosomal, 16S/genetics ; }, abstract = {Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.}, } @article {pmid35876244, year = {2022}, author = {Sawadogo, SP and Kabore, DA and Tibiri, EB and Hughes, A and Gnankine, O and Quek, S and Diabaté, A and Ranson, H and Hughes, GL and Dabiré, RK}, title = {Lack of robust evidence for a Wolbachia infection in Anopheles gambiae from Burkina Faso.}, journal = {Medical and veterinary entomology}, volume = {36}, number = {3}, pages = {301-308}, doi = {10.1111/mve.12601}, pmid = {35876244}, issn = {1365-2915}, support = {MR/P027873/1/MRC_/Medical Research Council/United Kingdom ; }, mesh = {Animals ; *Anopheles/genetics ; Burkina Faso ; *Malaria/veterinary ; Mosquito Vectors ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; *Wolbachia/genetics ; }, abstract = {The endosymbiont Wolbachia can have major effects on the reproductive fitness, and vectorial capacity of host insects and may provide new avenues to control mosquito-borne pathogens. Anopheles gambiae s.l is the major vector of malaria in Africa but the use of Wolbachia in this species has been limited by challenges in establishing stable transinfected lines and uncertainty around native infections. High frequencies of infection of Wolbachia have been previously reported in An. gambiae collected from the Valle du Kou region of Burkina Faso in 2011 and 2014. Here, we re-evaluated the occurrence of Wolbachia in natural samples, collected from Valle du Kou over a 12-year time span, and in addition, expanded sampling to other sites in Burkina Faso. Our results showed that, in contrast to earlier reports, Wolbachia is present at an extremely low prevalence in natural population of An. gambiae. From 5341 samples analysed, only 29 were positive for Wolbachia by nested PCR representing 0.54% of prevalence. No positive samples were found with regular PCR. Phylogenetic analysis of 16S rRNA gene amplicons clustered across supergroup B, with some having similarity to sequences previously found in Anopheles from Burkina Faso. However, we cannot discount the possibility that the amplicon positive samples we detected were due to environmental contamination or were false positives. Regardless, the lack of a prominent native infection in An. gambiae s.l. is encouraging for applications utilizing Wolbachia transinfected mosquitoes for malaria control.}, } @article {pmid35873163, year = {2022}, author = {Ramos, LFC and Martins, M and Murillo, JR and Domont, GB and de Oliveira, DMP and Nogueira, FCS and Maciel-de-Freitas, R and Junqueira, M}, title = {Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {900608}, pmid = {35873163}, issn = {2235-2988}, mesh = {*Aedes/microbiology ; Animals ; *Coinfection ; Female ; Humans ; Infant, Newborn ; Mosquito Vectors ; Ovary ; Proteomics ; *Wolbachia ; *Zika Virus ; *Zika Virus Infection ; }, abstract = {Zika is a vector-borne disease caused by an arbovirus (ZIKV) and overwhelmingly transmitted by Ae. aegypti. This disease is linked to adverse fetal outcomes, mostly microcephaly in newborns, and other clinical aspects such as acute febrile illness and neurologic complications, for example, Guillain-Barré syndrome. One of the most promising strategies to mitigate arbovirus transmission involves releasing Ae. aegypti mosquitoes carrying the maternally inherited endosymbiont bacteria Wolbachia pipientis. The presence of Wolbachia is associated with a reduced susceptibility to arboviruses and a fitness cost in mosquito life-history traits such as fecundity and fertility. However, the mechanisms by which Wolbachia influences metabolic pathways leading to differences in egg production remains poorly known. To investigate the impact of coinfections on the reproductive tract of the mosquito, we applied an isobaric labeling-based quantitative proteomic strategy to investigate the influence of Wolbachia wMel and ZIKV infection in Ae. aegypti ovaries. To the best of our knowledge, this is the most complete proteome of Ae. aegypti ovaries reported so far, with a total of 3913 proteins identified, were also able to quantify 1044 Wolbachia proteins in complex sample tissue of Ae. aegypti ovary. Furthermore, from a total of 480 mosquito proteins modulated in our study, we discuss proteins and pathways altered in Ae. aegypti during ZIKV infections, Wolbachia infections, coinfection Wolbachia/ZIKV, and compared with no infection, focusing on immune and reproductive aspects of Ae. aegypti. The modified aspects mainly were related to the immune priming enhancement by Wolbachia presence and the modulation of the Juvenile Hormone pathway caused by both microorganism's infection.}, } @article {pmid35869302, year = {2022}, author = {Mejia, AJ and Jimenez, L and Dutra, HLC and Perera, R and McGraw, EA}, title = {Attempts to use breeding approaches in Aedes aegypti to create lines with distinct and stable relative Wolbachia densities.}, journal = {Heredity}, volume = {129}, number = {4}, pages = {215-224}, pmid = {35869302}, issn = {1365-2540}, mesh = {*Aedes/genetics ; Animals ; Mosquito Vectors/genetics ; Specific Gravity ; Virus Replication ; *Wolbachia/genetics ; *Zika Virus ; *Zika Virus Infection ; }, abstract = {Wolbachia is an insect endosymbiont being used for biological control in the mosquito Aedes aegypti because it causes cytoplasmic incompatibility (CI) and limits viral replication of dengue, chikungunya, and Zika viruses. While the genetic mechanism of pathogen blocking (PB) is not fully understood, the strength of both CI and PB are positively correlated with Wolbachia densities in the host. Wolbachia densities are determined by a combination of Wolbachia strain and insect genotype, as well as interactions with the environment. We employed both artificial selection and inbreeding with the goal of creating lines of Ae. aegypti with heritable and distinct Wolbachia densities so that we might better dissect the mechanism underlying PB. We were unable to shift the mean relative Wolbachia density in Ae. aegypti lines by either strategy, with relative densities instead tending to cycle over a narrow range. In lieu of this, we used Wolbachia densities in mosquito legs as predictors of relative densities in the remaining individual's carcass. Because we worked with outbred mosquitoes, our findings indicate either a lack of genetic variation in the mosquito for controlling relative density, natural selection against extreme densities, or a predominance of environmental factors affecting densities. Our study reveals that there are moderating forces acting on relative Wolbachia densities that may help to stabilize density phenotypes post field release. We also show a means to accurately bin vector carcasses into high and low categories for non-DNA omics-based studies of Wolbachia-mediated traits.}, } @article {pmid35868196, year = {2022}, author = {Zhang, XY and Li, SS and Chen, KL and Yang, C and Zhou, XJ and Liu, JZ and Zhang, YK}, title = {Growth dynamics and tissue localization of a Coxiella-like endosymbiont in the tick Haemaphysalis longicornis.}, journal = {Ticks and tick-borne diseases}, volume = {13}, number = {5}, pages = {102005}, doi = {10.1016/j.ttbdis.2022.102005}, pmid = {35868196}, issn = {1877-9603}, mesh = {Animals ; Coxiella/genetics ; Female ; In Situ Hybridization, Fluorescence ; *Ixodidae/microbiology ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; *Ticks/genetics ; }, abstract = {A Coxiella-like endosymbiont (Coxiella-LE hereinafter) stably infects and influences Haemaphysalis longicornis development, indicating a mutualistic relationship of Coxiella-LE and ticks. To further elucidate the patterns of growth dynamics and tissue localization of Coxiella-LE in H. longicornis, 16S rRNA high-throughput sequencing, quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) were used in this study. The density of Coxiella-LE varied among different tick life stages, and fed female ticks had the highest density, followed by unfed female and unfed larval ticks. In the four organs that were dissected from fed female ticks, the ovary carried the highest density of Coxiella-LE, which was significantly different from salivary glands, midgut and Malpighian tubules. The high abundance of Coxiella-LE in fed female ticks and in the ovaries of fed female ticks in the bacterial microbiota analyses further confirmed that Coxiella-LE rapidly proliferates in the ovary after blood feeding. The ovaries continued to develop after engorgement and oviposition began on day 5, with a significant decrease in the density of Coxiella-LE in the ovaries occurring on day 7. FISH results indicated that Coxiella-LE is mainly colonized in the cytoplasm of the oocyte and proliferates with oogenesis. Coxiella-LE was expelled from the body with the mature oocyte, ensuring its vertical transmission. In the Malpighian tubules at different days after engorgement, the white flocculent materials were increasing, and the density of Coxiella-LE raised significantly on day 7. Unlike the localization pattern in the ovary, Coxiella-LE was initially distributed in a mass and continually increased during the development of Malpighian tubules until it filled the Malpighian tubules. These findings provide new insights on the growth dynamics and tissue localization of Coxiella-LE in ticks and are useful for further investigation on the interactions of symbiont and ticks .}, } @article {pmid35866313, year = {2022}, author = {Chirgwin, E and Yang, Q and Umina, PA and Gill, A and Soleimannejad, S and Gu, X and Ross, P and Hoffmann, AA}, title = {Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts.}, journal = {Pest management science}, volume = {78}, number = {11}, pages = {4709-4718}, doi = {10.1002/ps.7091}, pmid = {35866313}, issn = {1526-4998}, mesh = {Acetates ; Animals ; Anti-Bacterial Agents/pharmacology ; *Aphids ; *Fungicides, Industrial/pharmacology ; Imines ; Nitriles ; Strobilurins/pharmacology ; }, abstract = {BACKGROUND: While several agricultural fungicides are known to directly affect invertebrate pests, including aphids, the mechanisms involved are often unknown. One hypothesis is that fungicides with antibacterial activity suppress bacterial endosymbionts present in aphids which are important for aphid survival. Endosymbiont-related effects are expected to be transgenerational, given that these bacteria are maternally inherited. Here, we test for these associations using three fungicides (chlorothalonil, pyraclostrobin and trifloxystrobin) against the bird cherry-oat aphid, Rhopalosiphum padi, using a microinjected strain that carried both the primary endosymbiont Buchnera and the secondary endosymbiont Rickettsiella.

RESULTS: We show that the fungicide chlorothalonil did not cause an immediate effect on aphid survival, whereas both strobilurin fungicides (pyraclostrobin and trifloxystrobin) decreased survival after 48 h exposure. However, chlorothalonil substantially reduced the lifespan and fecundity of the F1 generation. Trifloxystrobin also reduced the lifespan and fecundity of F1 offspring, however, pyraclostrobin did not affect these traits. None of the fungicides consistently altered the density of Buchnera or Rickettsiella in whole aphids.

CONCLUSIONS: Our results suggest fungicides have sublethal impacts on R. padi that are not fully realized until the generation after exposure, and these sublethal impacts are not associated with the density of endosymbionts harbored by R. padi. However, we cannot rule out other effects of fungicides on endosymbionts that might influence fitness, like changes in their tissue distribution. We discuss these results within the context of fungicidal effects on aphid suppression across generations and point to potential field applications. © 2022 Society of Chemical Industry.}, } @article {pmid35865927, year = {2022}, author = {Bisschop, K and Kortenbosch, HH and van Eldijk, TJB and Mallon, CA and Salles, JF and Bonte, D and Etienne, RS}, title = {Microbiome Heritability and Its Role in Adaptation of Hosts to Novel Resources.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {703183}, pmid = {35865927}, issn = {1664-302X}, abstract = {Microbiomes are involved in most vital processes, such as immune response, detoxification, and digestion and are thereby elementary to organismal functioning and ultimately the host's fitness. In turn, the microbiome may be influenced by the host and by the host's environment. To understand microbiome dynamics during the process of adaptation to new resources, we performed an evolutionary experiment with the two-spotted spider mite, Tetranychus urticae. We generated genetically depleted strains of the two-spotted spider mite and reared them on their ancestral host plant and two novel host plants for approximately 12 generations. The use of genetically depleted strains reduced the magnitude of genetic adaptation of the spider mite host to the new resource and, hence, allowed for better detection of signals of adaptation via the microbiome. During the course of adaptation, we tested spider mite performance (number of eggs laid and longevity) and characterized the bacterial component of its microbiome (16S rRNA gene sequencing) to determine: (1) whether the bacterial communities were shaped by mite ancestry or plant environment and (2) whether the spider mites' performance and microbiome composition were related. We found that spider mite performance on the novel host plants was clearly correlated with microbiome composition. Because our results show that only little of the total variation in the microbiome can be explained by the properties of the host (spider mite) and the environment (plant species) we studied, we argue that the bacterial community within hosts could be valuable for understanding a species' performance on multiple resources.}, } @article {pmid35858432, year = {2022}, author = {Masson, F and Rommelaere, S and Schüpfer, F and Boquete, JP and Lemaitre, B}, title = {Disproportionate investment in Spiralin B production limits in-host growth and favors the vertical transmission of Spiroplasma insect endosymbionts.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {119}, number = {30}, pages = {e2208461119}, pmid = {35858432}, issn = {1091-6490}, mesh = {Amino Acids/metabolism ; Animals ; *Bacterial Outer Membrane Proteins/metabolism ; *Drosophila melanogaster/microbiology/physiology ; *Host Microbial Interactions ; *Spiroplasma/metabolism ; *Symbiosis ; }, abstract = {Insects frequently harbor endosymbionts, which are bacteria housed within host tissues. These associations are stably maintained over evolutionary timescales through vertical transmission of endosymbionts from host mothers to their offspring. Some endosymbionts manipulate host reproduction to facilitate spread within natural populations. Consequently, such infections have major impacts on insect physiology and evolution. However, technical hurdles have limited our understanding of the molecular mechanisms underlying such insect-endosymbiont interactions. Here, we investigate the nutritional interactions between endosymbiotic partners using the tractable insect Drosophila melanogaster and its natural endosymbiont Spiroplasma poulsonii. Using a combination of functional assays, metabolomics, and proteomics, we show that the abundance and amino acid composition of a single Spiroplasma membrane lectin, Spiralin B (SpiB), dictates the amino acid requirements of the endosymbiont and determines its proliferation within host tissues. Ectopically increasing SpiB levels in host tissues disrupts localization of endosymbionts in the fly egg chambers and decreases vertical transmission. We find that SpiB is likely to be required by the endosymbiont to enter host oocytes, which may explain the massive investment of S. poulsonii in SpiB synthesis. SpiB both permits vertical transmission of the symbiont and limits its growth in nutrient-limiting conditions for the host; therefore, a single protein plays a pivotal role in ensuring durability of the interaction in a variable environment.}, } @article {pmid35856677, year = {2022}, author = {Kamala Jayanthi, PD and Vyas, M}, title = {Exploring the Transient Microbe Population on Citrus Butterfly Wings.}, journal = {Microbiology spectrum}, volume = {10}, number = {4}, pages = {e0205521}, pmid = {35856677}, issn = {2165-0497}, mesh = {Animals ; *Butterflies/microbiology ; *Citrus ; Humans ; Insecta/microbiology ; Phylogeny ; Wings, Animal/metabolism ; }, abstract = {Microbes carve out dwelling niches in unusual environments. Insects, in general, have been hosts to microbes in different ways. Some insects incorporate microbes as endosymbionts that help with metabolic functions, while some vector pathogenic microbes that cause serious plant and animal diseases, including humans. Microbes isolated from insect sources have been beneficial and a huge information repository. The fascinating and evolutionarily successful insect community has survived mass extinctions as a result of their unique biological traits. Wings have been one of the most important factors contributing to the evolutionary success of insects. In the current study, wings of Papilio polytes, a citrus butterfly, were investigated for the presence of ecologically significant microbes within hours of eclosing under aseptic conditions. Scanning electron microscopy (SEM) revealed the presence of bacteria dwelling in crevices created by a specific arrangement of scales on the butterfly wing. A total of 38 bacterial isolates were obtained from the patched wings of the citrus butterfly, and Bacillus spp. were predominant among them. We probed the occurrence of these microbes to assess their significance to the insect. Many of the isolates displayed antibacterial, antifungal, and biosurfactant properties. Interestingly, one of the isolates displayed entomopathogenic potential toward the notorious agricultural pest mealybug. All the wing isolates were seen to cluster together consistently in a phylogenetic analysis, except for one isolate of Bacillus zhangzhouensis (Papilio polytes isolate [Pp] no. 28), suggesting they are distinct strains. IMPORTANCE This is a first study reporting the presence of culturable microbes on an unusual ecological niche such as butterfly wings. Our findings also establish that microbes inhabit these niches before the butterfly has contact with the environment. The findings in this report have opened up a new area of research which will not only help understand the microbiome of insect wings but might prove beneficial in other specialized studies.}, } @article {pmid35856258, year = {2022}, author = {Guo, F and Castillo, P and Li, C and Qing, X and Li, H}, title = {Description of Rotylenchus zhongshanensis sp. nov. (Tylenchomorpha: Hoplolaimidae) and discovery of its endosymbiont Cardinium.}, journal = {Journal of helminthology}, volume = {96}, number = {}, pages = {e48}, doi = {10.1017/S0022149X22000384}, pmid = {35856258}, issn = {1475-2697}, mesh = {Animals ; Female ; Genes, Mitochondrial ; Male ; Phylogeny ; RNA, Ribosomal, 16S ; *Rhabditida ; *Tylenchoidea/genetics ; }, abstract = {A new bisexual species of Rotylenchus is described and illustrated based on morphological, morphometric and molecular characterizations. Rotylenchus zhongshanensis sp. nov. is characterized by having a conoid lip region complying with the basic pattern for Hoplolaimidae, but with pharyngeal glands slightly overlapping intestine dorsally and cuticle thickened abnormally in female tail terminus. Females have robust stylet (30.1-33.8 μm). The pharyngeal gland has short dorsal (11.2-16.8 μm) overlap on the intestine. The vulva is located at 48.0-56.5% of body length, and phasmids are pore-like, 4-6 annuli posterior to the anus. For males, phasmids are pore-like, 11-17 annuli posterior to cloaca. The spicules are ventrally arcuate (21.0-28.5 μm) with gubernaculum in 5-8 μm length. The rRNA and mitochondrial COI genes were successfully sequenced from the assembled whole-genome sequences of the new species, and were used for reconstructing the phylogenetic relationships of the new species. A new strain of cyto-endosymbiont Cardinium was also discovered from the genome sequences of R. zhongshanensis sp. nov. The 16S rRNA phylogeny analyses revealed that this new bacterial strain is closed to that from cyst and root-lesion nematodes.}, } @article {pmid35849008, year = {2022}, author = {Chaves, EB and Nascimento-Pereira, AC and Pinto, JLM and Rodrigues, BL and de Andrade, MS and Rêbelo, JMM}, title = {Detection of Wolbachia in Mosquitoes (Diptera: Culicidae) in the State of Maranhão, Brazil.}, journal = {Journal of medical entomology}, volume = {59}, number = {5}, pages = {1831-1836}, doi = {10.1093/jme/tjac092}, pmid = {35849008}, issn = {1938-2928}, mesh = {*Aedes/microbiology ; Animals ; *Anopheles/microbiology ; Brazil ; *Culex/microbiology ; *Culicidae/microbiology ; *Wolbachia ; }, abstract = {Recently, the endobacteria Wolbachia has emerged as a biological tool for the control of arboviruses. Thus, we investigated the rate of natural infection by Wolbachia in Culicidae species from Maranhão, Brazil. For this, we amplified the Wolbachia surface protein gene (wsp) from mosquitoes collected in six localities of Maranhão, and positive samples were subjected to new analysis using group-specific primers. In total, 448 specimens comprising 6 genera and 18 species of mosquitoes were analyzed. Wolbachia DNA was PCR-detected in 7 species, three of which are new records: Aedes scapularis (Rondani, 1848), Coquillettidia juxtamansonia (Chagas, 1907) and Cq. venezuelensis (Theobald, 1912), in addition to Ae. albopictus (Skuse, 1894) and Culex quinquefasciatus Say, 1823, which are commonly described as permissive to maintain this bacterium in natural environments, and two species of the subgenera Anopheles (Nyssorhynchus) Blanchard, 1902 and Culex (Melanoconion) Theobald, 1903 which could not be identified at species level. The infection rate of all species ranged from 0 to 80%, and the average value was 16.5%. This study increases the knowledge about the prevalence of Wolbachia in the culicid fauna and may help in selecting strains for biological control purposes.}, } @article {pmid35841879, year = {2022}, author = {Gonçalves, P and Gonçalves, C}, title = {Horizontal gene transfer in yeasts.}, journal = {Current opinion in genetics & development}, volume = {76}, number = {}, pages = {101950}, doi = {10.1016/j.gde.2022.101950}, pmid = {35841879}, issn = {1879-0380}, mesh = {*Bacteria/genetics ; *Gene Transfer, Horizontal/genetics ; Phylogeny ; }, abstract = {Horizontal gene transfer (HGT), defined as the exchange of genetic material other than from parent to progeny, is very common in bacteria and appears to constitute the most important mechanism contributing to enlarge a species gene pool. However, in eukaryotes, HGT is certainly much less common and some early insufficiently consubstantiated cases involving bacterial donors led some to consider that it was unlikely to occur in eukaryotes outside the host/endosymbiont relationship. More recently, plenty of reports of interdomain HGT have seen the light based on the strictest criteria, many concerning filamentous fungi and yeasts. Here, we attempt to summarize the most prominent instances of HGT reported in yeasts as well as what we have been able to learn so far concerning frequency and distribution, mechanisms, barriers, function of horizontally acquired genes, and the role of HGT in domestication.}, } @article {pmid35841431, year = {2022}, author = {Mitra, A and Acharya, K and Bhattacharya, A}, title = {Evolutionary analysis of globin domains from kinetoplastids.}, journal = {Archives of microbiology}, volume = {204}, number = {8}, pages = {493}, pmid = {35841431}, issn = {1432-072X}, mesh = {Amino Acid Sequence ; Codon ; *Gene Transfer, Horizontal ; *Globins/chemistry/genetics/metabolism ; Heme/chemistry/metabolism ; Phylogeny ; }, abstract = {Globin (Gb) domains function in sensing gaseous ligands like oxygen and nitric oxide. In recent years, Gb domain containing heme binding adenylate cyclases (OsAC or GbAC) emerged as significant modulator of Leishmania response to hypoxia and oxidative stress. During progression of life cycle stages, kinetoplastids experience altered condition in insect vectors or other hosts. Moreover, marked diversity in life style has been accounted among kinetoplastids. Distribution and abundance of Gb-domains vary between different groups of kinetoplastids. While in bodonoids, Gbs are not combined with any other functional domains, in trypanosomatids it is either fused with adenylate cyclase (AC) or oxidoreductase (OxR) domains. In salivarian trypanosomatids and Leishmania (Viannia) subtypes, no gene product featuring Gbs can be identified. In this context, evolution of Gb-domains in kinetoplastids was explored. GbOxR derived Gbs clustered with bacterial flavohemoglobins (fHb) including one fHb from Advenella, an endosymbiont of monoxeneous trypanosomatids. Codon adaptation and other evolutionary analysis suggested that OsAC (LmjF.28.0090), the solitary Gb-domain featuring gene product in Leishmania, was acquired via possible horizontal gene transfer. Substantial functional divergence was estimated between orthologues of genes encoding GbAC or GbOxR; an observation also reflected in structural alignment and heme-binding residue predictions. Orthologue-paralogue and synteny analysis indicated genomic reduction in GbOxR and GbAC loci for dixeneous trypanosomatids.}, } @article {pmid35840731, year = {2022}, author = {Cárdenas, A and Raina, JB and Pogoreutz, C and Rädecker, N and Bougoure, J and Guagliardo, P and Pernice, M and Voolstra, CR}, title = {Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility.}, journal = {The ISME journal}, volume = {16}, number = {10}, pages = {2406-2420}, pmid = {35840731}, issn = {1751-7370}, mesh = {Animals ; *Anthozoa ; Coral Bleaching ; Coral Reefs ; Metagenomics ; *Microbiota ; Symbiosis ; }, abstract = {The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with [15]N and [13]C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.}, } @article {pmid35839761, year = {2022}, author = {Boscaro, V and Syberg-Olsen, MJ and Irwin, NAT and George, EE and Vannini, C and Husnik, F and Keeling, PJ}, title = {All essential endosymbionts of the ciliate Euplotes are cyclically replaced.}, journal = {Current biology : CB}, volume = {32}, number = {15}, pages = {R826-R827}, doi = {10.1016/j.cub.2022.06.052}, pmid = {35839761}, issn = {1879-0445}, mesh = {Animals ; Bacteria ; Biological Evolution ; *Ciliophora ; *Euplotes/microbiology ; Insecta ; Phylogeny ; Symbiosis ; }, abstract = {Symbiotic systems vary in the degree to which the partners are bound to each other[1]. At one extreme, there are intracellular endosymbionts in mutually obligate relationships with their host, often interpreted as mutualistic. The symbiosis between the betaproteobacterium Polynucleobacter and the ciliate Euplotes (clade B) challenges this view[2]: although freshwater Euplotes species long ago became dependent on endosymbionts, the many extant Polynucleobacter lineages they harbour arose recently and in parallel from different free-living ancestors[2]. The host requires the endosymbionts for reproduction and survival[3], but each newly established symbiont is ultimately driven to extinction in a cycle of establishment, degeneration, and replacement. Similar replacement events have been observed in sap-feeding insects[4-6], a model for bacteria-eukaryote symbioses[7], but usually only affect a small subset of the host populations. Most insects retain an ancient coevolving symbiont, suggesting that long-term mutualism and permanent integration remain the rule and symbiont turnovers are mere evolutionary side-stories. Here we show that this is not the case for Euplotes. We examined all known essential Euplotes symbionts and found that none are ancient or coevolving; rather, all are recently established and continuously replaced over relatively short evolutionary time spans, making the symbiosis ancient for the host but not for any bacterial lineage.}, } @article {pmid35829939, year = {2022}, author = {Carvajal-Agudelo, JD and Ramírez-Chaves, HE and Ossa-López, PA and Rivera-Páez, FA}, title = {Bacteria related to tick-borne pathogen assemblages in Ornithodoros cf. hasei (Acari: Argasidae) and blood of the wild mammal hosts in the Orinoquia region, Colombia.}, journal = {Experimental & applied acarology}, volume = {87}, number = {2-3}, pages = {253-271}, pmid = {35829939}, issn = {1572-9702}, mesh = {*Acari ; Animals ; *Argasidae ; *Chiroptera ; Colombia ; *Ornithodoros ; RNA, Ribosomal, 16S ; *Rickettsia ; }, abstract = {Interest in research on soft ticks has increased in recent decades, leading to valuable insight into their role as disease vectors. The use of metagenomics-based analyses have helped to elucidate ecological factors involved in pathogen, vector, and host dynamics. To understand the main bacterial assemblages present in Ornithodoros cf. hasei and its mammalian hosts, 84 ticks and 13 blood samples from bat hosts (Chiroptera) were selected, and the 16S rRNA gene V4 region was sequenced in five pools (each one related to each host-tick pairing). Bacterial taxonomic assignment analyses were performed by comparing operational taxonomic units (OTUs) shared between ticks and their host blood. This analysis showed the presence of Proteobacteria (38.8%), Enterobacteriaceae (25%), Firmicutes (12.3%), and Actinobacteria (10.9%) within blood samples, and Rickettsiaceae (39%), Firmicutes (25%), Actinobacteria (13.1%), and Proteobacteria (9%) within ticks. Species related to potentially pathogenic genera were detected in ticks, such as Borrelia sp., Bartonella tamiae, Ehrlichia sp. and Rickettsia-like endosymbiont, and the presence of these organisms was found in all analyzed bat species (Cynomops planirostris, Molossus pretiosus, Noctilio albiventris), and O. cf. hasei. About 41-48.6% of bacterial OTUs (genera and species) were shared between ticks and the blood of bat hosts. Targeted metagenomic screening techniques allowed the detection of tick-associated pathogens for O. cf. hasei and small mammals for the first time, enabling future research on many of these pathogens.}, } @article {pmid35814684, year = {2022}, author = {Barman, M and Samanta, S and Upadhyaya, G and Thakur, H and Chakraborty, S and Samanta, A and Tarafdar, J}, title = {Unraveling the Basis of Neonicotinoid Resistance in Whitefly Species Complex: Role of Endosymbiotic Bacteria and Insecticide Resistance Genes.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {901793}, pmid = {35814684}, issn = {1664-302X}, abstract = {Bemisia tabaci (whitefly) is one of the most detrimental agricultural insect pests and vectors of many plant viruses distributed worldwide. Knowledge of the distribution patterns and insecticide resistance of this cryptic species is crucial for its management. In this study, genetic variation of mitochondrial cytochrome oxidase subunit 1 (MtCoI) gene of B. tabaci was analyzed followed by a study of the infection profile of various endosymbionts in 26 whitefly populations collected from West Bengal, India. Phylogenetic analysis revealed Asia I as the major cryptic species (65.38%), followed by Asia II 5, China 3, and Asia II 7, which were diversified into 20 different haplotypes. In addition to the primary endosymbiont (C. poriera), each of the four whitefly species showed a variable population of three secondary endosymbionts, majorly Arsenophonus with the highest infection rate (73.07%), followed by Wolbachia and Rickettsia. Further phylogenetic analyses revealed the presence of two subgroups of Arsenophonus, viz., A1 and A2, and one each in Wolbachia (W1) and Rickettsia (R3). Resistance to thiamethoxam, imidacloprid, and acetamiprid insecticides was analyzed for a clear picture of pesticide resistance status. The highest susceptibility was noted toward thiamethoxam (LC50 = 5.36 mg/L), followed by imidacloprid and acetamiprid. The whitefly population from Purulia and Hooghly districts bearing Asia II 7 and Asia II 5 cryptic species, respectively, shows maximum resistance. The differences in mean relative titer of four symbiotic bacteria among field populations varied considerably; however, a significant positive linear correlation was observed between the resistance level and relative titer of Arsenophonus and Wolbachia in the case of imidacloprid and thiamethoxam, while only Wolbachia was found in case of acetamiprid. Expression analysis demonstrated differential upregulation of insecticide resistance genes with Purulia and Hooghly populations showing maximally upregulated P450 genes. Moreover, thiamethoxam and imidacloprid resistance ratio (RR) showed a significant correlation with CYP6CM1, CYP6DZ7, and CYP4C64 genes, while acetamiprid RR correlated with CYP6CX1, CYP6DW2, CYP6DZ7, and CYP4C64 genes. Taken together, these findings suggested that P450 mono-oxygenase and symbiotic bacteria together affected whitefly resistance to neonicotinoids. Hence, a symbiont-oriented management programme could be a better alternative to control or delay resistance development in whitefly and can be used for pesticide clean-up in an agricultural field.}, } @article {pmid35799468, year = {2022}, author = {Horas, EL and Metzger, SM and Platzer, B and Kelly, JB and Becks, L}, title = {Context-dependent costs and benefits of endosymbiotic interactions in a ciliate-algae system.}, journal = {Environmental microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1111/1462-2920.16112}, pmid = {35799468}, issn = {1462-2920}, abstract = {Endosymbiosis, an interaction between two species where one lives within the other, has evolved multiple times independently, but the underlying mechanisms remain unclear. Evolutionary theory suggests that for an endosymbiotic interaction to remain stable over time, births of both partners should be higher than their deaths in symbiosis and deaths of both partners should be higher than their births when living independently. However, experimentally measuring this can be difficult and conclusions tend to focus on the host. Using a ciliate-algal system (Paramecium bursaria host and Chlorella endosymbionts), we estimated the benefits and costs of endosymbiosis for both organisms using fitness measurements in different biotic environments to test under which environmental conditions the net effects of the interaction were positive for both partners. We found that the net effects of harbouring endosymbionts were positive for the ciliate hosts as it allowed them to survive in conditions of low-quality bacteria food. The algae benefitted by being endosymbiotic when predators such as the hosts were present, but the net effects were dependent on the total density of hosts, decreasing as hosts densities increased. Overall, we show that including context-dependency of endosymbiosis is essential in understanding how these interactions have evolved.}, } @article {pmid35798888, year = {2022}, author = {Schön, ME and Martijn, J and Vosseberg, J and Köstlbacher, S and Ettema, TJG}, title = {The evolutionary origin of host association in the Rickettsiales.}, journal = {Nature microbiology}, volume = {7}, number = {8}, pages = {1189-1199}, pmid = {35798888}, issn = {2058-5276}, support = {817834/ERC_/European Research Council/International ; }, mesh = {Humans ; *Metagenome ; Phylogeny ; *Rickettsiales/genetics ; }, abstract = {The evolution of obligate host-association of bacterial symbionts and pathogens remains poorly understood. The Rickettsiales are an alphaproteobacterial order of obligate endosymbionts and parasites that infect a wide variety of eukaryotic hosts, including humans, livestock, insects and protists. Induced by their host-associated lifestyle, Rickettsiales genomes have undergone reductive evolution, leading to small, AT-rich genomes with limited metabolic capacities. Here we uncover eleven deep-branching alphaproteobacterial metagenome assembled genomes from aquatic environments, including data from the Tara Oceans initiative and other publicly available datasets, distributed over three previously undescribed Rickettsiales-related clades. Phylogenomic analyses reveal that two of these clades, Mitibacteraceae and Athabascaceae, branch sister to all previously sampled Rickettsiales. The third clade, Gamibacteraceae, branch sister to the recently identified ectosymbiotic 'Candidatus Deianiraea vastatrix'. Comparative analyses indicate that the gene complement of Mitibacteraceae and Athabascaceae is reminiscent of that of free-living and biofilm-associated bacteria. Ancestral genome content reconstruction across the Rickettsiales species tree further suggests that the evolution of host association in Rickettsiales was a gradual process that may have involved the repurposing of a type IV secretion system.}, } @article {pmid35795355, year = {2022}, author = {Manthey, JD and Girón, JC and Hruska, JP}, title = {Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus Camponotus) and their Blochmannia endosymbionts.}, journal = {Ecology and evolution}, volume = {12}, number = {7}, pages = {e9026}, pmid = {35795355}, issn = {2045-7758}, abstract = {Obligate endosymbioses are tight associations between symbionts and the hosts they live inside. Hosts and their associated obligate endosymbionts generally exhibit codiversification, which has been documented in taxonomically diverse insect lineages. Host demography (e.g., effective population sizes) may impact the demography of endosymbionts, which may lead to an association between host demography and the patterns and processes of endosymbiont molecular evolution. Here, we used whole-genome sequencing data for carpenter ants (Genus Camponotus; subgenera Camponotus and Tanaemyrmex) and their Blochmannia endosymbionts as our study system to address whether Camponotus demography shapes Blochmannia molecular evolution. Using whole-genome phylogenomics, we confirmed previous work identifying codiversification between carpenter ants and their Blochmannia endosymbionts. We found that Blochmannia genes have evolved at a pace ~30× faster than that of their hosts' molecular evolution and that these rates are positively associated with host rates of molecular evolution. Using multiple tests for selection in Blochmannia genes, we found signatures of positive selection and shifts in selection strength across the phylogeny. Host demography was associated with Blochmannia shifts toward increased selection strengths, but not associated with Blochmannia selection relaxation, positive selection, genetic drift rates, or genome size evolution. Mixed support for relationships between host effective population sizes and Blochmannia molecular evolution suggests weak or uncoupled relationships between host demography and Blochmannia population genomic processes. Finally, we found that Blochmannia genome size evolution was associated with genome-wide estimates of genetic drift and number of genes with relaxed selection pressures.}, } @article {pmid35792339, year = {2022}, author = {Mohamed, SA and Dubois, T and Azrag, AG and Ndlela, S and Neuenschwander, P}, title = {Classical biological of key horticultural pests in Africa: successes, challenges, and opportunities.}, journal = {Current opinion in insect science}, volume = {53}, number = {}, pages = {100945}, doi = {10.1016/j.cois.2022.100945}, pmid = {35792339}, issn = {2214-5753}, mesh = {Africa ; Animals ; *Insecta ; *Introduced Species ; }, abstract = {Classical biological control (CBC) is considered a safer and more sustainable alternative for management of alien-invasive species. This review presents recent advances in CBC of key horticultural insect pests using parasitoids in Africa. Several CBC programs have been undertaken targeting different insect pests of both fruits and vegetables, largely yielding outstanding success. Key obstacles impeding CBC and opportunities that could promote CBC in Africa are outlined. Also, very brief highlights on recent scientific and technological advances in modeling, integrative taxonomy and molecular tools, and endosymbionts that relate to CBC are provided.}, } @article {pmid35765190, year = {2022}, author = {Weiland, SO and Detcharoen, M and Schlick-Steiner, BC and Steiner, FM}, title = {Analyses of locomotion, wing morphology, and microbiome in Drosophila nigrosparsa after recovery from antibiotics.}, journal = {MicrobiologyOpen}, volume = {11}, number = {3}, pages = {e1291}, pmid = {35765190}, issn = {2045-8827}, mesh = {Animals ; Anti-Bacterial Agents/pharmacology ; Drosophila ; Locomotion ; *Microbiota ; Tetracycline/pharmacology ; *Wolbachia/genetics ; }, abstract = {Antibiotics, such as tetracycline, have been frequently used to cure arthropods of Wolbachia endosymbionts. After the symbionts have been removed, the hosts must recover for some generations from the side effects of the antibiotics. However, most studies do not assess the direct and indirect longer-term effects of antibiotics used to remove Wolbachia, which may question the exact contribution of this endosymbiont to the effects observed. Here, we used the fly Drosophila nigrosparsa treated or not with tetracycline for three generations followed by two generations of recovery to investigate the effects of this antibiotic on the fly locomotion, wing morphology, and the gut microbiome. We found that antibiotic treatment did not affect fly locomotion two generations after being treated with the antibiotic. In addition, gut-microbiome restoration was tested as a more efficient solution to reduce the potential side effects of tetracycline on the microbiome. There was no significant difference in alpha diversity between gut restoration and other treatments, but the abundance of some bacterial taxa differed significantly between the gut-restoration treatment and the control. We conclude that in D. nigrosparsa the recovery period of two generations after being treated with the antibiotic is sufficient for locomotion, and suggest a general assessment of direct and indirect effects of antibiotics after a particular recovery time.}, } @article {pmid35755814, year = {2022}, author = {Lima, RM and Rathod, BB and Tiricz, H and Howan, DHO and Al Bouni, MA and Jenei, S and Tímár, E and Endre, G and Tóth, GK and Kondorosi, É}, title = {Legume Plant Peptides as Sources of Novel Antimicrobial Molecules Against Human Pathogens.}, journal = {Frontiers in molecular biosciences}, volume = {9}, number = {}, pages = {870460}, pmid = {35755814}, issn = {2296-889X}, abstract = {Antimicrobial peptides are prominent components of the plant immune system acting against a wide variety of pathogens. Legume plants from the inverted repeat lacking clade (IRLC) have evolved a unique gene family encoding nodule-specific cysteine-rich NCR peptides acting in the symbiotic cells of root nodules, where they convert their bacterial endosymbionts into non-cultivable, polyploid nitrogen-fixing cells. NCRs are usually 30-50 amino acids long peptides having a characteristic pattern of 4 or 6 cysteines and highly divergent amino acid composition. While the function of NCRs is largely unknown, antimicrobial activity has been demonstrated for a few cationic Medicago truncatula NCR peptides against bacterial and fungal pathogens. The advantages of these plant peptides are their broad antimicrobial spectrum, fast killing modes of actions, multiple bacterial targets, and low propensity to develop resistance to them and no or low cytotoxicity to human cells. In the IRLC legumes, the number of NCR genes varies from a few to several hundred and it is possible that altogether hundreds of thousands of different NCR peptides exist. Due to the need for new antimicrobial agents, we investigated the antimicrobial potential of 104 synthetic NCR peptides from M. truncatula, M. sativa, Pisum sativum, Galega orientalis and Cicer arietinum against eight human pathogens, including ESKAPE bacteria. 50 NCRs showed antimicrobial activity with differences in the antimicrobial spectrum and effectivity. The most active peptides eliminated bacteria at concentrations from 0.8 to 3.1 μM. High isoelectric point and positive net charge were important but not the only determinants of their antimicrobial activity. Testing the activity of shorter peptide derivatives against Acinetobacter baumannii and Candida albicans led to identification of regions responsible for the antimicrobial activity and provided insight into their potential modes of action. This work provides highly potent lead molecules without hemolytic activity on human blood cells for novel antimicrobial drugs to fight against pathogens.}, } @article {pmid35745515, year = {2022}, author = {Karsenti, N and Purssell, A and Lau, R and Ralevski, F and Bhasker, S and Raheel, H and Boggild, AK}, title = {Surveillance of Amoebic Keratitis-Causing Acanthamoebae for Potential Bacterial Endosymbionts in Ontario, Canada.}, journal = {Pathogens (Basel, Switzerland)}, volume = {11}, number = {6}, pages = {}, pmid = {35745515}, issn = {2076-0817}, abstract = {Acanthamoeba spp. are the causative pathogens of several infections, including amoebic keratitis (AK), a vision-threatening infection. Acanthamoebae from corneal specimens of patients with AK harbor bacterial endosymbionts, which may increase virulence. We sought to understand the spectrum of bacterial endosymbionts present in clinical isolates of Acanthamoeba spp. identified in our reference parasitology laboratory. Isolates of Acanthamoeba spp. obtained from our biobank of anonymized corneal scrapings were screened for potential endosymbionts by PCR using primer pairs detecting bacteria belonging to orders Chlamydiales, Rickettsiales, or Legionellales and pan16S primers. Three primer pairs specific to the 18s rRNA gene of Acanthamoeba spp. were used for the amplification of Acanthamoeba DNA used for sequencing. Sanger sequencing of all PCR products was performed, followed by BLAST analysis for species identification. We screened 26 clinical isolates of Acanthamoeba spp. for potential endosymbionts. Five isolates (19%) were found to contain bacterial DNA belonging to Legionellales. Three (11%) contained members of the Rickettsiales and Pseudomonas genticulata was detected in a Rickettsia-positive sample. One strain (4%) contained Neochlamydia hartmannellae, a member of the Chlamydiales order. Bacterial endosymbionts are prevalent in clinical strains of Acanthamoeba causing AK isolated from corneal scrapings. The demonstration of these organisms in clinical Acanthamoeba isolates supports a potential exploration of anti-endosymbiont therapeutics as an adjuvant therapy in the treatment of AK.}, } @article {pmid35744766, year = {2022}, author = {Takahashi, T}, title = {Method for Stress Assessment of Endosymbiotic Algae in Paramecium bursaria as a Model System for Endosymbiosis.}, journal = {Microorganisms}, volume = {10}, number = {6}, pages = {}, pmid = {35744766}, issn = {2076-2607}, abstract = {Endosymbiosis between heterotrophic host and microalga often breaks down because of environmental conditions, such as temperature change and exposure to toxic substances. By the time of the apparent breakdown of endosymbiosis, it is often too late for the endosymbiotic system to recover. In this study, I developed a technique for the stress assessment of endosymbiotic algae using Paramecium bursaria as an endosymbiosis model, after treatment with the herbicide paraquat, an endosymbiotic collapse inducer. Microcapillary flow cytometry was employed to evaluate a large number of cells in an approach that is more rapid than microscopy evaluation. In the assay, red fluorescence of the chlorophyll reflected the number of endosymbionts within the host cell, while yellow fluorescence fluctuated in response to the deteriorating viability of the endosymbiont under stress. Hence, the yellow/red fluorescence intensity ratio can be used as an algal stress index independent of the algal number. An optical evaluation revealed that the viability of the endosymbiotic algae within the host cell decreased after treatment with paraquat and that the remaining endosymbionts were exposed to high stress. The devised assay is a potential environmental monitoring method, applicable not only to P. bursaria but also to multicellular symbiotic units, such as corals.}, } @article {pmid35740880, year = {2022}, author = {Hassan, K and Chepkirui, C and Llanos-López, NA and Matasyoh, JC and Decock, C and Marin-Felix, Y and Stadler, M}, title = {Meroterpenoids Possibly Produced by a Bacterial Endosymbiont of the Tropical Basidiomycete Echinochaete brachypora.}, journal = {Biomolecules}, volume = {12}, number = {6}, pages = {}, pmid = {35740880}, issn = {2218-273X}, mesh = {Anti-Bacterial Agents/chemistry ; Bacteria/metabolism ; *Basidiomycota/chemistry ; Fungi/metabolism ; *Polyporaceae/metabolism ; }, abstract = {A mycelial culture of the African basidiomycete Echinochaete cf. brachypora was studied for biologically active secondary metabolites, and four compounds were isolated from its crude extract derived from shake flask fermentations, using preparative high-performance liquid chromatography (HPLC). The pure metabolites were identified using extensive nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). Aside from the new metabolites 1-methoxyneomarinone (1) and (E)-3-methyl-5-(-12,13,14-trimethylcyclohex-10-en-6-yl)pent-2-enoic acid (4), the known metabolites neomarinone (2) and fumaquinone (4) were obtained. Such compounds had previously only been reported from Actinobacteria but were never isolated from the cultures of a fungus. This observation prompted us to evaluate whether the above metabolites may actually have been produced by an endosymbiontic bacterium that is associated with the basidiomycete. We have indeed been able to characterize bacterial 16S rDNA in the fungal mycelia, and the production of the metabolites stopped when the fungus was sub-cultured on a medium containing antibacterial antibiotics. Therefore, we have found strong evidence that compounds 1-4 are not of fungal origin. However, the endofungal bacterium was shown to belong to the genus Ralstonia, which has never been reported to produce similar metabolites to 1-4. Moreover, we failed to obtain the bacterial strain in pure culture to provide final proof for its identity. In any case, the current report is the first to document that polyporoid Basidiomycota are associated with endosymbionts and constitutes the first report on secondary metabolites from the genus Echinochaete.}, } @article {pmid35738252, year = {2022}, author = {George, EE and Tashyreva, D and Kwong, WK and Okamoto, N and Horák, A and Husnik, F and Lukeš, J and Keeling, PJ}, title = {Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes.}, journal = {Genome biology and evolution}, volume = {14}, number = {7}, pages = {}, pmid = {35738252}, issn = {1759-6653}, mesh = {Bacteria/genetics ; *Eukaryota/genetics ; Gene Transfer, Horizontal ; Phylogeny ; Symbiosis/genetics ; *Viruses ; }, abstract = {Gene transfer agents (GTAs) are virus-like structures that package and transfer prokaryotic DNA from donor to recipient prokaryotic cells. Here, we describe widespread GTA gene clusters in the highly reduced genomes of bacterial endosymbionts from microbial eukaryotes (protists). Homologs of the GTA capsid and portal complexes were initially found to be present in several highly reduced alphaproteobacterial endosymbionts of diplonemid protists (Rickettsiales and Rhodospirillales). Evidence of GTA expression was found in polyA-enriched metatranscriptomes of the diplonemid hosts and their endosymbionts, but due to biases in the polyA-enrichment methods, levels of GTA expression could not be determined. Examining the genomes of closely related bacteria revealed that the pattern of retained GTA head/capsid complexes with missing tail components was common across Rickettsiales and Holosporaceae (Rhodospirillales), all obligate symbionts with a wide variety of eukaryotic hosts. A dN/dS analysis of Rickettsiales and Holosporaceae symbionts revealed that purifying selection is likely the main driver of GTA evolution in symbionts, suggesting they remain functional, but the ecological function of GTAs in bacterial symbionts is unknown. In particular, it is unclear how increasing horizontal gene transfer in small, largely clonal endosymbiont populations can explain GTA retention, and, therefore, the structures may have been repurposed in endosymbionts for host interactions. Either way, their widespread retention and conservation in endosymbionts of diverse eukaryotes suggests an important role in symbiosis.}, } @article {pmid35735896, year = {2022}, author = {Nian, X and Tao, X and Xiao, Z and Wang, D and He, Y}, title = {Effects of Sublethal Concentrations of Tetracycline Hydrochloride on the Biological Characteristics and Wolbachia Titer in Parthenogenesis Trichogramma pretiosum.}, journal = {Insects}, volume = {13}, number = {6}, pages = {}, pmid = {35735896}, issn = {2075-4450}, abstract = {Trichogramma pretiosum Riley is an important natural enemy and biological control agent of lepidopteran pests. Wolbachia is an intracellular endosymbiont that induces parthenogenesis in the parasitoid T. pretiosum. In this paper, the sublethal effects of the antibiotic tetracycline hydrochloride on the development and reproduction of T. pretiosum were studied. Emerged females were fed with sublethal concentrations (LC5, LC15, and LC35) of tetracycline for ten generations. The biological parameters (longevity, parasitized eggs, and fecundity) of treated females significantly reduced compared with the control Moreover, the percentage of female offspring in the treatments significantly reduced, but the percentage of male offspring significantly increased. In addition, the Wolbachia titer sharply reduced after two generations of antibiotic treatments, but it could still be detected even after ten successive generations of antibiotic treatments, which indicated that Wolbachia was not completely removed by sublethal concentrations of tetracycline. The control lines with higher Wolbachia titers produced more female offspring than the tetracycline treatments with lower Wolbachia titers, indicating that the Wolbachia titer affected the sex determination of T. pretiosum. Our results show that sublethal concentrations of tetracycline had adverse effects on the development of T. pretiosum, and Wolbachia titers affected the sexual development of T. pretiosum eggs.}, } @article {pmid35731940, year = {2022}, author = {Romero Picazo, D and Werner, A and Dagan, T and Kupczok, A}, title = {Pangenome Evolution in Environmentally Transmitted Symbionts of Deep-Sea Mussels Is Governed by Vertical Inheritance.}, journal = {Genome biology and evolution}, volume = {14}, number = {7}, pages = {}, pmid = {35731940}, issn = {1759-6653}, mesh = {Animals ; Bacteria/genetics ; Gene Transfer, Horizontal ; Genome, Bacterial ; Methane ; *Mytilidae/genetics/microbiology ; Phylogeny ; Sulfur ; Symbiosis/genetics ; }, abstract = {Microbial pangenomes vary across species; their size and structure are determined by genetic diversity within the population and by gene loss and horizontal gene transfer (HGT). Many bacteria are associated with eukaryotic hosts where the host colonization dynamics may impact bacterial genome evolution. Host-associated lifestyle has been recognized as a barrier to HGT in parentally transmitted bacteria. However, pangenome evolution of environmentally acquired symbionts remains understudied, often due to limitations in symbiont cultivation. Using high-resolution metagenomics, here we study pangenome evolution of two co-occurring endosymbionts inhabiting Bathymodiolus brooksi mussels from a single cold seep. The symbionts, sulfur-oxidizing (SOX) and methane-oxidizing (MOX) gamma-proteobacteria, are environmentally acquired at an early developmental stage and individual mussels may harbor multiple strains of each symbiont species. We found differences in the accessory gene content of both symbionts across individual mussels, which are reflected by differences in symbiont strain composition. Compared with core genes, accessory genes are enriched in genome plasticity functions. We found no evidence for recent HGT between both symbionts. A comparison between the symbiont pangenomes revealed that the MOX population is less diverged and contains fewer accessory genes, supporting that the MOX association with B. brooksi is more recent in comparison to that of SOX. Our results show that the pangenomes of both symbionts evolved mainly by vertical inheritance. We conclude that genome evolution of environmentally transmitted symbionts that associate with individual hosts over their lifetime is affected by a narrow symbiosis where the frequency of HGT is constrained.}, } @article {pmid35726500, year = {2022}, author = {Dzul-Rosado, K and Maldonado-Borges, JI and Puerto-Manzano, FI and Lammoglia-Villagómez, MA and Becker, I and Sánchez-Montes, S}, title = {First exploratory study of bacterial pathogens and endosymbionts in head lice from a Mayan community in southern Mexico.}, journal = {Zoonoses and public health}, volume = {69}, number = {6}, pages = {729-736}, doi = {10.1111/zph.12982}, pmid = {35726500}, issn = {1863-2378}, mesh = {*Acinetobacter/genetics ; Animals ; Bacteria/genetics ; DNA ; Humans ; *Lice Infestations/epidemiology/veterinary ; Mexico/epidemiology ; *Pediculus/genetics/microbiology ; Phylogeny ; }, abstract = {Lice represent one of the most neglected group of vectors worldwide, particularly in Latin America. Records of bacterial agents related to head lice are non-existent in this region of the continent. Many of these communities often do not have adequate access to public services and/or health protection. The normalization of this condition prevents them from manifesting discomfort, such as bites and itching, which further aggravates the situation, as they can be vectors of important diseases. For this reason, the aim of this work was to identify the richness of bacterial pathogens (Acinetobacter, Bartonella, and Rickettsia) and endosymbionts (Wolbachia) in head lice of paediatric patients from the indigenous municipality of Hoctun, Yucatan, Mexico. DNA extraction was performed using the QIAamp DNA Mini Kit. For the detection of bacterial pathogens, fragments of the gltA, rpoB, and 16S rDNA genes were amplified. For the detection of Wolbachia, the wsp gene was amplified. Of the 28 lice analysed, the presence of two genera of bacterial pathogens was detected Acinetobacter (42.9% = 12/28) and Bartonella (7.14% = 2/28). We also detected the endosymbiont Wolbachia (71.42% = 20/28). Our results showed that DNA from three bacteria species (Acinetobacter baumannii, Bartonella quintana, and Wolbachia pipientis) was present with frequencies ranging from 3.57% to 71.42%. This work represents the first exploratory study of the diversity of agents associated with head lice (Pediculus humanus capitis) in Mexico and Latin America. Due to the findings generated in the present study, it is important to perform surveillance of head lice populations to identify the degree of spread of these pathogens and their impact on populations in the region.}, } @article {pmid35723456, year = {2022}, author = {Chen, L and Xiao, Q and Shi, M and Cheng, J and Wu, J}, title = {Detecting Wolbachia Strain wAlbB in Aedes albopictus Cell Lines.}, journal = {Journal of visualized experiments : JoVE}, volume = {}, number = {184}, pages = {}, doi = {10.3791/63662}, pmid = {35723456}, issn = {1940-087X}, mesh = {*Aedes ; Animals ; Cell Line ; Mosquito Vectors ; *RNA Viruses ; *Wolbachia/physiology ; }, abstract = {As a maternally harbored endosymbiont, Wolbachia infects large proportions of insect populations. Studies have recently reported the successful regulation of RNA virus transmission using Wolbachia-transfected mosquitoes. Key strategies to control viruses include the manipulation of host reproduction via cytoplasmic incompatibility and the inhibition of viral transcripts via immune priming and competition for host-derived resources. However, the underlying mechanisms of the responses of Wolbachia-transfected mosquitoes to viral infection are poorly understood. This paper presents a protocol for the in vitro identification of Wolbachia infection at the nucleic acid and protein levels in Aedes albopictus (Diptera: Culicidae) Aa23 cells to enhance the understanding of the interactions between Wolbachia and its insect vectors. Through the combined use of polymerase chain reaction (PCR), quantitative PCR, western blot, and immunological analytical methods, a standard morphologic protocol has been described for the detection of Wolbachia-infected cells that is more accurate than the use of a single method. This approach may also be applied to the detection of Wolbachia infection in other insect taxa.}, } @article {pmid35716742, year = {2022}, author = {Perrotta, BG and Kidd, KA and Walters, DM}, title = {PCB exposure is associated with reduction of endosymbionts in riparian spider microbiomes.}, journal = {The Science of the total environment}, volume = {842}, number = {}, pages = {156726}, doi = {10.1016/j.scitotenv.2022.156726}, pmid = {35716742}, issn = {1879-1026}, mesh = {Animals ; Insecta ; *Microbiota ; Ontario ; *Polychlorinated Biphenyls/analysis ; RNA, Ribosomal, 16S ; *Spiders ; }, abstract = {Microbial communities, including endosymbionts, play diverse and critical roles in host biology and reproduction, but contaminant exposure may cause an imbalance in the microbiome composition with subsequent impacts on host health. Here, we examined whether there was a significant alteration of the microbiome community within two taxa of riparian spiders (Tetragnathidae and Araneidae) from a site with historical polychlorinated biphenyl (PCB) contamination in southern Ontario, Canada. Riparian spiders specialize in the predation of adult aquatic insects and, as such, their contaminant levels closely track those of nearby aquatic ecosystems. DNA from whole spiders from sites with either low or high PCB contamination was extracted, and spider microbiota profiled by partial 16S rRNA gene amplicon sequencing. The most prevalent shift in microbial communities we observed was a large reduction in endosymbionts in spiders at the high PCB site. The abundance of endosymbionts at the high PCB site was 63 % and 98 % lower for tetragnathids and araneids, respectively, than at the low PCB site. Overall, this has potential implications for spider reproductive success and food webs, as riparian spiders are critical gatekeepers of energy and material fluxes at the land-water interface.}, } @article {pmid35715703, year = {2022}, author = {Lan, Y and Sun, J and Chen, C and Wang, H and Xiao, Y and Perez, M and Yang, Y and Kwan, YH and Sun, Y and Zhou, Y and Han, X and Miyazaki, J and Watsuji, TO and Bissessur, D and Qiu, JW and Takai, K and Qian, PY}, title = {Endosymbiont population genomics sheds light on transmission mode, partner specificity, and stability of the scaly-foot snail holobiont.}, journal = {The ISME journal}, volume = {16}, number = {9}, pages = {2132-2143}, pmid = {35715703}, issn = {1751-7370}, mesh = {Animals ; *Hydrothermal Vents/microbiology ; Metagenomics ; Phylogeny ; Snails/physiology ; Symbiosis/genetics ; }, abstract = {The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host's cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.}, } @article {pmid35715692, year = {2022}, author = {Hickin, ML and Kakumanu, ML and Schal, C}, title = {Effects of Wolbachia elimination and B-vitamin supplementation on bed bug development and reproduction.}, journal = {Scientific reports}, volume = {12}, number = {1}, pages = {10270}, pmid = {35715692}, issn = {2045-2322}, mesh = {Animals ; *Bedbugs ; Dietary Supplements ; Female ; Nymph ; Reproduction ; *Vitamin B Complex/pharmacology ; *Wolbachia ; }, abstract = {Obligate blood feeders, such as Cimex lectularius (common bed bug), have symbiotic associations with nutritional endosymbionts that produce B-vitamins. To quantify the symbiont's contribution to host fitness in these obligate mutualisms, the symbiont must be eliminated and its absence rigorously confirmed. We developed and validated procedures for complete elimination of Wolbachia (Wb) in bed bugs and quantified development and reproduction in bed bugs with and without Wb and with and without B-vitamins supplementation. Aposymbiotic bed bugs had slower nymphal development, reduced adult survivorship, smaller adult size, fewer eggs per female, and lower hatch rate than bed bugs that harbored Wb. In aposymbiotic bed bugs that were fed B-vitamins-supplemented blood, nymph development time, adult survivorship and hatch rate recovered to control levels, but adult size and egg number only partially recovered. These results underscore the nutritional dependence of bed bugs on their Wb symbiont and suggest that Wb may provide additional nutritional benefits beyond the B-vitamin mix that we investigated.}, } @article {pmid35714221, year = {2022}, author = {Li, Y and Altamia, MA and Shipway, JR and Brugler, MR and Bernardino, AF and de Brito, TL and Lin, Z and da Silva Oliveira, FA and Sumida, P and Smith, CR and Trindade-Silva, A and Halanych, KM and Distel, DL}, title = {Contrasting modes of mitochondrial genome evolution in sister taxa of wood-eating marine bivalves (Teredinidae and Xylophagaidae).}, journal = {Genome biology and evolution}, volume = {14}, number = {6}, pages = {}, pmid = {35714221}, issn = {1759-6653}, support = {U19 TW008163/TW/FIC NIH HHS/United States ; }, abstract = {The bivalve families Teredinidae and Xylophagaidae include voracious consumers of wood in shallow and deep-water marine environments, respectively. The taxa are sister clades whose members consume wood as food with the aid of intracellular cellulolytic endosymbionts housed in their gills. This combination of adaptations is found in no other group of animals and was likely present in the common ancestor of both families. Despite these commonalities, the two families have followed dramatically different evolutionary paths with respect to anatomy, life history and distribution. Here we present 42 new mitochondrial genome sequences from Teredinidae and Xylophagaidae and show that distinct trajectories have also occurred in the evolution and organization of their mitochondrial genomes. Teredinidae display significantly greater rates of amino acid substitution but absolute conservation of protein-coding gene order, whereas Xylophagaidae display significantly less amino acid change but have undergone numerous and diverse changes in genome organization since their divergence from a common ancestor. As with many bivalves, these mitochondrial genomes encode two ribosomal RNAs, 12 protein coding genes, and 22 tRNAs; atp8 was not detected. We further show that their phylogeny, as inferred from amino acid sequences of 12 concatenated mitochondrial protein-coding genes, is largely congruent with those inferred from their nuclear genomes based on 18S and 28S ribosomal RNA sequences. Our results provide a robust phylogenetic framework to explore the tempo and mode of mitochondrial genome evolution and offer directions for future phylogenetic and taxonomic studies of wood-boring bivalves.}, } @article {pmid35707007, year = {2022}, author = {Zhao, R and Li, D and Wang, X and Li, Z and Yu, X and Shentu, X}, title = {Synergistic and Additive Interactions of Zhongshengmycin to the Chemical Insecticide Pymetrozine for Controlling Nilaparvata lugens (Hemiptera: Delphacidae).}, journal = {Frontiers in physiology}, volume = {13}, number = {}, pages = {875610}, pmid = {35707007}, issn = {1664-042X}, abstract = {Management of the rice brown planthopper Nilaparvata lugens Stål is challenging because it can rapidly adapt to new pesticides within several generations. Combined use of chemical insecticides and antimicrobials was proposed as an alternative strategy to control N. lugens. Our previous experiments identified two effective agents (chemical insecticide: pymetrozine and antimicrobial: zhongshengmycin) that act on different targets in N. lugens. However, conditions and effectiveness of combinations of antimicrobials and insecticides against N. lugens are still unknown. Here, we evaluated separate and combined effects of pymetrozine and zhongshengmycin on third instar nymphs of N. lugens under laboratory and greenhouse conditions. Results showed that zhongshengmycin exerts significant inhibitory effects on the three endosymbionts Pichia guilliermondii, Cryptococcus peneaus, and Pichia anomala cultured in vitro of N. lugens. Combinations of pymetrozine and zhongshengmycin under laboratory conditions produced additive or synergistic effects on N. lugens and caused higher mortality in third instar nymphs than either of them used alone. Experiments under greenhouse conditions further demonstrated that effective component quality ratio of pymetrozine to zhongshengmycin of 1:10 and 1:40 with co-toxicity coefficients of 221.63 and 672.87, respectively, also produced significant synergistic effects against N. lugens. Our results indicated that chemical insecticides combined with antimicrobials may provide a potential novel strategy for controlling N. lugens by inhibiting its endosymbionts.}, } @article {pmid35702810, year = {2022}, author = {Colunga-Salas, P and Sánchez-Montes, S and Torres-Castro, M and Andrade-Torres, A and González, CAL and Aguilar-Tipacamú, G}, title = {Is vertical transmission the only pathway for Rickettsia felis?.}, journal = {Transboundary and emerging diseases}, volume = {69}, number = {5}, pages = {e3352-e3356}, doi = {10.1111/tbed.14626}, pmid = {35702810}, issn = {1865-1682}, mesh = {Animals ; *Flea Infestations/veterinary ; Humans ; Phylogeny ; *Rickettsia/genetics ; *Rickettsia Infections/microbiology/veterinary ; *Rickettsia felis/genetics ; *Siphonaptera/microbiology ; }, abstract = {The genus Rickettsia encompasses several species grouped into two main clusters, Typhus and the Transitional groups. The latter group contains Rickettsia felis, an endosymbiont of several arthropods with an uncertain human pathogenicity and whose most efficient transmission mechanism described thus far is transovarial. The aim of this study was to evaluate whether this pathway exists using phylogenetic analysis and partial sequences of the 17kDa and gltA genes and comparing them with host phylogeny using the cytb region. This is the first study that evaluates the vertical transmission of R. felis. In general, both phylogenies of R. felis showed no polytomies, as suspected if this pathway was the only pathway occurring. When phylogenies of the invertebrates and the gltA of R. felis were compared for strong coevolutionary insight, intricate relationships were observed, suggesting that other transmission pathways must occur, such as horizontal transmission. Further studies are needed to determine which other transmission routes occur in hematophagous arthropods.}, } @article {pmid35699368, year = {2022}, author = {De Oliveira, AL and Srivastava, A and Espada-Hinojosa, S and Bright, M}, title = {The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents.}, journal = {Molecular ecology resources}, volume = {22}, number = {8}, pages = {3106-3123}, doi = {10.1111/1755-0998.13668}, pmid = {35699368}, issn = {1755-0998}, mesh = {DNA Restriction-Modification Enzymes/genetics ; Epigenesis, Genetic ; *Hydrothermal Vents ; Sulfur ; Symbiosis/genetics ; Transposases/genetics ; }, abstract = {The mutualistic interactions between Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone (short Endoriftia) have been extensively researched. However, the closed Endoriftia genome is still lacking. Here, by employing single-molecule real-time sequencing we present the closed chromosomal sequence of Endoriftia. In contrast to theoretical predictions of enlarged and mobile genetic element-rich genomes related to facultative endosymbionts, the closed Endoriftia genome is streamlined with fewer than expected coding sequence regions, insertion-, prophage-sequences and transposase-coding sequences. Automated and manually curated functional analyses indicated that Endoriftia is more versatile regarding sulphur metabolism than previously reported. We identified the presence of two identical rRNA operons and two long CRISPR regions in the closed genome. Additionally, pangenome analyses revealed the presence of three types of secretion systems (II, IV and VI) in the different Endoriftia populations indicating lineage-specific adaptations. The in depth mobilome characterization identified the presence of shared genomic islands in the different Endoriftia drafts and in the closed genome, suggesting that the acquisition of foreign DNA predates the geographical dispersal of the different endosymbiont populations. Finally, we found no evidence of epigenetic regulation in Endoriftia, as revealed by gene screenings and absence of methylated modified base motifs in the genome. As a matter of fact, the restriction-modification system seems to be dysfunctional in Endoriftia, pointing to a higher importance of molecular memory-based immunity against phages via spacer incorporation into CRISPR system. The Endoriftia genome is the first closed tubeworm endosymbiont to date and will be valuable for future gene oriented and evolutionary comparative studies.}, } @article {pmid35699129, year = {2022}, author = {Mulenga, GM and Namangala, B and Gummow, B}, title = {Prevalence of trypanosomes and selected symbionts in tsetse species of eastern Zambia.}, journal = {Parasitology}, volume = {149}, number = {11}, pages = {1406-1410}, doi = {10.1017/S0031182022000804}, pmid = {35699129}, issn = {1469-8161}, mesh = {Animals ; Enterobacteriaceae/genetics ; Insect Vectors/parasitology ; Prevalence ; *Trypanosoma/genetics ; *Trypanosomiasis, African/parasitology ; *Tsetse Flies/parasitology ; *Wolbachia/genetics ; Zambia/epidemiology ; }, abstract = {Insect symbionts have attracted attention for their potential use as anti-parasitic gene products in arthropod disease vectors. While tsetse species of the Luangwa valley have been extensively studied, less is known about the prevalence of symbionts and their interactions with the trypanosome parasite. Polymerase chain reaction was used to investigate the presence of Wolbachia and Sodalis bacteria, in tsetse flies infected with trypanosomes (Trypanosoma vivax, Trypanosoma congolense and Trypanosoma brucei). Out of 278 captured tsetse flies in eastern Zambia, 95.3% (n = 265, 95% CI = 92.8–97.8) carried endosymbionts: Wolbachia (79.1%, 95% CI 73.9–83.8) and Sodalis (86.3%, 95% CI 81.7–90.1). Overall, trypanosome prevalence was 25.5% (n = 71, 95% CI = 20.4–30.7), 10.8% (n = 30, 95% CI 7.1–14.4) for T. brucei, 1.4% (n = 4, 95% CI = 0.4–3.6) for both T. congolense and T. vivax, and 0.7% (n = 2, 95% CI 0.1–2.6) for T. b. rhodesiense. Out of 240 tsetse flies that were infected with Sodalis, trypanosome infection was reported in 40 tsetse flies (16.7%, 95% CI = 12.0–21.4) while 37 (16.8%, 95% CI 11.9–21.8) of the 220 Wolbachia infected tsetse flies were infected with trypanosomes. There was 1.3 times likelihood of T. brucei infection to be present when Wolbachia was present and 1.7 likelihood of T. brucei infection when Sodalis was present. Overall findings suggest absence of correlation between the presence of tsetse endosymbionts and tsetse with trypanosome infection. Lastly, the presence of pathogenic trypanosomes in tsetse species examined provided insights into the risk communities face, and the importance of African trypanosomiasis in the area.}, } @article {pmid35695864, year = {2022}, author = {Nadal-Jimenez, P and Siozios, S and Halliday, N and Cámara, M and Hurst, GDD}, title = {Symbiopectobacterium purcellii, gen. nov., sp. nov., isolated from the leafhopper Empoasca decipiens.}, journal = {International journal of systematic and evolutionary microbiology}, volume = {72}, number = {6}, pages = {}, doi = {10.1099/ijsem.0.005440}, pmid = {35695864}, issn = {1466-5034}, mesh = {Animals ; Bacterial Typing Techniques ; Base Composition ; Chromatography, Liquid ; DNA, Bacterial/genetics ; Fatty Acids/chemistry ; *Hemiptera ; *Pectobacterium ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Sequence Analysis, DNA ; Tandem Mass Spectrometry ; }, abstract = {Bacterial endosymbionts are found in multiple arthropod species, where they play crucial roles as nutritional symbionts, defensive symbionts or reproductive parasites. Recent work has highlighted a new clade of heritable microbes within the gammaproteobacteria that enter into both obligate and facultative symbioses, with an obligately required unculturable symbiont recently given the name Candidatus Symbiopectobacterium. In this study, we describe a culturable rod shaped non-flagellated bacterial symbiont from this clade isolated from the leafhopper Empoasca decipiens. The symbiont is related to the transovarially transmitted 'BEV' bacterium that was first isolated from the leafhopper Euscelidius variegatus by Alexander Purcell, and we therefore name the symbiont Symbiopectobacterium purcellii sp. nov., gen. nov. We further report the closed genome sequence for S. purcellii. The genome is atypical for a heritable microbe, being large in size, without profound AT bias and with little evidence of pseudogenization. The genome is predicted to encode Type II, III and VI secretion systems and associated effectors and a non-ribosomal peptide synthase array likely to produce bioactive small molecules. The predicted metabolism is more complete than for other symbionts in the Symbiopectobacterium clade, and the microbe is predicted to synthesize a range of B vitamins. However, Biolog plate results indicate that the metabolism is depauperate compared to the sister clade, represented by Pectobacterium carotovorum. A quorum-sensing pathway related to that of Pectobacterium species (containing an overlapping expI-expR1 pair in opposite directions and a "solo" expR2) is evidenced, and LC-MS/MS analysis reveals the presence of 3-hydroxy-C10-HSL as the sole N-acylhomoserine lactone (AHL) in our strain. This AHL profile is profoundly divergent from that of other Erwinia and Pectobacterium species which produce mostly 3-oxo-C6- and 3-oxo-C8-HSL and could aid group identification. Thus, this microbe denotes one that has lost certain pathways associated with a saprophytic lifestyle but represents an important baseline against which to compare other members of the genus Symbiopectobacterium that show more profound integration into host biology. The type strain of Symbiopectobacterium purcellii gen. nov., sp. nov. is SyEd1[T] (LMG 32449[T]=CECT 30436[T]).}, } @article {pmid35681493, year = {2022}, author = {Das De, T and Sharma, P and Tevatiya, S and Chauhan, C and Kumari, S and Yadav, P and Singla, D and Srivastava, V and Rani, J and Hasija, Y and Pandey, KC and Kajla, M and Dixit, R}, title = {Bidirectional Microbiome-Gut-Brain-Axis Communication Influences Metabolic Switch-Associated Responses in the Mosquito Anopheles culicifacies.}, journal = {Cells}, volume = {11}, number = {11}, pages = {}, pmid = {35681493}, issn = {2073-4409}, mesh = {Animals ; *Anopheles ; Bacteria/genetics ; Brain/metabolism ; Cell Communication ; Female ; *Gastrointestinal Microbiome/physiology ; }, abstract = {The periodic ingestion of a protein-rich blood meal by adult female mosquitoes causes a drastic metabolic change in their innate physiological status, which is referred to as a 'metabolic switch'. While understanding the neural circuits for host-seeking is modestly attended, how the gut 'metabolic switch' modulates brain functions, and resilience to physiological homeostasis, remains unexplored. Here, through a comparative brain RNA-Seq study, we demonstrate that the protein-rich diet induces the expression of brain transcripts related to mitochondrial function and energy metabolism, possibly causing a shift in the brain's engagement to manage organismal homeostasis. A dynamic mRNA expression pattern of neuro-signaling and neuro-modulatory genes in both the gut and brain likely establishes an active gut-brain communication. The disruption of this communication through decapitation does not affect the modulation of the neuro-modulator receptor genes in the gut. In parallel, an unusual and paramount shift in the level of neurotransmitters (NTs), from the brain to the gut after blood feeding, further supports the idea of the gut's ability to serve as a 'second brain'. After blood-feeding, a moderate enrichment of the gut microbial population, and altered immunity in the gut of histamine receptor-silenced mosquitoes, provide initial evidence that the gut-microbiome plays a crucial role in gut-brain-axis communication. Finally, a comparative metagenomics evaluation of the gut microbiome highlighted that blood-feeding enriches the family members of the Morganellaceae and Pseudomonadaceae bacterial communities. The notable observation of a rapid proliferation of Pseudomonas bacterial sp. and tryptophan enrichment in the gut correlates with the suppression of appetite after blood-feeding. Additionally, altered NTs dynamics of naïve and aseptic mosquitoes provide further evidence that gut-endosymbionts are key modulators for the synthesis of major neuroactive molecules. Our data establish a new conceptual understanding of microbiome-gut-brain-axis communication in mosquitoes.}, } @article {pmid35678925, year = {2022}, author = {Lin, GW and Chung, CY and Cook, CE and Lin, MD and Lee, WC and Chang, CC}, title = {Germline specification and axis determination in viviparous and oviparous pea aphids: conserved and divergent features.}, journal = {Development genes and evolution}, volume = {232}, number = {2-4}, pages = {51-65}, pmid = {35678925}, issn = {1432-041X}, mesh = {Animals ; *Aphids/physiology ; Female ; Germ Cells ; Insect Proteins ; Oviparity ; Peas ; }, abstract = {Aphids are hemimetabolous insects that undergo incomplete metamorphosis without pupation. The annual life cycle of most aphids includes both an asexual (viviparous) and a sexual (oviparous) phase. Sexual reproduction only occurs once per year and is followed by many generations of asexual reproduction, during which aphids propagate exponentially with telescopic development. Here, we discuss the potential links between viviparous embryogenesis and derived developmental features in the pea aphid Acyrthosiphon pisum, particularly focusing on germline specification and axis determination, both of which are key events of early development in insects. We also discuss potential evolutionary paths through which both viviparous and oviparous females might have come to utilize maternal germ plasm to drive germline specification. This developmental strategy, as defined by germline markers, has not been reported in other hemimetabolous insects. In viviparous females, furthermore, we discuss whether molecules that in other insects characterize germ plasm, like Vasa, also participate in posterior determination and how the anterior localization of the hunchback orthologue Ap-hb establishes the anterior-posterior axis. We propose that the linked chain of developing oocytes and embryos within each ovariole and the special morphology of early embryos might have driven the formation of evolutionary novelties in germline specification and axis determination in the viviparous aphids. Moreover, based upon the finding that the endosymbiont Buchnera aphidicola is closely associated with germ cells throughout embryogenesis, we propose presumptive roles for B. aphidicola in aphid development, discussing how it might regulate germline migration in both reproductive modes of pea aphids. In summary, we expect that this review will shed light on viviparous as well as oviparous development in aphids.}, } @article {pmid35678589, year = {2022}, author = {Higgins, SA and Mann, M and Heck, M}, title = {Strain Tracking of 'Candidatus Liberibacter asiaticus', the Citrus Greening Pathogen, by High-Resolution Microbiome Analysis of Asian Citrus Psyllids.}, journal = {Phytopathology}, volume = {112}, number = {11}, pages = {2273-2287}, doi = {10.1094/PHYTO-02-22-0067-R}, pmid = {35678589}, issn = {0031-949X}, mesh = {Animals ; *Hemiptera/microbiology ; *Citrus/microbiology ; *Rhizobiaceae/genetics ; Liberibacter ; Plant Diseases/microbiology ; *Microbiota ; }, abstract = {The Asian citrus psyllid, Diaphorina citri, is an invasive insect and a vector of 'Candidatus Liberibacter asiaticus' (CLas), a bacterium whose growth in Citrus species results in huanglongbing (HLB), also known as citrus greening disease. Methods to enrich and sequence CLas from D. citri often rely on biased genome amplification and nevertheless contain significant quantities of host DNA. To overcome these hurdles, we developed a simple pretreatment DNase and filtration (PDF) protocol to remove host DNA and directly sequence CLas and the complete, primarily uncultivable microbiome from D. citri adults. The PDF protocol yielded CLas abundances upward of 60% and facilitated direct measurement of CLas and endosymbiont replication rates in psyllids. The PDF protocol confirmed our lab strains derived from a progenitor Florida CLas strain and accumulated 156 genetic variants, underscoring the utility of this method for bacterial strain tracking. CLas genetic polymorphisms arising in lab-reared psyllid populations included prophage-encoding regions with key functions in CLas pathogenesis, putative antibiotic resistance loci, and a single secreted effector. These variants suggest that laboratory propagation of CLas could result in different phenotypic trajectories among laboratories and could confound CLas physiology or therapeutic design and evaluation if these differences remain undocumented. Finally, we obtained genetic signatures affiliated with Citrus nuclear and organellar genomes, entomopathogenic fungal mitochondria, and commensal bacteria from laboratory-reared and field-collected D. citri adults. Hence, the PDF protocol can directly inform agricultural management strategies related to bacterial strain tracking, insect microbiome surveillance, and antibiotic resistance screening.}, } @article {pmid35672454, year = {2022}, author = {Pilátová, J and Pánek, T and Oborník, M and Čepička, I and Mojzeš, P}, title = {Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes.}, journal = {The ISME journal}, volume = {16}, number = {9}, pages = {2290-2294}, pmid = {35672454}, issn = {1751-7370}, mesh = {*Biomineralization ; *Eukaryota/genetics/metabolism ; Guanine/metabolism ; Humans ; Purines/metabolism ; }, abstract = {Despite the widespread occurrence of intracellular crystalline inclusions in unicellular eukaryotes, scant attention has been paid to their composition, functions, and evolutionary origins. Using Raman microscopy, we examined >200 species from all major eukaryotic supergroups. We detected cellular crystalline inclusions in 77% species out of which 80% is composed of purines, such as anhydrous guanine (62%), guanine monohydrate (2%), uric acid (12%) and xanthine (4%). Our findings shifts the paradigm assuming predominance of calcite and oxalates. Purine crystals emerge in microorganisms in all habitats, e.g., in freshwater algae, endosymbionts of reef-building corals, deadly parasites, anaerobes in termite guts, or slime molds. Hence, purine biocrystallization is a general and ancestral eukaryotic process likely present in the last eukaryotic common ancestor (LECA) and here we propose two proteins omnipresent in eukaryotes that are likely in charge of their metabolism: hypoxanthine-guanine phosphoribosyl transferase and equilibrative nucleoside transporter. Purine crystalline inclusions are multifunctional structures representing high-capacity and rapid-turnover reserves of nitrogen and optically active elements, e.g., used in light sensing. Thus, we anticipate our work to be a starting point for further studies spanning from cell biology to global ecology, with potential applications in biotechnologies, bio-optics, or in human medicine.}, } @article {pmid35671755, year = {2022}, author = {Tvedte, ES and Gasser, M and Zhao, X and Tallon, LJ and Sadzewicz, L and Bromley, RE and Chung, M and Mattick, J and Sparklin, BC and Dunning Hotopp, JC}, title = {Accumulation of endosymbiont genomes in an insect autosome followed by endosymbiont replacement.}, journal = {Current biology : CB}, volume = {32}, number = {12}, pages = {2786-2795.e5}, pmid = {35671755}, issn = {1879-0445}, support = {R01 CA206188/CA/NCI NIH HHS/United States ; U19 AI110820/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; Chromosomes ; Drosophila/genetics/microbiology ; Gene Transfer, Horizontal ; Genome ; Symbiosis/genetics ; *Wolbachia/genetics ; }, abstract = {Eukaryotic genomes can acquire bacterial DNA via lateral gene transfer (LGT).[1] A prominent source of LGT is Wolbachia,[2] a widespread endosymbiont of arthropods and nematodes that is transmitted maternally through female germline cells.[3,4] The DNA transfer from the Wolbachia endosymbiont wAna to Drosophila ananassae is extensive[5-7] and has been localized to chromosome 4, contributing to chromosome expansion in this lineage.[6] As has happened frequently with claims of bacteria-to-eukaryote LGT, the contribution of wAna transfers to the expanded size of D. ananassae chromosome 4 has been specifically contested[8] owing to an assembly where Wolbachia sequences were classified as contaminants and removed.[9] Here, long-read sequencing with DNA from a Wolbachia-cured line enabled assembly of 4.9 Mbp of nuclear Wolbachia transfers (nuwts) in D. ananassae and a 24-kbp nuclear mitochondrial transfer. The nuwts are <8,000 years old in at least two locations in chromosome 4 with at least one whole-genome integration followed by rapid extensive duplication of most of the genome with regions that have up to 10 copies. The genes in nuwts are accumulating small indels and mobile element insertions. Among the highly duplicated genes are cifA and cifB, two genes associated with Wolbachia-mediated Drosophila cytoplasmic incompatibility. The wAna strain that was the source of nuwts was subsequently replaced by a different wAna endosymbiont. Direct RNA Nanopore sequencing of Wolbachia-cured lines identified nuwt transcripts, including spliced transcripts, but functionality, if any, remains elusive.}, } @article {pmid35668761, year = {2022}, author = {Djihinto, OY and Medjigbodo, AA and Gangbadja, ARA and Saizonou, HM and Lagnika, HO and Nanmede, D and Djossou, L and Bohounton, R and Sovegnon, PM and Fanou, MJ and Agonhossou, R and Akoton, R and Mousse, W and Djogbénou, LS}, title = {Malaria-Transmitting Vectors Microbiota: Overview and Interactions With Anopheles Mosquito Biology.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {891573}, pmid = {35668761}, issn = {1664-302X}, abstract = {Malaria remains a vector-borne infectious disease that is still a major public health concern worldwide, especially in tropical regions. Malaria is caused by a protozoan parasite of the genus Plasmodium and transmitted through the bite of infected female Anopheles mosquitoes. The control interventions targeting mosquito vectors have achieved significant success during the last two decades and rely mainly on the use of chemical insecticides through the insecticide-treated nets (ITNs) and indoor residual spraying (IRS). Unfortunately, resistance to conventional insecticides currently being used in public health is spreading in the natural mosquito populations, hampering the long-term success of the current vector control strategies. Thus, to achieve the goal of malaria elimination, it appears necessary to improve vector control approaches through the development of novel environment-friendly tools. Mosquito microbiota has by now given rise to the expansion of innovative control tools, such as the use of endosymbionts to target insect vectors, known as "symbiotic control." In this review, we will present the viral, fungal and bacterial diversity of Anopheles mosquitoes, including the bacteriophages. This review discusses the likely interactions between the vector microbiota and its fitness and resistance to insecticides.}, } @article {pmid35666732, year = {2022}, author = {Bordenstein, SR and Bordenstein, SR}, title = {Widespread phages of endosymbionts: Phage WO genomics and the proposed taxonomic classification of Symbioviridae.}, journal = {PLoS genetics}, volume = {18}, number = {6}, pages = {e1010227}, pmid = {35666732}, issn = {1553-7404}, support = {R01 AI132581/AI/NIAID NIH HHS/United States ; R01 AI143725/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; *Arthropods ; *Bacteriophages/genetics ; Eukaryota ; Genomics ; Symbiosis/genetics ; *Wolbachia/genetics ; }, abstract = {Wolbachia are the most common obligate, intracellular bacteria in animals. They exist worldwide in arthropod and nematode hosts in which they commonly act as reproductive parasites or mutualists, respectively. Bacteriophage WO, the largest of Wolbachia's mobile elements, includes reproductive parasitism genes, serves as a hotspot for genetic divergence and genomic rearrangement of the bacterial chromosome, and uniquely encodes a Eukaryotic Association Module with eukaryotic-like genes and an ensemble of putative host interaction genes. Despite WO's relevance to genome evolution, selfish genetics, and symbiotic applications, relatively little is known about its origin, host range, diversification, and taxonomic classification. Here we analyze the most comprehensive set of 150 Wolbachia and phage WO assemblies to provide a framework for discretely organizing and naming integrated phage WO genomes. We demonstrate that WO is principally in arthropod Wolbachia with relatives in diverse endosymbionts and metagenomes, organized into four variants related by gene synteny, often oriented opposite the putative origin of replication in the Wolbachia chromosome, and the large serine recombinase is an ideal typing tool to distinguish the four variants. We identify a novel, putative lytic cassette and WO's association with a conserved eleven gene island, termed Undecim Cluster, that is enriched with virulence-like genes. Finally, we evaluate WO-like Islands in the Wolbachia genome and discuss a new model in which Octomom, a notable WO-like Island, arose from a split with WO. Together, these findings establish the first comprehensive Linnaean taxonomic classification of endosymbiont phages, including non-Wolbachia phages from aquatic environments, that includes a new family and two new genera to capture the collective relatedness of these viruses.}, } @article {pmid35665222, year = {2022}, author = {Steinberg, RK and Ainsworth, TD and Moriarty, T and Bednarek, T and Dafforn, KA and Johnston, EL}, title = {Bleaching Susceptibility and Resistance of Octocorals and Anemones at the World's Southern-Most Coral Reef.}, journal = {Frontiers in physiology}, volume = {13}, number = {}, pages = {804193}, pmid = {35665222}, issn = {1664-042X}, abstract = {Coral reefs are amongst the most biodiverse ecosystems on earth, and while stony corals create the foundational complexity of these ecosystems, octocorals and anemones contribute significantly to their biodiversity and function. Like stony corals, many octocorals contain Symbiodiniaceae endosymbionts and can bleach when temperatures exceed the species' upper thermal limit. Here, we report octocoral bleaching susceptibility and resistance within the subtropical Lord Howe Island coral reef ecosystem during and after marine heatwaves in 2019. Octocoral and anemone surveys were conducted at multiple reef locations within the Lord Howe Island lagoon during, immediately after, and 7 months after the heatwaves. One octocoral species, Cladiella sp. 1, experienced bleaching and mortality, with some bleached colonies detaching from the reef structure during the heatwave (presumed dead). Those that remained attached to the benthos survived the event and recovered endosymbionts within 7 months of bleaching. Cladiella sp. 1 Symbiodiniaceae density (in cells per µg protein), chlorophyll a and c 2 per µg protein, and photosynthetic efficiency were significantly lower in bleached colonies compared to unbleached colonies, while chlorophyll a and c 2 per symbiont were higher. Interestingly, no other symbiotic octocoral species of the Lord Howe Island lagoonal reef bleached. Unbleached Xenia cf crassa colonies had higher Symbiodiniaceae and chlorophyll densities during the marine heatwave compared to other monitoring intervals, while Cladiella sp. 2 densities did not change substantially through time. Previous work on octocoral bleaching has focused primarily on gorgonian octocorals, while this study provides insight into bleaching variability in other octocoral groups. The study also provides further evidence that octocorals may be generally more resistant to bleaching than stony corals in many, but not all, reef ecosystems. Responses to marine heating events vary and should be assessed on a species by species basis.}, } @article {pmid35663891, year = {2022}, author = {James, EB and Pan, X and Schwartz, O and Wilson, ACC}, title = {SymbiQuant: A Machine Learning Object Detection Tool for Polyploid Independent Estimates of Endosymbiont Population Size.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {816608}, pmid = {35663891}, issn = {1664-302X}, abstract = {Quantifying the size of endosymbiont populations is challenging because endosymbionts are typically difficult or impossible to culture and commonly polyploid. Current approaches to estimating endosymbiont population sizes include quantitative PCR (qPCR) targeting endosymbiont genomic DNA and flow-cytometry. While qPCR captures genome copy number data, it does not capture the number of bacterial cells in polyploid endosymbiont populations. In contrast, flow cytometry can capture accurate estimates of whole host-level endosymbiont population size, but it is not readily able to capture data at the level of endosymbiotic host cells. To complement these existing approaches for estimating endosymbiont population size, we designed and implemented an object detection/segmentation tool for counting the number of endosymbiont cells in micrographs of host tissues. The tool, called SymbiQuant, which makes use of recent advances in deep neural networks includes a graphic user interface that allows for human curation of tool output. We trained SymbiQuant for use in the model aphid/Buchnera endosymbiosis and studied Buchnera population dynamics and phenotype over aphid postembryonic development. We show that SymbiQuant returns accurate counts of endosymbionts, and readily captures Buchnera phenotype. By replacing our training data with data composed of annotated microscopy images from other models of endosymbiosis, SymbiQuant has the potential for broad application. Our tool, which is available on GitHub, adds to the repertoire of methods researchers can use to study endosymbiosis at the organismal, genome, and now endosymbiotic host tissue or cell levels.}, } @article {pmid35662068, year = {2022}, author = {Lu, M and Tang, G and Ren, Z and Zhang, J and Wang, W and Qin, X and Li, K}, title = {Ehrlichia, Coxiella and Bartonella infections in rodents from Guizhou Province, Southwest China.}, journal = {Ticks and tick-borne diseases}, volume = {13}, number = {5}, pages = {101974}, doi = {10.1016/j.ttbdis.2022.101974}, pmid = {35662068}, issn = {1877-9603}, mesh = {Animals ; *Bartonella/genetics ; *Bartonella Infections/epidemiology/veterinary ; China/epidemiology ; Coxiella/genetics ; Ehrlichia/genetics ; Murinae ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Rats ; *Ticks/genetics ; }, abstract = {Rodents are generally recognized to be the reservoir hosts of a great many zoonotic pathogens. In some areas of China, rodent-borne pathogens, as well as the role of rodents in the natural cycle of these pathogens, are still poorly investigated. To increase our knowledge on the distribution and epidemiology of rodent-borne bacterial pathogens, 81 rodent liver samples were collected in three locations of Guizhou province located in Southwest China, and screened for the presence of Ehrlichia, Coxiella, and Bartonella in them. A putative novel Ehrlichia species was identified in 5 Berylmys bowersi samples (100%, 5/5). Its 16S rRNA, gltA, and groEL genes have highest 99.84%, 89.11%, and 98.02% identities to those from known Ehrlichia species, and form distinct clades in the phylogenetic trees. Herein we name it "Candidatus Ehrlichia zunyiensis". Bartonella was tested positive in 8 A. agrarius (striped field mouse), 2 A. chevrieri (Chevrier's field mouse), 1 R. norvegicus (Norway rat), 1 N. confucianus, and 1 N. lotipes, with a total positive rate of 16.05% (13/81). Sequence analysis indicated high genetic diversity in these Bartonella strains. Unexpectedly, two Coxiella strains were identified from the rodents (1 Niviventer confucianus and 1 Mus pahari). Genetic and phylogenetic analysis indicated that both of them are closely related to the Coxiella endosymbiont of ticks. This result supported previous conjectures that vertebrate hosts such as rodents may play a role in the preservation and transmission of Coxiella endosymbiont of ticks.}, } @article {pmid35660157, year = {2022}, author = {Kohga, H and Mori, T and Tanaka, Y and Yoshikaie, K and Taniguchi, K and Fujimoto, K and Fritz, L and Schneider, T and Tsukazaki, T}, title = {Crystal structure of the lipid flippase MurJ in a "squeezed" form distinct from its inward- and outward-facing forms.}, journal = {Structure (London, England : 1993)}, volume = {30}, number = {8}, pages = {1088-1097.e3}, doi = {10.1016/j.str.2022.05.008}, pmid = {35660157}, issn = {1878-4186}, mesh = {Bacterial Proteins/chemistry ; Escherichia coli/chemistry/genetics ; *Escherichia coli Proteins/chemistry ; Lipids ; Peptidoglycan/chemistry ; Phospholipid Transfer Proteins/chemistry ; Protein Conformation ; }, abstract = {The bacterial peptidoglycan enclosing the cytoplasmic membrane is a fundamental cellular architecture. The integral membrane protein MurJ plays an essential role in flipping the cell wall building block Lipid II across the cytoplasmic membrane for peptidoglycan biosynthesis. Previously reported crystal structures of MurJ have elucidated its V-shaped inward- or outward-facing forms with an internal cavity for substrate binding. MurJ transports Lipid II using its cavity through conformational transitions between these two forms. Here, we report two crystal structures of inward-facing forms from Arsenophonus endosymbiont MurJ and an unprecedented crystal structure of Escherichia coli MurJ in a "squeezed" form, which lacks a cavity to accommodate the substrate, mainly because of the increased proximity of transmembrane helices 2 and 8. Subsequent molecular dynamics simulations supported the hypothesis that the squeezed form is an intermediate conformation. This study fills a gap in our understanding of the Lipid II flipping mechanism.}, } @article {pmid35651643, year = {2022}, author = {Badrulisham, AS and Abu Bakar, MA and Md Zain, BM and Md-Nor, S and Abd Rahman, MR and Mohd-Yusof, NS and Halim, M and Yaakop, S}, title = {Metabarcoding of Parasitic Wasp, Dolichogenidea metesae (Nixon) (Hymenoptera: Braconidae) That Parasitizing Bagworm, Metisa plana Walker (Lepidoptera: Psychidae).}, journal = {Tropical life sciences research}, volume = {33}, number = {1}, pages = {23-42}, pmid = {35651643}, issn = {1985-3718}, abstract = {Microbiome studies of the parasitoid wasp, Dolichogenidea metesae (Nixon) (Hymenoptera, Braconidae) are important because D. metesae has potential as a biological control agent to suppress the pest, Metisa plana Walker (Lepidoptera, Psychidae). Three field populations of parasitic wasps with different Integrated Pest Management (IPM) practices to control M. plana collected from Perak state (Tapah) and Johor state (Yong Peng and Batu Pahat districts) in Peninsular Malaysia were studied. Bacterial community composition and structure were analysed using α and β diversity metrics. Proteobacteria (83.31%) and Bacteroidetes (6.80%) were the most dominant phyla, whereas unknown family from order Rhizobiales was the most abundant family found in all populations followed by Pseudomonadaceae. Family Micrococcaceae was absent in Tapah. Rhizobiales gen. sp. and Pseudomonas sp. were abundant in all populations. Pearson's correlation analysis showed the strongest correlation between individuals of Batu Pahat and Yong Peng (r = 0.89827, p < 0.05), followed by Tapah and Yong Peng with r = 0.75358, p < 0.05 and Batu Pahat and Tapah (r = 0.69552, p < 0.05). We hypothesise that low diversity and richness in Tapah might be due to direct and indirect effect of insecticides application. This preliminary data was the first study to do inventory of the microbiomes in the gut of the D. metesae.}, } @article {pmid35643082, year = {2022}, author = {Paight, C and Hunter, ES and Lane, CE}, title = {Codependence of individuals in the Nephromyces species swarm requires heterospecific bacterial endosymbionts.}, journal = {Current biology : CB}, volume = {32}, number = {13}, pages = {2948-2955.e4}, pmid = {35643082}, issn = {1879-0445}, support = {R03 AI124092/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; *Apicomplexa ; Bacteria/genetics ; Codependency, Psychological ; Genome, Bacterial ; Phylogeny ; Symbiosis ; *Urochordata/genetics ; }, abstract = {Symbiosis is one of the most important evolutionary processes shaping the biodiversity on Earth. Symbiotic associations often bring together organisms from different domains of life, which can provide an unparalleled route to evolutionary innovation.[1-4] The phylum Apicomplexa encompasses 6,000 ubiquitous animal parasites; however, species in the recently described apicomplexan family, Nephromycidae, are reportedly non-virulent.[5][,][6] The members of the genus Nephromyces live within a specialized organ of tunicates, called the renal sac, in which they use concentrated uric acid as a primary nitrogen source.[7][,][8] Here, we report genomic and transcriptomic data from the diverse genus Nephromyces, as well as the three bacterial symbionts that live within this species complex. We show that the diversity of Nephromyces is unexpectedly high within each renal sac, with as many as 20 different species inhabiting the renal sacs in wild populations. The many species of Nephromyces can host three different types of bacterial endosymbionts; however, FISH microscopy allowed us to demonstrate that each individual Nephromyces cell hosts only a single bacterial type. Through the reconstruction and analyses of the endosymbiont bacterial genomes, we infer that each bacterial type supplies its host with different metabolites. No individual species of Nephromyces, in combination with its endosymbiont, can produce a complete set of essential amino acids, and culture experiments demonstrate that individual Nephromyces species cannot form a viable infection. Therefore, we hypothesize that Nephromyces spp. depend on co-infection with congeners containing different bacterial symbionts in order to exchange metabolites to meet their needs.}, } @article {pmid35642381, year = {2022}, author = {Liu, W and Smith, DAS and Raina, G and Stanforth, R and Ng'Iru, I and Ireri, P and Martins, DJ and Gordon, IJ and Martin, SH}, title = {Global biogeography of warning coloration in the butterfly Danaus chrysippus.}, journal = {Biology letters}, volume = {18}, number = {6}, pages = {20210639}, pmid = {35642381}, issn = {1744-957X}, mesh = {Adaptation, Biological ; Animals ; Biological Evolution ; *Butterflies/genetics ; Citizen Science ; Gene Frequency ; Phenotype ; *Pigmentation ; Predatory Behavior ; Selection, Genetic ; }, abstract = {Warning coloration provides a textbook example of natural selection, but the frequent observation of polymorphism in aposematic species presents an evolutionary puzzle. We investigated biogeography and polymorphism of warning patterns in the widespread butterfly Danaus chrysippus using records from citizen science (n = 5467), museums (n = 8864) and fieldwork (n = 2586). We find that polymorphism in three traits controlled by known mendelian loci is extensive. Broad allele frequency clines, hundreds of kilometres wide, suggest a balance between long-range dispersal and predation of unfamiliar morphs. Mismatched clines for the white hindwing and forewing tip in East Africa are consistent with a previous finding that the black wingtip allele has spread recently in the region through hitchhiking with a heritable endosymbiont. Light/dark background coloration shows more extensive polymorphism. The darker genotype is more common in cooler regions, possibly reflecting a trade-off between thermoregulation and predator warning. Overall, our findings show how studying local adaptation at the global scale provides a more complete picture of the evolutionary forces involved.}, } @article {pmid35639693, year = {2022}, author = {Calatrava, V and Stephens, TG and Gabr, A and Bhaya, D and Bhattacharya, D and Grossman, AR}, title = {Retrotransposition facilitated the establishment of a primary plastid in the thecate amoeba Paulinella.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {119}, number = {23}, pages = {e2121241119}, pmid = {35639693}, issn = {1091-6490}, mesh = {*Amoeba/genetics ; *Biological Evolution ; Eukaryota/genetics ; Plastids/genetics ; *Rhizaria ; *Symbiosis/genetics ; }, abstract = {The evolution of eukaryotic life was predicated on the development of organelles such as mitochondria and plastids. During this complex process of organellogenesis, the host cell and the engulfed prokaryote became genetically codependent, with the integration of genes from the endosymbiont into the host nuclear genome and subsequent gene loss from the endosymbiont. This process required that horizontally transferred genes become active and properly regulated despite inherent differences in genetic features between donor (endosymbiont) and recipient (host). Although this genetic reorganization is considered critical for early stages of organellogenesis, we have little knowledge about the mechanisms governing this process. The photosynthetic amoeba Paulinella micropora offers a unique opportunity to study early evolutionary events associated with organellogenesis and primary endosymbiosis. This amoeba harbors a “chromatophore,” a nascent photosynthetic organelle derived from a relatively recent cyanobacterial association (∼120 million years ago) that is independent of the evolution of primary plastids in plants (initiated ∼1.5 billion years ago). Analysis of the genome and transcriptome of Paulinella revealed that retrotransposition of endosymbiont-derived nuclear genes was critical for their domestication in the host. These retrocopied genes involved in photoprotection in cyanobacteria became expanded gene families and were “rewired,” acquiring light-responsive regulatory elements that function in the host. The establishment of host control of endosymbiont-derived genes likely enabled the cell to withstand photo-oxidative stress generated by oxygenic photosynthesis in the nascent organelle. These results provide insights into the genetic mechanisms and evolutionary pressures that facilitated the metabolic integration of the host–endosymbiont association and sustained the evolution of a photosynthetic organelle.}, } @article {pmid35639004, year = {2022}, author = {Maruyama, S and Mandelare-Ruiz, PE and McCauley, M and Peng, W and Cho, BG and Wang, J and Mechref, Y and Loesgen, S and Weis, VM}, title = {Heat Stress of Algal Partner Hinders Colonization Success and Alters the Algal Cell Surface Glycome in a Cnidarian-Algal Symbiosis.}, journal = {Microbiology spectrum}, volume = {10}, number = {3}, pages = {e0156722}, pmid = {35639004}, issn = {2165-0497}, support = {R01 GM112490/GM/NIGMS NIH HHS/United States ; }, mesh = {Animals ; *Dinoflagellida/metabolism ; Heat-Shock Response ; Polysaccharides ; *Sea Anemones ; Symbiosis ; }, abstract = {Corals owe their ecological success to their symbiotic relationship with dinoflagellate algae (family Symbiodiniaceae). While the negative effects of heat stress on this symbiosis are well studied, how heat stress affects the onset of symbiosis and symbiont specificity is less explored. In this work, we used the model sea anemone, Exaiptasia diaphana (commonly referred to as Aiptasia), and its native symbiont, Breviolum minutum, to study the effects of heat stress on the colonization of Aiptasia by algae and the algal cell-surface glycome. Heat stress caused a decrease in the colonization of Aiptasia by algae that were not due to confounding variables such as algal motility or oxidative stress. With mass spectrometric analysis and lectin staining, a thermally induced enrichment of glycans previously found to be associated with free-living strains of algae (high-mannoside glycans) and a concomitant reduction in glycans putatively associated with symbiotic strains of algae (galactosylated glycans) were identified. Differential enrichment of specific sialic acid glycans was also identified, although their role in this symbiosis remains unclear. We also discuss the methods used to analyze the cell-surface glycome of algae, evaluate current limitations, and provide suggestions for future work in algal-coral glycobiology. Overall, this study provided insight into how stress may affect the symbiosis between cnidarians and their algal symbionts by altering the glycome of the symbiodinian partner. IMPORTANCE Coral reefs are under threat from global climate change. Their decline is mainly caused by the fragility of their symbiotic relationship with dinoflagellate algae which they rely upon for their ecological success. To better understand coral biology, researchers used the sea anemone, Aiptasia, a model system for the study of coral-algal symbiosis, and characterized how heat stress can alter the algae's ability to communicate to the coral host. This study found that heat stress caused a decline in algal colonization success and impacted the cell surface molecules of the algae such that it became more like that of nonsymbiotic species of algae. This work adds to our understanding of the molecular signals involved in coral-algal symbiosis and how it breaks down during heat stress.}, } @article {pmid35638879, year = {2022}, author = {Chetri, SPK and Rahman, Z and Thomas, L and Lal, R and Gour, T and Agarwal, LK and Vashishtha, A and Kumar, S and Kumar, G and Kumar, R and Sharma, K}, title = {Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives.}, journal = {Journal of basic microbiology}, volume = {62}, number = {7}, pages = {764-778}, doi = {10.1002/jobm.202200043}, pmid = {35638879}, issn = {1521-4028}, mesh = {Climate Change ; Ecosystem ; Fagales/microbiology ; *Frankia/genetics ; Nitrogen/metabolism ; Nitrogen Fixation ; Phylogeny ; *Symbiosis/genetics ; }, abstract = {Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2) accessible and bioavailable in the form of ammonium (NH4 [+]) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.}, } @article {pmid35631127, year = {2022}, author = {Lu, M and Tian, J and Zhao, H and Jiang, H and Qin, X and Wang, W and Li, K}, title = {Molecular Survey of Vector-Borne Pathogens in Ticks, Sheep Keds, and Domestic Animals from Ngawa, Southwest China.}, journal = {Pathogens (Basel, Switzerland)}, volume = {11}, number = {5}, pages = {}, pmid = {35631127}, issn = {2076-0817}, abstract = {Vector-borne pathogens are mainly transmitted by blood-feeding arthropods such as ticks, mosquitoes, fleas, lice, mites, etc. They pose a significant threat to animal and human health due to their worldwide distribution. Although much work has been performed on these pathogens, some neglected areas and undiscovered pathogens are still to be further researched. In this study, ticks (Haemaphysalis qinghaiensis), sheep keds (Melophagus ovinus), and blood samples from yaks and goats were collected in Ngawa Tibetan and Qiang Autonomous Prefecture located on the eastern edge of the Qinghai-Tibet Plateau, Southwest China. Several vector-borne bacterial pathogens were screened and studied. Anaplasma bovis strains representing novel genotypes were detected in ticks (8.83%, 37/419), yak blood samples (45.71%, 64/140), and goat blood samples (58.93%, 33/56). Two spotted fever group (SFG) Rickettsiae, Candidatus Rickettsia jingxinensis, and a novel Rickettsia species named Candidatus Rickettsia hongyuanensis were identified in ticks. Another Rickettsia species closely related to the Rickettsia endosymbiont of Polydesmus complanatus was also detected in ticks. Furthermore, a Coxiella species was detected in ticks (3.34%, 14/419), keds (1.89%, 2/106), and yak blood (0.71%, 1/140). Interestingly, another Coxiella species and a Coxiella-like bacterium were detected in a tick and a goat blood sample, respectively. These results indicate the remarkable diversity of vector-borne pathogens circulating in this area. Further investigations on their pathogenicity to humans and domestic animals are still needed.}, } @article {pmid35630383, year = {2022}, author = {Csorba, AB and Fora, CG and Bálint, J and Felföldi, T and Szabó, A and Máthé, I and Loxdale, HD and Kentelky, E and Nyárádi, II and Balog, A}, title = {Endosymbiotic Bacterial Diversity of Corn Leaf Aphid, Rhopalosiphum maidis Fitch (Hemiptera: Aphididae) Associated with Maize Management Systems.}, journal = {Microorganisms}, volume = {10}, number = {5}, pages = {}, pmid = {35630383}, issn = {2076-2607}, abstract = {In this study, different maize fields cultivated under different management systems were sampled to test corn leaf aphid, Rhopalosiphum maidis, populations in terms of total and endosymbiotic bacterial diversity. Corn leaf aphid natural populations were collected from traditionally managed maize fields grown under high agricultural and natural landscape diversity as well as conventionally treated high-input agricultural fields grown in monoculture and with fertilizers use, hence with low natural landscape diversity. Total bacterial community assessment by DNA sequencing was performed using the Illumina MiSeq platform. In total, 365 bacterial genera were identified and 6 endosymbiont taxa. A high abundance of the primary endosymbiont Buchnera and secondary symbionts Serratia and Wolbachia were detected in all maize crops. Their frequency was found to be correlated with the maize management system used, probably with fertilizer input. Three other facultative endosymbionts ("Candidatus Hamiltonella", an uncultured Rickettsiales genus, and Spiroplasma) were also recorded at different frequencies under the two management regimes. Principal components analyses revealed that the relative contribution of the obligate and dominant symbiont Buchnera to the aphid endosymbiotic bacterial community was 72%, whereas for the managed system this was only 16.3%. When facultative symbionts alone were considered, the effect of management system revealed a DNA diversity of 23.3%.}, } @article {pmid35627785, year = {2022}, author = {Salomon, J and Fernandez Santos, NA and Zecca, IB and Estrada-Franco, JG and Davila, E and Hamer, GL and Rodriguez Perez, MA and Hamer, SA}, title = {Brown Dog Tick (Rhipicephalus sanguineus Sensu Lato) Infection with Endosymbiont and Human Pathogenic Rickettsia spp., in Northeastern México.}, journal = {International journal of environmental research and public health}, volume = {19}, number = {10}, pages = {}, pmid = {35627785}, issn = {1660-4601}, mesh = {Animals ; *Dog Diseases/epidemiology ; Dogs ; Humans ; Mexico/epidemiology ; *Rhipicephalus sanguineus/microbiology ; *Rickettsia/genetics ; *Tick Infestations/epidemiology/veterinary ; }, abstract = {Of the documented tick-borne diseases infecting humans in México, Rocky Mountain spotted fever (RMSF), caused by the Gram-negative bacterium Rickettsia rickettsii, is responsible for most fatalities. Given recent evidence of brown dog tick, Rhipicephalus sanguineus s.l., as an emerging vector of human RMSF, we aimed to evaluate dogs and their ticks for rickettsiae infections as an initial step in assessing the establishment of this pathosystem in a poorly studied region of northeastern México while evaluating the use of dogs as sentinels for transmission/human disease risk. We sampled owned dogs living in six disadvantaged neighborhoods of Reynosa, northeastern México to collect whole blood and ticks. Of 168 dogs assessed, tick infestation prevalence was 53%, composed of exclusively Rh. sanguineus s. l. (n = 2170 ticks). Using PCR and sequencing, we identified an overall rickettsiae infection prevalence of 4.1% (n = 12/292) in ticks, in which eight dogs harbored at least one infected tick. Rickettsiae infections included Rickettsia amblyommatis and Rickettsia parkeri, both of which are emerging human pathogens, as well as Candidatus Rickettsia andeanae. This is the first documentation of pathogenic Rickettsia species in Rh. sanguineus s.l. collected from dogs from northeastern México. Domestic dog infestation with Rickettsia-infected ticks indicates ongoing transmission; thus, humans are at risk for exposure, and this underscores the importance of public and veterinary health surveillance for these pathogens.}, } @article {pmid35624491, year = {2022}, author = {Arora, J and Kinjo, Y and Šobotník, J and Buček, A and Clitheroe, C and Stiblik, P and Roisin, Y and Žifčáková, L and Park, YC and Kim, KY and Sillam-Dussès, D and Hervé, V and Lo, N and Tokuda, G and Brune, A and Bourguignon, T}, title = {The functional evolution of termite gut microbiota.}, journal = {Microbiome}, volume = {10}, number = {1}, pages = {78}, pmid = {35624491}, issn = {2049-2618}, mesh = {Animals ; *Gastrointestinal Microbiome/genetics ; *Isoptera ; Metagenome ; Phylogeny ; Soil ; }, abstract = {BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota.

RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways.

CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.}, } @article {pmid35618596, year = {2022}, author = {Leister, D and Marino, G and Minagawa, J and Dann, M}, title = {An ancient function of PGR5 in iron delivery?.}, journal = {Trends in plant science}, volume = {27}, number = {10}, pages = {971-980}, doi = {10.1016/j.tplants.2022.04.006}, pmid = {35618596}, issn = {1878-4372}, support = {854126/ERC_/European Research Council/International ; }, mesh = {Antimycin A/pharmacology ; *Arabidopsis Proteins/metabolism ; Electron Transport/physiology ; Ferritins/metabolism/pharmacology ; Iron/metabolism ; Photosynthesis/physiology ; *Photosystem I Protein Complex/metabolism ; Protons ; }, abstract = {In all phototrophic organisms, the photosynthetic apparatus must be protected from light-induced damage. One important mechanism that mitigates photodamage in plants is antimycin A (AA)-sensitive cyclic electron flow (CEF), the evolution of which remains largely obscure. Here we show that proton gradient regulation 5 (PGR5), a key protein involved in AA-sensitive CEF, displays intriguing commonalities - including sequence and structural features - with a group of ferritin-like proteins. We therefore propose that PGR5 may originally have been involved in prokaryotic iron mobilization and delivery, which facilitated a primordial type of CEF as a side effect. The abandonment of the bacterioferritin system during the transformation of cyanobacterial endosymbionts into chloroplasts might have allowed PGR5 to functionally specialize in CEF.}, } @article {pmid35611654, year = {2022}, author = {Robes, JMD and Altamia, MA and Murdock, EG and Concepcion, GP and Haygood, MG and Puri, AW}, title = {A Conserved Biosynthetic Gene Cluster Is Regulated by Quorum Sensing in a Shipworm Symbiont.}, journal = {Applied and environmental microbiology}, volume = {88}, number = {11}, pages = {e0027022}, pmid = {35611654}, issn = {1098-5336}, support = {R00 GM118762/GM/NIGMS NIH HHS/United States ; U19 TW008163/TW/FIC NIH HHS/United States ; }, mesh = {Animals ; Bacteria/genetics ; *Bivalvia/microbiology ; *Gammaproteobacteria/genetics ; Multigene Family ; Phylogeny ; Quorum Sensing ; Symbiosis ; }, abstract = {Bacterial symbionts often provide critical functions for their hosts. For example, wood-boring bivalves called shipworms rely on cellulolytic endosymbionts for wood digestion. However, how the relationship between shipworms and their bacterial symbionts is formed and maintained remains unknown. Quorum sensing (QS) often plays an important role in regulating symbiotic relationships. We identified and characterized a QS system found in Teredinibacter sp. strain 2052S, a gill isolate of the wood-boring shipworm Bactronophorus cf. thoracites. We determined that 2052S produces the signal N-decanoyl-l-homoserine lactone (C10-HSL) and that this signal controls the activation of a biosynthetic gene cluster colocated in the symbiont genome that is conserved among all symbiotic Teredinibacter isolates. We subsequently identified extracellular metabolites associated with the QS regulon, including ones linked to the conserved biosynthetic gene cluster, using mass spectrometry-based molecular networking. Our results demonstrate that QS plays an important role in regulating secondary metabolism in this shipworm symbiont. This information provides a step toward deciphering the molecular details of the relationship between these symbionts and their hosts. Furthermore, because shipworm symbionts harbor vast yet underexplored biosynthetic potential, understanding how their secondary metabolism is regulated may aid future drug discovery efforts using these organisms. IMPORTANCE Bacteria play important roles as symbionts in animals ranging from invertebrates to humans. Despite this recognized importance, much is still unknown about the molecular details of how these relationships are formed and maintained. One of the proposed roles of shipworm symbionts is the production of bioactive secondary metabolites due to the immense biosynthetic potential found in shipworm symbiont genomes. Here, we report that a shipworm symbiont uses quorum sensing to coordinate activation of its extracellular secondary metabolism, including the transcriptional activation of a biosynthetic gene cluster that is conserved among many shipworm symbionts. This work is a first step toward linking quorum sensing, secondary metabolism, and symbiosis in wood-boring shipworms.}, } @article {pmid35608298, year = {2022}, author = {Margarita, V and Bailey, NP and Rappelli, P and Diaz, N and Dessì, D and Fettweis, JM and Hirt, RP and Fiori, PL}, title = {Two Different Species of Mycoplasma Endosymbionts Can Influence Trichomonas vaginalis Pathophysiology.}, journal = {mBio}, volume = {13}, number = {3}, pages = {e0091822}, pmid = {35608298}, issn = {2150-7511}, support = {BB/M011186/1//Biotechnology and Biological Sciences Research Council/United Kingdom ; }, mesh = {Ecosystem ; Female ; Humans ; *Mycoplasma/genetics ; Mycoplasma hominis/genetics ; *Trichomonas Infections/microbiology ; *Trichomonas vaginalis/genetics ; }, abstract = {Trichomonas vaginalis can host the endosymbiont Mycoplasma hominis, an opportunistic pathogenic bacterium capable of modulating T. vaginalis pathobiology. Recently, a new noncultivable mycoplasma, "Candidatus Mycoplasma girerdii," has been shown to be closely associated with women affected by trichomoniasis, suggesting a biological association. Although several features of "Ca. M. girerdii" have been investigated through genomic analysis, the nature of the potential T. vaginalis-"Ca. M. girerdii" consortium and its impact on the biology and pathogenesis of both microorganisms have not yet been explored. Here, we investigate the association between "Ca. M. girerdii" and T. vaginalis isolated from patients affected by trichomoniasis, demonstrating their intracellular localization. By using an in vitro model system based on single- and double-Mycoplasma infection of Mycoplasma-free isogenic T. vaginalis, we investigated the ability of the protist to establish a relationship with the bacteria and impact T. vaginalis growth. Our data indicate likely competition between M. hominis and "Ca. M. girerdii" while infecting trichomonad cells. Comparative dual-transcriptomics data showed major shifts in parasite gene expression in response to the presence of Mycoplasma, including genes associated with energy metabolism and pathogenesis. Consistent with the transcriptomics data, both parasite-mediated hemolysis and binding to host epithelial cells were significantly upregulated in the presence of either Mycoplasma species. Taken together, these results support a model in which this microbial association could modulate the virulence of T. vaginalis. IMPORTANCE T. vaginalis and M. hominis form a unique case of endosymbiosis that modulates the parasite's pathobiology. Recently, a new nonculturable mycoplasma species ("Candidatus Mycoplasma girerdii") has been described as closely associated with the protozoon. Here, we report the characterization of this endosymbiotic relationship. Clinical isolates of the parasite demonstrate that mycoplasmas are common among trichomoniasis patients. The relationships are studied by devising an in vitro system of single and/or double infections in isogenic protozoan recipients. Comparative growth experiments and transcriptomics data demonstrate that the composition of different microbial consortia influences the growth of the parasite and significantly modulates its transcriptomic profile, including metabolic enzymes and virulence genes such as adhesins and pore-forming proteins. The data on modulation from RNA sequencing (RNA-Seq) correlated closely with those of the cytopathic effect and adhesion to human target cells. We propose the hypothesis that the presence and the quantitative ratios of endosymbionts may contribute to modulating protozoan virulence. Our data highlight the importance of considering pathogenic entities as microbial ecosystems, reinforcing the importance of the development of integrated diagnostic and therapeutic strategies.}, } @article {pmid35606844, year = {2022}, author = {Sparagon, WJ and Gentry, EC and Minich, JJ and Vollbrecht, L and Laurens, LML and Allen, EE and Sims, NA and Dorrestein, PC and Kelly, LW and Nelson, CE}, title = {Fine scale transitions of the microbiota and metabolome along the gastrointestinal tract of herbivorous fishes.}, journal = {Animal microbiome}, volume = {4}, number = {1}, pages = {33}, pmid = {35606844}, issn = {2524-4671}, abstract = {BACKGROUND: Gut microorganisms aid in the digestion of food by providing exogenous metabolic pathways to break down organic compounds. An integration of longitudinal microbial and chemical data is necessary to illuminate how gut microorganisms supplement the energetic and nutritional requirements of animals. Although mammalian gut systems are well-studied in this capacity, the role of microbes in the breakdown and utilization of recalcitrant marine macroalgae in herbivorous fish is relatively understudied and an emerging priority for bioproduct extraction. Here we use a comprehensive survey of the marine herbivorous fish gut microbial ecosystem via parallel 16S rRNA gene amplicon profiling (microbiota) and untargeted tandem mass spectrometry (metabolomes) to demonstrate consistent transitions among 8 gut subsections across five fish of the genus of Kyphosus.

RESULTS: Integration of microbial phylogenetic and chemical diversity data reveals that microbial communities and metabolomes covaried and differentiated continuously from stomach to hindgut, with the midgut containing multiple distinct and previously uncharacterized microenvironments and a distinct hindgut community dominated by obligate anaerobes. This differentiation was driven primarily by anaerobic gut endosymbionts of the classes Bacteroidia and Clostridia changing in concert with bile acids, small peptides, and phospholipids: bile acid deconjugation associated with early midgut microbiota, small peptide production associated with midgut microbiota, and phospholipid production associated with hindgut microbiota.

CONCLUSIONS: The combination of microbial and untargeted metabolomic data at high spatial resolution provides a new view of the diverse fish gut microenvironment and serves as a foundation to understand functional partitioning of microbial activities that contribute to the digestion of complex macroalgae in herbivorous marine fish.}, } @article {pmid35602967, year = {2022}, author = {Pollmann, M and Moore, LD and Krimmer, E and D'Alvise, P and Hasselmann, M and Perlman, SJ and Ballinger, MJ and Steidle, JLM and Gottlieb, Y}, title = {Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma.}, journal = {iScience}, volume = {25}, number = {5}, pages = {104335}, pmid = {35602967}, issn = {2589-0042}, abstract = {Cytoplasmic incompatibility (CI) is a form of reproductive manipulation caused by maternally inherited endosymbionts infecting arthropods, like Wolbachia, whereby matings between infected males and uninfected females produce few or no offspring. We report the discovery of a new CI symbiont, a strain of Spiroplasma causing CI in the parasitoid wasp Lariophagus distinguendus. Its extracellular occurrence enabled us to establish CI in uninfected adult insects by transferring Spiroplasma-infected hemolymph. We sequenced the CI-Spiroplasma genome and did not find any homologues of any of the cif genes discovered to cause CI in Wolbachia, suggesting independent evolution of CI. Instead, the genome contains other potential CI-causing candidate genes, such as homologues of high-mobility group (HMG) box proteins that are crucial in eukaryotic development but rare in bacterial genomes. Spiroplasma's extracellular nature and broad host range encompassing medically and agriculturally important arthropods make it a promising tool to study CI and its applications.}, } @article {pmid35598650, year = {2022}, author = {Louzada-Flores, VN and Kramer, L and Brianti, E and Napoli, E and Mendoza-Roldan, JA and Bezerra-Santos, MA and Latrofa, MS and Otranto, D}, title = {Treatment with doxycycline is associated with complete clearance of circulating Wolbachia DNA in Dirofilaria immitis-naturally infected dogs.}, journal = {Acta tropica}, volume = {232}, number = {}, pages = {106513}, doi = {10.1016/j.actatropica.2022.106513}, pmid = {35598650}, issn = {1873-6254}, mesh = {Animals ; *Cell-Free Nucleic Acids ; *Dirofilaria immitis/genetics ; *Dirofilariasis/drug therapy ; *Dog Diseases/parasitology ; Dogs ; Doxycycline/pharmacology/therapeutic use ; *Wolbachia/genetics ; }, abstract = {Bacteria of the genus Wolbachia are endosymbionts of parasitic filarial nematodes, including Dirofilaria immitis, and are a target for the treatment of canine heartworm disease. In the present study, 53 naturally-infected dogs were divided in three groups, based on their positivity to D. immitis by antigen and Knott tests, to assess the efficacy of doxycycline treatment in eliminating Wolbachia from circulating blood. At T0, dogs that scored positive to both tests (G1) or to antigen only (G2) were submitted to doxycycline (10 mg/kg BID PO) treatment and to 10% Imidacloprid + 2.5% Moxidectin (Advocate®), while those negative to both tests (G3) received only 10% Imidacloprid + 2.5% Moxidectin (Advocate®). All dogs were followed-up for one year, monthly treated with Advocate® and regularly monitored by antigen and Knott tests. During the whole period, all blood samples were screened for Wolbachia-D. immitis DNA load by quantitative real-time PCR (qPCR). At T0, 88.2% of the microfilariemic dogs were positive for Wolbachia DNA, while none of the dogs from G2 or G3 were positive. Wolbachia DNA was no longer detectable in dogs from G1 following 1 month of doxycycline treatment and microfilariae (mfs) were cleared at T2. All dogs from the G1 and G2 were negative for D. immitis antigen at 12 months. Results of this study suggest that successful elimination of mfs by doxycycline is associated with complete clearance of Wolbachia DNA in D. immitis-naturally infected dogs.}, } @article {pmid35592653, year = {2022}, author = {Verhoeve, VI and Fauntleroy, TD and Risteen, RG and Driscoll, TP and Gillespie, JJ}, title = {Cryptic Genes for Interbacterial Antagonism Distinguish Rickettsia Species Infecting Blacklegged Ticks From Other Rickettsia Pathogens.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {880813}, pmid = {35592653}, issn = {2235-2988}, support = {R21 AI146773/AI/NIAID NIH HHS/United States ; R21 AI156762/AI/NIAID NIH HHS/United States ; R21 AI166832/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; Antidotes ; Humans ; *Ixodes/microbiology ; Mammals ; Phylogeny ; *Rickettsia/genetics ; Symbiosis ; }, abstract = {BACKGROUND: The genus Rickettsia (Alphaproteobacteria: Rickettsiales) encompasses numerous obligate intracellular species with predominantly ciliate and arthropod hosts. Notable species are pathogens transmitted to mammals by blood-feeding arthropods. Mammalian pathogenicity evolved from basal, non-pathogenic host-associations; however, some non-pathogens are closely related to pathogens. One such species, Rickettsia buchneri, is prevalent in the blacklegged tick, Ixodes scapularis. While I. scapularis transmits several pathogens to humans, it does not transmit Rickettsia pathogens. We hypothesize that R. buchneri established a mutualism with I. scapularis, blocking tick superinfection with Rickettsia pathogens.

METHODS: To improve estimates for assessing R. buchneri infection frequency in blacklegged tick populations, we used comparative genomics to identify an R. buchneri gene (REIS_1424) not present in other Rickettsia species present throughout the I. scapularis geographic range. Bioinformatic and phylogenomics approaches were employed to propose a function for the hypothetical protein (263 aa) encoded by REIS_1424.

RESULTS: REIS_1424 has few analogs in other Rickettsiales genomes and greatest similarity to non-Proteobacteria proteins. This cohort of proteins varies greatly in size and domain composition, possessing characteristics of Recombination hotspot (Rhs) and contact dependent growth inhibition (CDI) toxins, with similarity limited to proximal C-termini (~145 aa). This domain was named CDI-like/Rhs-like C-terminal toxin (CRCT). As such proteins are often found as toxin-antidote (TA) modules, we interrogated REIS_1423 (151 aa) as a putative antidote. Indeed, REIS_1423 is similar to proteins encoded upstream of CRCT domain-containing proteins. Accordingly, we named these proteins CDI-like/Rhs-like C-terminal toxin antidotes (CRCA). R. buchneri expressed both REIS_1423 and REIS_1424 in tick cell culture, and PCR assays showed specificity for R. buchneri over other rickettsiae and utility for positive detection in three tick populations. Finally, phylogenomics analyses uncovered divergent CRCT/CRCA modules in varying states of conservation; however, only R. buchneri and related Tamurae/Ixodes Group rickettsiae carry complete TA modules.

CONCLUSION: We hypothesize that Rickettsia CRCT/CRCA modules circulate in the Rickettsia mobile gene pool, arming rickettsiae for battle over arthropod colonization. While its functional significance remains to be tested, R. buchneri CRCT/CRCA serves as a marker to positively identify infection and begin deciphering the role this endosymbiont plays in the biology of the blacklegged tick.}, } @article {pmid35591999, year = {2022}, author = {Guizzo, MG and Tirloni, L and Gonzalez, SA and Farber, MD and Braz, G and Parizi, LF and Dedavid E Silva, LA and da Silva Vaz, I and Oliveira, PL}, title = {Coxiella Endosymbiont of Rhipicephalus microplus Modulates Tick Physiology With a Major Impact in Blood Feeding Capacity.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {868575}, pmid = {35591999}, issn = {1664-302X}, abstract = {In the past decade, metagenomics studies exploring tick microbiota have revealed widespread interactions between bacteria and arthropods, including symbiotic interactions. Functional studies showed that obligate endosymbionts contribute to tick biology, affecting reproductive fitness and molting. Understanding the molecular basis of the interaction between ticks and their mutualist endosymbionts may help to develop control methods based on microbiome manipulation. Previously, we showed that Rhipicephalus microplus larvae with reduced levels of Coxiella endosymbiont of R. microplus (CERM) were arrested at the metanymph life stage (partially engorged nymph) and did not molt into adults. In this study, we performed a transcriptomic differential analysis of the R. microplus metanymph in the presence and absence of its mutualist endosymbiont. The lack of CERM resulted in an altered expression profile of transcripts from several functional categories. Gene products such as DA-P36, protease inhibitors, metalloproteases, and evasins, which are involved in blood feeding capacity, were underexpressed in CERM-free metanymphs. Disregulation in genes related to extracellular matrix remodeling was also observed in the absence of the symbiont. Taken together, the observed alterations in gene expression may explain the blockage of development at the metanymph stage and reveal a novel physiological aspect of the symbiont-tick-vertebrate host interaction.}, } @article {pmid35591989, year = {2022}, author = {Wang, R and Dong, L and Chen, Y and Wang, S and Qu, L}, title = {Third Generation Genome Sequencing Reveals That Endobacteria in Nematophagous Fungi Esteya vermicola Contain Multiple Genes Encoding for Nematicidal Proteins.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {842684}, pmid = {35591989}, issn = {1664-302X}, abstract = {Esteya vermicola is the first recorded endoparasitic nematophagous fungus with high infectivity capacity, attacking the pinewood nematode Bursaphelenchus xylophilus which causes pine wilt disease. Endosymbionts are found in the cytoplasm of E. vermicola from various geographical areas. We sequenced the genome of endobacteria residing in E. vermicola to discover possible biological functions of these widespread endobacteria. Multilocus phylogenetic analyses showed that the endobacteria form a previously unidentified lineage sister to Phyllobacterium myrsinacearum species. The number of genes in the endobacterium was 4542, with 87.8% of the proteins having a known function. It contained a high proportion of repetitive sequences, as well as more Acyl-CoA synthetase genes and genes encoding the electron transport chain, compared with compared with plant-associated P. zundukense Tri 48 and P. myrsinacearum DSM 5893. Thus, this symbiotic bacterium is likely to be more efficient in regulating gene expression and energy release. Furthermore, the endobacteria in nematophagous fungi Esteya vermicola contained multiple nematicidal subtilase/subtilisin encoding genes, so it is likely that endobacteria cooperate with the host to kill nematodes.}, } @article {pmid35591984, year = {2022}, author = {Quach, QN and Gardner, DR and Clay, K and Cook, D}, title = {Phylogenetic Patterns of Swainsonine Presence in Morning Glories.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {871148}, pmid = {35591984}, issn = {1664-302X}, abstract = {Endosymbionts play important roles in the life cycles of many macro-organisms. The indolizidine alkaloid swainsonine is produced by heritable fungi that occurs in diverse plant families, such as locoweeds (Fabaceae) and morning glories (Convolvulaceae) plus two species of Malvaceae. Swainsonine is known for its toxic effects on livestock following the ingestion of locoweeds and the potential for pharmaceutical applications. We sampled and tested herbarium seed samples (n = 983) from 244 morning glory species for the presence of swainsonine and built a phylogeny based on available internal transcribed spacer (ITS) sequences of the sampled species. We show that swainsonine occurs only in a single morning glory clade and host species are established on multiple continents. Our results further indicate that this symbiosis developed ∼5 mya and that swainsonine-positive species have larger seeds than their uninfected conspecifics.}, } @article {pmid35588270, year = {2022}, author = {Bashir, F and Kovács, S and Ábrahám, Á and Nagy, K and Ayaydin, F and Valkony-Kelemen, I and Ferenc, G and Galajda, P and Tóth, SZ and Sass, L and Kós, PB and Vass, I and Szabó, M}, title = {Viable protoplast formation of the coral endosymbiont alga Symbiodinium spp. in a microfluidics platform.}, journal = {Lab on a chip}, volume = {22}, number = {16}, pages = {2986-2999}, doi = {10.1039/d2lc00130f}, pmid = {35588270}, issn = {1473-0189}, mesh = {Animals ; *Anthozoa/physiology ; *Dinoflagellida/physiology ; Microfluidics ; Protoplasts ; Reactive Oxygen Species ; Singlet Oxygen ; }, abstract = {Symbiodiniaceae is an important dinoflagellate family which lives in endosymbiosis with reef invertebrates, including coral polyps, making them central to the holobiont. With coral reefs currently under extreme threat from climate change, there is a pressing need to improve our understanding on the stress tolerance and stress avoidance mechanisms of Symbiodinium spp. Reactive oxygen species (ROS) such as singlet oxygen are central players in mediating various stress responses; however, the detection of ROS using specific dyes is still far from definitive in intact Symbiodinium cells due to the hindrance of uptake of certain fluorescent dyes because of the presence of the cell wall. Protoplast technology provides a promising platform for studying oxidative stress with the main advantage of removed cell wall, however the preparation of viable protoplasts remains a significant challenge. Previous studies have successfully applied cellulose-based protoplast preparation in Symbiodiniaceae; however, the protoplast formation and regeneration process was found to be suboptimal. Here, we present a microfluidics-based platform which allowed protoplast isolation from individually trapped Symbiodinium cells, by using a precisely adjusted flow of cell wall digestion enzymes (cellulase and macerozyme). Trapped single cells exhibited characteristic changes in their morphology, cessation of cell division and a slight decrease in photosynthetic activity during protoplast formation. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Elevated flow rates in the microfluidic chambers resulted in somewhat faster protoplast formation; however, cell wall digestion at higher flow rates partially compromised photosynthetic activity. Physiologically competent protoplasts prepared from trapped cells in microfluidic chambers allowed for the first time the visualization of the intracellular localization of singlet oxygen (using Singlet Oxygen Sensor Green dye) in Symbiodiniaceae, potentially opening new avenues for studying oxidative stress.}, } @article {pmid35587930, year = {2022}, author = {Benyedem, H and Lekired, A and Mhadhbi, M and Dhibi, M and Romdhane, R and Chaari, S and Rekik, M and Ouzari, HI and Hajji, T and Darghouth, MA}, title = {First insights into the microbiome of Tunisian Hyalomma ticks gained through next-generation sequencing with a special focus on H. scupense.}, journal = {PloS one}, volume = {17}, number = {5}, pages = {e0268172}, pmid = {35587930}, issn = {1932-6203}, mesh = {Animals ; Cattle ; *Francisella/genetics ; High-Throughput Nucleotide Sequencing ; *Ixodidae/genetics/microbiology ; *Microbiota/genetics ; RNA, Ribosomal, 16S/genetics ; *Rickettsia/genetics ; *Ticks/genetics ; }, abstract = {Ticks are one of the most important vectors of several pathogens affecting humans and animals. In addition to pathogens, ticks carry diverse microbiota of symbiotic and commensal microorganisms. In this study, we have investigated the first Tunisian insight into the microbial composition of the most dominant Hyalomma species infesting Tunisian cattle and explored the relative contribution of tick sex, life stage, and species to the diversity, richness and bacterial species of tick microbiome. In this regard, next generation sequencing for the 16S rRNA (V3-V4 region) of tick bacterial microbiota and metagenomic analysis were established. The analysis of the bacterial diversity reveals that H. marginatum and H. excavatum have greater diversity than H. scupense. Furthermore, microbial diversity and composition vary according to the tick's life stage and sex in the specific case of H. scupense. The endosymbionts Francisella, Midichloria mitochondrii, and Rickettsia were shown to be the most prevalent in Hyalomma spp. Rickettsia, Francisella, Ehrlichia, and Erwinia are the most common zoonotic bacteria found in Hyalomma ticks. Accordingly, Hyalomma ticks could represent potential vectors for these zoonotic bacterial agents.}, } @article {pmid35581290, year = {2022}, author = {Gomes, TMFF and Wallau, GL and Loreto, ELS}, title = {Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods.}, journal = {Scientific reports}, volume = {12}, number = {1}, pages = {8131}, pmid = {35581290}, issn = {2045-2322}, mesh = {Animals ; *Arthropods/genetics/microbiology ; Female ; Insecta/microbiology ; Phylogeny ; *Wolbachia/genetics ; }, abstract = {Wolbachia is a genus of intracellular bacterial endosymbionts found in 20-66% of all insect species and a range of other invertebrates. It is classified as a single species, Wolbachia pipientis, divided into supergroups A to U, with supergroups A and B infecting arthropods exclusively. Wolbachia is transmitted mainly via vertical transmission through female oocytes, but can also be transmitted across different taxa by host shift (HS): the direct transmission of Wolbachia cells between organisms without involving vertically transmitted gametic cells. To assess the HS contribution, we recovered 50 orthologous genes from over 1000 Wolbachia genomes, reconstructed their phylogeny and calculated gene similarity. Of 15 supergroup A Wolbachia lineages, 10 have similarities ranging from 95 to 99.9%, while their hosts' similarities are around 60 to 80%. For supergroup B, four out of eight lineages, which infect diverse and distantly-related organisms such as Acari, Hemiptera and Diptera, showed similarities from 93 to 97%. These results show that Wolbachia genomes have a much higher similarity when compared to their hosts' genes, which is a major indicator of HS. Our comparative genomic analysis suggests that, at least for supergroups A and B, HS is more frequent than expected, occurring even between distantly-related species.}, } @article {pmid35579457, year = {2022}, author = {Chaput, G and Ford, J and DeDiego, L and Narayanan, A and Tam, WY and Whalen, M and Huntemann, M and Clum, A and Spunde, A and Pillay, M and Palaniappan, K and Varghese, N and Mikhailova, N and Chen, IM and Stamatis, D and Reddy, TBK and O'Malley, R and Daum, C and Shapiro, N and Ivanova, N and Kyrpides, NC and Woyke, T and Glavina Del Rio, T and DeAngelis, KM}, title = {Sodalis ligni Strain 159R Isolated from an Anaerobic Lignin-Degrading Consortium.}, journal = {Microbiology spectrum}, volume = {10}, number = {3}, pages = {e0234621}, pmid = {35579457}, issn = {2165-0497}, mesh = {Anaerobiosis ; Animals ; Bacterial Typing Techniques ; DNA, Bacterial/genetics/metabolism ; *Enterobacteriaceae/genetics ; *Lignin/metabolism ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Sequence Analysis, DNA ; Symbiosis ; }, abstract = {Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R. Based on the 16S rRNA gene, the isolate belongs to the genus Sodalis in the family Bruguierivoracaceae. Whole-genome sequencing revealed a genome size of 6.38 Mbp and a GC content of 55 mol%. To resolve the phylogenetic position of 159R, its phylogeny was reconstructed using (i) 16S rRNA genes of its closest relatives, (ii) multilocus sequence analysis (MLSA) of 100 genes, (iii) 49 clusters of orthologous groups (COG) domains, and (iv) 400 conserved proteins. Isolate 159R was closely related to the deadwood associated Sodalis guild rather than the tsetse fly and other insect endosymbiont guilds. Estimated genome-sequence-based digital DNA-DNA hybridization (dDDH), genome percentage of conserved proteins (POCP), and an alignment analysis between 159R and the Sodalis clade species further supported that isolate 159R was part of the Sodalis genus and a strain of Sodalis ligni. We proposed the name Sodalis ligni str. 159R (=DSM 110549 = ATCC TSD-177). IMPORTANCE Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin. However, there are limitations to biopulping that prevent it from outcompeting other pulping processes, such as requiring constant aeration and mixing. Anaerobic bacteria are a promising alternative source for consolidated depolymerization of lignin and its conversion to valuable by-products. We presented Sodalis ligni str. 159R and its characteristics as another example of potential mechanisms that can be developed for lignocellulosic applications.}, } @article {pmid35573785, year = {2022}, author = {Elaagip, A and Absalon, S and Florentin, A}, title = {Apicoplast Dynamics During Plasmodium Cell Cycle.}, journal = {Frontiers in cellular and infection microbiology}, volume = {12}, number = {}, pages = {864819}, pmid = {35573785}, issn = {2235-2988}, mesh = {Animals ; *Apicoplasts/genetics/metabolism ; Cell Cycle ; Cell Division ; Humans ; *Malaria, Falciparum/metabolism ; *Parasites/metabolism ; *Plasmodium/metabolism ; Plasmodium falciparum/genetics ; Protozoan Proteins/genetics ; }, abstract = {The deadly malaria parasite, Plasmodium falciparum, contains a unique subcellular organelle termed the apicoplast, which is a clinically-proven antimalarial drug target. The apicoplast is a plastid with essential metabolic functions that evolved via secondary endosymbiosis. As an ancient endosymbiont, the apicoplast retained its own genome and it must be inherited by daughter cells during cell division. During the asexual replication of P. falciparum inside human red blood cells, both the parasite, and the apicoplast inside it, undergo massive morphological changes, including DNA replication and division. The apicoplast is an integral part of the cell and thus its development is tightly synchronized with the cell cycle. At the same time, certain aspects of its dynamics are independent of nuclear division, representing a degree of autonomy in organelle biogenesis. Here, we review the different aspects of organelle dynamics during P. falciparum intraerythrocytic replication, summarize our current understanding of these processes, and describe the many open questions in this area of parasite basic cell biology.}, } @article {pmid35572673, year = {2022}, author = {Xiang, LG and Wang, HC and Wang, F and Cai, LT and Li, WH and Hsiang, T and Yu, ZH}, title = {Analysis of Phyllosphere Microorganisms and Potential Pathogens of Tobacco Leaves.}, journal = {Frontiers in microbiology}, volume = {13}, number = {}, pages = {843389}, pmid = {35572673}, issn = {1664-302X}, abstract = {In the tobacco phyllosphere, some of the microbes may have detrimental effects on plant health, while many may be neutral or even beneficial. Some cannot be cultivated, so culture-independent methods are needed to explore microbial diversity. In this study, both metagenetic analysis and traditional culture-dependent methods were used on asymptomatic healthy leaves and symptomatic diseased leaves of tobacco plants. In the culture-independent analysis, asymptomatic leaves had higher microbial diversity and richness than symptomatic leaves. Both asymptomatic and symptomatic leaves contained several potentially pathogenic bacterial and fungal genera. The putative bacterial pathogens, such as species of Pseudomonas, Pantoea, or Ralstonia, and putative fungal pathogens, such as species of Phoma, Cladosporium, Alternaria, Fusarium, Corynespora, and Epicoccum, had a higher relative abundance in symptomatic leaves than asymptomatic leaves. FUNGuild analysis indicated that the foliar fungal community also included endophytes, saprotrophs, epiphytes, parasites, and endosymbionts. PICRUSt analysis showed that the dominant functions of the bacterial community in a symptomatic leaf were cellular processes and environmental information processing. In the other five foliar samples, the dominant functions of the bacterial community were genetic information processing, metabolism, and organismal systems. In the traditional culture-dependent method, 47 fungal strains were isolated from 60 symptomatic tobacco leaf fragments bearing leaf spots. Among them, 21 strains of Colletotrichum (29%), Xylariaceae (14%), Corynespora (14%), Pestalotiopsis (10%), Alternaria (10%), Epicoccum (10%), Byssosphaeria (5%), Phoma (5%), and Diaporthe (5%) all fulfilled Koch's postulates and were found to cause disease on detached tobacco leaves in artificial inoculation tests. Symptoms on detached leaves caused by three strains of Corynespora cassiicola in artificial inoculation tests were similar to the original disease symptoms in the tobacco field. This study showed that the combined application of culture-dependent and independent methods could give comprehensive insights into microbial composition that each method alone did not reveal.}, } @article {pmid35563511, year = {2022}, author = {Parejo, S and Cabrera, JJ and Jiménez-Leiva, A and Tomás-Gallardo, L and Bedmar, EJ and Gates, AJ and Mesa, S}, title = {Fine-Tuning Modulation of Oxidation-Mediated Posttranslational Control of Bradyrhizobium diazoefficiens FixK2 Transcription Factor.}, journal = {International journal of molecular sciences}, volume = {23}, number = {9}, pages = {}, pmid = {35563511}, issn = {1422-0067}, support = {BB/M00256X/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; BB/S008942/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; }, mesh = {Bacterial Proteins/genetics/metabolism ; *Bradyrhizobium/metabolism ; DNA/metabolism ; *Gene Expression Regulation, Bacterial ; Soybeans/genetics/metabolism ; Symbiosis ; Transcription Factors/genetics/metabolism ; }, abstract = {FixK2 is a CRP/FNR-type transcription factor that plays a central role in a sophisticated regulatory network for the anoxic, microoxic and symbiotic lifestyles of the soybean endosymbiont Bradyrhizobium diazoefficiens. Aside from the balanced expression of the fixK2 gene under microoxic conditions (induced by the two-component regulatory system FixLJ and negatively auto-repressed), FixK2 activity is posttranslationally controlled by proteolysis, and by the oxidation of a singular cysteine residue (C183) near its DNA-binding domain. To simulate the permanent oxidation of FixK2, we replaced C183 for aspartic acid. Purified C183D FixK2 protein showed both low DNA binding and in vitro transcriptional activation from the promoter of the fixNOQP operon, required for respiration under symbiosis. However, in a B. diazoefficiens strain coding for C183D FixK2, expression of a fixNOQP'-'lacZ fusion was similar to that in the wild type, when both strains were grown microoxically. The C183D FixK2 encoding strain also showed a wild-type phenotype in symbiosis with soybeans, and increased fixK2 gene expression levels and FixK2 protein abundance in cells. These two latter observations, together with the global transcriptional profile of the microoxically cultured C183D FixK2 encoding strain, suggest the existence of a finely tuned regulatory strategy to counterbalance the oxidation-mediated inactivation of FixK2 in vivo.}, } @article {pmid35563303, year = {2022}, author = {Buerger, P and Vanstone, RT and Maire, J and van Oppen, MJH}, title = {Long-Term Heat Selection of the Coral Endosymbiont Cladocopium C1[acro] (Symbiodiniaceae) Stabilizes Associated Bacterial Communities.}, journal = {International journal of molecular sciences}, volume = {23}, number = {9}, pages = {}, pmid = {35563303}, issn = {1422-0067}, mesh = {Animals ; *Anthozoa/genetics ; Bacteria/genetics ; Coral Reefs ; *Dinoflagellida/genetics ; Hot Temperature ; RNA, Ribosomal, 16S/genetics ; Symbiosis ; }, abstract = {Heat-tolerant strains of the coral endosymbiont, Cladocopium C1[acro] (Symbiodiniaceae), have previously been developed via experimental evolution. Here, we examine physiological responses and bacterial community composition (using 16S rRNA gene metabarcoding) in cultures of 10 heat-evolved (SS) and 9 wild-type (WT) strains, which had been exposed for 6 years to 31 °C and 27 °C, respectively. We also examine whether the associated bacterial communities were affected by a three-week reciprocal transplantation to both temperatures. The SS strains had bacterial communities with lower diversities that showed more stability and lower variability when exposed to elevated temperatures compared with the WT strains. Amplicon sequence variants (ASVs) of the bacterial genera Labrenzia, Algiphilus, Hyphobacterium and Roseitalea were significantly more associated with the SS strains compared with the WT strains. WT strains showed higher abundance of ASVs assigned to the genera Fabibacter and Tropicimonas. We hypothesize that these compositional differences in associated bacterial communities between SS and WT strains also contribute to the thermal tolerance of the microalgae. Future research should explore functional potential between bacterial communities using metagenomics to unravel specific genomic adaptations.}, } @article {pmid35561259, year = {2022}, author = {Zhou, W and Zhang, X and Wang, A and Yang, L and Gan, Q and Yi, L and Summons, RE and Volkman, JK and Lu, Y}, title = {Widespread Sterol Methyltransferase Participates in the Biosynthesis of Both C4α- and C4β-Methyl Sterols.}, journal = {Journal of the American Chemical Society}, volume = {144}, number = {20}, pages = {9023-9032}, pmid = {35561259}, issn = {1520-5126}, mesh = {Eukaryota/metabolism ; Eukaryotic Cells/metabolism ; *Methyltransferases/metabolism ; Oxidoreductases ; *Sterols ; }, abstract = {The 4-methyl steranes serve as molecular fossils and are used for studying both eukaryotic evolution and geological history. The occurrence of 4α-methyl steranes in sediments has long been considered evidence of products of partial demethylation mediated by sterol methyl oxidases (SMOs), while 4β-methyl steranes are attributed entirely to diagenetic generation from 4α-methyl steroids since possible biological sources of their precursor 4β-methyl sterols are unknown. Here, we report a previously unknown C4-methyl sterol biosynthetic pathway involving a sterol methyltransferase rather than the SMOs. We show that both C4α- and C4β-methyl sterols are end products of the sterol biosynthetic pathway in an endosymbiont of reef corals, Breviolum minutum, while this mechanism exists not only in dinoflagellates but also in eukaryotes from alveolates, haptophytes, and aschelminthes. Our discovery provides a previously untapped route for the generation of C4-methyl steranes and overturns the paradigm that all 4β-methyl steranes are diagenetically generated from the 4α isomers. This may facilitate the interpretation of molecular fossils and understanding of the evolution of eukaryotic life in general.}, } @article {pmid35560029, year = {2022}, author = {Thayanukul, P and Lertanantawong, B and Sirawaraporn, W and Charasmongkolcharoen, S and Chaibun, T and Jittungdee, R and Kittayapong, P}, title = {Simple, sensitive, and cost-effective detection of wAlbB Wolbachia in Aedes mosquitoes, using loop mediated isothermal amplification combined with the electrochemical biosensing method.}, journal = {PLoS neglected tropical diseases}, volume = {16}, number = {5}, pages = {e0009600}, pmid = {35560029}, issn = {1935-2735}, mesh = {*Aedes/genetics ; Animals ; *Arbovirus Infections ; Cost-Benefit Analysis ; Humans ; Molecular Diagnostic Techniques ; Mosquito Vectors ; Nucleic Acid Amplification Techniques ; *Wolbachia/genetics ; }, abstract = {BACKGROUND: Wolbachia is an endosymbiont bacterium generally found in about 40% of insects, including mosquitoes, but it is absent in Aedes aegypti which is an important vector of several arboviral diseases. The evidence that Wolbachia trans-infected Ae. aegypti mosquitoes lost their vectorial competence and became less capable of transmitting arboviruses to human hosts highlights the potential of using Wolbachia-based approaches for prevention and control of arboviral diseases. Recently, release of Wolbachia trans-infected Ae. aegypti has been deployed widely in many countries for the control of mosquito-borne viral diseases. Field surveillance and monitoring of Wolbachia presence in released mosquitoes is important for the success of these control programs. So far, a number of studies have reported the development of loop mediated isothermal amplification (LAMP) assays to detect Wolbachia in mosquitoes, but the methods still have some specificity and cost issues.

We describe here the development of a LAMP assay combined with the DNA strand displacement-based electrochemical sensor (BIOSENSOR) method to detect wAlbB Wolbachia in trans-infected Ae. aegypti. Our developed LAMP primers used a low-cost dye detecting system and 4 oligo nucleotide primers which can reduce the cost of analysis while the specificity is comparable to the previous methods. The detection capacity of our LAMP technique was 1.4 nM and the detection limit reduced to 2.2 fM when combined with the BIOSENSOR. Our study demonstrates that a BIOSENSOR can also be applied as a stand-alone method for detecting Wolbachia; and it showed high sensitivity when used with the crude DNA extracts of macerated mosquito samples without DNA purification.

CONCLUSIONS/SIGNIFICANCE: Our results suggest that both LAMP and BIOSENSOR, either used in combination or stand-alone, are robust and sensitive. The methods have good potential for routine detection of Wolbachia in mosquitoes during field surveillance and monitoring of Wolbachia-based release programs, especially in countries with limited resources.}, } @article {pmid35548046, year = {2022}, author = {Ben Said, M and Diaz Sanchez, S and Bastos, A and Silaghi, C}, title = {Editorial: Current Knowledge on Pathogenic and Endosymbiotic Tick-Borne Bacteria.}, journal = {Frontiers in veterinary science}, volume = {9}, number = {}, pages = {900510}, doi = {10.3389/fvets.2022.900510}, pmid = {35548046}, issn = {2297-1769}, } @article {pmid35547116, year = {2022}, author = {Weyandt, N and Aghdam, SA and Brown, AMV}, title = {Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes.}, journal = {Frontiers in micro