
Invited manuscript, submitted to IEEE Engineering in Medicine and Biology for a special issue on
genome informatics.

INFORMATION INFRASTRUCTURE

FOR

THE HUMAN GENOME PROJECT

Robert J. Robbins1

US Department of Energy
robbins@er.doe.gov

Johns Hopkins University
rrobbins@gdb.org

1 Corresponding Author: Robert J. Robbins

1300 Southview Road
Baltimore, MD 21218

rrobbins@gdb.org

(phone: 410 467 9432)

TABLE OF CONTENTS

THE CHALLENGE OF GENOME DATA M ANAGEMENT 1

A TAXONOMY OF MULTIDATABASE APPROACHES 3
BIOLOGICAL INFORMATION RESOURCES AS PUBLISHING 4

ACHIEVING INTEROPERABILITY 6

EVOLUTION OF COMPLEX, INTEGRATED SYSTEMS 6
Historical Trends in Database Management 6
Layered Architectures in the Networking Model 7

INTEROPERATING GENOME INFORMATION RESOURCES 9

RECENT ADVANCES 10

EVOLUTION OF BIOLOGICAL INFORMATION SYSTEMS 10
POWER OF GENERIC CLIENT–SERVER COMPUTING 11
DISTRIBUTED OBJECT–ORIENTED PROGRAMMING 11

Gopher and WWW 11
Networks as Distributed Information Spaces 12

MIDDLEWARE EXTENDS FUNCTIONALITY 13
The GenQuest Server 13
Middleware Allows Unilateral “Collaborations” 14

DATA PUBLISHING IN A LOOSELY COUPLED FEDERATION 14

WHY WWW IS NOT ENOUGH 14
PROTOCOL EXTENSIONS NEEDED 16
REFERENCE ARCHITECTURE FOR A FEDERATED OBJECT–SERVER MODEL 16

FOSM Overview 16
FOSM Assumptions and Requirements 17

Basic Assumptions 17
General Requirements 17
Server Requirements 18
Client Requirements 19
Resource–Discovery Requirements 19
Third–party Development Requirements 20
Data–Structure Requirements 20

FOSM Architecture 21
FOSM Data Model 22
FOSM Data Identifiers 24

DATA–LEVEL INTEGRATION ACROSS MULTIPLE FOSM SERVERS 26

SUMMARY 28

Invited manuscript, submitted to IEEE Engineering in Medicine and Biology for a special issue on
genome informatics.

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM.

INFORMATION INFRASTRUCTURE FOR THE

HUMAN GENOME PROJECT1

Robert J. Robbins

he original goals of the Human Genome Project (HGP) were: (1) construction
of a high–resolution genetic map of the human genome; (2) production of a

variety of physical maps of all human chromosomes and of the DNA of selected
model organisms; (3) determination of the complete sequence of human DNA and
of the DNA of selected model organisms; (4) development of capabilities for
collecting, storing, distributing, and analyzing the data produced; and (5) creation
of appropriate technologies necessary to achieve these objectives [15]. Goals 1–3
laid out the challenge for bench research, Goal 4 recognized the essential role of
data management, and Goal 5 was a frank admission that the project was begun
before the necessary technologies were in hand. In the spirit of that candor, it is
appropriate to ask whether the HGP is meeting its goals and in particular whether
the computational components will be adequate for handling the volume and
complexity of data generated by the project.

In this essay we assert that the most pressing information–infrastructure
requirement now facing the HGP is achieving better interoperation among
electronic information resources. Other needs may be equally important (better
methods to support large–scale sequencing and mapping, for example), but none
are as pressing. The problem of interoperability grows exponentially with the data.
Efforts to develop distributed information publishing are now underway in many
locations. If the needs of the genome project are not soon defined and articulated,
they will not be addressed by these external projects. De facto standards will
emerge and if these prove inadequate for scientific data publishing, the research
community will have little choice but to tolerate this inadequacy indefinitely.

THE CHALLENGE OF GENOME DATA MANAGEMENT

Figure 1 shows the growth in the world’s sequence databases from the first
release of GenBank to 1994. Although the data volume is increasing exponentially,
with a doubling time less than two years, merely keeping up is no longer a
problem. The sequence databases were falling far behind the data flow in the mid
1980s [5], but technical and sociological advances now allow the databases to

1 The ideas in this paper are the opinions of the author and do not necessarily represent

the views of the US Department of Energy or of any other Federal agency.

T

ROBBINS: Information Infrastructure for the Human Genome Project 2

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

absorb easily a far greater amount of new information than previously conceivable.
In 1986, 13 months elapsed between the publication of a sequence and its
appearance in the databases. Now, the Genome Sequence Data Base processes a
typical submission within 13 hours. Every 2–4 weeks, more sequence data enter
the databases than did so in the first five years of their existence.

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

GenBank Release Numbers

9493929190898887

Figure 1. Growth in the world’s collection of nucleotide sequence data, shown as the
number of bases contained in every release of GenBank from 1 through 82. The numbers at
the tops of the dotted lines show years (which do not necessarily coincide with a particular
number of releases). The shaded bar in the middle represents the period in the mid 1980s
when the data volume was, for a time, more than the databases could handle. (Data supplied
by Michael Cinkosky and Dennis Benson.)

The map databases are also keeping up with the growth in the number of
genetic markers in humans and selected model organisms. The past crisis of data
acquisition has been resolved, leaving us to face a new and inherently more
difficult crisis of data integration.

The importance of integrating genome information resources has been
recognized in reports from groups of leading biologists (e.g., the Genome Science
and Technology Center directors; [3]) and of informatics experts (an invitational
meeting held in Baltimore in April, 1993; reported in [11]):

A...major...goal of genome informatics should be the integration of genome and
genome–related databases. [3]

Achieving coordination and interoperability among genome databases and other
informatics systems must be of the highest priority. We must begin to think of the
computational infrastructure of genome research...as a federated information
infrastructure of interlocking pieces. [11]

ROBBINS: Information Infrastructure for the Human Genome Project 3

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

For historical and operational reasons, HGP data are now, and will continue to
be, housed in several independent data resources. Already, the lack of
interoperability among these resources makes answering simple questions overly
difficult, leading the Baltimore report [11] to observe:

An embarrassment to the Human Genome Project is our inability to answer simple
questions such as, "How many genes on the long arm of chromosome 21 have been
sequenced?"

Removing this embarrassment will require several interoperability improvements:

• Technical interoperability must be achieved, so that minimum functional
connectivity can be assumed among participating information resources.
This would require network connectivity and database interoperability.

• Semantic interoperability must be developed, so that meaningful
associations could be made between data objects in different databases.
This would require enough agreement about the meaning of the data so
that assertions about relationships would be at least possible.

• Social interoperability must occur, so that meaningful associations are
made between data objects in different databases. This would require
sufficient social pressure to motivate the creation, entry, and maintenance
of this information, since each asserted link between data objects is an act
of scientific creativity and must be made on the basis of expertise, not
merely through routine computations on existing data.

These advances will likely occur in the order given. Without technical
interoperability, the motivation for providing semantic interoperability is lacking.
Without semantic interoperability, it is difficult to define, much less enter, links
between objects.

Another embarrassment is the time that genomic databases have been
promising, but not delivering, connectivity with other information resources. The
problem has been a simple absence of the technical interoperability infrastructure
necessary to enable and motivate the remaining work. However, recent advances
now promise that solutions may soon be at hand. This essay will describe some
relevant trends and advances and will describe a reference architecture to facilitate
the remaining steps. For reasons of space, the essay will not treat either semantic or
social interoperability. Semantic compatibility and other aspects of genome
informatics have been discussed elsewhere [7],[8],[[9],[10],[11].

A Taxonomy of Multidatabase Approaches

Although the development of truly interoperable federated database systems is
still considered a research problem in computer science (e.g., see the collection of
papers in [4]), there have been many calls for a federated approach to the
management of information in biology, both within and without the HGP.

ROBBINS: Information Infrastructure for the Human Genome Project 4

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

The vocabulary used to describe interoperating distributed computer systems
varies among authors. In this essay we follow the terminology and taxonomy of
Sheth and Larson [14]: A multidatabase system supports simultaneous operations
on multiple (perhaps different) component databases. A federated database system
(FDBS) has autonomous components, whereas the components in non–federated
database systems are under a unified management. A federated system with no
strong central federation management is considered loosely coupled. One with
strong central management and with FDBS administrators controlling access to the
components is tightly coupled. Tightly coupled systems can have one or more
centrally managed federated schemas.

Tightly coupled FDBSs offer several advantages, such as clearly integrated
views for users and the ability to update participating databases. These systems are,
however, fragile when changes occur in the participating databases and they have
proven difficult to achieve in practice, even within single corporations under
unified management [2]. Loosely coupled systems are more easily achieved, but
they can put much of the data–integration burden on users (or third–party
developers). Many authors consider the problem of coordinated updates across
loosely coupled FDBSs to be essentially insoluble.

Biological Information Resources as Publishing

Databases within commercial enterprises are information resources that
determine the behavior of the organization. Paychecks are issued, products
manufactured, shipments made, and invoices sent, according to the contents of the
enterprise’s databases. Since acting on the basis of inconsistent data would lead to
chaos, both within the enterprise and with its external interactions, commercial
database management systems have emphasized update methods that maintain
internal data consistency and data integrity. Not unexpectedly, this emphasis has
carried over into research efforts to develop multidatabase systems.

Scientific community databases, however, have more in common with
scientific publishing than with business database management systems. Projects
such as the Genome Data Base or GenBank offer communication channels through
which observations, sometimes inconsistent observations, may be shared among
researchers. The role of databases in communication has been explicitly
recognized by leading genome researchers [6]:

Public access databases are an especially important feature of the Human Genome
Project. They are easy to use and facilitate rapid communication of new findings
(well in advance of hard–copy publications) and can be updated efficiently.

These biological information resources, as seen by users, are better conceived
as database publishing systems (DBPSs), not as database management systems
(DBMSs). Although DBMSs are used to build some of these information
resources, when the data are made available to users, they are “published” in a
sense, and it is read–only interoperability among all the resulting DBPSs that is

ROBBINS: Information Infrastructure for the Human Genome Project 5

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

greatly needed by the broad scientific community. (Update interoperability
involving smaller subsets, sometimes just pair–wise combinations, of the
underlying DBMSs is also needed, but that will not be discussed here.)

Achieving read–only interoperability among loosely coupled DBPSs is much
easier than doing so with read–write DBMSs. With DBPSs, the notions of “loosely
coupled” and “tightly coupled” are better considered as naming the ends of a
continuum of relationships, rather than designating two mutually exclusive states.
Figure 2 illustrates some possible points along the continuum.

Loosely Coupled: common syntax for data publishing

common semantics for data publishing

shared data model across participating sites

adoption of common DBMSs at participating sites

Tightly Coupled: single organizational entity overseeing information
resources relevant to genome research

•
•
•

Figure 2. The distinction between tightly coupled and loosely coupled systems, seen as
designating the ends of a continuum of relationships among database publishing systems.
The tightest level of coupling yields a completely integrated, single management structure.
The loosest level of coupling involves merely a collection of wholly independent
organizations that publish their data in a common syntax.

Stand–alone database management systems provide robust local functionality,
but low interoperability across heterogeneous sites. Loosely coupled generic, read–
only systems, such as gopher and World–Wide Web (WWW), provide wide
interoperability, but with lower local functionality. Because the incremental cost of
mounting gopher and WWW servers is small for those already building large local
databases, many biological information resources are now using gopher and
WWW to supplement, not replace, existing services.

The value of participation in widely available generic systems, especially to
users, can be astoundingly high, since the overall value of an interoperable network
of cross–referencing information systems increases non–linearly with the number
of participants. Thus, for the HGP in particular and for biology in general,
attaining increasing generic database interoperability among all relevant
information resources must be a continuing goal.

ROBBINS: Information Infrastructure for the Human Genome Project 6

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

ACHIEVING INTEROPERABILITY

Many hold that achieving full read–and–write interoperability across multiple
databases requires an integrated data model, or schema, spanning the participating
information resources. A recent refinement is the integration of only portions of the
local schema, which may be specially modified to facilitate integration. These
modified subschemas are known as export schemas. [4],[14]

Export schemas buffer against changes in the underlying databases, but only if
the export schemas themselves are stable. Ultimate fragility due to inevitable
changes in the underlying systems has led Chorafas and Steinmann [2] to dismiss
global schema integration as impractical and to characterize such attempts as an
“approach which has been tried and failed since 1958”.

Evolution of Complex, Integrated Systems

Building large, complex software systems is best done through the assembly of
stable, interoperating components. Attempts to build truly large systems as
integrated monoliths rarely succeed, since the inter–related complexity of the
resulting behemoth soon exceeds the ability of programmers and managers to track
and maintain. Ideally, systems should be based, at least in part, on a foundation of
components developed elsewhere, since without some cumulative development
continued functional advances cannot occur

In 1982, Frederick Brooks observed [1] that writing a simple, stand–alone
program is relatively easy, compared with the additional effort required to extend
that program so that it acquires product–like qualities of robustness and portability,
or so that it can function as a component in a complicated system. Crossing the
complexity boundaries to achieve these improvements, Brooks estimated, increases
the level of effort at least ten–fold, but both are required to produce the
programming systems product, “the truly useful object, the intended product of
most system programming efforts.” In short, building good components is hard
work, but essential, if large integrated systems are the goal.

If Brooks’ insights are any guide, the development of interoperating
biological databases will require an engineering solution that maximizes the
utility and cost–effectiveness of the entire system, not the elegance of individual
components.

Historical Trends in Database Management
Early on, managing data was seen as just another computational problem, to

be solved by local programmers. Custom solutions were developed to handle all
aspects of the system’s behavior, with the exception of a few basic services, such
as file management, provided by the operating system. Over time, the realization
that nearly all data–management problems require certain common services led to
the development of commercially available DBMSs.

ROBBINS: Information Infrastructure for the Human Genome Project 7

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

DBMSs provide their services transparently, so that developers need only
specify what must be done, while allowing the underlying DBMS to determine how
it will be accomplished. Thus, when specific applications are produced using a
particular DBMS, the overall system can be seen as operating in two parts:

• a top layer consisting of the application program itself, and

• a bottom layer, or layers, consisting of relatively transparent services
provided by the DBMS and called by the application program as needed.

The general trend has been to increase the activities delivered as transparent
services. Early DBMSs added a data model (schema) to the application, abstracted
the underlying data structures into records, and moved the processing of input and
output into generic tools. The relational model further abstracted the data
structures into tables and pushed access methods into the generic tool layers.
Object–oriented databases are now moving even more into the generic tools layer,
while abstracting the data structures into objects that encompass both data and
methods—code that manipulates the data.

This pattern of increasing reliance upon generic services continues to spread,
with some systems, exemplified by WWW, merging generic information–retrieval
and network tools into a conceptually unified, yet physically distributed
information space.

Layered Architectures in the Networking Model
Networking has followed a similar evolution, with generic functionality being

pushed increasingly into layers below the executing application. Early networking
solutions were ad hoc, local, and proprietary, so that application programs had to
be custom designed for a specific network infrastructure. Now, however, generic
networking protocols allow application programs to exchange specific messages
transparently.

A layered stack of software protocols allows application programs running on
physically separated computers to interact as if they were directly connected. Each
application program communicates to a layer just underneath it, according to
standardized protocols. Bottom layers on the sending system prepare the message
for transmission on some physical medium. Those same layers on the receiving
system retrieve the message from the physical medium, then decode and
reconstruct it, so that the message presented to the application program on system
B is exactly what was sent by the application program on system A (Figure 3).
Because it would be impossible to guarantee perfect transmission of every packet
on the physical medium, appropriate metadata are transmitted so that the receiving
system can determine that packets have been lost or damaged and request
retransmission.

In this layered architecture, responsibility for determining how various tasks
are to be accomplished resides within individual layers. Higher layers need only be
aware of what services are provided by the lower layers. Although communication

ROBBINS: Information Infrastructure for the Human Genome Project 8

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

protocols between layers are well defined and stable, the internal details of how a
layer is implemented may be changed at any time.

The layering of responsibility for how things are to be done while preserving a
well–defined stack of what services are needed has given modern networking its
great strength and flexibility. So long as a layer continues to meet the
specifications for what is to be performed, improvements may be made in how it
carries out its tasks, without necessitating changes in other layers. Entire layer
modules may be readily snapped out, and others substituted. For example, an
underlying ethernet layer may be replaced with FDDI, with no changes whatsoever
required in programs running at the application layer.

A B C

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AAAA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Physical

Data-link

Network

Transport

Session

Presentation

Application

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Physical
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Data-link
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Network
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

Transport
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Session
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Presentation
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Application

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Physical
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Data-link
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Network
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Transport
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Session
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Presentation
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Application ASN.1

Ethernet (802.3), Token Ring, FDDI, ATM, or ...

Figure 3. The seven layers of the ISO–OSI reference model. Virtual connectivity between
applications on different computers is accomplished via direct communication between
adjacent layers within each system, according to well–defined protocols. For example,
abstract syntax notation (ASN.1) defines the communication protocols between the
application and presentation layers. (ASN.1 is a powerful scheme for representing data of
arbitrary complexity. This has led some [cf. Ostell, this volume] to devise very clever, non–
networking uses for the protocol.)

The experience of networking illustrates an important principle of distributed,
scalable design: distributed interoperating systems benefit from layers of
collectively designed, but independently developed components, interacting
through defined, stable, open protocols.

ROBBINS: Information Infrastructure for the Human Genome Project 9

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

Interoperating Genome Information Resources

Obtaining interoperability among genome and genome–related databases
involves two related, but distinguishable goals:

• Increase the homogeneity of participating genome systems (i.e., tighten
the coupling among the data systems of the genome community). This
would allow genome data to be more easily obtained from multiple sites
in a common format appropriate for integrated analyses. This will require
achieving greater semantic and social interoperability among the systems.

• Develop general interoperability while tolerating loosely coupled
heterogeneous systems (i.e., participate in a loosely coupled federation of
general biological information resources). This would allow the further
integration of genome data with other relevant data, such as metabolic
information, structural biology data, comparative findings, etc. These
needs could be met through a more loosely coupled, read–only approach.

These are not mutually exclusive and, in fact, are more likely to be mutually
reinforcing. Efforts to achieve intra–community homogeneity can be made at the
same time that steps are taken to permit interoperation with heterogeneous systems.
Both paths should be followed simultaneously, since within a small, cooperating
community (e.g., a few collaborating sites), homogeneity may be attainable,
whereas in larger communities heterogeneity is inescapable.

Although achieving a moderately tightly coupled architecture might be a
useful goal for genome databases, simultaneous participation in a loosely coupled
system is also necessary for several reasons:

• It will take time to increase the coupling across all genome databases and
there is a need to improve interoperability before improved coupling
becomes widespread.

• Although some genome databases will likely converge upon a few
common data models and database systems, the probability that the entire
community will converge upon a single standard is essentially zero.
Therefore, loosely coupled interactions among different groups of
genome databases are essential.

• The HGP community will receive real benefits from participating as a
component in other, larger federated information infrastructure systems,
and these larger systems will surely be loosely coupled at best.

• The use of loosely coupled distribution systems is actually likely to
facilitate the development of more tightly coupled approaches. The ready
availability of data from multiple sources will give wide exposure to
arbitrary differences in data models, resulting in significant community
pressure for convergence upon greater semantic consistency.

ROBBINS: Information Infrastructure for the Human Genome Project 10

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

If networking experience is a guide, any suggestion that the HGP requires only
highly coupled information resources must be soundly rejected. Network
connectivity is useless unless an entire stream of data can be moved reliably from
one host to another. But networking technology cannot guarantee the delivery of
any given packet. Therefore, reliable end–to–end transmission of data streams is
implemented on top of an unreliable packet–transfer system. Protocols in higher
layers detect the inevitable occurrence of lost or damaged packets and request that
they be resent, so that ultimately a reliable duplicate of the data stream from the
sender can be reassembled at the receiver. If efforts had been made to implement
complete reliability at the packet transfer layer, effective networking would still be
a far–off dream. This experience illustrates an important principle of appropriate
foundations: sometimes robust solutions are best built upon seemingly weak
foundations.

RECENT ADVANCES

New methods for creating loosely coupled federations of read–only electronic
publications are being rapidly adopted across the Internet. The implications of
these advances for genome informatics are best appreciated after first briefly
considering historical patterns in the development of bio–informatics systems.

Evolution of Biological Information Systems

With early computerized biological information resources, users had to install
the entire system, software and data, on a local computer before the local value of
the resource could even be tested. As installing these systems was expensive, both
in effort and in resources, their appeal was limited.

The next step was the development of dedicated client–server systems, in
which the data resided on a centrally located server and only the client software
had to be installed locally. This approach had several advantages, especially in
reducing the local disk–space requirements and in providing access to up–to–date
data without requiring that the data be distributed to all users. It suffered from not
providing any interoperability among different information resources.

The most recent step has been the emergence of loosely coupled generic
client–server systems, such as WWW. Here, a single generic client is capable of
accessing data on any server that “publishes” its data according to the generic
server protocol. Incorporated in the protocols are the ability of one data server to
“reference” information present on another server. This allows the ready creation
of a basic form of read–only interoperability.

Much of the power of this approach derives from the way generic components
and standard cross–referencing schemes allow the user to perceive systems to be
interoperating when in fact the operators of the systems may not even know that
each other exists. This illustrates an important principle of anonymous

ROBBINS: Information Infrastructure for the Human Genome Project 11

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

interoperability: scalability is greatly enhanced if interoperation can be effected
between anonymous partners.

Power of Generic Client–Server Computing

Although database research has emphasized tightly coupled approaches, recent
experience has shown that appropriate protocols, coupled with middleware tools,
can make some loosely coupled systems incredibly effective, albeit in a read–only
manner. The two most successful recent internet applications have been gopher
and WWW, and both of these are loosely coupled federations serving read–only
multi–media hypertext and other file–based resources. User have voted with their
feet, so to speak—over the past 18 months, usage of these products has increased
nearly twenty–thousand–fold, while the internet itself has grown only four–fold.

Distributed Object–Oriented Programming

In addition to being generic client–server systems, gopher and WWW also
exemplify a rudimentary form of distributed object–oriented programming. Data
objects, along with the names of methods that may be used with the objects, are
provided by the servers, while generic clients contain the actual hardware–
dependent binaries necessary for executing the methods. This distribution of data
and methods between server and client offers a powerful and extensible system for
searching, browsing, and retrieving data of a variety of types.

Gopher and WWW
Gopher is a loosely coupled federation of standard file servers, distributed

around the world, accessed with a copy of generic client software. Any gopher
server can be interrogated from any client. The basic interface is the simple menu,
with every menu choice either (1) retrieving another menu, (2) retrieving text, data,
graphics, software, or other files, (3) initiating a query directed to a specific
database, or (4) initiating a search for more menu items. The power of gopher lies
in the invisibility of its infrastructure to users, who feel they are just making
choices from options presented by a single system when in fact they can be
jumping from computer to computer, around the world.

At its most basic level, each gopher transaction is basically a “please send me
a thing named X” request directed to a particular server, followed by the sending
of X. The server has no knowledge, nor any need for knowledge, about how it
happened that this particular client asked for that particular object. The elegance is
in the simplicity—at base level, every transaction is just a request–response
exchange. Additional functionality is achieved by layering other logical functions
on that fundamental transaction.

Although gopher permits cross referencing between servers, in the sense that
menus on any server can reference files or other menus on other servers, it does not
support cross referencing at the level of actual objects being returned. The WWW

ROBBINS: Information Infrastructure for the Human Genome Project 12

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

approach, however, moved the ability to cross reference into the data objects
themselves, thus creating a distributed hypertext information space.

WWW architecture is based on: (1) a standard (hypertext markup language, or
HTML) for producing formatted text that may contain embedded cross references
to other such files, (2) a naming scheme (Uniform Resource Locators, or URLs)
that allows for the unambiguous resolution of such embedded references, and (3) a
protocol (hypertext transfer protocol, or HTTP) for the efficient retrieval of
documents in a hypertext environment. The WWW philosophy includes a
commitment to providing access to information via older protocols (e.g., ftp,
WAIS, gopher) as well as being sufficiently extensible to accommodate new
protocols as they become available. Like gopher, WWW–conforming systems can
spawn external “viewer” programs to present new data types to the user.

The National Center for Supercomputing Applications (NCSA) developed and
released Mosaic, a graphical browser into WWW information resources. Mosaic
added the ability to display graphical images directly in the browser, so that HTML
source pages could contain embedded references to graphics files, which would be
displayed as images in the basic browser display. Extensions now allow the
embedding and presentation of sound and full–motion video, creating a multi–
media hypertext gateway into the Internet information space. The success of
Mosaic has stimulated other developers, so now there are many WWW browsers
available, each competing with each other to add new functionality.

A truly remarkable aspect of the WWW phenomenon has been its rapid
acceptance. Client usage has increased because of ease of use, but probably more
importantly because of the rapid proliferation of WWW information servers. The
value to the user of an integrated set of information resources increases greatly
with the number of participants. The number of WWW sites has now reached the
point where a run–away positive feedback system has been generated.

Nearly every major biological database now publishes information via WWW,
and more resources are coming on–line daily. Anyone with a computer attached to
the internet and a copy of WWW server software (available free) can become a
publisher of electronic information simply by preparing a few files in HTML
format, making them available through their server, and then simply sending out an
announcement of the new resource and giving its name in URL format. From that
moment on, all of the millions of users with client software have instant access to
the resource. This illustrates an important principle of value explosion: once the
number of components in an interoperating network of information resources
passes a critical size, the overall value of the network grows explosively.

Networks as Distributed Information Spaces
The generic client–server system for retrieving information from the Internet,

exemplified by WWW, has stimulated a new vision of just what the Internet
represents. Schatz and Hardin [13] note:

Originally intended as a distributed network of computers, [the Internet] is
increasingly viewed instead as a distributed space of information. Rather than

ROBBINS: Information Infrastructure for the Human Genome Project 13

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

transferring files between computers, a user navigates an information space of
distributed items of information. The users concentrate on the logical structure of
the interconnection of information and data items rather than on the underlying
physical stricture of computer and communication systems.

This new concept of the internet raises many interesting challenges, too
numerous to consider here. Some relevant discussions may be found in [17].

Middleware Extends Functionality

Initially, gopher and WWW systems were available only for retrieval of text
and file–based information or for multi–media hypertext. However, clever
extensions, particularly in the development of middleware and gateways to other
systems, are allowing these tools to access more structured data and to provide an
apparently integrated joint interface to more than one server.

Powerful middleware can be developed simply by sandwiching custom code
between a generic server and a generic client. Users accessing the server side see
only an integrated data resource that returns information according to standard
protocols. The server, acting as middleman, takes information provided by the
user, manipulates it using whatever custom routines are needed, dispatches the
results to one or more local or remote servers, receives, processes, and integrates
the results from the various servers, and finally presents them to the user.

Examples of middleware can be found that provide general network services,
such as the veronica search engine (which helps users locate information resources
in GopherSpace), or that meet specific needs for a target community, such as the
Johns Hopkins University’s GenQuest server (which provides sequence analysis
services to the molecular biology research community via a WWW server).

The GenQuest Server
GenQuest (available as a choice on the Johns Hopkins Computational Biology

home page; URL = http://www.gdb.org/hopkins.html) uses a WWW forms
interface to offer a variety of analytical algorithms (e.g., Smith–Waterman,
FASTA, Blast) for analyzing nucleotide or protein sequences. The user selects the
kind of sequence to be analyzed and the algorithm to be used, sets parameters for
the algorithm, pastes the sequence into a receiving window, and clicks a button to
initiate the analysis. The software at Hopkins reformats the query and sends it to an
on–line analysis server at Oak Ridge, Tennessee. The output from Oak Ridge is
reformatted into HTML, with hot links added dynamically to all referenced objects
available via WWW. The results are then returned to the user’s client software as a
standard HTML page, with hot links established to all external data objects
referenced in the report. The user may then navigate over the hot links to obtain
related information.

Dan Jacobson (danj@gdb.org) was able to assemble GenQuest very easily,
because a powerful on–line compute server, capable of returning analyses quickly
enough to service a real–time interface, was available at Oak Ridge and because all

ROBBINS: Information Infrastructure for the Human Genome Project 14

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

of the databases referenced in reports from the Oak Ridge server publish their data
using standard WWW protocols and servers. The availability of these resources via
standard on–line protocols allowed Jacobson to create an apparently unified
information resource simply by providing value–adding integration through pure
third–party middleware. Explicit support and encouragement for value–adding
activities by third–party developers must be a guiding principle for genome
informatics.

Middleware Allows Unilateral “Collaborations”
Operators of public databases often find themselves besieged with would–be

collaborators. No matter how public–spirited the proprietors of the database, they
will have to turn some (occasionally many) potential collaborators away, because
true collaborations require effort on the part of both parties and no public database
has unlimited resources with which to pursue collaborations.

If, however, databases publish via widely used generic client–server systems,
third–party developers can effect apparent “collaborations” simply by developing
appropriate middleware to interact with the databases. For example, developing a
system like GenQuest requires no active collaboration of any information resource
providing data to which hot links are generated.

Schatz and Hardin [13] describe the power of such “unilateral collaboration”
in the context of Mosaic and WWW extensibility:

This is an example of the idea of “Open Information Systems,” systems that allow
for the easy integration of existing information sources and that can be extended
and expanded by users in ways that were often unanticipated by the original
developers. [emphasis added]

Empowering third–party developers to expand the functionality of federated
information resources without requiring the active collaboration of the original
developers promotes incredible functional growth at very low cost. This illustrates
an important principle of value additivity: in a well–designed information
infrastructure, most value will ultimately be added by third–party developers.

DATA PUBLISHING IN A LOOSELY COUPLED FEDERATION

Although many scientific information resources now use WWW technology to
share their data with others, additional extensions are needed before such a system
can become truly effective for publishing structured data, not merely textual
information.

Why WWW is Not Enough

WWW is presently inadequate for retrieving and integrating some kinds of
richly structured scientific data. A few issues are:

• Set–based retrievals are needed, which WWW does not directly support.

ROBBINS: Information Infrastructure for the Human Genome Project 15

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

• Automated data retrieval must be supported. This requires an automatable
means for extracting the intended semantics of published data objects (as
can be done with data dictionaries of structured databases). WWW
homepages have no established semantics and WWW provides no
standard way to publishing the metadata necessary to declare semantics.

• A PROJECT operator, in the relational sense, is essential. Some data
objects may have thousands of fields but a user may only need, say, three
of them. The idea of retrieving them all, then editing locally is not
efficient, since the database may contain tens or even hundreds of
thousands of relevant objects.

• The ability to do automated, set–based, distributed joins (equivalent to a
relational JOIN across distributed databases) across data in multiple
servers is a crucial requirement for scientific data publishing. This will
require a significantly different client and a significantly different server
than is presently available with WWW.

• Identifiers that have much in common with relational primary and foreign
keys are needed. URLs and embedded URLs as presently implemented do
not have the necessary semantic constraints. WWW offers no support for
referential integrity.

Some of the inadequacies in dealing with structured data stem from the
developmental history of gopher and WWW. Both projects have intellectual ties
with information retrieval (IR), not database development, and many differences
exist between the needs of database users and the services delivered by IR systems:

• IR query systems support ambiguous queries and resolve them using
probabilistic retrieval systems, whereas databases hold structured data and
provide exact answers to well–formed, structured queries.

• Hypertext browsers are intended for human usability, with the assumption
that they will present multiple navigation options to a human user.
Database users frequently need a computational application programming
interface with which to interact, so that they can direct an application
program to extract and analyze data sets, then return the analytical results.

• Hypertext supports flexible linkages between objects, but more structured
linkages, with defined semantics (such as a foreign key to primary key
reference), are required for structured data.

The list could be extended. But, the goal here is to offer neither the definitive
characterization of the problem nor the definitive solution. Instead, we wish to
establish that, in their present form, the widely available IR tools for easily
fetching text and hypertext do not meet the needs of those who desire integrated
access into structured databases.

ROBBINS: Information Infrastructure for the Human Genome Project 16

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

Protocol Extensions Needed

The limits are not only with WWW, but also with the networking protocols on
which it is based. At present, the fundamentals of internetworking assume that the
ultimate goal is to connect processes running on different hosts. IP addresses
provide two–part, network:host identifiers. A process can be associated with a
particular port on a given host, extending the identifier to network:host:process.
URLs add one more level—network:host:process:object, with the hard–wired
assumption that these are all related one–to–many, left–to–right.

What is needed instead is something that identifies databases independently of
their host and objects independently of their location. And, more importantly, a
system is needed that would allow one name to be associated with several different
instances of the same database or object. For example, the Genome Data Base
(GDB) is a scientific database that has a primary location in Baltimore, Maryland.
However, there are also more than a dozen read–only, public copies of the
database scattered around the world. A naming convention is needed that would let
users request objects from GDB without having to specify which GDB location to
use. However, allowing the user the options of specifying either a particular host or
particular conditions (e.g., the nearest copy, the most current copy, the currently
least–loaded server, the copy with the highest average bandwidth between it and
the user, etc.) would be useful.

In short, rethinking of network architecture is needed, guided by expertise
from the worlds of networking, information retrieval, and database development.
Without all three, whatever results will likely be missing some key functionality. A
good discussion of extended network–protocol functionality needed for the future
can be found in [17].

Reference Architecture for a Federated Object–Server Model

In a keynote address at the Third International Conference on Bioinformatics and
Genome Research, Robbins [12] introduced a reference architecture for a Federated
Object Server Model (FOSM) as a “robust straw man.” (A reference architecture
summarizes a system’s basic functional elements and the interfaces between them.
It identifies needed protocols and suggests groupings of functionality, but it does
not imply a physical implementation.) FOSM is a straw man in the sense that it is
freely admitted not to be the (or even necessarily a) solution. But FOSM is also
robust, in that it provides a focus around which requirements for interoperating
structured databases may be considered. An outline of the FOSM concept,
emphasizing some aspects of the data model, is presented here. A more detailed
description is being prepared and preliminary drafts are available from the author.

FOSM Overview
Like WWW, the FOSM approach derives data structures and protocols from a

vision of how a networked information space might operate. In FOSM, servers
provide access to richly structured data objects that can contain semantically well–

ROBBINS: Information Infrastructure for the Human Genome Project 17

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

defined cross references to other data objects, allowing the rough equivalent of
distributed joins in a relational database. The FOSM concept entails a strong
commitment to resource discovery and resource filtering. Resource filtering, the
deliberate restriction of queries to “trusted” sources, is essential if retrieved data
are to be passed directly to other software for analysis. Support for third–party,
value–adding developers is central.

The FOSM approach is generally applicable to any set of information
resources involving structured data. Examples would certainly include scientific
data resources and also many types of commercial information, either to be
published externally for customers or as an internal resource within an enterprise.

FOSM Assumptions and Requirements
A complete discussion of FOSM assumptions and requirements would require

a book–length presentation. Some examples are given here.

Basic Assumptions
The FOSM system will follow a generic client–server design, emphasizing

autonomy of local sites and enabling structured queries into structured data.

• FOSM sites will publish their data in a read–only format via a standard
object–server system (although they will maintain their databases in
whatever manner they choose).

• Generic client software will obtain data from the read–only federation.

• With a single query, users will be able to obtain sets of related data
objects from multiple independent data resources.

General Requirements
The FOSM system:

• should be relatively impervious to changes in data volume or in the
number of participating sites—i.e., scalability is essential.

• must facilitate value–adding activities by third–party developers.

• must be data driven and self configuring. This means that a naive client
should be able to contact a server for the first time and, as a result of
transactions with the server, produce a usable user interface and initiate a
query dialogue.

• should provide a local (i.e., client side) API, as well as the networked API
into the server.

• should permit “subscription” to user–constructed queries. That is, users
should be able to capture the steps necessary to execute a query, then
request the system to execute that same query on regular timed intervals,
returning data to the user via some specified route (email, ftp, etc.).

• must retrieve data in both human readable and computable format.

ROBBINS: Information Infrastructure for the Human Genome Project 18

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

• must provide support for multiple concepts of object identity.

• must provide support for resource discovery in a manner at least loosely
equivalent to that offered by the data dictionary in a stand–alone database.

• must support the equivalent of foreign key to primary connectivity
between objects in different databases.

• must be able to provide query operators more or less equivalent with the
SELECT, PROJECT, and JOIN operators of relational databases.

• must provide some minimal support for domain and referential integrity
across entries in multiple data resources.

• must support both outer and true equi–joins across distributed object
servers. Semantically well–defined cross–referencing (equivalent to
foreign key to primary key references in a relational database) must be
representable in the data structures and traversable by the system
software. It must be possible to traverse such links without mandatory
human intervention (e.g., without mandatory mouse clicking).

Server Requirements
FOSM servers will need to provide actual data to satisfy queries and also

metadata to support building and operating the client interface and other
automatable tools. Servers will also need to provide some server–to–server
information to help maintain external references.

FOSM servers must:

• provide full–function anonymous data serving. That is, their services
should be fully available to clients unknown to the server until the first
query arrives.

• support negotiation with clients regarding the details of protocols, data,
and formats. For example, a client might specify the maximum amount of
data it could receive in one transaction or negotiate handshaking
protocols. In addition, clients might inform the server what methods the
client can support or what services it will request of the server.

• support both value–based queries and identifier–based queries.

• serve several different kinds of objects: (1) “type objects” that document
the structure of the data objects so that the client software can produce an
appropriate query and retrieval interface; (2) “data objects” that contain
the actual data of interest; or (3) “help objects” that contain help messages
to be used by the client to provide context–sensitive help messages.

• support remote domain and referential integrity in external servers. That
is, if objects in one FOSM server reference objects in another server, the
second server should provide specific support to assist in maintaining the
integrity of references towards it. This might take the form of an

ROBBINS: Information Infrastructure for the Human Genome Project 19

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

EXISTS() function that would allow a server to verify the existence of an
externally referenced object in its collection.

Client Requirements
To support the needs of database users, the FOSM client will need to be able

to maintain more customizable functionality than does a Mosaic or other WWW
browser. FOSM clients:

• will need to “negotiate” with FOSM servers regarding the format and
structure of objects requested and regarding the parameters and protocols
of exchange.

• must be able to build dynamically custom forms–based or graphical
interfaces to allow the interrogation of any FOSM server. To do this,
clients will obtain metadata describing the structure of objects served by a
particular FOSM server.

• must allow users to manipulate the structure of data objects from one
server, or combine structure objects from different servers, to build single,
virtual objects against which unified queries may be dispatched. It is this
functionality that would allow users to specify queries that are similar to
relational PROJECT or JOIN operations.

• must support “batch” as well as interactive, retrieval operation. That is,
users must be able to create and store queries and the software must be
able to execute stored queries automatically at specified times or
intervals, outputting the retrieved data automatically into local files or
into local analytical software.

• must allow user customization of the local–software configuration and of
the configuration of interfaces into particular databases.

Resource–Discovery Requirements
The FOSM approach assumes that users will need assistance in identifying

relevant FOSM objects and servers. It also assumes that a key part of resource
discovery is resource filtering—i.e., the explicit rejection of data objects from
undesirable sources. Therefore, the FOSM approach supports the free development
of “editorial” activities, so that editorial bodies may indicate approval for
individual FOSM objects, or for individual FOSM servers, or for sets of objects or
servers. Editorial annotations could be hierarchical. That is, an editorial board
might wish to assign its approval to all of those objects already approved by
editorial boards A, B, C, and D.

Resource discovery tools must be easy to locate and use. Therefore, access to
FOSM resource–discovery tools should be a built–in component of the FOSM
client. Whether the discovery information should be provided by a central, known
source; by distributed search engines (like veronica); or by some significant
extensions to self–propagating name systems (like DNS) is an open question.

ROBBINS: Information Infrastructure for the Human Genome Project 20

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

Third–party Development Requirements
In a manufacturing economy, materials travel along extensive pathways of

value–adding activities: e.g., ores are mined, metals extracted. parts fabricated,
objects constructed, etc. A successful “information economy” must also support
unlimited chains of interlocking value–adding activities.

Many desktop software packages now explicitly support value–adding plug–in
modules from third–party developers, and some of these interfaces have become
sufficiently generic that they have been adopted by competing manufacturers. For
example, the same third–party graphics manipulation filters can be used to
augment the functionality of either Adobe Photoshop or Corel PHOTO–PAINT.

Because FOSM recognizes the importance of value–adding developers, all
aspects of the FOSM architecture must be designed either to provide explicit
support for third–party activities or to avoid hindering third–party activities. For
example, FOSM resource–discovery services should be designed to allow any
third–party to provide value–adding classifications of FOSM servers or FOSM
objects. Extended chains of value–adding activities should also be supported, such
as allowing third parties to classify classifications developed by other third parties.

Data–Structure Requirements
Just as the HTML data structure is the key to WWW functionality, so an

appropriate syntactic data structure will be required for handling structured data.
The FOSM model does not specify or constraint the semantics of participating
databases, just as HTML does not specify or constrain the contents of WWW
documents. Thus, two FOSM databases might well choose to publish similar data
objects in semantically different forms. This is acceptable in a FOSM environment,
provided that both data servers published their data in the FOSM syntax.

FOSM data structures:

• (or some consistent representation of them) must be reasonably easy to
understand. (This would facilitate the development of virtual objects by
users and/or third–party developers.)

• must be able to represent considerable (arbitrary?) complexity.

• must be able to offer meaningful representations of data objects extracted
from different underlying DBMSs (e.g., RDBMS, OODBMS, etc.).

• must be readily parsable.

• should be closed under basic retrieval and manipulation operations.

• must robustly and unambiguously support the ability of data objects to
contain, as attributes, references to data objects published elsewhere.

• must be self–describing, so that almost anything can be represented, yet
constrained, so that generic client tools can be developed.

ROBBINS: Information Infrastructure for the Human Genome Project 21

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

FOSM data structures could exist at both a physical (as represented internally
by the system) and a conceptual (as perceived by users) level. In this essay, we will
consider only the conceptual aspects of the data structure.

FOSM Architecture
FOSM architecture is based on a generic client–server approach, with explicit

support for middleware and other development by third–parties. A registry of
FOSM information would support both direct queries and resource discovery
activities. Whether the registry should be a central database, or a system that
supports duplicated information propagation (such as domain name servers) is an
open question. The registry would hold information about FOSM servers, FOSM
objects (and versions), FOSM links, FOSM subfederations, FOSM editorial
records, FOSM methods, FOSM names, FOSM cataloging, etc.

An overview of the FOSM architecture is given in Figure 4.

FOSM
Server

database

FOSM
Server

text files

FOSM
Server

virtual
database

FOSM
Server

compute
server

FOSM
RegistryFOSM

RegistryFOSM
Registry

name-resolution transactions

resource-discovery transactions

FOSM Server

FOSM Middleware

FOSM
Client

Other
Clients

FOSM database queries

two-way
dynamic objects

one-way
instantiated objects

FOSM Client

API

Network Interface

Figure 4. FOSM clients interact with FOSM servers and with a FOSM resource registry.
Servers publish holding information to the registry (gray arrows) and respond directly to
client queries (black arrows). Explicit support for nth–party developers is provided, through
the encouragement of middleware development.

ROBBINS: Information Infrastructure for the Human Genome Project 22

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

The FOSM client (Figure 5) is built around a central kernel, the FOSM user–
interface manager (UIM), which interacts with various local programs and remote
servers. The UIM would probably be some kind of script interpreter, possibly a
generic script interpreter so that more than one scripting language could be used.
The UIM core is surrounded by a variety of other programs, which are invoked to
call the local execution of “methods” associated with remote data objects, and
files, which provide appropriate metadata and caches.

FOSM Client

FOSM Client API

Network Interface

FOSM
Profile

FOSM
Cache

FOSM
Views

FOSM
Methods

Local
Programs

FOSM
User-Interface

Manager

Figure 5. The FOSM client provides much of its functionality through its component–
based design. All aspects of the FOSM system are intended to facilitate the value–adding
activities of third–part developers. That is, it should be easy for users to install locally
FOSM methods or views or profile components created elsewhere.

FOSM Data Model
A generic tree–shaped data structure provides a conceptual data representation

that meets FOSM requirements, since a tree can capture the minimum essential
subset of structure from relational, object–oriented, and other database systems.
Each type of FOSM tree would represent one class of real–world objects and each
individual FOSM tree would correspond with one member of that class.

Any data model that can be represented in an extended entity relationship
(EER) schema can have read–only data objects extracted from it into tree–shaped
configurations. Figure 6 shows how tree–shaped data objects may be extracted
from a portion of an EER schema. Multiple occurrences in the tree of the same
entity from the EER diagram indicates participation in different semantic roles. For
example, the faculty data–object tree is rooted on the faculty entity and also
includes “faculty” at two sublocations, one corresponding to the role of
“departmental colleagues” and the other of “departmental chair.” Individual FOSM

ROBBINS: Information Infrastructure for the Human Genome Project 23

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

trees are one–to–many downward, and lower nodes can be considered as sets of
sub–objects, related in some role as attributes of the next higher node.

FacultyDepts

Students advises

member

chairs

majors
Faculty

Depts
Students
(advisees)

Faculty
(colleagues)

Faculty
(chair)

Students

Depts
(major)

Faculty
(advisor)

Faculty
Faculty
(chair)

Depts

Faculty
(chair)

Faculty
(advisor)

Students
(advisees)

Faculty
(members)

Students
(majors)

Figure 6. Tree data objects can be easily extracted from EER schemas. Here faculty,
department, and student tree objects are all extracted from the same portion of a university
database schema (represented as a directed graph). Notice that one node in the original
schema may appear several times in a particular tree.

Individual tree–shaped data objects could be “selected” from a data server
either through value–based or key–based queries. Once obtained, the data objects
could be manipulated using operators such as “prune” and “graft” (Figure 7).
These operators are similar to those of the “project” and “join” operations in
relational databases. Prune and graft are “closed” in that they are defined to have
well–formed trees as inputs and to produce well–formed trees as outputs.

Prune and graft could be combined to give a “promote” operation that could
move nodes higher up the tree, eliminating intermediate nodes (and requiring some
role definition refinements). The FOSM client would allow the user to create
custom trees by pruning and grafting server–provided type trees, then store them
locally to be used in driving queries to underlying data resources. This would give
the ability to operate within a custom–tailored environment, while sparing servers
from the need to maintain profile information on individual users.

ROBBINS: Information Infrastructure for the Human Genome Project 24

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

prune

graft

promote merge

prune

1

2

3

1

2 3

1

2,3

Figure 7. The “prune” operator is similar to the relational “project” operation. The “graft”
operator is similar to the relational “join” operation. The “promote” operator allows the
movement of nodes to higher positions in a tree, through a combination of pruning and
grafting. If promotion results in multiple nodes defined over the same domain being
attached at the same point in the tree, the “merge” operator combines them.

FOSM Data Identifiers
To be “federation ready” a FOSM server would have to provide absolutely

stable, unambiguous identifiers for every rooted object in its published collection.
Similarly, every external reference in a FOSM server would be in the standard
format for global FOSM names. All rooted FOSM objects must be unambiguously
identifiable in a global FOSM name space of arbitrary identifiers. Although
biological names are too volatile to serve as primary FOSM identifiers, value–
based queries of FOSM objects must also be supported so that researchers can
interrogate the system using familiar terms. Indeed, one might expect that most
key–based FOSM queries would be produced by software, not human users.

ROBBINS: Information Infrastructure for the Human Genome Project 25

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

In a single copy of a stand–alone database, object identity is a fairly simple
concept. However, in a FOSM system, copies of objects will be distributed from
servers to clients where they may be stored for local use. Occasionally, then,
clients will need to compare object copies to determine their equivalence. This
raises subtle notions of identity.

For example, each FOSM object can be subdivided into five components: (1)
a database identifier that specifies the information resource from which the object
may be obtained, (2) a class identifier that specifies the class of objects to which
the object belongs, (3) an associated type tree that specifies what attributes objects
of that class could have (each FOSM class has one of these trees), (4) an object
identifier that provides a unique identifier for the individual object, within the
information resource, and (5) an associated data–value tree that specifies what
attributes the particular object does have and gives their values (each FOSM object
has one of these trees). (Note: because new findings sometimes lead to
reclassifications of real–world objects, FOSM object identifiers should be unique
within FOSM servers, not merely within FOSM classes, so that object identity
could be preserved across category reclassification.)

This allows for several different concepts of equivalence, of which we will
discuss four: object equivalence, class equivalence, version equivalence, and value
equivalence. In all cases discussed below, it is assumed that the objects come from
the same information resource.

• Two FOSM data objects exhibit class equivalence if they are from the
same FOSM object class.

• Two FOSM data objects exhibit version equivalence if they are class
equivalent and share the same type tree.

• Two FOSM data objects exhibit value equivalence if they are version
equivalent and have identical data–value trees.

• Two FOSM data objects exhibit object equivalence if they refer to the
same real–world object and they have the same object identifier. This is
the most fundamental component of identity and it persists across value
updates to the object’s attributes and possibly even across schema updates
to the object’s type tree.

Combinations of these three equivalences lead to different kinds of identity:

• Two copies of FOSM objects are semantically identical if they exhibit
class and object equivalence.

• Two copies of FOSM objects are computationally identical if they exhibit
class, object, and version equivalence. However, computationally
identical objects could have different values stored for the object’s
attributes.

• Two copies of FOSM objects are truly identical if they are
computationally identical and they exhibit value equivalence.

ROBBINS: Information Infrastructure for the Human Genome Project 26

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

Additional identity concepts could be derived from these. For example, we
might want to say that two objects are apparently identical if they are class
equivalent, with identical type and value trees, but different object identifiers.

To facilitate different kinds of identity comparisons, a FOSM object could
carry two computed identifiers, a type identifier (defined over the object’s type
tree) and a value identifier (defined over its value tree), in addition to its already
assigned class and object identifiers. These computed identifiers would be
calculated on the fly, whenever an object is provided by a FOSM server, much as
check sums are calculated anew each type an IP packet is placed on a physical
medium. These calculated FOSM identifiers would also be useful for detecting
corruption in local copies of FOSM objects.

Type identifiers could also be used to associate particular computational
methods with FOSM objects. For example, semantically identical DNA sequence
objects could be represented in computationally different FOSM trees that are
equivalent to flat–file, ASN.1, BLAST, etc., formats. Each format would have a
specific type identifier and this could be used automatically by software to
determine the appropriate parser to be used in analyzing the data.

Schema version changes would also be reflected in type–identifier changes.
To allow ready detection of specific versions, perhaps the type identifier should
contain two parts: one specifically giving the version number and the other a
computed value derived automatically from the contents of the type tree itself.

A major goal of FOSM is providing a scalable, automatable system for
delivering structured data objects across a federation of autonomous resources.
Achieving this will require that type identifiers contain a computed component so
that software can check automatically to determine if it knows how to read and
process the data. Data resource developers will differ in their personal notions of
what changes are sufficiently significant to constitute a change in the designated
version of the database. However, some third–party software may rely upon the
precise configuration of data from a particular resource and would break in the
face of even tiny changes in the schema. The only way to ensure that type identity
is genuinely preserved is through the use of check–sum–like computed identifiers.

In the short term, care must be given toward the specification of appropriate
global naming conventions to enable a global information infrastructure for
biology. In the longer term, efforts by the overall networking community to modify
network protocols to support transparent interactions among networked
information resources, not just networked hosts, will likely provide a more
complete solution [17]. Until such functionality is delivered, those developing
federated biological systems should take care to communicate their naming
requirements to the appropriate organizations and developers.

Data–Level Integration Across Multiple FOSM Servers

FOSM would support data–level integration across data objects from multiple
servers. For example, information on mammalian genes could be published by

ROBBINS: Information Infrastructure for the Human Genome Project 27

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

several different FOSM servers. Each server would have the local responsibility
and autonomy for formatting and publishing its own holdings in the form of trees.
Leaves on the trees published by one data server could contain “tokens” that
represent the roots of specific data trees available from other servers (Figure 8).

Server 2Server 1 Server 3

Human
Genes

m

Mouse
Genes

h

Mammalian
Homologies

mh

Figure 8. In a FOSM environment, individual data resources would publish their holdings
to the network in a standard tree–structure format, according to standard protocols. Nodes
marked with “m” and “h” represent sets of tokens that would correspond to the root nodes
for mouse–gene and human–gene objects respectively. The inclusion of these external
references as leaf nodes indicates that the designer of the local database believes that these
external objects are related to the database’s primary objects in some role (which is defined
in the local database). The decision to include such references, and the populating of them
with values, would be the responsibility of the local FOSM server.

Although one might expect data structures describing human and mouse genes
to be semantically very similar, or even identical, here it is assumed that they are
semantically distinct. Social pressures might exist on data resources to provide
physically similar trees for semantically similar objects. However, these pressures
would be external to FOSM itself, which only requires that servers adhere to the
FOSM tree syntax.

As long as all participating data servers followed these simple guidelines, and
providing that a global naming system offered access into a stable, unambiguous
naming space for FOSM objects, generic client software could allow users to
navigate easily among related data items from different servers.

If data from different servers are combined using the “graft” operator, new
trees are produced. For example, Figure 9 shows human–gene objects extended to
include mouse genes as attributes, and vice versa. Mammalian–homology data
objects could be extended to include both human and mouse genes as attributes.

ROBBINS: Information Infrastructure for the Human Genome Project 28

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

Mammalian
Homologies

Mouse
Genes

Human
Genes

Figure 9. Related data objects may be obtained from different FOSM servers, then grafted
together to give new, compound objects. All three of these grafted data objects represent
homologies between human and mouse genes, but each from a different perspective: that of
the human gene, the mouse gene, and the homology itself. In a DBMS, such inconsistency
might be seen as a problem. In a DBPS, the ability to represent diverging viewpoints while
maintaining syntactic consistency is a feature.

If data about human genes, mouse genes, and their possible homologous
relationships were contained in a single database, obtaining the set of asserted
homologous gene pairs would involve a simple, unambiguous join. In the FOSM
model, however, individual data providers may offer data objects that reference
objects in other databases. Different data providers would be free to publish
logically equivalent, but not necessarily content–identical linkages among data
objects, as there would be no formal requirement of identity. This freedom to
diverge is necessary to allow the information resources to act as scientific
literature, which must be able to support differences of opinion

SUMMARY

Biological databases, having survived a crisis of data acquisition, now face a
crisis of data integration. Meeting this challenge will require the development of
technical and sociological processes that will allow multiple databases to
interoperate functionally, while still maintaining much of their individual
managerial autonomy. Horizontal partitioning of data, as is the case across some
genome data resources, makes the challenge of interoperability especially acute,
since achieving good interoperability under these circumstances will require the
development of considerable semantic consistency among participating sites.

Computer solutions that, from initial design onwards, are aimed at meeting the
specific needs of some particular problem rarely evolve into generic interoperable

ROBBINS: Information Infrastructure for the Human Genome Project 29

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

systems. Solutions that are based on minimal generic components are more likely
to evolve gracefully into specific systems, especially if the specificity is added as
layers on top of the underlying generic foundation. Networking architectures have
followed this pattern and the evolution of database systems from file–based
approaches to cutting edge object–oriented databases show a similar trend.

To be truly useful to the widest range of potential users, on–line genome
information systems should be capable of functionally interoperating, at some
minimum basic level, with many different information systems (such as nucleotide
sequence databases, clinical phenotype information systems, metabolic databases,
systematics databases, etc.). Successful interoperation among a large, diverse, and
autonomous set of independent data sites can only occur if all sites use equivalent,
generic tools to publish their holdings according to common protocols and
syntaxes. Gopher and World–Wide Web offer examples of the power in this
generic client–server approach to information distribution, but they do not meet all
of the needs of those interested in publishing structured data.

An extended data–publishing model, perhaps related to the FOSM concept
discussed here, will be required if these needs are to be met in a generic fashion. In
such a model, local sites would still be free to manage their data internally
according to whatever methods seem best. More importantly, collections of sites
would be free to react to scientific needs for convergence upon similar methods for
internal data management, as well as upon common consensus data models and
semantics for external data publication, while at the same time using generic
methods, protocols, and syntaxes for data publication. The adoption of generic
client–server methods for data distribution is purely an enabling technology. By
not requiring common semantics of anyone, it allows for unrestricted syntactic
interoperability. By permitting the adoption of common semantics by some, it
facilitates unrestricted semantic interoperability.

The genome community could attain the best of both worlds if they achieve
interoperability by sandwiching generic data–distribution methods between
converging internal data–management systems on one hand and common public
consensus data models and semantics on the other. This would yield a unified
conceptual model for genome data, delivered in a system capable of generic
interoperation with non–genome resources.

ROBBINS: Information Infrastructure for the Human Genome Project 30

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

BIBLIOGRAPHY

1. Brooks, FP, Jr: The Mythical Man–month. Addison–Wesley Publishing Company,
Reading, MA, 1982.

2. Chorafas, DN, and Steinmann, H: Solutions for Networked Databases: How to Move
from Heterogeneous Structures to Federated Concepts. Academic Press, Inc., New
York, 1993.

3. GeSTeC Directors: Report: NCHGR GeSTeC Director’s meeting on genome
informatics, 1994. (Available electronically from Johns Hopkins WWW server,
http://www.gdb.org/Dan/nchgr/report.html.)

4. Hurson, AR, Bright, MW, and Pakzad, SH (Eds.): Multidatabase Systems: An
Advanced Solution for Global Information Sharing. IEEE Computer Society Press
Los Alamitos, CA, 1994.

5. Lewin, R: DNA databases are swamped. Science, 232:1599, 1986.

6. Murray, JC, Buetow, KH, Weber, JL, Ludwigsen, S, Scherpbier–Heddema, T, et al:
A comprehensive human linkage map with centimorgan density. Science, 265:2049–
2054, 1994.

7. Robbins, RJ: Database and computational challenges in the human genome project.
IEEE Engineering in Medicine and Biology Magazine., 11:25–34, 1992.

8. Robbins, RJ: Genome informatics: Requirements and challenges. In: Lim, HA,
Fickett, JW, Cantor, CR, and Robbins, RJ (eds). Bioinformatics, Supercomputing
and Complex Genome Analysis. World Scientific Publishing Company, Singapore,
pp 17–30, 1993.

9. Robbins, RJ: Biological databases: A new scientific literature. Publishing Research
Quarterly, 10:1–27, 1994.

10. Robbins, RJ: Representing genomic maps in a relational database. In: Suhai, S. (ed).
Computational Methods in Genome Research. New York: Plenum Publishing
Company, New York, pp 85–96, 1994.

11. Robbins, RJ (Ed.): Genome informatics I: Community databases. Journal of
Computational Biology, 3:173–190, 1994.

12. Robbins, RJ: Genome Informatics: Toward a Federated Information Infrastructure
(keynote address). The Third International Conference on Bioinformatics and Genome
Research; Tallahassee, Florida; 1–4 June 1994.

13. Schatz, BR, and Hardin, JB: NCSA Mosaic and the World Wide Web: Global
hypermedia protocols for the internet. Science, 265:895–901, 1994.

14. Sheth, AP, and Larson, JA: Federated databases systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22:183–236,
1990.

15. United States Department of Energy. 1990. Understanding Our Genetic Inheritance.
The U. S. Human Genome Project: The First Five Years.

16. United States National Academy of Sciences, National Research Council,
Commission on Life Sciences, Board on Basic Biology, Committee on Mapping and
Sequencing the Human Genome: Mapping and Sequencing the Human Genome.
National Academy Press, Washington, DC, 1988.

ROBBINS: Information Infrastructure for the Human Genome Project 31

File: IEEE-FIN.DOC Printed 6/8/95 – 11:17 AM

17. United States National Academy of Sciences, National Research Council,
Commission on Physical Sciences, Mathematics, and Applications, Computer
Science and Telecommunications Board, NRENAISSANCE Committee: Realizing
the Information Future: The Internet and Beyond. National Academy Press,
Washington, DC, 1994.

