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VARIATION DUE TO ONE UNIT FACTOR 

The effect of assortative mating on a population in which there is a single 
unit-factor difference, sex-linked or otherwise, has been discussed by 
JENNINGS (1916) for the case of dominance. The effects of assortative 
mating with regard to one factor on the distribution of a linked factor are 
discussed in a later paper by the same author (JENNINGS 1917). WENT- 
WORTH and REMICK (1916) give a more general formula for the case of one 
factor with dominance, and also a formula for the case of no dominance. 

If there are an equal number of the dominant and recessive allelomorphs 
in the population, the series of percentages of heterozygosis for successive 
generations runs 9, t, t, h, etc., in the absence of dominance, and $, +, 
+, i, A, etc., in the presence of dominance. 
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VARIATION DUE TO TWO FACTORS 

Where a correlation between mates is based on relationship, the aver- 
age percentage of heterozygosis is not affected by the number of factors 
involved. The case is otherwise with assortative mating based on external 
resemblance. In  dealing with characters dependent on two or more fac- 
tors the fact that the same appearance may be due to wholly different 
genetic constitutions, complicates the matter. 

ah1 1 5 5 13 124 
oal 7 10 13 130 

30 36 30 196 
24 24 24 24 196 

FIGURE 3 FIGURE 4 

FIGURE 1.-Genotypes in original population. 
FIGUFS 2.-Gametes produced by five phenotypes. 
FIGURE 3.-Correlation between uniting gametes. 
FIGURE 4.-Genotypes after one generation of assortative mating. 

Let us 'consider the case of assortative mating with respect to a char- 
acter which depends on two equivalent factors, A and B, neither of which 
is dominant over its allelomorph a or b. We will further assume that A 
and a, B and b are equally numerous and that the population is in equi- 
librium before the beginning of assortative mating. There will be nine 
genotypes distributed as in figure 1. There are five phenotypes, on 
the basis of which assortative mating is to be made. The propor- 
tions in which the four types of gametes are produced by each 
phenotype (4 to 0) are indicated in figure 2. In  calculating the 
frequencies of unions among the various types of gametes, it must be 
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borne in mind that 1% of the matings are within phenotype 4, i$ within 
phenotype 3, T$ within phenotype 2, etc The frequencies are given in 
figure 3, and the composition of the resulting population in figure 4. 

By repeating this process, the composition of any number of generations 
can be found. The writer has carried the work to the fourth generation. 
The percentages of heterozygosis for a given pair of allelomorphs in suc- 
cessive generations form the series ($1, $, ++, Q%, $&. The correlations 
between gametes resulting.from gametogenesis form the series 0, Q, $, #, 
and the correlations between uniting gametes form the series $, 5, 2, gf. 

The work is rather' tedious even in this very simple case. One would 
hardly care to deal with more than two factors or with imperfect assorta- 
tive mating by this method. Fortunately i t  is not difficult to obtain a 
general formula by methods similar to those used in the case of inbreeding. 

GENERAL FORMULAE 

In  figure 5, zAA' and z~A"A"' are meant to represent the genetic con- 
stitutions of two mated individuals. We will assume for the present that 
there is no dominance and that the influences of the various pairs of fac- 
tors AA', BB', CC', etc., are combined additively. The path coefficient 
measuring the influence of any one of these pairs on the sum is represented 
by i. Each pair of allelomorphs such as AA' is determined by the two 
factors of that set, A and A', which united a t  fertilization. The path 
coefficient A to AA' is a:, using the same symbol as in the preceding 
papers except that a subscript .u is employed to indicate that we are deal- 
ing with a single unit factor. This coefficient a: is not, of course, equal to 
the reverse path coefficient AA' to A, representing the relation between 
zygote and gamete in gametogenesis, which would be represented by b,. 

We are assuming that there is a certain correlation between mated indi- 
viduals based on their somatic resemblance. We will call this correlation 
rpp.  The existence of this somatic correlation means in general that there 
is some correlation between the zygotic constitutions. This we will 
represent by m. The existence of the correlation m implies a certain 
correlation between factors of the same set of allelomorphs, such as A 
and A", in the mated individuals. It also, however, implies a correlation 
between factors of different sets of allelomorphs which act on the same 
character, such as A and B". The former correlation will be represented 
by f, the latter by j,. For the sake of simplicity, we will assume that the 
factors A, B, C, etc., are equal in effect and that the relative frequency of 
A and a appli'es to the other sets of factors. Under these conditions, and 
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with assortative mating based wholly on external characters, there is no 
reason why an individual of formula AAbb should have a greater tend- 
ency to mate with his like than with aaBB. 

Thus, j, = f, 

Where there is no assortative mating based on external characters, as in 
the cases of inbreeding which have been discussed, j, = 0. We will take 
up later the combination of inbreeding with assortative mating, in which 
f, is larger than j,. A case in which A and a are about equally numerous, 
while b is much less frequent than B, will bf course be intermediate between 
the case which we are considering with vt factors and the case with n-1 
factors. 

FIGURE 5.-Genetic constitutions of two individuals represented as determined by the indi- 
vidual factors and as correlated through correlations among the latter. 

The correlation between two factors of the same set of allelomorphs, 
which separate at gametogenesis (such as A and A') is represented by g,. 
As these factors united a t  fertilization, in the preceding generation, we 
have, using primes for the preceding generation, g, = f :. 

The correlation between factors of different sets of allelomorphs (such 
as A and B) is represented by k,. There is an evln chance that these two 
factors, came to the individual from the same parent. In  this case, the 
correlation is naturally the same as in the preceding generation, k:. It is 
also an even chance that the factors came from opposite parents in which 
case their correlation must be j: ( = f:). 



148 SEWALL WRIGHT 

On the average 
k, = $ (fi + k:) 

Since AA' is completely determined by A and A' 

2 a2(1 + g,) = 1 

Any two pairs of factors such as AA' and BB' are connected by four paths. 
Their correlation is thus 4a2ku 

The total genetic constitution zAA' is completely determined by the 
various pairs of factors of which we will assume that n are involved. 

The correlation between two mated individuals (in so far as i t  is genetic) 
must equal the sum of the correlations between the various unit-factors in 
their constitutions. Adding up all connecting paths between 
ZA"Af" we get: 

ZAA' and 

- - 2 nfu 
1 +fi+ 2 ( n -  1) k, 

For the percentage of heterozygosis with respect to a single pair of fac- 
tors among the progeny of the mating between ZAA' and ZA"Af" we 
have as usual: 

P = * (1 -fu) 

The constitution of the gametes can be thought of as completely deter- 
mined in a mathematical sense by the component factors. The path 
coefficients A to ABC, etc., in figure 6 are represented by I. 
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The correlation between two sister gametes ABC and A'B'C' can now 
be found. 

g = n12gu + le (n - 1)  Pk, 

- - fi: + (. - 1)  ku 
1 + (n - 1)  ku 

The correlation between uniting gametes such as ABC and A"Br'C" is 
also easily found. 

f = n12fU + n (n - 1) lzj, 
= n21"fu 

FIGURE 6.-Genetic constitutions of sister gametes (produced from one germ mother cell) of 
mated individuals represented as determined by the individual factors and as correlated through 
the latter. 

The values of b and a (figure 7) are the same as with inbreeding. 

The existence of a correlation, rPp, between mated individuals, based 
on their somatic resemblance, means not only that there is a tendency to 
mate individuals of like genetic composition, but also individuals affected 
similarly by external conditions,,or resembling each other because genetic 



150 SEWALL WRIGHT 



ASSORTATIVE MATING BASED ON SOMATIC RESEMBLANCE 151 

peculiarities of one have had the same effect as the external conditions 
which influenced the development of the other. If h2 and e2 are the rela- 
tive degrees of determination by heredity and environment, respectively, 
it may easily be shown that 7,,h2 is the correlation between the genetic 
compositions of the two individuals, rppe2 that between the external con- 
ditions which affected them, and r**eh that between the genetic composi- 
tion of one and the external conditions for the other. The total correla- 
tion between the individuals (figure 7) is thus 

A consideration of the relations between parent and offspring and 
between two offspring, as represented in figure 7, but using hr2 for the 
degree of determination of a parent by heredity, gives the following 
formulae : 

r,, = abhh' (1 + r,,) 
roo = 2 a2b2h2 (1 + rpghr2) 

SUMMARY OF FORMULAE 

I t  will be convenient to summarize the more important formulae at this 
point : 

m = ht2r,, 
gu = f: 
k. = 3 v: + k:) 
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f,, k, and h2 can be calculated for any number of generations for a given 
number of factors (n), a given coefficient of assortative mating (rpp) and a 
given initial degree of determination by heredity (h:). The other path co- 
efficients, the correlations and the percentage of heterozygosis can then 
be found for any generation. 

CHECKS ON THEORY 

A check on these results can be obtained by comparing with the results 
obtained by direct calculation in the case of perfect assortative mating 
with one or two factors. 

One factor 

f, = 3 (1 +fJ 
p = 3 (1 - f,) = 3 p' 

Thus the percentage of heterozygosis halves with every generation as 
found by direct analysis. 

Two factors 

Starting with f, = k, = 0, we obtain the following series: 

From these figures, the values of g, f and p can be calculated: 

These figures agree with those obtained for the correlation between 
sister gametes, between uniting gametes, and for the percentage of hete- 
rozygosis, as far as these were obtained by direct calculation (see page 146). 

OTHER RE&LTS 

The values of the correlations between parent and offspring, between 
brothers, and the percentage of heterozygosis, are given for generations 
1 to 5 and 10,15 and m in a number of cases in tables 2,3, and 4. I t  will 
be noted that disassortative mating can be dealt with in the same way as 
assortative mating by using negative values of m. 
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EQUILIBRIUM 

When equilibrium is reached, f, = ji = g, = k,, etc., f = g, ab = 3. 

With perfect assortative mating, no dominance and no variation which 
is not genetic (m = I ) ,  there is no equilibrium until heterozygosis is entirely 
eliminated. Such conditions, however, would almost never be found in 
practice. Thus in general, assortative mating leads to a condition of 
equilibrium in the population without ever fixing types. In  fact, the 
degree of fixation of types is in general rather small. A correlation of 
0.80 between zygotic formulae would be very high in practice. If m = 

n 
0.80, p = ---- With two factors involved, heterozygosis is reduced 

2n + 4' 
only from 0.50 to 0.25 by an indefinite number of generations of assorta- 
tive mating. With four factors, p is reduced only to 0.333, and with eight 
factors, only to 0.40. 

h2 
The correlation between parent and offspring becomes - ( 1  + r,,) and 

2 
h2 

between brothers - (1 + r,,h2) when equilibrium is reached. I t  is evident 
2 

that these correlations may be very high under conditions under which 
there is very little increase in homozygosis. 

THE VARIABILITY OF A POPULATION 

One of the most important features of the composition of the population 
resulting from a given system of mating is its variability compared with 
that of the original random-bred stock. Turning to figure 5, we see that 
the degree to which the total genetic constitution (zAA') is determined 
by variation in a particular pair of allelomorphs (AA') is measured by i2. 

This measures the portion of the genetic element in the squared standard 
deviation of the population, which is due to one pair of allelomorphs. The 
squared standard deviation for such a pair of allelomorphs depends on the 
average percentage of heterozygosis. With the distribution 3 ( 1  - p') 
AA + pAa + 4 ( 1  - p)  aa the squared standard deviation is 1 - p' in 
the scale in which unity is the effect of one factor. The genetic element 
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1 - p' 
in the total squared standard deviation (uHt2) is thus - (parental 

i2 
generation. 

The formula given for h2 in the summary of formulae can readily be 
derived. 

Under equilibrium, we have 

The genetic element of the squared standard deviation under random 
n 

mating (m = 0) is -. The ratio of the value of rr: under any degree 
2 

2% of assortative mating to that under random mating is thus 
2n- (2n-1)m' 

TABLE 1 

Ratio of the standard deviation, found when there is equilibrium under various conditions, to that 
found under random mating. All variation assumed to be genetic. 

NUldBER 
OF 

FACTORS 

RANDOM 
MATING ASSORTATIVE MATING 

m = + 0.50 m = + 0.75 

INBREEDING 

-- 

I t  is interesting to compare this variation found 'after following a system 
of assortative mating until equilibrium is reached with that found in a 
case in which complete homozygosis has been reached by inbreeding. In 
the latter case, the various pairs of allelomorphs are fixed independently 

1 
of each other. Thus i2 = -. If all heterozygosis has been eliminated, 

n 
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02= = '3 = g. This is just twice the value of o$ in the original ran- 
i2 

dom-bred population, regardless of the number of factors. 
The preceding table gives the ratio of the genetic element in the stan- 

dard deviation under various conditions to that foundunder random mating. 

COMPOSITION OF THE POPULATION 

Assortative mating based on resemblance leads to a composition of the 
population very different from that reached by inbreeding. With perfect 
assortative mating of the former kind, a two-factor population is con- 
verted ultimately into only two extreme types, AABB and aabb. With 
inbreeding, all homozygous types (AABB, AAbb, aaBB and aabb) tend 
equally toward fixation. 

The composition of the population when equilibrium is reached under 
assortative mating which is not perfect, is a question of some interest. 
No general solution can be given, since there are different ways of mating 
which give the same correlation between mates. The symmetrical two- 
factor case, however, is easily solved on making the assumption that the 
correlation between uniting gametes is homoscedastic. 

FIGURE 8.-Two-factor population when equilibrium is reached. There are four unknowns 
to be found. I 

FIGURE 9.-The correlation between uniting gametes in this population. 

AA 

aa 

The percentage of heterozygosis for the average factor is 4 (1 - f,) 
22 + w = 4 (1 - fir) 

The percentage of unions between plus and minus factors of different 
sets of allelomorphs (A X b and a X B) must be the same under our con- 
ditions as the unions A X a and B X b. 

x 2 Y a u + f i O  
A a z  w 1 3 ( 1 - f v )  

y r x t ( l S f s )  

As a third equation we have, of course, 
2 x + 2 y + 4 2 +  w = 1 
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The expression for the correlation between uniting gametes is consistent 
with the three preceding equations, but does not add the required inde- 
pendent equation. If, however, we assume as suggested above that the 
arrays of AB, Ab, aB and ab are equally variable, we get: 

a~ is the standard deviation of all gametes and f is, as before, the 
correlation between uniting gametes. The left-hand member is the 

m  
squared standard deviation of the array of Ab's. Since f, = --- 

4 - 3 m  

2*u under equilibrium, we obtain: andf = - 
1  + f u  

z = 4 (1 - m)2 
(2 - m) (4 - 3  m)2 

1 - m  u = 2 [---- - e 
4-3m I 

From these equations, we can find the composition of our ideal two- 
factor population when equilibrium is reached under assortative mating 
of any required degree. A number of examples are given below. 

FIGURE 10.-Two-factor populations in equilibrium under various degrees of assortative 
or disassortative mating. 
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DOMINANCE 

In the cases with which we have dealt so far, we have assumed a con- 
stant degree of assortative mating. This is not a necessary limitation. 
The coefficient can be changed each generation if desired. 

If dominance is present, we have a case in which a constant correlation 
as regards external characters brings about a changing correlation with 
respect to zygotic constitution. It has been shown in the first paper of 
this series that if A and a are equally numerous, and A is completely 
dominant, the correlation between zygotic constitution and somatic char- 

1 
acter with respect to one factor is dFp- Unfortunately this simple 

formula applies to multiple factors only when these are combined at ran- 
dom, which is not true after a generation of assortative mating. We will 
not attempt here to go into the complexities of the general problem of 
assortative mating where there is dominance. The one-factor case, how- 
ever, is of considerable interest. I t  would be met where there is only oae 
dominant Mendeliap difference of importance, but overlapping of class 
ranges from non-genetic causes. 

If there is complete determination by heredity and perfect assortative 

mating, hf2rPp = 1, and p = -. " The resulting series of values for the 
1 + P' 

percentages of heterozygosis, (%), +, a, 4, & . . . 0, agrees with that 
given by JENNINGS (1916) for this case. The values in certain cases in 
which there is not perfect assortative mating are given in table 2. 

ASSORTATIVE MATING WITH INBREEDING 

In practical live-stock breeding, assortative mating is likely to be accom- 
panied by a certain amount of close-breeding. I t  is thus important to 
find the effects of the combination of these two systems of mating. 
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With most systems of inbreeding, we have found it possible to express 
the correlation between uniting gametes in terms of this correlation in 
previous generations. 

Brother-sister 5 = 4 ( 2 f f  + 5" + 1 )  
Double first cousins j = + (4f' + 2 f f 1  + jf" + 1 )  
Quadruple second cousins f  = 9% (8f' + 4 f f 1 ' +  2f"' + ff"' + 1 )  
One male, many half-sisters f  = $ (6f t  + f" + 1 )  
Half-first cousins f  = & (4f t1  + f f l r  + 1 )  
Second cousins f  = A (8f" + 2ff1' + fl"' + 1 )  
In general let f = ( b ( f l )  

With assortative mating, there will be a correlation between uniting 
gametes, as regards one set of allelomorphs, equal to that between uniting 
factors of different sets in addition to the correlation due to inbreeding 
(figure 5 ) .  

Thus, 
fu = f , + v ( j : )  

As before, 

When equilibrium is reached 
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As an illustration, take the case of assortative mating of 4, in part 
accounted for by the mating of second cousins, and assume that four 
factors are involved, we get 

At the equilibrium point for second-cousin matings: 

At the equilibrium point for assortative mating 01 5 with four factors: 

I t  will be seen that the divergences due to the combination of inbreed- 
ing and assortative mating is somewhat less than the sum of those which 
would result from these systems of mating alone when the latter are both 
small. 

A system of inbreeding in which complete homozygosis is approached, 
would permit in practice a continuously increasing degree of assortative 
mating. The rate at which lcharacters can be fixed is thus much increased 
by combining t he  two systems of mating. 
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