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THE PROBLEM 

Many problems in linkage require the comparison of two or more 
values obtained under different genetic or environic conditions, with 
the object of determining whether or not the observed differences between 
these values are “significant.” By the term “significant difference” is 
here meant one of such size that it would be improbable for it to have 
arisen solely as a result of the random sampling of identical germinal 
material. For the purpose of such comparisons, then, it is necessary 
first to know the size of the deviations which random sampling by itself 
would be likely to cause. This is gauged by means of the “standard 
error,” it being ordinarily true that deviations greater than two or three 
(according to the standard of certainty) times the standard error are very 
improbable, as a mere result of random sampling. (The use of the so- 
called “probable error” merely involves the standard error in some- 
what different guise, as the former is ordinarily obtained by multiplying 
the latter by .6745,-a rather superfluous procedure except in special 
cases). 

It has thus become almost axiomatic, for rigorous workers, that in 
order to be sure of their ground in the interpretation of their results 
they must have an idea of the standard errors of the values with which 
they deal. It is true that often the differences are so obviously decisive 
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that  great refinements are  not necessary, and  yet, unless some estimates 
are  made of the “errors”  involved,  there will be occasions, not  infrequent, 
when the investigator will either run  the risk of being led into some 
serious misinterpretation, or  else  will fail to  reap  the full meaning  from 
his results. 

The  standard error of the simple proportion of  c cross overs," or, more 
accurately, of separations, between two pairs of genes,--as  well as  the 
error of a chromosome distance  (in G:) so short  that it includes no 
double or multiple crossovers,-is  well known, being determined by  the 

familiar formula e p  = , where is  the  standard error of the 

proportion of separations or crossovers, p ,  and n is the  total number of 
individuals  counted.  (When 9 represents  percents rather  than pro- 

portions the formula is ep, = .) But  the  standard errors of 

longer map lengths, involving double crossovers, and of the index of 
double-crossover frequency itself,-coincidence,-have not  hitherto been 
worked out. As these  are  values just  as  important,  in their  way, and  as 
frequently used in theoretical work, as  the simple crossover values, it is 
essential that formulae be available for calculating  their standard errors 
also. 

STANDARD ERROR OF A MAP LENGTH 

Let us consider first the  standard error of a chromosome map, or a 
section of a map long enough to include  double,  etc., crossovers, based 
on a  count  involving  simultaneously  all the loci dealt  with. The  map 
length  is  the  sum of the percent of crossovers in each of the  separate 
regions;  this is evidently the same  as (100 times)  the  quotient  formed 
by dividing the  total number of individuals  counted into  the number of 
crosszngs over (as distinguished from crossovers,-each double crossover 
containing 2 crossings over, each  triple crossover 3 crossings over, etc.). 
Thus,  the  map  length of the regions considered is really (100 times)  the 
mean  value of the number of crossings over per individual  in these regions. 
Now the  standard error of any  mean  value (m) is equal to  the  standard 
deviation of the values of the individuals that go to  make up  the  mean, 

divided by  the square  root of the number of such  individuals 
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In  a given set of data, U ,  the  standard  deviation of the values of the 
individuals, may be determined by  the usual process, which consists of 
getting  the  square of the  deviation of each  individual  value  from  the 
mean  value,  averaging  these  squares, and  extracting  the  square  root of 

this  average,  thus, U =  , where m is  the mean value, in  our 

the or mean number of crossings over per individual, 
and i the  individual  value  or  number of crossings over in  any given 

individual.  This  can also be expressed in  the form, U = "2. 

It follows that e m =  d.(+. n 

All that now remains is  to find the  result of substituting for Z (3 
in  the  above formula the values  derived from the  data.  Let S be  the 
proportion of single crossovers in  the  entire  total;  in  the case of each 
single crossover the  value of i, and 9 ,  is 1 ,  and  the sum of the values 
i2 - is therefore S. Let d be the proportion of double crossovers; since each 
n 
double crossover has a  value of 2 for i, and of 4 for 3 ,  the  sum 

for these  is 4d.  Similarly, let t be the  proportion of triple crossovers, 

the sum of (f> for the triples being 9 t ;  for the  quadruples it is 16p, 

and so on.  Then,  the  entire  sum, 2 - , equals S +4d + 9t+ 16q . 

But m, the  map  length, equals s+2d  +3t+4q . . . ; hence, 2 (g> = 

m+2d+61+12q .  9 . (or nz+2 . ld+3 .2 t+4 .3q .  . . ). Substituting  this 

value of x (:) in  the formula for c m  we have 

(3 

(m+2.ld+3.2t+4.3q . -) -m2 
2 

or n 

-m)+2 . ld+3 .2 t+4 .3q  . . . 
n 
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It is  evident that where there  are no double  or  multiple  crossovers to 

be considered, this expression reduces to  the familiar p 1 - P )  for the 

standard  error, e p ,  of the  proportion of separations.  The  above  value 
for e m ,  of course, applies to  the mean proportion of crossings over, or 

, so that  the  standard error of the  map  length itself,  when the 
latter  is expressed in “chromosome units” or  percents of crossings over, 
rather  than  in proportions,  has  a  value 100 times that of the  above 
expression. When,  therefore, m represents the  number of units of map 
length,  and d,  2, p, etc.,  represent  the  percents  rather  than  the  proportions 
of double,  triple,  quadruple,  etc., crossovers, we have  instead  the  relation 

n 

map length 

d ~ ( 1 0 0 - ~ ~ ) + 2 0 0 d + 6 0 0 t + 1 2 0 0 ~  . . . 
E m  = . . . .  

n (14 

The above  formulae  can also be  arrived at  by  considering the  map 
its the  sum of the various  component distances,--a, b ,  c,. . . .---and ap- 
plying the  equation for the  standard error of a  sum, 

”~ 

4 E a 2 + f b 2 + 6 ?  ’ ‘ ’ ’ + 2 r a b h o E t + 2 Y a c e a c c  ‘ ’ . . + 2 r b e e b C c  ’ ‘ ’ ’ >  

where ea, € 6 ,  eel etc.,  are  the  standard  errors of a, b ,  G, etc.,  obtained  by 

the 
n 

formula,  and T a b ,  roc,  r b c ,  etc.,  are  the  correlations  between 

a and b,  a and c, b and c, etc., r’espectively. These  correlations are ob- 

tained  by  the formula rplPz = ____- , where d is the  propor- 

tion of double crossovers, and p ,  and p2 are  the  proportions of crossovers 
in  the two  respective regions considered. 

Of course, the formulae given do  not  take  into  account possible errors 
due to the existence of unobserved  double crossovers both of whose loci 
of crossing over lie between  two “adjacent” genes, i.  e.,  within  the  limits 
of a region indivisible in  the  experiment; such  errors  are  caused  by the 
conditions of the experiment, whereas the errors given by  the formulae 
are  merely those which would be caused by  random  sampling  under  these 
experimental  conditions.  Furthermore, the formulae do  not  take  into 
account  variations  due  to  determinate causes other  than  sampling,  such 
as genetic,  “developmental,” or environic  circumstances that influence 
either crossing over, or the  viability of different classes of offspring. As 

d -p,p,  
d P I P Z ( 1  - P d U  - Pz) 
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such sources of variation  are seldom absent  except where the  strictest 
attention  has been given to genetic homogeneity of the  parental  ma- 
terial,  and  identity of age, and when the various  experiments have  been 
performed simultaneously,  with the same food, etc., i t  would seem a 
supererogation to develop the formulae for the error of map  length  due 
to  random  sampling  further a t  present, so as  to  include the errors of 
composite maps, formed by  the  combination of the  results of wholly 
different experiments,  involving  different genes. The  methods for  de- 
termining the  “most probable’’ value of the  map from a  combination of 
experiments  with  different loci have  been worked out  by FISHER (1922) 
and  by RELLEY (1923), but  the  standard error of such  a  “most  probable” 
map can  only be estimated  roughly,  after  numerous  experiments  have 
given a basis for judging the usual amount of variation  due  to  “deter- 
minate” causes, among the results, for identical loci, of experiments 
involving different subsidiary loci and different  environic  conditions. 

STANDARD ERROR OF COINCIDENCE 

Coincidence is the  ratio of the  proportion of double crossovers (d )  
which actually occur in two regions (of “lengths” a and b in T), 
to  the  proportion of double crossovers which would occur  there if crossings 
over in  the two regions were independent of one another  (the  latter  value 
being evidently ab). Thus  the value of the coincidence ratio, c, is given 

“units” 

d 
ab 

by the formula c = - . 
In  calculating the  standard error  of  this ratio we may  treat it as  the 

d b 
a O -  i- quotient of two  proportions, pl and p, ,  where p , =  - and p - . 

Then, c=- . The numerator, p l ,  is  the proportion of crossovers in region P1 

P o  
b which occurs among  the a n  cases having crossing over in region a ,  and 
the  denominator, PO, is  the  proportion of crossovers in region b which 
occurs in  the  entire  total of n individuals. Thus, we are enabled to use 
for the  standard error of coincidence, the well known  close-approximation 
formula for the  standard error of a  quotient, which may be stated  as 
follows : 

(€E) =E/(;)’ -2rpo** €P; - €P, - 
Po P 1  

(where E represents the  standard  error,  and r the correlation, of the values 
GENETICS 10: N 1925 
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given in  the respective subscripts). To solve this expression for  the 
present case we must find the values of E , c and rp p ,  and  substitute 

them  in  the  equation given. 

Po P1 0 1  

As p 0  is merely a  proportion ( b )  of a fixed total (n) its  standard error 

in random sampling is accurately given by  the formula c g/”-. 

Somewhat  similarly,  is  a  proportion of the  “total” n and  its  standard 

P o ( 1  - P o >  

PO n 

error, E , may be taken  as . As will be explained later, how- 

ever,  the  latter expression is only an approximation to ~ p , ,  since the 
observed value of a n  is itself subject  to  variation. In obtaining  the  value 
of rpop,, i t  should be noted that  the proportion Po is  gotten  by  the  in- 
clusion of the individuals that go to form p, (the double crossovers), 
with  others (single crossovers in region b ) ,  to form a  proportion of a 
larger total (n). The formula for the correlation of two such  propor- 
tions,--one based on individuals that are also included in  the other,-is 

r = - - , where nl  is the smaller total,  in this case an, out of which PI 

d P t P 1 )  p1 

H1 €P, 

no ‘p 

is  obtained,  and no is the more inclusive total,  in which p ,  occurs. In  

the present case, then, r p a p ,  =- =- 
@%€P, a€,, 
n € P o  €P, 

Substituting, now, the above values of c P O ,  eP1, and rP p in  the  formula 
for  the  standard error of a  quotient  and simplifying each  term, we obtain 

0 1  

1 -p1 . Next,  substituting  for PO and p1 

d 
a 

their values b and - : 

b a-d  2 l a - d )  

adn abn 

,,,/ad(l-b)+b(a-d)-2d(o-d) 
Reducing to common denominator, = c  - 

abdn 
__I 



Simplifying the  numerator  and  rearranging  terms, 

. / a b - d ( a + b + ~ b - 2 d )  
c c = c y  

abdn 
d 
ab 

Substituting for - its value c, and for ( a - d )  and ( b - d )  the symbols a, 

and b,, respectively, signifying the  proportion of single crossovers in 
regions a and b, we have, finally, 

For much work it will  be found sufficiently-accurate to use in place of 
this  a rougher approximation,  derivable  from-it, - as follows: 

(approximatelv), . . .  

where m is the m* of the regions in question, i. e., m=a+b, and 
D =an, the  absolute  number of double crossovers. 

Another form of formula (Z), sometimes  more  convenient in practice, 
may be obtained from the expression just preceding (2) by dividing the 
terms of the  numerator  into  the  denominator. We then  have: 

1 1 1 2 6  
drt brt art n n 

- - - - - - +-. 
Denoting dn, b n  and an by D, B and A ,  which are  the  absolute  numbers 
rather  than  the proportions of double crossovers and of crossovers in 
regions b and a, respectively, we have: 

1 1 1  
A B D  

+ - (approximately) . . (2b) 

As all  these  formulae are  symmetrical  with  respect  to a and b (that is, 
the  latter  may be interchanged  without  altering  the final value) i t  is 

evident that  the use of - as p l  and of a as p .  in working out  the  result 

would have  led  to  the same expression. Nevertheless, as mentioned  pre- 
viously, even  formulae ( 2 )  and (2b) are  not  strictly  accurate,  first, be- 
cause the formula used for the  standard error of a quotient  is only an 
approximation,  though  a  very close one, and second, because the  formula 

d 
lb  
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for ept is  approximate, since the observed values  representing the  "total" 
an are variable. 

Where  the  total  out of which a  proportion  is  taken is variable,  strict 
accuracy  usually  demands the use of H, the  harmonic  mean of these 
totals,  rather  than  the  arithmetic mean  (in  our case a n ) ,  in  the place of 

n in  the formula t p  = . Where the  actual values of the  totals 
11 

are  not available for determining H ,  the  latter  may usually be cal- 
culated from the  arithmetic  mean, n, by  the  approximation  formula, 

H = n ( 1  - 5) . Substituting, for our case, an for n and dan(liun) 
for a,, we have H = an+a- 1. If this  is used in place of an in  the formula 
for e p , ,  and  the formula for ec worked out  by  steps similar to those taken 
previously, we obtain: 

This is  obviously  unsymmetrical  with  respect to a and b,  due  to  the  fact 
that  the formula for I1 used was only an  approximation. In  fact, it can 
be shown that  the difference between the  value of this expression and 
that obtained when a and b are  interchataged would not  infrequently 
be  greater,  in cases of the  sort  dealt  with experimentally, than  the  dif- 
ference between  one of them  and  the original  formula ( 2 ) .  Doubtless 
a  better  approximation could be  obtained  by using the mean of a and b 
rather  than a in  the  unsymmetrical  portions of formula ( 3 ) .  This works 
out as follows: 

2c-  1 +"- a+b 
1 1 2 - a - h  + €,=C __ 

n ( n + l ) ( a + b j - 2  d a b 

The error  caused in  actual problems by  the use of the  arithmetic 
rather  than  the  approximate  harmonic mean for an is, however,  never 
more than  a few percent of the  value of ec. Such an  amount is  usually 
of negligible consequence when standard errors  are dealt  with,  for  the 
latter  are ordinarily used for determining  in  round  numbers  (or  numbers 
of the accuracy of 2.5) the multiple which a  given  deviation is of the 
standard  deviation. Hence,  there would seldom be reason for employing 
the unwieldy formula ( 3 )  or (3a)  rather  than (2) or (2a). 
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In strictest accuracy, 4 is indeterminate, because in reality is 
indeterminate. The real harmonic mean, H ,  of observed values of an, 
must always be 0, since in a practically negligible proportion of samples 
an will  be 0, and  the harmonic mean of any series including 0 must always 
be 0 also;  this in  turn would make epl =O. It is more correct, however, 
to consider the  deviations of p l  itself, since the  root  mean  square of these 
really give ep l .  If we do this, we find that when an = 0, since the  deviation 

d O  
an 0’ 

of d also=O, the  proportion p ,  being -, or - is indeterminate, and 

its deviation  is therefore indeterminate also. This causes epl to be in- 
determinate, and consequently cc, even though  a sample in which an was 
0 would not occur, in ordinary work, once in a billion times (an would be 
zero about once in 200,000,000,000 times if a represented 5 units  and n 
a  total of 500 individuals). 

If, then, we use the term standard  error  in  the most rigorously exact 
sense we see that in  the case of coincidence its value cannot be found, 
and does not,  in  fact, exist, as a definite quantity. Nevertheless, we can 
continue to speak of it, and  to use one of the above formulae for ec in our 
work, and these values will have  a  practical meaning similar to  that of 
the  standard  error of other  quantities,  inasmuch  as  a  random  deviation 
of a  certain  number of times this cc will have  about  the  same  amount of 
probability as a random deviation of another quantity which is  the  same 
number of times its standard deviation. And the  “probable  error,” as 
in  other cases,  will here too be about .6745 times the  value  taken as 
representing standard  error, provided dn is  a reasonably large  number. 
In the case of coincidence, in  fact,  the “probable error”  is really a  value 
of more definite meaning than  the  standard error, being determinate, 

and independent of the  indeterminate value of - for  the cases  when 

an=O. Usually, however, i t  would  be necessary first to determine ec as 
above, before the probable error could be found. 

It should also be noted that although e,, strictly speaking, is  in- 
determinate, the range of indetermination is very small, since for all 
ordinary values of a and n used the  proportion of samples in which an 1 0  
is exceedingly minute,  and  in each of the latter samples, even though 
d O  . this  ratio  can never be greater than 1 (nor less than O), as d can an 0 

never exceed an. The  standard  error,  then, which involves the sum of 

d 
an 

-I- 
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numerous  determinate  quantities  and  these few indeterminate  quanti ties 
of limited  value, becomes very narrowly fixed. Theoretically,  limits 
could be assigned to ec and it would be found that  the difference between 
these  limits  is  utterly negligible compared with  the size of E ,  itself, or 
compared  with the difference between either of them  and  the  practically 
adequate value given by approximation formula (2). Thus,  the question 
of the more exact  determination of ec ceases to  be of practical  moment. 

THE USE OF THE STANDARD-ERROR FORMULAE 

Errors o j  observed versus true  values 

Every one of the formulae mentioned so far, including  those for 
crossovers, map  length  and coincidence, has given the  standard  deviation 
to be observed in a  large collection of random samples if  the  true  values 
(for  proportion of crossovers, double crossovers, coincidence, etc.), 
that is,  the  values which would  be found  in  an indefinitely large  sample 
of the same  material, were those used in  the  formula. Values resulting 
from random sampling of this  material that deviate  from  the  “true” 
value by more than two or three times this standard error may  then be 
taken  as improbable, since they can be shown to occur infrequently, 
and when such  values are found it is therefore considered probable that 
they were drawn from material  with  a  true  value different from that 
assumed. 

In  practice, however, the question usually to be answered is  not  the 
above,-what the observed values  may  be which have  the  greatest reason- 
able  deviation from a  certain assumed true value,-but the converse, 
that is,  what  the  true  values could be which would have  as  their  greatest 
“reasonable” deviant a  certain observed value.  We  can not answer this 
question precisely by  the simple use of the preceding formulae, since the 
standard  error, given in  the formula, of a true  value  equal  to that ob- 
served, is not precisely the same as the  standard error of a true  value 
differing from that observed by plus or minus two or three  times the 
latter  standard error  itself. However, the values of these  errors are usually 
sufficiently alike that one may be used in place of the  other  without 
serious danger of an erroneous conclusion, unless the absolute  number 
of one or more of the  variants involved  is extremely small, and it has 
accordingly been the practice to use such formulae as  the above for 
finding the limits of the  true values which observed values  may  represent, 
by  adding  to  and  subtracting  from  the  latter 2 or 3 times the error given by 
the formulae. It is as legitimate to do this in  the caseof themap and CO- 
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incidence  formulae as  in  the case of the  other  formulae where this  is com- 
monly done. 

When  greater  accuracy  is desired, it is  customary  to use a rather 
cumbersome method of approximation. In  this  method  the  observed 
value is first  assumed to be true,  and by  the  aid of a  formula like one of 
those given above,  the  plus  and  minus  limits of the  “reasonably possible” 
observed values (differing from the former by 2 or 3 times the  standard 
error)  are calculated.  These are  then assumed to be true,  and  their 
standard errors are calculated by  the same  formula.  Deviations from the 
observed value of two or three  times  these, in  the plus or minus  direction, 
respectively, now give the  true values to a second approximation. The 
same process may be repeated  as many times  as necessary, until  the 
desired degree of accuracy  is attained. In the case of coincidence, this 
procedure would be considerably more difficult and  intricate  than would 
appear from the  above outline, since the  standard  error of any  true or 
assumedly true  value of coincidence is  a  function not only of the co- 
incidence itself,  and the  total  number  counted,  but also of the different 
classes of crossovers, the values of which vary  in  partial independence 
of one another.  Just how to  take all these  variations into account 
simultaneously is  not  at present clear. 

When we are dealing with the simple proportion of crossovers, how- 
ever, or any  other simple  proportion (such as of non-disjunctional ex- 
ceptions,  mutations,  etc.),  the  above  approximation  method  may be re- 
placed by a  more  direct and  exact  procedure. Let p .  be the observed 
value of the  proportion  and p1 and p 2  the respective  larger and smaller 
possible true values which differ from Po by a  certain  number of times, say 

a times,  their own standard error. Then we have p l   - p o  = a  E 
and p a -  p2 = a f l2( ’np2)  . If we solve these  equations  for pl and p , ,  

equals an expression which is the same as  the  above except that a  minus 
sign occurs before the  term  containing  the  radical.  Thus, if we let p ;  
represent  either  extreme possible true value, we have 

GENETICS 10: N 1925 
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where P o  is the observed  value and a the  number of times the  standard 
deviation of the possible true  value whereby the  latter  differs  from  the 
observed  value. This  formula does not seem to be well known, but, 
although  somewhat  lengthy, it is necessary where exactitude  is  sought, 
and it is especially important when pn is  a rather small  number. 

Errors due to  causes other than  random  sampling 

A second point which must be kept  in mind  in the  application of any 
of the  formulae  above discussed is  that  they give an  idea of the size of 
such  deviations  as  result  from  random  sampling alone. A deviation 
greater than  that  thus indicated would not prove the effectiveness of a 
given  factor  or agency in influencing the  value  studied unless it could 
be shown that no other  variation was possible in  the experiment  except 
that  due  to  random sampling and  to this  agency. This is seldom the case 
in work on  linkage,  non-disjunction, and  other genetic processes giving 
irregular  ratios, and so the unmodified formulae of random  sampling 
are only  applicable in  the comparison of experiments in which the  strictest 
attention has been given to uniformity of genetic and  other  conditions 
in all respects except those the influence of which i t  is desired to de- 
termine  (or those the  amount of influence of which is  definitely  predict- 
able). As GOWEN'S (1919) work shows, even  in  such cases there  may  be 
uncontrollable sources of variation  making  the  deviations  greater  than  in 
random  sampling. 

Wherever possible, then,  statistical  tests should be applied to  the 
material,  by  getting  the results of various  samples taken  under  the 
(supposedly)  same  conditions, and  determining whether  or not  the  de- 
viations of these  samples from one another  are  greater  than would be 
'expected of purely  random  samples. The formula for this  test  is  easy, 
since the  deviations of the values in  the samples  from the general  mean 
value, when squared,  summed  and averaged, so as to  get  the  standard 
deviation of these  values,  should not differ significantly from the  standard 
error to be  expected of the average  sample  (determined by one of the  above 
formulae,  with the use of H ,  the  harmonic  mean,  as  the  mean  number 
per  sample).  Whether  the  resultant difference is significant may usually 
be  found  with sufficient accuracy  by the use of the  approximate  formula 

for the  standard error of a standard  deviation, that is, __ in which 
e 

4TN 
e is the calculated standard error of the samples and N is the  number of 
samples.  These  methods  apply  alike to problems of map  length, coin- 
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cidence, percent of crossovers, of non-disjunction,  etc. Of course a 
satisfactory  agreement of the observed deviations of the samples  with 
the error expected from random  sampling is  not a  sure proof that  other 
sources of variation  may  not be a t  work, but a  contrary result,-a signifi- 
cant disagreement,-does prove that  the unmodified random  sampling 
formulae do  not apply. 

If, by reason of tests like the  above or on  account of a priori con- 
siderations, i t  is concluded that  the  random sampling rules are  insufficient, 
there  may  remain  another mode of procedure for determining  whether 
a given condition or set of conditions  is  exerting  a significant influence 
upon  the  genetic  phenomenon  studied, or for determining  the  amount 
of such influence. This, however, like the above test, requires that a 
considerable number of separate samples  have been recorded, preferably 
in  both (or all) of the series to be contrasted.  The  standard  deviation 
of the values of the  separate  samples from the general  mean  value is 
then  calculated for all the series taken  together, by  the same  method 
as used in  the  tests discussed above, and  this  standard  deviation, U,  

divided by  the  square  root of the  number of samples (NI) comprised in 

a given series, will give the  standard error ( __ d&) allowed for the  mean 

of this  entire series, provided the special controlled  agency which dif- 
ferentiates one series from another  is ineffective in influencing the  genetic 

process studied. Similarly, - the  standard error of the mean of the 
U 

V N 2  ’ 
entire second series, composed of N 2  samples, may be obtained.  These 
two quantities  can now be used in  the familiar  formula for the  standard 
error of a difference, where there  is no correlation, U d  = to 
determine  in  this case the  standard error for the difference of the means of 
the two  entire series. If, then,  the  actual difference between these  means 
is more than two or three  times  the  latter  standard  error, it may be con- 
cluded that  the agency  studied  has been effective. 

This final conclusion will be valid  even if there were numerous other 
agents  affecting  the genetic process studied, so long  as  there was no  cause 
other  than “chance” to lead  these  agents to  act on the samples of one 
series rather  than  the other,-that is, if each  sample,  independently of 
every  other, were as  likely to come under  the influence of one or more 
of these  agents  as every other sample.  For the diversifying  influences 
G m m c s  10: N 1925 
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of these  extraneous  factors,  uncorrelated  with the controlled factor, 
has been allowed for by  taking  the observed standard  deviations  of  the 
samples  rather  than  the errors  calculated  on the basis of random  sampling. 
But,  as  before, while a  significant difference between the  means of the 
series will thus prove the effectiveness of an  agent,  the  lack of such  a 
difference will not categorically  disprove the  latter  but will merely  assign 
an upper  limit  to it. 

The above  method  is  theoretically  applicable  no  matter  whether the 
value  studied be proportion of crossovers, of non-disjunction  or  other 
exceptions, map  length, coincidence, or anything else. In  the case of 
coincidence, however, since this requires such  large  numbers in a  sample 
for a single good determination, it is  often  impracticable to secure  large 
numbers of samples, but  the work can  usually  be  divided into a few 
samples, a t  least, so that some estimate  can  be  obtained of the  amount 
of variability  due  to  all  “extraneous”  causes  combined.  Thus, an  idea 
of the  upper  limit of such  variability  may be formed,  by which the sig- 
nificance of the differences observed in different series may  be gauged. 

Where,  however, the coincidence values to be compared  concern  dif- 
ferent regions all of which were studied  in  the  same  counts,  the  formulae 
of random  sampling (2. Za, 2b) are  accurately  applicable,  provided the 
approximate  equality of contrary classes shows that  the effects of dif- 
ferential  viability  are negligible. For  in  such  a case identical  genetic, de- 
velopmental  and  other environic  factors were acting  in  the  formation  of 
the different  gametic coincidence ratios,  and  the only  possible  sources of 
difference in  the observed coincidences, aside  from the effects of random 
sampling,  are  those  inherent  in  the  behavior of the  different regions con- 
cerned and selective  agents which may cause the  adult  ratios  to differ 
from the gametic ones. 

Cornparisom of values 

The  formula for the  standard  error of a  difference, of course,  applies 
both  in cases like  those  previously  discussed,where the differences between 
means  are  dealt  with,  and also in all cases of purely  random  sampling.  Since 
this process of getting  the  root  sum of two  squares  must  often  be  performed 
repeatedly, it is  convenient  to use a  geometric  scheme for making the 
computation  (just  as  in  multiplications  and divisions we may use the slide 
rule).  For  the  present calculation the  authors find that if a sheet  of co- 
ordinate  paper  be used,  with the lines numbered by tens,  both down and 
across, and  another  numbered piece of the  paper,  in  the  form of a  strip, 
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be taken  as  a  ruler, sufficient accuracy  is attained  by reading the  distance 
subtended  on  the  ruler when this  is placed diagonally from a point on the 
upper edge having  a  numerical  value  equal to one of the  standard devia- 
tions to a point along the left  vertical edge having  a  value  equal  to  the 
other  standard  deviation.  This  method, which obviously  depends  upon  a 
hypotenuse being equal to  the root  sum of the  squares of the sides, has 
been found to  save considerable time and  to be far  quicker for this  purpose 
than  the slide rule. 

Not merely the significance of a difference, but also the  limits allowed for 
the  intensity or degree of effect produced, are  determined  by  the  formula 
for the  standard error of a difference. Intensities of effect are, however, 
expressed more  intelligibly, and  are more  readily  dealt  with, by means of 
the  quotients  than  by  the differences of the values found in different 
series. The formula for the  standard error of quotients of uncorrelated 
quantities in general has been mentioned in  the section  on coincidence. 
For  the  handling of these  quotients  the  reader  may be referred to  the 
examples treated  in  the account of the effect of X rays  upon crossing over 
in Drosophila  autosomes  (MULLER 1925). 

SUMMARY 

1. The formula  is given (formulae 1 and la) for the  standard  deviation 
which would result from random  sampling in  the case of a  chromosome 
map, or section of a  map,  the loci involved in which are followed simul- 
taneously. 

2. It is shown that  the  standard error of coincidence is  not finally 
determinate, but  that ordinarily its value  is  very  narrowly  limited. 
Formulae (2, 2a, 2b,  3, 3a)  are  presented, that give with  various degrees 
of approximation  the  standard  deviation of coincidence which would occur 
in  random sampling. 

3 .  Cautions  to be observed in  the use of these and  other  formulae for the 
standard deviations caused by  random  sampling  are  pointed  out.  Methods 
are reviewed for  determining the significance of results in case other 
sources of variation besides random  sampling and  the possible influence 
of the  factors  to be studied  unavoidably  enter  into  the  experiment. 
4. The formula (4) is given for determining the maximum and mini- 

mum “possible” true values of a  proportion of crossovers or of other 
genetic  types which might, in  random sampling,  have been represented by 
a  given observed value. This gives results  somewhat  different from those 
obtained  by the formula in common use for this  purpose. 

GENETICS 10: N 1925 
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